1
|
Dimitriadis K, Pyrpyris N, Tatakis F, Kyriakoulis K, Pitsiori DE, Beneki E, Fragkoulis C, Konstantinidis D, Kollias A, Aznaouridis K, Tsioufis K. The effect of renal denervation in microcirculation: focusing on coronary microvascular dysfunction. Future Cardiol 2025; 21:245-256. [PMID: 39924226 PMCID: PMC11901408 DOI: 10.1080/14796678.2025.2464478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/05/2025] [Indexed: 02/11/2025] Open
Abstract
Arterial hypertension is one of the most prevalent cardiovascular pathologies worldwide. Considering the increased rates of uncontrolled hypertension and treatment non-adherence, catheter-based methods, with the most prominent being renal denervation, have been recently included in international guidelines for the management of the pathology, naming the method the third pillar in hypertension management. However, sympathetic overactivation is not only a major pathophysiologic driver in hypertension, but in other cardiovascular pathologies as well. Considering the effect of renal denervation in hypertension-mediated target organ damage, as well as the pleotropic effects of this modality, recent evidence have evaluated the modality in coronary microvascular dysfunction (CMD). Interestingly, despite preclinical data showcase a benefit of renal denervation in microcirculatory homeostasis, with enhancement of endothelial-mediated vasodilation and reduction of inflammation, these effects have failed to be translated into clinical benefit, with the limited, to date, non-interventional studies in coronary microcirculation reporting neutral effects. Therefore, this review aims to delineate the pathophysiological processes which relate microvascular dysfunction with hypertension, discuss the effect of the procedure in hypertension-mediated target organ damage, analyze preclinical and clinical data on the safety and efficacy of renal denervation in improving microcirculatory indices, as well as provide future directions for this novel field.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kyriakoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Daphne Elpy Pitsiori
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Konstantinidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhang S, Lin Z, Yu B, Liu J, Jin J, Li G, Dong H. Smoking paradox in coronary function and structure of acute ST-segment elevation myocardial infarction patients treated with primary percutaneous coronary intervention. BMC Cardiovasc Disord 2024; 24:427. [PMID: 39143506 PMCID: PMC11323606 DOI: 10.1186/s12872-024-04093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Smoking paradox has generated inconsistent findings concerning the clinical prognosis of acute ST-segment elevation myocardial infarction (STEMI) patients, while providing limited insights into coronary anatomy and function which are crucial prognostic factors. Therefore, this study aimed to further investigate the existence of smoking paradox in coronary anatomy and function. METHODS This study divided STEMI patients into smokers and non-smokers. Quantitative coronary angiography, angiography‑derived microcirculatory resistance (AMR) and quantitative flow ratio (QFR) were utilized to analyze coronary anatomy and function. These parameters were compared using multivariable analysis and propensity score matching. The clinical outcomes were evaluated using Kaplan-Meier curve and Cox regression. RESULTS The study included 1258 patients, with 730 in non-smoker group and 528 in smoker group. Smokers were significantly younger, predominantly male, and had fewer comorbidities. Without adjusting for confounders, smokers exhibited larger lumen diameter [2.03(1.45-2.57) vs. 1.90(1.37-2.49), P = 0.033] and lower AMR [244(212-288) vs. 260(218-301), P = 0.006]. After matching and multivariate adjustment, smokers exhibited inversely smaller lumen diameter [1.97(1.38-2.50) vs. 2.15(1.63-2.60), P = 0.002] and higher incidence of coronary microvascular dysfunction [233(53.9%) vs. 190(43.6%), P = 0.002], but showed similar AMR and clinical outcomes compared to non-smokers. There was no difference in QFR between two groups. CONCLUSION Smoking among STEMI patients undergoing pPCI was associated with smaller lumen diameter and higher occurrence of coronary microvascular dysfunction, although it had no further impact on clinical prognosis. The smoking paradox observed in coronary anatomy or function may be explained by younger age, gender, and lower prevalence of comorbidities.
Collapse
Affiliation(s)
- Shanghong Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Medical College, Shantou University, Shantou, Guangdong, 515041, China
| | - Ziqiang Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, 510632, China
| | - Bingyan Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jieliang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Junguo Jin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Guang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Haojian Dong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- Nyingchi People's Hospital, Nyingchi, Tibet, 860000, China.
| |
Collapse
|
4
|
Jacobs ME, de Vries DK, Engelse MA, Dumas SJ, Rabelink TJ. Endothelial to mesenchymal transition in kidney fibrosis. Nephrol Dial Transplant 2024; 39:752-760. [PMID: 37968135 DOI: 10.1093/ndt/gfad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/17/2023] Open
Abstract
Fibrotic diseases are characterized by the uncontrolled accumulation of extracellular matrix (ECM) components leading to disruption of tissue homeostasis. Myofibroblasts as the main ECM-producing cells can originate from various differentiated cell types after injury. Particularly, the process of endothelial-to-mesenchymal transition (endMT), describing phenotypic shifts of endothelial cells to adopt a fully mesenchymal identity, may contribute to the pool of myofibroblasts in fibrosis, while leading to capillary rarefaction and exacerbation of tissue hypoxia. In renal disease, incomplete recovery from acute kidney injury (AKI) and the ensuing fibrotic reaction stand out as major contributors to chronic kidney disease (CKD) development. While the focus has largely been on impaired tubular epithelial repair as a potential fibrosis-driving mechanism, alterations in the renal microcirculation post-AKI, and in particular endMT as a maladaptive response, could hold equal significance. Dysfunctional interplays among various cell types in the kidney microenvironment can instigate endMT. Transforming growth factor beta (TGF-β) signaling, with its downstream activation of canonical/Smad-mediated and non-canonical pathways, has been identified as primary driver of this process. However, non-TGF-β-mediated pathways involving inflammatory agents and metabolic shifts in intercellular communication within the tissue microenvironment can also trigger endMT. These harmful, maladaptive cell-cell interactions and signaling pathways offer potential targets for therapeutic intervention to impede endMT and decelerate fibrogenesis such as in AKI-CKD progression. Presently, partial reduction of TGF-β signaling using anti-diabetic drugs or statins may hold therapeutic potential in renal context. Nevertheless, further investigation is warranted to validate underlying mechanisms and assess positive effects within a clinical framework.
Collapse
Affiliation(s)
- Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Stangret A, Sadowski KA, Jabłoński K, Kochman J, Opolski G, Grabowski M, Tomaniak M. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease-Is There a Link? Int J Mol Sci 2024; 25:3885. [PMID: 38612695 PMCID: PMC11012077 DOI: 10.3390/ijms25073885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Non-obstructive coronary artery disease (NO-CAD) constitutes a heterogeneous group of conditions collectively characterized by less than 50% narrowing in at least one major coronary artery with a fractional flow reserve (FFR) of ≤0.80 observed in coronary angiography. The pathogenesis and progression of NO-CAD are still not fully understood, however, inflammatory processes, particularly atherosclerosis and microvascular dysfunction are known to play a major role in it. Chemokine fractalkine (FKN/CX3CL1) is inherently linked to these processes. FKN/CX3CL1 functions predominantly as a chemoattractant for immune cells, facilitating their transmigration through the vessel wall and inhibiting their apoptosis. Its concentrations correlate positively with major cardiovascular risk factors. Moreover, promising preliminary results have shown that FKN/CX3CL1 receptor inhibitor (KAND567) administered in the population of patients with ST-elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI), inhibits the adverse reaction of the immune system that causes hyperinflammation. Whereas the link between FKN/CX3CL1 and NO-CAD appears evident, further studies are necessary to unveil this complex relationship. In this review, we critically overview the current data on FKN/CX3CL1 in the context of NO-CAD and present the novel clinical implications of the unique structure and function of FKN/CX3CL1 as a compound which distinctively contributes to the pathomechanism of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Karol Artur Sadowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Konrad Jabłoński
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Janusz Kochman
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Mariusz Tomaniak
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| |
Collapse
|
6
|
Goligorsky MS. Permissive role of vascular endothelium in fibrosis: focus on the kidney. Am J Physiol Cell Physiol 2024; 326:C712-C723. [PMID: 38223932 PMCID: PMC11193458 DOI: 10.1152/ajpcell.00526.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-β; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-β and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Pharmacology, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Touro University, Valhalla, New York, United States
| |
Collapse
|
7
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA, Oktaviono YH. Effect of Colchicine in reducing MMP-9, NOX2, and TGF- β1 after myocardial infarction. BMC Cardiovasc Disord 2023; 23:449. [PMID: 37697278 PMCID: PMC10496361 DOI: 10.1186/s12872-023-03464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND According to WHO 2020, CAD is the second leading cause of death in Indonesia with death cases reaching 259,297 or 15.33% of total deaths. Unfortunately, most of the patients of CAD in Indonesia did not match the golden period or decline to be treated with Percutaneous Coronary Intervention (PCI). Based on the recent study, there were increases in MMP-9, NOX2, and TGF-β1 in STEMI patients which contribute to cardiac remodeling. Moreover, there is controversy regarding the benefit of late PCI (12-48 hours after onset of STEMI) in stable patients. Lately, colchicine is widely used in cardiovascular disease. This study was conducted to explore the effect of colchicine to reduce MMP- 9, NOX2, and TGF-β1 levels after myocardial infarction in stable patients. METHOD In this clinical trial study, we assessed 129 STEMI patients, about 102 patients who met inclusion criteria were randomized into four groups. Around 25 patients received late PCI (12-48 h after the onset of chest pain), optimal medical treatment (OMT) for STEMI, and colchicine; 24 patients received late PCI and OMT; 22 patients didn't get the revascularization (No Revas), OMT, and colchicine; and 31 patients received No Revas and OMT only. The laboratory test for MMP-9, NOX2, and TGF-β1 were tested in Day-1 and Day-5. The data were analyzed using Mann-Whitney. RESULTS A total of 102 patients with mean age of 56 ± 9.9, were assigned into four groups. The data analysis showed significant results within No Revas + OMT + Colchicine group versus No Revas + OMT + Placebo in MMP-9 (Day-1: p = 0.001; Day-5: p = 0.022), NOX2 (Day-1: p = 0.02; Day-5: p = 0.026), and TGF-β1 (Day-1: p = 0.00; Day-5: p = 0.00) with the less three markers in OMT + Colchicine group than OMT + Placebo group. There were no significant differences within the late PCI + OMT + colchicine group and PCI + OMT + Placebo group. CONCLUSIONS Colchicine could significantly reduce MMP-9, NOX2, and TGF-β1 levels in stable STEMI patients. So that, colchicine could be a potential agent in STEMI patients and prevent cardiac remodeling events.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia.
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia.
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
8
|
Hung MJ, Yeh CT, Kounis NG, Koniari I, Hu P, Hung MY. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. Int J Mol Sci 2023; 24:ijms24087530. [PMID: 37108691 PMCID: PMC10145866 DOI: 10.3390/ijms24087530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although heart failure (HF) is a clinical syndrome that becomes worse over time, certain cases can be reversed with appropriate treatments. While coronary artery spasm (CAS) is still underappreciated and may be misdiagnosed, ischemia due to coronary artery disease and CAS is becoming the single most frequent cause of HF worldwide. CAS could lead to syncope, HF, arrhythmias, and myocardial ischemic syndromes such as asymptomatic ischemia, rest and/or effort angina, myocardial infarction, and sudden death. Albeit the clinical significance of asymptomatic CAS has been undervalued, affected individuals compared with those with classic Heberden's angina pectoris are at higher risk of syncope, life-threatening arrhythmias, and sudden death. As a result, a prompt diagnosis implements appropriate treatment strategies, which have significant life-changing consequences to prevent CAS-related complications, such as HF. Although an accurate diagnosis depends mainly on coronary angiography and provocative testing, clinical characteristics may help decision-making. Because the majority of CAS-related HF (CASHF) patients present with less severe phenotypes than overt HF, it underscores the importance of understanding risk factors correlated with CAS to prevent the future burden of HF. This narrative literature review summarises and discusses separately the epidemiology, clinical features, pathophysiology, and management of patients with CASHF.
Collapse
Affiliation(s)
- Ming-Jui Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Keelung, Chang Gung University College of Medicine, Keelung City 24201, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, 26221 Patras, Greece
| | - Ioanna Koniari
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - Patrick Hu
- Department of Internal Medicine, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei City 110301, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
9
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
10
|
Ren Y, Hu Y, Li C, Zhong P, Liu H, Wang H, Kuang Y, Fu B, Wang Y, Zhao H, Zeng X, Kong H, Lawali DJAM, Yu D, Yu H, Yang X. Impaired retinal microcirculation in patients with non-obstructive coronary artery disease. Microvasc Res 2023; 148:104533. [PMID: 37004959 DOI: 10.1016/j.mvr.2023.104533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE To quantitatively investigate alterations of retinal microcirculation in patients with non-obstructive coronary artery disease (NOCAD) using optical coherence tomography angiography (OCTA), and to identify the ability of retinal microcirculation parameters in differentiating coronary artery disease (CAD) subtypes. METHODS All participants with angina pectoris underwent coronary computed tomography angiography. Patients with lumen diameter reduction of 20-50 % in all major coronary arteries were defined as NOCAD, while patients with at least one major coronary artery lumen diameter reduction ≥ 50 % were recruited as obstructive coronary artery disease (OCAD). Participants without a history of ophthalmic or systemic vascular disease were recruited as healthy controls. Retinal neural-vasculature was measured quantitatively by OCTA, including peripapillary retinal nerve fiber layer (RNFL) thickness and vessel density (VD) of the optic disc, superficial vessel plexus (SVP), deep vessel plexus (DVP), and foveal density (FD 300). p < 0.017 is considered significant in multiple comparisons. RESULTS A total of 185 participants (65 NOCAD, 62 OCAD, and 58 controls) were enrolled. Except for the DVP fovea (p = 0.069), significantly reduced VD in all other regions of SVP and DVP was detected in both the NOCAD and OCAD groups compared to control group (all p < 0.017), while a more significant decrease was found in OCAD compared to NOCAD. Multivariate regression analysis showed that lower VD in superior hemi part of whole SVP (OR: 0.582, 95 % CI: 0.451-0.752) was an independent risk factor for NOCAD compared to controls, while lower VD in the whole SVP (OR: 0.550, 95 % CI: 0.421-0.719) was an independent risk factor for OCAD compared to NOCAD. Using the integration of retinal microvascular parameters, the area under the receiver operating characteristic curve (AUC) for NOCAD versus control and OCAD versus NOCAD were 0.840 and 0.830, respectively. CONCLUSION Significant retinal microcirculation impairment, while milder than that in OCAD was observed in NOCAD patients, indicating retinal microvasculature assessment might provide a new systemic microcirculation observation window for NOCAD. Furthermore, retinal microvasculature may serve as a new indicator to assess the severity of CAD with good performance of retinal microvascular parameters in identifying different CAD subtypes.
Collapse
Affiliation(s)
- Yun Ren
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cong Li
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingting Zhong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huimin Wang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Kuang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bingqi Fu
- Shantou University Medical College, Shantou, China; Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Wang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Hanpeng Zhao
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Zeng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huiqian Kong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dan Jouma Amadou Maman Lawali
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Danqing Yu
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA. Colchicine as potential inhibitor targeting MMP-9, NOX2 and TGF-β1 in myocardial infarction: a combination of docking and molecular dynamic simulation study. J Biomol Struct Dyn 2023; 41:12214-12224. [PMID: 36636837 DOI: 10.1080/07391102.2023.2166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
The global data revealed that myocardial infarction (MI) in coronary heart disease has been the leading cause of mortality worldwide in both developing and developed countries. The remodeling process after MI is essential to be the leading cause of heart failure due to cardiac remodeling. The evidence showed the increment of MMP-9, NOX2 and TGF-β1 expressions are biomarkers that influence cardiac remodeling. Lately, colchicine is widely used in the treatment of cardiovascular diseases. The effects of colchicine on NOX2, MMP-9 and TGF-β1 in the molecular models are still not yet discussed. We proposed a molecular docking and molecular dynamics simulation study to show the interaction between colchicine, NOX2, MMP-9 and TGF-β1. Colchicine has a good binding affinity with MMP-9, NOX2 and TGF-β1 based on the value, which are -8.3 Kcal/mol, -6.7 Kcal/mol and -6.5 Kcal/mol, respectively. Colchicine also binds to some catalytic residues in MMP-9, NOX2 and TGF-β1 that are responsible for inhibitor effects. The RMSD values between colchicine and MMP-9, NOX2 and TGF-β1 are 2.4 Å, 2 Å and 2.1 Å, respectively. The RMSF values of ligand and receptors complex showed relatively similar fluctuations. The SASA analysis showed that colchicine could create a more stable interaction with MMP-9. PCA analysis revealed that colchicine is capable of creating a solid and stable interaction with MMP-9 mainly, also NOX2 and TGF-β1. In conclusion, docking and molecular dynamics analysis showed evidence of colchicine roles in the inhibition of MMP-9, NOX2 and TGF-β1 in order to inhibit the remodeling process after MI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
12
|
Smeda M, Jasztal A, Maleki EH, Bar A, Sternak M, Kwiatkowski G, Suraj-Prażmowska J, Proniewski B, Kieronska-Rudek A, Wojnar-Lason K, Skrzypek K, Majka M, Chrabaszcz K, Malek K, Chlopicki S. Endothelial-mesenchymal transition induced by metastatic 4T1 breast cancer cells in pulmonary endothelium in aged mice. Front Mol Biosci 2022; 9:1050112. [PMID: 36504711 PMCID: PMC9731229 DOI: 10.3389/fmolb.2022.1050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice. The 40-week-old mice showed features of ongoing EndMT in their lungs before 4T1 breast cancer cell injection. Moreover, they had preexisting endothelial dysfunction in the aorta detected by in vivo magnetic resonance imaging (MRI) compared to 20-week-old mice. The injection of 4T1 breast cancer cells into 40-week-old mice resulted in rapid EndMT progression in their lungs. In contrast, injection of 4T1 breast cancer cells into 20-week-old mice resulted in initiation and less pronounced EndMT progression. Although the number of metastases did not differ significantly between 20-week-old and 40-week-old mice, the lungs of older mice displayed altered lung tissue architecture and biochemical content, reflected in higher Amide II/Amide I ratio, higher fibronectin levels, and hypoxia-inducible factor 1 subunit alpha (HIF1α) levels as well as lower nitric oxide (NO) production. Our results indicate that age-dependent pre-existing endothelial dysfunction in the pulmonary endothelium of 40-week-old mice predisposed them to rapid EndMT progression in the presence of circulating 4T1 breast cancer cells what might contribute to a more severe metastatic breast cancer phenotype in these ageing mice compared to younger mice.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ebrahim H Maleki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Skrzypek
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Chrabaszcz
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland,Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| |
Collapse
|
13
|
Filice M, Golino M, Denora M, Ruscio E, Ingrasciotta G, Lamendola P, Manfredonia L, Villano A, Bisignani A, Ravenna SE, DE Vita A, Lanza O, Crea F, Lanza GA. Coronary microvascular dysfunction and findings of heart failure with preserved ejection fraction in patients with microvascular angina. Minerva Med 2022; 113:838-845. [PMID: 35166097 DOI: 10.23736/s0026-4806.21.07135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) may cause symptoms of myocardial ischemia (microvascular angina [MVA]), but recent studies suggested that it might also contribute to the syndrome of heart failure with preserved ejection fraction (HFpEF). In this study we assessed the relation of CMD with findings of HFpEF in MVA patients. METHODS We enrolled 36 consecutive patients with MVA, in whom we assessed: 1) coronary blood flow (CBF) response to adenosine and cold pressor test (CPT) by color-Doppler echocardiography of the left anterior descending coronary artery; 2) complete echocardiographic examination; 3) N-terminal-pro-B-natriuretic peptide (NT-proBNP); 4) grade of dyspnea by the modified Medical Research Scale. RESULTS Among patients, 15 had definite HFpEF findings (group 1), 12 had equivocal HFpEF findings (group 2) and 9 had no evidence of HFpEF findings (group 3). Group 1 patients were older, had more cardiovascular risk factors and higher NT-proBNP levels (P=0.018), and showed a higher prevalence of diastolic dysfunction. Left ventricle dimensions and systolic function, however, did not differ among groups. Dyspnea was also not significantly different among groups (P=0.19). CBF to adenosine was 1.85±0.47, 1.78±0.40 1.49±0.32 in group 1, 2 and 3, respectively (P=0.13). Similarly, CBF response to CPT was 1.57±0.4, 1.49±0.2 and 1.45±0.3 in the 3 groups, respectively (P=0.74). Both CBF response to adenosine and CPT showed no relation with the severity of dyspnea symptoms. CONCLUSIONS Our data suggest that in patients with MVA there is no relation between the grade of impairment of coronary microvascular dilatation and findings of HFpEF.
Collapse
Affiliation(s)
- Monica Filice
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Michele Golino
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Marialessia Denora
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Eleonora Ruscio
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Gessica Ingrasciotta
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Laura Manfredonia
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Angelo Villano
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Antonio Bisignani
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Salvatore E Ravenna
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Antonio DE Vita
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Oreste Lanza
- Department of Clinical and Molecular Medicine and Psychology, Sapienza University, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Gaetano A Lanza
- Department of Cardiovascular Sciences, Sacred Heart Catholic University, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| |
Collapse
|
14
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
15
|
Goligorsky MS. Emerging Insights into Glomerular Vascular Pole and Microcirculation. J Am Soc Nephrol 2022; 33:1641-1648. [PMID: 35853715 PMCID: PMC9529196 DOI: 10.1681/asn.2022030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, New York
| |
Collapse
|
16
|
Hypoxia damages endothelial cell angiogenic function by reducing the Ca2+ restoring ability of the endoplasmic reticulum. Biochem Biophys Res Commun 2022; 626:142-150. [DOI: 10.1016/j.bbrc.2022.07.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
17
|
Prevalence and Prognostic Significance of Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. JACC. CARDIOVASCULAR IMAGING 2022; 15:1001-1011. [PMID: 35033490 DOI: 10.1016/j.jcmg.2021.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The pathophysiological and clinical significance of microvascular dysfunction (MVD) in patients with heart failure with preserved ejection fraction (HFpEF) remains uncertain. OBJECTIVES The aim of this study was to use cardiovascular magnetic resonance to: 1) quantify coronary microvascular function; 2) examine the relationship between perfusion and fibrosis; and 3) evaluate the impact of MVD and fibrosis on long-term clinical outcomes. METHODS In a prospective, observational study, patients with HFpEF and control subjects underwent multiparametric cardiovascular magnetic resonance (comprising assessment of left ventricular volumetry, perfusion, and fibrosis [focal by late gadolinium enhancement and diffuse by extracellular volume]). The primary endpoint was the composite of death or hospitalization with heart failure. RESULTS One hundred and one patients with HFpEF (mean age 73 ± 9 years, mean ejection fraction 56% ± 5%) and 43 control subjects (mean age 73 ± 5 years, mean ejection fraction 58% ± 5%) were studied. Myocardial perfusion reserve (MPR) was lower in patients with HFpEF versus control subjects (1.74 ± 0.76 vs 2.22 ± 0.76; P = 0.001). MVD (defined as MPR <2.0) was present in 70% of patients with HFpEF (vs 48% of control subjects; P = 0.014). There was no significant linear correlation between MPR and diffuse fibrosis (r = -0.10; P = 0.473) and no difference in MPR between those with and without focal fibrosis (mean difference -0.03; 95% CI: -0.37 to 0.30). In the HFpEF group, during median follow-up of 3.1 years, there were 45 composite events. MPR was independently predictive of clinical outcome following adjustment for clinical, blood, and imaging parameters (1 SD increase: HR: 0.673 [95% CI: 0.463 to 0.978; P = 0.038]; HR: 0.694 [95% CI: 0.491 to 0.982; P = 0.039]; and HR: 0.690 [95% CI: 0.489 to 0.973; P = 0.034], respectively). CONCLUSIONS MVD is highly prevalent among patients with HFpEF and is an independent predictor of prognosis. The lack of correlation between MVD and fibrosis may challenge the assertion of a direct causal link between these entities. (Developing Imaging and Plasma Biomarkers in Describing Heart Failure With Preserved Ejection Fraction [DIAMONDHFpEF]; NCT03050593).
Collapse
|
18
|
Markousis-Mavrogenis G, Bacopoulou F, Mavragani C, Voulgari P, Kolovou G, Kitas GD, Chrousos GP, Mavrogeni SI. Coronary microvascular disease: The "Meeting Point" of Cardiology, Rheumatology and Endocrinology. Eur J Clin Invest 2022; 52:e13737. [PMID: 34939183 DOI: 10.1111/eci.13737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exertional chest pain/dyspnea or chest pain at rest are the main symptoms of coronary artery disease (CAD), which are traditionally attributed to insufficiency of the epicardial coronary arteries. However, 2/3 of women and 1/3 of men with angina and 10% of patients with acute myocardial infarction have no evidence of epicardial coronary artery stenosis in X-ray coronary angiography. In these cases, coronary microvascular disease (CMD) is the main causative factor. AIMS To present the pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology. MATERIALS-METHODS The pathophysiology of CMD in Cardiology, Rheumatology and Endocrinology was evaluated. It includes impaired microvascular vasodilatation, which leads to inability of the organism to deal with myocardial oxygen needs and, hence, development of ischemic pain. CMD, observed in inflammatory autoimmune rheumatic and endocrine/metabolic disorders, brings together Cardiology, Rheumatology and Endocrinology. Causative factors include persistent systemic inflammation and endocrine/metabolic abnormalities influencing directly the coronary microvasculature. In the past, the evaluation of microcirculation was feasible only with the use of invasive techniques, such as coronary flow reserve assessment. Currently, the application of advanced imaging modalities, such as cardiovascular magnetic resonance (CMR), can evaluate CMD non-invasively and without ionizing radiation. RESULTS CMD may present with a variety of symptoms with 1/3 to 2/3 of them expressed as typical chest pain in effort, more commonly found in women during menopause than in men. Atypical presentation includes chest pain at rest or exertional dyspnea,but post exercise symptoms are not uncommon. The treatment with nitrates is less effective in CMD, because their vasodilator action in coronary micro-circulation is less pronounced than in the epicardial coronary arteries. DISCUSSION Although both classic and new medications have been used in the treatment of CMD, there are still many questions regarding both the pathophysiology and the treatment of this disorder. The potential effects of anti-rheumatic and endocrine medications on the evolution of CMD need further evaluation. CONCLUSION CMD is a multifactorial disease leading to myocardial ischemia/fibrosis alone or in combination with epicardial coronary artery disease. Endothelial dysfunction/vasospasm, systemic inflammation, and/or neuroendocrine activation may act as causative factors and bring Cardiology, Rheumatology and Endocrinology together. Currently, the application of advanced imaging modalities, and specifically CMR, allows reliable assessment of the extent and severity of CMD. These measurements should not be limited to "pure cardiac patients", as it is known that CMD affects the majority of patients with autoimmune rheumatic and endocrine/metabolic disorders.
Collapse
Affiliation(s)
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Clio Mavragani
- Pathophysiology Department, University of Athens, Athens, Greece
| | | | - Genovefa Kolovou
- Onassis Cardiac Surgery Hospital, Athens, Greece.,Epidemiology Department, University of Manchester, Manchester, UK
| | - George D Kitas
- Epidemiology Department, University of Manchester, Manchester, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
19
|
Fu B, Wei X, Lin Y, Chen J, Yu D. Pathophysiologic Basis and Diagnostic Approaches for Ischemia With Non-obstructive Coronary Arteries: A Literature Review. Front Cardiovasc Med 2022; 9:731059. [PMID: 35369287 PMCID: PMC8968033 DOI: 10.3389/fcvm.2022.731059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemia with non-obstructive coronary arteries (INOCA) has gained increasing attention due to its high prevalence, atypical clinical presentations, difficult diagnostic procedures, and poor prognosis. There are two endotypes of INOCA-one is coronary microvascular dysfunction and the other is vasospastic angina. Diagnosis of INOCA lies in evaluating coronary flow reserve, microcirculatory resistance, and vasoreactivity, which is usually obtained via invasive coronary interventional techniques. Non-invasive diagnostic approaches such as echocardiography, single-photon emission computed tomography, cardiac positron emission tomography, and cardiac magnetic resonance imaging are also valuable for assessing coronary blood flow. Some new techniques (e.g., continuous thermodilution and angiography-derived quantitative flow reserve) have been investigated to assist the diagnosis of INOCA. In this review, we aimed to discuss the pathophysiologic basis and contemporary and novel diagnostic approaches for INOCA, to construct a better understanding of INOCA evaluation.
Collapse
Affiliation(s)
- Bingqi Fu
- Shantou University Medical College, Shantou, China
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuebiao Wei
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Division of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingwen Lin
- Shantou University Medical College, Shantou, China
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiyan Chen
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Danqing Yu
- Division of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice. Int J Mol Sci 2021; 22:ijms222111615. [PMID: 34769044 PMCID: PMC8583869 DOI: 10.3390/ijms222111615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation. AMC development, which was induced in mice by dietary warfarin administration, was proved by positive Von Kossa staining and a significantly increased calcium content in the aorta compared to that of control mice. The ex vivo organ bath set-up showed calcified aortic segments to be significantly more sensitive to phenylephrine induced contraction, compared to control segments. This, together with the fact that calcified segments as compared to control segments, showed a significantly smaller contraction in the absence of extracellular calcium, argues for a reduced basal NO production in the calcified segments. Moreover, proteomic data revealed a reduced eNOS activation to be part of the vascular calcification process. In summary, this study identifies a poor endothelial function, next to classic pro-calcifying stimuli, as a possible initiator of arterial calcification.
Collapse
|
21
|
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2021; 34:891-914. [PMID: 32746619 PMCID: PMC8035923 DOI: 10.1089/ars.2020.8169] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.
Collapse
Affiliation(s)
- Anastasia Gorelova
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mariah Berman
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imad Al Ghouleh
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Li Y, Zhang YX, Ning DS, Chen J, Li SX, Mo ZW, Peng YM, He SH, Chen YT, Zheng CJ, Gao JJ, Yuan HX, Ou JS, Ou ZJ. Simvastatin inhibits POVPC-mediated induction of endothelial-to-mesenchymal cell transition. J Lipid Res 2021; 62:100066. [PMID: 33711324 PMCID: PMC8063863 DOI: 10.1016/j.jlr.2021.100066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-β), TGF-β receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-β/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-β/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Yi-Xin Zhang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jing Chen
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Shi-Hui He
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Chun-Juan Zheng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Camici PG, Tschöpe C, Di Carli MF, Rimoldi O, Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 2020; 116:806-816. [PMID: 31999329 DOI: 10.1093/cvr/cvaa023] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Left ventricular (LV) hypertrophy (LVH) is a growth in left myocardial mass mainly caused by increased cardiomyocyte size. LVH can be a physiological adaptation to physical exercise or a pathological condition either primary, i.e. genetic, or secondary to LV overload. Patients with both primary and secondary LVH have evidence of coronary microvascular dysfunction (CMD). The latter is mainly due to capillary rarefaction and adverse remodelling of intramural coronary arterioles due to medial wall thickening with an increased wall/lumen ratio. An important feature of this phenomenon is the diffuse nature of this remodelling, which generally affects the coronary microvessels in the whole of the left ventricle. Patients with LVH secondary to arterial hypertension can develop both heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). These patients can develop HFrEF via a 'direct pathway' with an interval myocardial infarction and also in its absence. On the other hand, patients can develop HFpEF that can then progress to HFrEF with or without interval myocardial infarction. A similar evolution towards LV dysfunction and both HFpEF and HFrEF can occur in patients with hypertrophic cardiomyopathy, the most common genetic cardiomyopathy with a phenotype characterized by massive LVH. In this review article, we will discuss both the experimental and clinical studies explaining the mechanisms responsible for CMD in LVH as well as the evidence linking CMD with HFpEF and HFrEF.
Collapse
Affiliation(s)
- Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milano, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ornella Rimoldi
- Vita Salute University and San Raffaele Hospital, Milano, Italy.,CNR IBFM, Segrate, Italy
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
24
|
Wang Y, Zuo B, Wang N, Li S, Liu C, Sun D. Calcium dobesilate mediates renal interstitial fibrosis and delay renal peritubular capillary loss through Sirt1/p53 signaling pathway. Biomed Pharmacother 2020; 132:110798. [PMID: 33011612 DOI: 10.1016/j.biopha.2020.110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 02/01/2023] Open
Abstract
Calcium dobesilate (Cad), a protective agent, protects against microvascular damage, and diseases such as diabetic retinopathy and diabetic nephropathy. However, these vascular protective effects have not been demonstrated in chronic kidney disease (CKD). In this study, we aimed to determine the ability of Cad to protect against renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO) and identify the underlying therapeutic mechanisms of Cad during hypoxia/serum deprivation (H/SD) in human umbilical vein endothelial cells (HUVECs). A total of 36 male mice were randomly assigned into 3 groups (12 mice in each group): the Sham-operated group (Sham), the saline solution-treated UUO mice group (UUO), and the Cad administration (intragastrically) group (Cad). The mice in Cad group were administered Cad (100 mg/kg) daily by oral gavage and slaughtered on the 7th and 14th days post-surgery. Six mice from each group were sacrificed by sodium pentobarbital injection on the 7th and 14th day after surgery. Tissue hypoxia, cell apoptosis and fibrotic lesions were detected by Immunostaining and Western blot. Peritubular capillaries (PTCs) injury was measured by a novel technique of fluorescent microangiography (FMA). Endothelial cell-to-mesenchymal transition (EndMT) were identified by immunofluorescence and Western blot. HUVECs proliferation was measured via Cell Counting Kit‑8 assays and Edu staining. Sirt1 and its downstream gene in Cad regulation of endothelial were detected. Hematoxylin-eosin (HE), Masson-trichrome stains and Histological findings showed that Cad administration markedly reduced hypoxia and renal interstitial fibrosis at each time point in UUO. Meanwhile, Cad protect against EndMT process of PTCs by increasing CD31 expression and decreasing α-smooth muscle actin and fibronectin expression. in vitro studies showed that there was a proliferative response of the HUVECs incubated with Cad (10 μM) in H/SD. Sirt1 was suppressed after small interfering RNA (siRNA) was transfected in HUVECs. Mechanistically, Cad enhanced Sirt1 signaling, which was accompanied by increased levels of p53 acetylation (ac-p53). Meanwhile, protein expression of Bcl-2, and VE-cadherin were downregulated, Bax, and α-SMA were upregulated. In summary, the therapeutic effect of Cad in obstructive nephropathy were likely through suppressing EndMT progression and promoting anti-apoptotic effects after via activating the Sirt1/p53 signaling pathway.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Nannan Wang
- Department of Nephrology, Gongyi People's Hospital, Gongyi, 451200, PR China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
25
|
Vancheri F, Longo G, Vancheri S, Henein M. Coronary Microvascular Dysfunction. J Clin Med 2020; 9:E2880. [PMID: 32899944 PMCID: PMC7563453 DOI: 10.3390/jcm9092880] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
Many patients with chest pain undergoing coronary angiography do not show significant obstructive coronary lesions. A substantial proportion of these patients have abnormalities in the function and structure of coronary microcirculation due to endothelial and smooth muscle cell dysfunction. The coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac oxygen requirements. Impairment of this mechanism, defined as coronary microvascular dysfunction (CMD), carries an increased risk of adverse cardiovascular clinical outcomes. Coronary endothelial dysfunction accounts for approximately two-thirds of clinical conditions presenting with symptoms and signs of myocardial ischemia without obstructive coronary disease, termed "ischemia with non-obstructive coronary artery disease" (INOCA) and for a small proportion of "myocardial infarction with non-obstructive coronary artery disease" (MINOCA). More frequently, the clinical presentation of INOCA is microvascular angina due to CMD, while some patients present vasospastic angina due to epicardial spasm, and mixed epicardial and microvascular forms. CMD may be associated with focal and diffuse epicardial coronary atherosclerosis, which may reinforce each other. Both INOCA and MINOCA are more common in females. Clinical classification of CMD includes the association with conditions in which atherosclerosis has limited relevance, with non-obstructive atherosclerosis, and with obstructive atherosclerosis. Several studies already exist which support the evidence that CMD is part of systemic microvascular disease involving multiple organs, such as brain and kidney. Moreover, CMD is strongly associated with the development of heart failure with preserved ejection fraction (HFpEF), diabetes, hypertensive heart disease, and also chronic inflammatory and autoimmune diseases. Since coronary microcirculation is not visible on invasive angiography or computed tomographic coronary angiography (CTCA), the diagnosis of CMD is usually based on functional assessment of microcirculation, which can be performed by both invasive and non-invasive methods, including the assessment of delayed flow of contrast during angiography, measurement of coronary flow reserve (CFR) and index of microvascular resistance (IMR), evaluation of angina induced by intracoronary acetylcholine infusion, and assessment of myocardial perfusion by positron emission tomography (PET) and magnetic resonance (CMR).
Collapse
Affiliation(s)
- Federico Vancheri
- Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy
| | - Giovanni Longo
- Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy;
| | - Sergio Vancheri
- Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy;
| | - Michael Henein
- Institute of Public Health and Clinical Medicine, Umea University, SE-90187 Umea, Sweden;
- Department of Fluid Mechanics, Brunel University, Middlesex, London UB8 3PH, UK
- Molecular and Nuclear Research Institute, St George’s University, London SW17 0RE, UK
| |
Collapse
|
26
|
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020; 63:407-418. [PMID: 32592706 DOI: 10.1016/j.pcad.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, frequently associated with aortopathies and valvulopathies. The congenital origin of BAV is suspected to impact the development of the disease in the adult life. During the last decade, a number of studies dealing with the embryonic development of congenital heart disease have significantly improved our knowledge on BAV etiology. They describe the developmental defects, at the molecular, cellular and morphological levels, leading to congenital cardiac malformations, including BAV, in animal models. These models consist of a spontaneous hamster and several mouse models with different genetic manipulations in genes belonging to a variety of pathways. In this review paper, we aim to gather information on the developmental defects leading to BAV formation in these animal models, in order to tentatively explain the morphogenetic origin of the spectrum of valve morphologies that characterizes human BAV. BAV may be the only defect resulting from gene manipulation in mice, but usually it appears as the less severe defect of a spectrum of malformations, most frequently affecting the cardiac outflow tract. The genes whose alterations cause BAV belong to different genetic pathways, but many of them are direct or indirectly associated with the NOTCH pathway. These molecular alterations affect three basic cellular mechanisms during heart development, i.e., endocardial-to-mesenchymal transformation, cardiac neural crest (CNC) cell behavior and valve cushion mesenchymal cell differentiation. The defective cellular functions affect three possible morphogenetic mechanisms, i.e., outflow tract endocardial cushion formation, outflow tract septation and valve cushion excavation. While endocardial cushion abnormalities usually lead to latero-lateral BAVs and septation defects to antero-posterior BAVs, alterations in cushion excavation may give rise to both BAV types. The severity of the original defect most probably determines the specific aortic valve phenotype, which includes commissural fusions and raphes. Based on current knowledge on the developmental mechanisms of the cardiac outflow tract, we propose a unified hypothesis of BAV formation, based on the inductive role of CNC cells in the three mechanisms of BAV development. Alterations of CNC cell behavior in three possible alternative key valvulogenic processes may lead to the whole spectrum of BAV.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBERCV Enfermedades Cardiovasculares, Málaga, Spain.
| |
Collapse
|
27
|
Wang J, Yan W, Zhou X, Liu Y, Tang C, Peng Y, Liu H, Sun L, Xiao L, He L. Metabolomics window into the role of acute kidney injury after coronary artery bypass grafting in diabetic nephropathy progression. PeerJ 2020; 8:e9111. [PMID: 32461830 PMCID: PMC7231503 DOI: 10.7717/peerj.9111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Metabolomics has emerged as a valuable tool to discover novel biomarkers and study the pathophysiology of diabetic nephropathy (DN). However, the effect of postoperative acute kidney injury (AKI) on diabetes mellitus (DM) to chronic DN progression has not been evaluated from the perspective of metabolomics. Methods A group of type 2 diabetes mellitus (T2DM) inpatients, who underwent off-pump coronary artery bypass grafting (CABG), were enrolled in our study. According to whether postoperative AKI occurred, patients were grouped in either the AKI group (AKI, n = 44) or the non-AKI group (NAKI, n = 44). Urine samples were collected from these patients before and 24 h after operation. Six patients from the AKI group and six patients from the NAKI group were chosen as the pilot cohort for untargeted metabolomics analysis, with the goal of identifying postoperative AKI-related metabolites. To understand the possible role of these metabolites in the chronic development of renal injury among T2DM patients, trans-4-hydroxy-L-proline and azelaic acid were quantified by targeted metabolomics analysis among 38 NAKI patients, 38 AKI patients, 46 early DN patients (DN-micro group), and 34 overt DN patients (DN-macro group). Results Untargeted metabolomics screened 61 statistically distinguishable metabolites in postoperative urine samples, compared with preoperative urine samples. Via Venn diagram analysis, nine of 61 were postoperative AKI-related metabolites, including trans-4-hydroxy-L-proline, uridine triphosphate, p-aminobenzoate, caffeic acid, adrenochrome, δ-valerolactam, L-norleucine, 5′-deoxy-5′-(methylthio) adenosine, and azelaic acid. By targeted metabolomics analysis, the level of trans-4-hydroxy-L-proline increased gradually from the NAKI group to the AKI, DN-micro, and DN-macro groups. For azelaic acid, the highest level was found in the NAKI and DN-micro groups, followed by the DN-macro group. The AKI group exhibited the lowest level of azelaic acid. Conclusions The detection of urinary trans-4-hydroxy-L-proline after AKI could be treated as an early warning of chronic DN progression and might be linked to renal fibrosis. Urinary azelaic acid can be used to monitor renal function noninvasively in DM and DN patients. Our results identified markers of AKI on DM and the chronic progression of DN. In addition, the progression of DN was associated with AKI-like episodes occurring in DM.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Wenzhe Yan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| |
Collapse
|
28
|
Singh S, Adam M, Matkar PN, Bugyei-Twum A, Desjardins JF, Chen HH, Nguyen H, Bazinet H, Michels D, Liu Z, Mebrahtu E, Esene L, Joseph J, Ehsan M, Qadura M, Connelly KA, Leong-Poi H, Singh KK. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep 2020; 10:4466. [PMID: 32161282 PMCID: PMC7066128 DOI: 10.1038/s41598-020-61292-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Intraflagellar transport protein 88 (Ift88) is required for ciliogenesis and shear stress-induced dissolution of cilia in embryonic endothelial cells coincides with endothelial-to-mesenchymal transition (EndMT) in the developing heart. EndMT is also suggested to underlie heart and lung fibrosis, however, the mechanism linking endothelial Ift88, its effect on EndMT and organ fibrosis remains mainly unexplored. We silenced Ift88 in endothelial cells (ECs) in vitro and generated endothelial cell-specific Ift88-knockout mice (Ift88endo) in vivo to evaluate EndMT and its contribution towards organ fibrosis, respectively. Ift88-silencing in ECs led to mesenchymal cells-like changes in endothelial cells. The expression level of the endothelial markers (CD31, Tie-2 and VE-cadherin) were significantly reduced with a concomitant increase in the expression level of mesenchymal markers (αSMA, N-Cadherin and FSP-1) in Ift88-silenced ECs. Increased EndMT was associated with increased expression of profibrotic Collagen I expression and increased proliferation in Ift88-silenced ECs. Loss of Ift88 in ECs was further associated with increased expression of Sonic Hedgehog signaling effectors. In vivo, endothelial cells isolated from the heart and lung of Ift88endo mice demonstrated loss of Ift88 expression in the endothelium. The Ift88endo mice were born in expected Mendelian ratios without any adverse cardiac phenotypes at baseline. Cardiac and pulmonary endothelial cells isolated from the Ift88endo mice demonstrated signs of EndMT and bleomycin treatment exacerbated pulmonary fibrosis in Ift88endo mice. Pressure overload stress in the form of aortic banding did not reveal a significant difference in cardiac fibrosis between Ift88endo mice and control mice. Our findings demonstrate a novel association between endothelial cilia with EndMT and cell proliferation and also show that loss of endothelial cilia-associated increase in EndMT contributes specifically towards pulmonary fibrosis.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mohamed Adam
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Antoinette Bugyei-Twum
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Jean-Francois Desjardins
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Hao H Chen
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Hien Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Hannah Bazinet
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David Michels
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Zongyi Liu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Elizabeth Mebrahtu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Lillian Esene
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jameela Joseph
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Department of Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mehroz Ehsan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Mohammad Qadura
- Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada. .,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Departments of Surgery, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
29
|
Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA, Goligorsky MS. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 2019; 34:49-62. [PMID: 29726981 DOI: 10.1093/ndt/gfy100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/18/2018] [Indexed: 01/22/2023] Open
Abstract
Background Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-β) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results Dickkopf-3 (DKK3), a putative ligand of the Wnt/β-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP × Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis.
Collapse
Affiliation(s)
- Mark Lipphardt
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Noo Li Jeon
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea
| | - Sina Dadafarin
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| | - David W Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical School, Göttingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, NY, USA
| |
Collapse
|
30
|
Van den Bergh G, Opdebeeck B, D'Haese PC, Verhulst A. The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends Mol Med 2019; 25:1133-1146. [PMID: 31522956 DOI: 10.1016/j.molmed.2019.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Arterial media calcification and arterial stiffness are independent predictors of cardiovascular mortality. Both processes reinforce one another, creating a vicious cycle in which transdifferentiation of endothelial cells and vascular smooth muscle cells play a central role. Physiological functioning of vascular smooth muscle cells in the arterial medial layer greatly depends on normal endothelial cell behavior. Endothelial or intimal layer cells are the primary sensors of pathological triggers circulating in the blood during, for example, ageing or inflammation, and often can be seen as initiators of this vicious cycle. As such, the search for treatment of arterial media calcification, which until now has been mainly concentrated at the level of the vascular smooth cell, may need to be expanded to intimal layer targets.
Collapse
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
31
|
Li S, Wang Y, Chen L, Wang Z, Liu G, Zuo B, Liu C, Sun D. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels. J Mol Med (Berl) 2019; 97:777-791. [PMID: 30923844 DOI: 10.1007/s00109-019-01769-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Beraprost sodium (BPS), as a prostacyclin analog, plays a significant role in various diseases based on its antiplatelet and vasodilation functions. However, its regulation and role in chronic kidney disease (CKD) still remain elusive. Here, we determined whether BPS could alleviate renal interstitial fibrosis, and improve the renal function and its therapeutic mechanism. In vitro, BPS increased angiogenesis in the HUVECs incubated with BPS detected by tube formation assay and repair damaged endothelial cell-cell junctions induced by hypoxia. In vivo, mice were randomly assigned to a sham-operation group (sham), a unilateral ureteral obstruction group (UUO), and a BPS intragastrical administration group (BPS), and sacrificed at days 3 and 7 post-surgery (six in each group). In UUO model, tissue hypoxia, renal inflammation, oxidative stress, and fibrotic lesions were detected by q-PCR and Western blot techniques and peritubular capillaries (PTCs) injury was detected by a novel technique of fluorescent microangiography (FMA) and analyzed by MATLAB software. Meanwhile, we identified cells undergoing endothelial cell-to-myofibroblast transition by the coexpression of endothelial cell (CD31) and myofibroblast (a-SMA) markers in the obstructed kidney. In contrast, BPS protected against interstitial fibrosis and substantially reduced the number of endothelial cell-to-myofibroblast transition cells. In conclusion, our data indicate the potent therapeutic of BPS in mitigating fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT) progression after inhibiting inflammatory and oxidative stress effects. KEY MESSAGES: BPS could improve renal recovery through anti-inflammatory and anti-oxidative pathways. BPS could mitigate fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
- Shulin Li
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Guodong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China.
| | - Dong Sun
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
32
|
Crea F, Bairey Merz CN, Beltrame JF, Kaski JC, Ogawa H, Ong P, Sechtem U, Shimokawa H, Camici PG. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J 2019; 38:473-477. [PMID: 27907892 DOI: 10.1093/eurheartj/ehw461] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Filippo Crea
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John F Beltrame
- The Queen Elizabeth Hospital Discipline of Medicine, University of Adelaide, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Juan Carlos Kaski
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, UK
| | - Hisao Ogawa
- Faculty of Life Science, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Peter Ong
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Udo Sechtem
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
33
|
Manno G, Bentivegna R, Morreale P, Nobile D, Santangelo A, Novo S, Novo G. Chronic inflammation: A key role in degeneration of bicuspid aortic valve. J Mol Cell Cardiol 2019; 130:59-64. [PMID: 30885747 DOI: 10.1016/j.yjmcc.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital valvular heart defect resulting from abnormal aortic cusp formation during heart development, where two of the three normal and equal sized cusps fuse into a single large cusp resulting in a two cusps aortic valve. Over the past years, much interest has been given in understanding the pathogenesis of BAV and its complications. In this review, we focused on the role of inflammation, involved in the degeneration of BAV and the development of its complications. ROLE OF INFLAMMATION From a pathophysiological point of view, BAV may rapidly progress into aortic stenosis (AS) and is related to aortopathy. Several histopathologic studies have demonstrated that the development and progression of alterations in bicuspid aortic valve are related to an active process that includes: oxidative stress, shear stress, endothelial dysfunction, disorganized tissue architecture, inflammatory cells and cytokines. These factors are closely related one to each other, constituting the basis of the structural and functional alterations of the BAV. CONCLUSION Chronic inflammation plays a key role in the degeneration of BAV. Severe aortic stenosis in bicuspid aortic valves is associated with a more aggressive inflammatory process, increased inflammatory cells infiltration and neovascularization when compared to tricuspid AS. These findings might help to explain the more frequent onset and rapid progression of AS and the heavy aortic valve calcification seen in patients with BAV.
Collapse
Affiliation(s)
- G Manno
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| | - R Bentivegna
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - P Morreale
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - D Nobile
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - A Santangelo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - S Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - G Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| |
Collapse
|
34
|
Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73:190-209. [PMID: 30654892 PMCID: PMC6865825 DOI: 10.1016/j.jacc.2018.09.089] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Endothelial to mesenchymal transition (EndMT) is a process whereby an endothelial cell undergoes a series of molecular events that lead to a change in phenotype toward a mesenchymal cell (e.g., myofibroblast, smooth muscle cell). EndMT plays a fundamental role during development, and mounting evidence indicates that EndMT is involved in adult cardiovascular diseases (CVDs), including atherosclerosis, pulmonary hypertension, valvular disease, and fibroelastosis. Therefore, the targeting of EndMT may hold therapeutic promise for treating CVD. However, the field faces a number of challenges, including the lack of a precise functional and molecular definition, a lack of understanding of the causative pathological role of EndMT in CVDs (versus being a "bystander-phenomenon"), and a lack of robust human data corroborating the extent and causality of EndMT in adult CVDs. Here, we review this emerging but exciting field, and propose a framework for its systematic advancement at the molecular and translational levels.
Collapse
Affiliation(s)
- Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, and German Center of Cardiovascular Research, Frankfurt, Germany
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, and Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew H Baker
- UoE/BHF Center for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
35
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
36
|
Masola V, Bellin G, Vischini G, Dall'Olmo L, Granata S, Gambaro G, Lupo A, Onisto M, Zaza G. Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget 2018; 9:36185-36201. [PMID: 30546836 PMCID: PMC6281411 DOI: 10.18632/oncotarget.26324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury occurs in patients undergoing renal transplantation and with acute kidney injury and is responsible for the development of chronic allograft dysfunction as characterized by parenchymal alteration and fibrosis. Heparanase (HPSE), an endoglycosidase that regulates EMT and macrophage polarization, is an active player in the biological response triggered by ischemia/reperfusion (I/R) injury. I/R was induced in vivo by clamping left renal artery for 30 min in wt C57BL/6J mice. Animals were daily treated and untreated with Roneparstat (an inhibitor of HPSE) and sacrificed after 8 weeks. HPSE, fibrosis, EMT-markers, inflammation and oxidative stress were evaluated by biomolecular and histological methodologies together with the evaluation of renal histology and measurement of renal function parameters. 8 weeks after I/R HPSE was upregulated both in renal parenchyma and plasma and tissue specimens showed clear evidence of renal injury and fibrosis. The inhibition of HPSE with Roneparstat-restored histology and fibrosis level comparable with that of control. I/R-injured mice showed a significant increase of EMT, inflammation and oxidative stress markers but they were significantly reduced by treatment with Roneparstat. Finally, the inhibition of HPSE in vivo almost restored renal function as measured by BUN, plasma creatinine and albuminuria. The present study points out that HPSE is actively involved in the mechanisms that regulate the development of renal fibrosis arising in the transplanted organ as a consequence of ischemia/reperfusion damage. HPSE inhibition would therefore constitute a new pharmacological strategy to reduce acute kidney injury and to prevent the chronic pro-fibrotic damage induced by I/R.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
- University of Padova, Department of Biomedical Sciences, Padua, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy
| | | | - Luigi Dall'Olmo
- Azienda Ulss 3 Serenissima-Ospedale San Giovanni e Paolo, Venice, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Maurizio Onisto
- University of Padova, Department of Biomedical Sciences, Padua, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| |
Collapse
|
37
|
Hulshoff MS, Rath SK, Xu X, Zeisberg M, Zeisberg EM. Causal Connections From Chronic Kidney Disease to Cardiac Fibrosis. Semin Nephrol 2018; 38:629-636. [DOI: 10.1016/j.semnephrol.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Murugavel S, Bugyei-Twum A, Matkar PN, Al-Mubarak H, Chen HH, Adam M, Jain S, Narang T, Abdin RM, Qadura M, Connelly KA, Leong-Poi H, Singh KK. Valproic Acid Induces Endothelial-to-Mesenchymal Transition-Like Phenotypic Switching. Front Pharmacol 2018; 9:737. [PMID: 30050438 PMCID: PMC6050396 DOI: 10.3389/fphar.2018.00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is a widely used anticonvulsant drug that is currently undergoing clinical evaluation for anticancer therapy due to its anti-angiogenic potential. Endothelial cells (ECs) can transition into mesenchymal cells and this form of EC plasticity is called endothelial-to-mesenchymal transition (EndMT), which is widely implicated in several pathologies including cancer and organ fibrosis. However, the effect of VPA on EC plasticity and EndMT remains completely unknown. We report herein that VPA-treatment significantly inhibits tube formation, migration, nitric oxide production, proliferation and migration in ECs. A microscopic evaluation revealed, and qPCR, immunofluorescence and immunoblotting data confirmed EndMT-like phenotypic switching as well as an increased expression of pro-fibrotic genes in VPA-treated ECs. Furthermore, our data confirmed important and regulatory role played by TGFβ-signaling in VPA-induced EndMT. Our qPCR array data performed for 84 endothelial genes further supported our findings and demonstrated 28 significantly and differentially regulated genes mainly implicated in angiogenesis, endothelial function, EndMT and fibrosis. We, for the first time report that VPA-treatment associated EndMT contributes to the VPA-associated loss of endothelial function. Our data also suggest that VPA based therapeutics may exacerbate endothelial dysfunction and EndMT-related phenotype in patients undergoing anticonvulsant or anticancer therapy, warranting further investigation.
Collapse
Affiliation(s)
| | - Antoinette Bugyei-Twum
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Pratiek N Matkar
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Husain Al-Mubarak
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hao H Chen
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohamed Adam
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shubha Jain
- Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Tanya Narang
- Faculty of Science, York University, Toronto, ON, Canada
| | - Rawand M Abdin
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammad Qadura
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
39
|
Schwarze K, Kribben A, Ritter O, Müller GA, Patschan D. Autophagy activation in circulating proangiogenic cells aggravates AKI in type I diabetes mellitus. Am J Physiol Renal Physiol 2018; 315:F1139-F1148. [PMID: 29897281 DOI: 10.1152/ajprenal.00502.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) occurs frequently in hospitals worldwide, but the therapeutic options are limited. Diabetes mellitus (DM) affects more and more people around the globe. The disease worsens the prognosis of AKI even further. In recent years, cell-based therapies have increasingly been applied in experimental AKI. The aim of the study was to utilize two established autophagy inducers for pharmacological preconditioning of so-called proangiogenic cells (PACs) in PAC treatment of diabetic AKI. Insulin-dependent DM was induced in male C57/Bl6N mice by intraperitoneal injections of streptozotocine. Six weeks later, animals underwent bilateral renal ischemia for 45 min, followed by intravenous injections of either native or zVAD (benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone)- or Z-Leu-Leu-Leu-al (MG132)-pretreated syngeneic murine PACs. Mice were analyzed 48 h (short term) and 6 wk (long term) later, respectively. DM worsened postischemic AKI, and PAC preconditioning with zVAD and MG132 resulted in a further decline of excretory kidney function. Injection of native PACs reduced fibrosis in nondiabetic mice, but cell preconditioning promoted interstitial matrix accumulation significantly. Both substances aggravated endothelial-to-mesenchymal transition (EndoMT) under diabetic conditions; these effects occurred either exclusively in the short (zVAD) or in the short and long term (MG132). Preconditioned cells stimulated the autophagocytic flux in intrarenal endothelial cells, and all experimental groups displayed increased endothelial abundances of senescence-associated β-galactosidase, a marker of premature cell senescence. Pharmacological autophagy activation may not serve as an effective strategy for improving PAC competence in diabetic AKI in general. On the contrary, several outcome parameters (excretory function, fibrosis, EndoMT) may even be worsened.
Collapse
Affiliation(s)
- K Schwarze
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - A Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen , Essen , Germany
| | - O Ritter
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - D Patschan
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| |
Collapse
|
40
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
41
|
Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Müller G, Goligorsky MS. The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int 2017; 92:558-568. [PMID: 28476555 PMCID: PMC5557669 DOI: 10.1016/j.kint.2017.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023]
Abstract
The secretome, defined as a portion of proteins secreted by specific cells to the extracellular space, secures a proper microenvironmental niche not only for the donor cells, but also for the neighboring cells, thus maintaining tissue homeostasis. Communication via secretory products exists between endothelial cells and fibroblasts, and this local mechanism maintains the viability and density of each compartment. Endothelial dysfunction, apart from obvious cell-autonomous defects, leads to the aberrant secretome, which predisposes fibroblasts to acquire a myofibroblastic fibrogenic phenotype. In our recent profiling of the secretome of such dysfunctional profibrogenic renal microvascular endothelial cells, we identified unique profibrogenic signatures, among which we detected ligands of Notch and Wnt-β-catenin pathways. Here, we stress the role of reprogramming cues in the immediate microenvironment of (myo)fibroblasts and the contribution of the endothelial secretome to the panoply of instructive signals in the vicinity of fibroblasts. We hope that this brief overview of endothelial-fibroblast communication in health and disease will lead to eventual unbiased proteomic mapping of individual secretomes of glomerular and tubular epithelial cells, pericytes, and podocytes through reductionist approaches to allow for the synthetic creation of a complex network of secretomic signals acting as reprogramming factors on individual cell types in the kidney. Knowledge of profibrogenic and antifibrogenic signatures in the secretome may garner future therapeutic efforts.
Collapse
Affiliation(s)
- Mark Lipphardt
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Jong W Song
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kei Matsumoto
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA; Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sina Dadafarin
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Gerhard Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, New York, USA.
| |
Collapse
|
42
|
Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, Kanbay M, Mallamaci F, Parati G, Rossignol P, Wiecek A, London G. The systemic nature of CKD. Nat Rev Nephrol 2017; 13:344-358. [PMID: 28435157 DOI: 10.1038/nrneph.2017.52] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The accurate definition and staging of chronic kidney disease (CKD) is one of the major achievements of modern nephrology. Intensive research is now being undertaken to unravel the risk factors and pathophysiologic underpinnings of this disease. In particular, the relationships between the kidney and other organs have been comprehensively investigated in experimental and clinical studies in the last two decades. Owing to technological and analytical limitations, these links have been studied with a reductionist approach focusing on two organs at a time, such as the heart and the kidney or the bone and the kidney. Here, we discuss studies that highlight the complex and systemic nature of CKD. Energy balance, innate immunity and neuroendocrine signalling are highly integrated biological phenomena. The diseased kidney disrupts such integration and generates a high-risk phenotype with a clinical profile encompassing inflammation, protein-energy wasting, altered function of the autonomic and central nervous systems and cardiopulmonary, vascular and bone diseases. A systems biology approach to CKD using omics techniques will hopefully enable in-depth study of the pathophysiology of this systemic disease, and has the potential to unravel critical pathways that can be targeted for CKD prevention and therapy.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy
| | - Raymond Vanholder
- Ghent University Hospital, Department of Nephrology, Department of Internal Medicine, University Hospital Gent, De Pintelaan 185, B9000 Ghent, Belgium
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, Paris.,University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), 55 Avenue de Paris, 78000 Versailles, France.,Inserm U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Hôpital Paul-Brousse, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France.,Paris-Sud University (PSU), 15 Rue Georges Clemenceau, 91400 Orsay, France.,French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Thessaloniki, Konstantinoupoleos 49, Thessaloniki 546 42, Greece
| | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Danilo Fliser
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Denis Fouque
- Université de Lyon, UCBL, Carmen, Department of Nephrology, Centre Hospitalier Lyon-Sud, F-69495 Pierre Bénite, France
| | - Gunnar H Heine
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine,Koç University, Rumelifeneri Yolu 34450 Sarıyer Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy.,Nephrology, Dialysis and Transplantation Unit Ospedali Riuniti, 89124 Reggio Calabria Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Istituto Auxologico Italiano &Department of Medicine and Surgery, University of Milan-Bicocca, Piazzale Brescia 20, Milan 20149, Italy
| | - Patrick Rossignol
- French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France.,Inserm, Centre d'Investigations Cliniques-Plurithématique 1433, Cardiovascular and Renal Clinical Trialists (INI-CRCT), Institut Lorrain du Cœur et des Vaisseaux Louis Mathieu, 4 rue Morvan, 54500 Vandoeuvre-les-Nancy, France.,Inserm U1116, Faculté de Médecine, Bâtiment D 1er étage, 9 avenue de la forêt de Haye - BP 184, 54500 Vandœuvre-lès-Nancy Cedex, France.,CHU Nancy, Département de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 34 Cours Léopold, 54000 Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24 Street, Pl-40-027 Katowice, Poland
| | - Gerard London
- INSERM U970, Hopital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | | |
Collapse
|
43
|
Affiliation(s)
- Alejandro R Chade
- From the Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, Department of Medicine, and Department of Radiology, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
44
|
Patschan D, Schwarze K, Tampe B, Zeisberg M, Patschan S, Müller GA. Endothelial Colony Forming Cells (ECFCs) in murine AKI - implications for future cell-based therapies. BMC Nephrol 2017; 18:53. [PMID: 28166726 PMCID: PMC5294892 DOI: 10.1186/s12882-017-0471-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, early Endothelial Progenitor Cells (eEPCs) have been proven as effective tool in murine ischemic AKI and in diabetic nephropathy. The mechanisms of eEPC-mediated vasoprotection have been elucidated in detail. Besides producing a diverse range of humoral factors, the cells also act by secreting vasomodulatory microvesicles. Only few data in contrast have been published about the role of so-called Endothelial Colony Forming Cells (ECFCs - late EPCs) in ischemic AKI. We thus aimed to investigate ECFC effects on postischemic kidney function over several weeks. Our special interest focused on endothelial-to-mesenchymal transition (EndoMT), peritubular capillary density (PTCD), endothelial alpha-Tubulin (aT - cytoskeletal integrity), and endothelial p62 (marker of autophagocytic flux). Methods Eight to twelve weeks old male C57Bl/6 N mice were subjected to bilateral renal pedicle clamping for 35 or 45 min, respectively. Donor-derived syngeneic ECFCs (0.5 × 106) were i.v. injected at the end of ischemia. Animals were analyzed 1, 4 and 6 weeks later. Results Cell therapy improved kidney function exclusively at week 1 (35 and 45 min). Ischemia-induced fibrosis was diminished in all experimental groups by ECFCs, while PTCD loss remained unaffected. Significant EndoMT was detected in only two of 6 groups (35 min, week 4 and 45 min, week 6), ECFCs reduced EndoMT only in the latter. Endothelial aT declined under almost all experimental conditions and these effects were further aggravated by ECFCs. p62 was elevated in endothelial cells, more so after 45 than after 35 min of ischemia. Cell therapy did not modulate p62 abundances at any time point. Conclusion A single dose of ECFCs administered shortly post-ischemia is capable to reduce interstitial fibrosis in the mid- to long-term whereas excretory dysfunction is improved only in a transient manner. There are certain differences in renal outcome parameters between eEPCs and ECFC. The latter do not prevent animals from peritubular capillary loss and they also do not further elevate endothelial p62. We conclude that differences between eEPCs and ECFCs result from certain mechanisms by which the cells act around and within vessels. Overall, ECFC treatment was not as efficient as eEPC therapy in preventing mice from ischemia-induced mid- to long-term damage.
Collapse
Affiliation(s)
- D Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - K Schwarze
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - B Tampe
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - M Zeisberg
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - S Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
45
|
Acute Kidney Injury in Diabetes Mellitus. Int J Nephrol 2016; 2016:6232909. [PMID: 27974972 PMCID: PMC5126418 DOI: 10.1155/2016/6232909] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/27/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) significantly increases the overall morbidity and mortality, particularly by elevating the cardiovascular risk. The kidneys are severely affected as well, partly as a result of intrarenal athero- and arteriosclerosis but also due to noninflammatory glomerular damage (diabetic nephropathy). DM is the most frequent cause of end-stage renal disease in our society. Acute kidney injury (AKI) remains a clinical and prognostic problem of fundamental importance since incidences have been increased in recent years while mortality has not substantially been improved. As a matter of fact, not many studies particularly addressed the topic “AKI in diabetes mellitus.” Aim of this article is to summarize AKI epidemiology and outcomes in DM and current recommendations on blood glucose control in the intensive care unit with regard to the risk for acquiring AKI, and finally several aspects related to postischemic microvasculopathy in AKI of diabetic patients shall be discussed. We intend to deal with this relevant topic, last but not least with regard to increasing incidences and prevalences of both disorders, AKI and DM.
Collapse
|
46
|
Matsumoto K, Xavier S, Chen J, Kida Y, Lipphardt M, Ikeda R, Gevertz A, Caviris M, Hatzopoulos AK, Kalajzic I, Dutton J, Ratliff BB, Zhao H, Darzynkiewicz Z, Rose‐John S, Goligorsky MS. Instructive Role of the Microenvironment in Preventing Renal Fibrosis. Stem Cells Transl Med 2016; 6:992-1005. [PMID: 28297566 PMCID: PMC5442777 DOI: 10.5966/sctm.2016-0095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial‐mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor‐β1 (TGF‐β1)‐activated fibroblasts with EPC extract prevented expression of α‐smooth muscle actin (α‐SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis—unilateral ureteral obstruction and chronic phase of folic acid‐induced nephropathy—subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α‐SMA‐positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast‐to‐myofibroblast transition of TGF‐β1‐activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor‐independent ligand for the gp130/STAT3 pathway, hyper‐interleukin‐6 (hyper‐IL‐6), not only induced a robust downstream increase in pluripotency factors Nanog and c‐Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast‐to‐myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF‐β1‐induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor‐independent gp130/STAT3 agonist, hyper‐IL‐6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper‐IL‐6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine2017;6:992–1005
Collapse
Affiliation(s)
- Kei Matsumoto
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Showa University, Tokyo, Japan
| | - Sandhya Xavier
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Yujiro Kida
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mark Lipphardt
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Reina Ikeda
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Okayama University, Okayama, Japan
| | - Annie Gevertz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mario Caviris
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | | | - Ivo Kalajzic
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - James Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian B. Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zbygniew Darzynkiewicz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Stefan Rose‐John
- Institute of Biochemistry, Christian‐Albrechts University, Kiel, Germany
| | - Michael S. Goligorsky
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
47
|
Kanbay M, Afsar B, Siriopol D, Unal HU, Karaman M, Saglam M, Gezer M, Taş A, Eyileten T, Guler AK, Aydin İ, Oguz Y, Tarim K, Covic A, Yilmaz MI. Endostatin in chronic kidney disease: Associations with inflammation, vascular abnormalities, cardiovascular events and survival. Eur J Intern Med 2016; 33:81-7. [PMID: 27394925 DOI: 10.1016/j.ejim.2016.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Endostatin, generated from collagen XVIII, and endorepellin, possess dual activity as modifiers of both angiogenesis and endothelial cell autophagy. Plasma endostatin levels are elevated in a large number of diseases, and may reflect endothelial cell dysfunction. Few data on endostatins are available for patients with chronic kidney disease (CKD). We tested whether serum endostatin values are predictive for all-cause mortality and cardiovascular events (CVEs) in a CKD population. MATERIALS AND METHOD A total of 519 CKD pre-dialysis patients were included. Baseline plasma endostatin levels were measured in all patients. All included patients were followed-up (time-to-event analysis) until occurrence of death, fatal or nonfatal CVEs. Fatal and nonfatal CVE including death, stroke, and myocardial infarction were recorded prospectively RESULTS The mean age of the patients was 52.2±12.3years. There were 241 (46.4%) males, 111 (21.4%) had diabetes, 229 (44.1%) were smokers and 103 (19.8%) had a previous CVE. After a median follow-up of 46months, 46 patients died and 172 had a new CVE. In the univariable Cox survival analysis, higher endostatin levels were associated with a higher risk for both outcomes. However, after adjusting for traditional (age, gender, smoking status, diabetes, systolic blood pressure, HDL and total cholesterol) and renal-specific (eGFR, proteinuria and hsCRP) risk factors, endostatin levels remained associated only with the CVE outcome (HR=1.88, 95% CI 1.37-2.41 for a 1 SD increase in log endostatin values). CONCLUSION Endostatin levels are independently associated with incident CVE in CKD patients, but show limited prediction abilities for all-cause mortality and CVE above traditional and renal-specific risk factors.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Konya Numune State Hospital, Konya, Turkey
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, Romania; 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Hilmi Umut Unal
- Department of Nephrology, Gülhane School of Medicine, Ankara, Turkey
| | - Murat Karaman
- Department of Nephrology, Gülhane School of Medicine, Ankara, Turkey
| | - Mutlu Saglam
- Department of Radiology, Gülhane School of Medicine, Ankara, Turkey
| | - Mustafa Gezer
- Department of Nephrology, Gülhane School of Medicine, Ankara, Turkey
| | - Ahmet Taş
- Department of Biochemistry, Gülhane School of Medicine, Ankara, Turkey
| | - Tayfun Eyileten
- Department of Nephrology, Gülhane School of Medicine, Ankara, Turkey
| | | | - İbrahim Aydin
- Department of Biochemistry, Gülhane School of Medicine, Ankara, Turkey
| | - Yusuf Oguz
- Department of Nephrology, Gülhane School of Medicine, Ankara, Turkey
| | - Kayhan Tarim
- Koc University School of Medicine, Ankara, Turkey
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, Romania
| | | |
Collapse
|
48
|
Patschan S, Tampe D, Müller C, Seitz C, Herink C, Müller GA, Zeisberg E, Zeisberg M, Henze E, Patschan D. Early Endothelial Progenitor Cells (eEPCs) in systemic sclerosis (SSc) - dynamics of cellular regeneration and mesenchymal transdifferentiation. BMC Musculoskelet Disord 2016; 17:339. [PMID: 27519706 PMCID: PMC4983068 DOI: 10.1186/s12891-016-1197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/30/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Patients with systemic sclerosis (SSc) are endagered by tissue fibrosis and by microvasculopathy, with the latter caused by endothelial cell expansion/proliferation. SSc-associated fibrosis potentially results from mesenchymal transdifferentiation of endothelial cells. Early Endothelial Progenitor Cells (eEPCs) act proangiogenic under diverse conditions. Aim of the study was to analyze eEPC regeneration and mesenchymal transdifferentiation in patients with limited and diffuse SSs (lSSc and dSSc). METHODS Patients with both, lSSc and dSSc were included into the study. The following parameters were evaluated: eEPC numbers and regeneration, concentrations of vasomodulatory mediators, mesenchymal properties of blood-derived eEPC. Serum samples of healthy subjects and SS patients were used for stimulation of cultured human eEPC, subsequently followed by analysis of mesenchymal cell characteristics and mobility. RESULTS Twenty-nine patients were included into the study. Regenerative activity of blood-derived eEPCs did not differ between Controls and patients. Circulating eEPC were significantly lower in all patients with SSc, and in limited and diffuse SSc (lSSc/dSSc). Serum concentrations of promesenchymal TGF-b was elevated in all patients with SSc. Cultured mononuclear cells from SS patients displayed higher abundances of CD31 and of CD31 and aSMA combined. Finally, serum from SSc patients inhibited migration of cultured eEPCs and the cells showed lower sensitivity towards the endothelin antagonist Bosentan. CONCLUSIONS The eEPC system, which represents an essential element of the endogenous vascular repair machinery is affected in SSc. The increased appearance of mesenchymal properties in eEPC may indicate that alterations of the cells potentially contribute to the accumulation of connective tissue and to vascular malfunction.
Collapse
Affiliation(s)
- S. Patschan
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - D. Tampe
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - C. Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - C. Seitz
- Clinic of Dermatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - C. Herink
- Clinic of Dermatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - G. A. Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - E. Zeisberg
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - M. Zeisberg
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - E. Henze
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - D. Patschan
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
49
|
Maringer K, Sims-Lucas S. The multifaceted role of the renal microvasculature during acute kidney injury. Pediatr Nephrol 2016; 31:1231-40. [PMID: 26493067 PMCID: PMC4841763 DOI: 10.1007/s00467-015-3231-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell-cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair.
Collapse
Affiliation(s)
- Katherine Maringer
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Miteva K, Van Linthout S, Pappritz K, Müller I, Spillmann F, Haag M, Stachelscheid H, Ringe J, Sittinger M, Tschöpe C. Human Endomyocardial Biopsy Specimen-Derived Stromal Cells Modulate Angiotensin II-Induced Cardiac Remodeling. Stem Cells Transl Med 2016; 5:1707-1718. [PMID: 27460853 DOI: 10.5966/sctm.2016-0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
: Cardiac-derived adherent proliferating cells (CardAPs) are cells derived from human endomyocardial biopsy specimens; they share several properties with mesenchymal stromal cells. The aims of this study were to evaluate whether intramyocardial injection of CardAPs modulates cardiac fibrosis and hypertrophy in a mouse model of angiotensin II (Ang II)-induced systolic heart failure and to analyze underlying mechanisms. Intramyocardial application of 200,000 CardAPs improved left ventricular function. This was paralleled by a decline in left ventricular remodeling, as indicated by a reduction in cardiac fibrosis and hypertrophy. CardAPs reduced the ratio of the left ventricle to body weight and cardiac myosin expression (heavy chain), and decreased the Ang II-induced phosphorylation state of the cardiomyocyte hypertrophy mediators Akt, extracellular-signal regulated kinase (ERK) 1, and ERK2. In accordance with the antifibrotic and antihypertrophic effects of CardAPs shown in vivo, CardAP supplementation with cardiac fibroblasts decreased the Ang II-induced reactive oxygen species production, α-SMA expression, fibroblast proliferation, and collagen production. Coculture of CardAPs with HL-1 cardiomyocytes downregulated the Ang II-induced expression of myosin in HL-1. All antifibrotic and antihypertrophic features of CardAPs were mediated in a nitric oxide- and interleukin (IL)-10-dependent manner. Moreover, CardAPs induced a systemic immunomodulation, as indicated by a decrease in the activity of splenic mononuclear cells and an increase in splenic CD4CD25FoxP3, CD4-IL-10, and CD8-IL-10 T-regulatory cells in Ang II mice. Concomitantly, splenocytes from Ang II CardAPs mice induced less collagen in fibroblasts compared with splenocytes from Ang II mice. We conclude that CardAPs improve Ang II-induced cardiac remodeling involving antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. SIGNIFICANCE Despite effective pharmacological treatment with angiotensin II type I receptor antagonists or angiotensin II-converting enzyme inhibitors, morbidity and mortality associated with heart failure are still substantial, prompting the search of novel therapeutic strategies. There is accumulating evidence supporting the use of cell therapy for cardiac repair. This study demonstrates that cells derived from human endomyocardial biopsies, cardiac-derived adherent proliferating cells (CardAPs), have the potential to reduce angiotensin II-induced cardiac remodeling and improve left ventricular function in angiotensin II mice. The mechanism involves antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. These findings support the potential of CardAPs for the treatment of heart failure.
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Frank Spillmann
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Marion Haag
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Harald Stachelscheid
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Michael Sittinger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|