1
|
Chong ZZ, Souayah N. Neuroinflammation in diabetic peripheral neuropathy and therapeutic implications. Rev Neurosci 2025:revneuro-2025-0031. [PMID: 40228523 DOI: 10.1515/revneuro-2025-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes mellitus, which is a common cause of disability in individuals with diabetes mellitus. Multiple mechanisms may be involved in the development of DPN. Neuroinflammation is a critical factor contributing to nerve damage during diabetes. Inflammation can induce the development of diabetes mellitus, and long-term hyperglycemia also causes increased oxidative stress and promotes the release of inflammatory cytokines. After reading through the literature, the association of inflammation with the induction of diabetes and DPN was discussed in the review. Inflammation induces nerve damage and nerve conduction impairment. The neuropathic pain in diabetes-induced DPN is also closely associated with the inflammatory response. Given the important roles of inflammation in diabetes-induced DPN, explicit elucidation of neuroinflammation during diabetes mellitus and DPN should hold the potential for developing novel therapeutic strategies for DPN. Experimental studies and limited clinical trials support the value of anti-inflammatory reagents in treating DPN, and the positive outcomes of these investigations warrant further clinical trials.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Wu Q, Zhou Q, Wan C, Xin G, Wang T, Gao Y, Liu T, Yu X, Zhang B, Huang W. Mechanism Actions of Coniferyl Alcohol in Improving Cardiac Dysfunction in Renovascular Hypertension Studied by Experimental Verification and Network Pharmacology. Int J Mol Sci 2024; 25:10063. [PMID: 39337549 PMCID: PMC11444148 DOI: 10.3390/ijms251810063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Renovascular hypertension (RH), a secondary hypertension, can significantly impact heart health, resulting in heart damage and dysfunction, thereby elevating the risk of cardiovascular diseases. Coniferol (CA), which has vascular relaxation properties, is expected to be able to treat hypertension-related diseases. However, its potential effects on cardiac function after RH remain unclear. In this study, in combination with network pharmacology, the antihypertensive and cardioprotective effects of CA in a two-kidney, one-clip (2K1C) mice model and its ability to mitigate angiotensin II (Ang II)-induced hypertrophy in H9C2 cells were investigated. The findings revealed that CA effectively reduced blood pressure, myocardial tissue damage, and inflammation after RH. The possible targets of CA for RH treatment were screened by network pharmacology. The interleukin-17 (IL-17) and tumor necrosis factor (TNF) signaling pathways were identified using a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The inflammatory response was identified using a Gene Ontology (GO) enrichment analysis. Western blot analysis confirmed that CA reduced the expression of IL-17, matrix metallopeptidase 9 (MMP9), cyclooxygenase 2 (COX2), and TNF α in heart tissues and the H9C2 cells. In summary, CA inhibited cardiac inflammation and fibrohypertrophy following RH. This effect was closely linked to the expression of MMP9/COX2/TNF α/IL-17. This study sheds light on the therapeutic potential of CA for treating RH-induced myocardial hypertrophy and provides insights into its underlying mechanisms, positioning CA as a promising candidate for future drug development.
Collapse
Affiliation(s)
- Qiuling Wu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Qilong Zhou
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Chengyu Wan
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Guang Xin
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Yu Gao
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Ting Liu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Xiuxian Yu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Boli Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
- Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Wen Huang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| |
Collapse
|
3
|
Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov Today 2024; 29:104087. [PMID: 38969091 DOI: 10.1016/j.drudis.2024.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Diabetic distal symmetric polyneuropathy is the most common type of peripheral neuropathy complication of diabetes mellitus. Neuroinflammation is emerging as an important contributor to diabetes-induced neuropathy. Long-term hyperglycemia results in increased production of advanced glycation end products (AGEs). AGEs interact with their receptors to activate intracellular signaling, leading to the release of various inflammatory cytokines. Increased release of inflammatory cytokines is associated with diabetes, diabetic neuropathy, and neuropathic pain. Thus, anti-inflammatory intervention is a potential therapy for diabetic distal symmetric polyneuropathy. Further characterization of inflammatory mechanisms might identify novel therapeutic targets to mitigate diabetic neuropathy.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
4
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
5
|
Kordi N, Azizi M, Samadi M, Tahmasebi W. Can Methamphetamine-Induced Cardiotoxicity be Ameliorated by Aerobic Training and Nutrition Bio-shield Superfood Supplementation in Rats After Withdrawal? Cardiovasc Toxicol 2024; 24:687-699. [PMID: 38816669 DOI: 10.1007/s12012-024-09871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
The abuse of methamphetamine is a significant threat to cardiovascular health and has detrimental effects on the myocardium. The present study aims to explore potential interventions that can mitigate myocardial pyroptosis in rats following methamphetamine withdrawal. A total of 104 male Wistar rats were randomly assigned to eight groups. The rats underwent a methamphetamine administration protocol, receiving intraperitoneal injections of 10 mg/kg during the 1st week, followed by a weekly dose escalation of 1 mg/kg from the second to the 6th week and two times per day. Concurrently, the rats engaged in 6 weeks of moderate-intensity treadmill aerobic training, lasting 60 min per day, 5 days a week. Simultaneously, the Nutrition bio-shield Superfood (NBS) supplement was administered at a dosage of 25 g/kg daily for 6 weeks. The study assessed the expression levels of Caspase-1, Interleukin-1beta (IL-1β), and Interleukin-18 (IL-18) genes in myocardial tissue. Data analysis utilized a one-way analysis of variance (p ≤ 0.05). The findings revealed that methamphetamine usage significantly elevated the expression of Caspase-1, IL-1β, and IL-18 genes (p ≤ 0.05). Conversely, methamphetamine withdrawal led to a notable reduction in the expression of these genes (p ≤ 0.05). Noteworthy reductions in Caspase-1, IL-1β, and IL-18 expression were observed following aerobic training, supplementation, and the combined approach (p ≤ 0.05). The chronic use of methamphetamine was associated with cardiac tissue damage. This study highlights the potential of aerobic training and NBS Superfood supplementation in mitigating the harmful effects of methamphetamine-induced myocardial pyroptosis. The observed reductions in gene expression levels indicate promising interventions to address the cardiovascular consequences of methamphetamine abuse. The findings of this study suggest that a combination of aerobic exercise and NBS Superfood supplementation can provide a promising approach to mitigate the deleterious effects of methamphetamine on the heart. These findings can be useful for healthcare professionals and policymakers to design effective interventions to prevent and manage the adverse effects of methamphetamine abuse.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Sport Sciences, Razi University, Kermanshah, Iran
| | - Mohammad Azizi
- Department of Sport Sciences, Razi University, Kermanshah, Iran.
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Mohammad Samadi
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Worya Tahmasebi
- Department of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
7
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
9
|
Lubberding AF, Pereira L, Xue J, Gottlieb LA, Matchkov VV, Gomez AM, Thomsen MB. Aberrant sinus node firing during β-adrenergic stimulation leads to cardiac arrhythmias in diabetic mice. Acta Physiol (Oxf) 2020; 229:e13444. [PMID: 31953990 DOI: 10.1111/apha.13444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Cardiovascular complications, including cardiac arrhythmias, result in high morbidity and mortality in patients with type-2 diabetes mellitus (T2DM). Clinical and experimental data suggest electrophysiological impairment of the natural pacemaker of the diabetic heart. The present study examined sinoatrial node (SAN) arrhythmias in a mouse model of T2DM and physiologically probed their underlying cause. METHODS Electrocardiograms were obtained from conscious diabetic db/db and lean control db/+ mice. In vivo SAN function was probed through pharmacological autonomic modulation with isoprenaline, atropine and carbachol. Blood pressure stability and heart rate variability (HRV) were evaluated. Intrinsic SAN function was evaluated through ex vivo imaging of spontaneous Ca2+ transients in isolated SAN preparations. RESULTS While lean control mice showed constant RR intervals during isoprenaline challenge, the diabetic mice experienced SAN arrhythmias with large RR fluctuations in a dose-dependent manner. These arrhythmias were completely abolished by atropine pre-treatment, while carbachol pretreatment significantly increased SAN arrhythmia frequency in the diabetic mice. Blood pressure and HRV were comparable in db/db and db/+ mice, suggesting that neither augmented baroreceptor feedback nor autonomic neuropathy is a likely arrhythmia mechanism. Cycle length response to isoprenaline was comparable in isolated SAN preparations from db/db and db/+ mice; however, Ca2+ spark frequency was significantly increased in db/db mice compared to db/+ at baseline and after isoprenaline. CONCLUSION Our results demonstrate a dysfunction of cardiac pacemaking in an animal model of T2DM upon challenge with a β-adrenergic agonist. Ex vivo, higher Ca2+ spark frequency is present in diabetic mice, which may be directly linked to in vivo arrhythmias.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Laetitia Pereira
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Jianbin Xue
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Lisa A. Gottlieb
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Ana M. Gomez
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Morten B. Thomsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
10
|
Vinik AI, Casellini C, Parson HK, Colberg SR, Nevoret ML. Cardiac Autonomic Neuropathy in Diabetes: A Predictor of Cardiometabolic Events. Front Neurosci 2018; 12:591. [PMID: 30210276 PMCID: PMC6119724 DOI: 10.3389/fnins.2018.00591] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Autonomic nervous system (ANS) imbalance manifesting as cardiac autonomic neuropathy in the diabetic population is an important predictor of cardiovascular events. Symptoms and signs of ANS dysfunction, such as resting heart rate elevations, diminished blood pressure responses to standing, and altered time and frequency domain measures of heart rate variability in response to deep breathing, standing, and the Valsalva maneuver, should be elicited from all patients with diabetes and prediabetes. With the recognition of the presence of ANS imbalance or for its prevention, a rigorous regime should be implemented with lifestyle modification, physical activity, and cautious use of medications that lower blood glucose. Rather than intensifying diabetes control, a regimen tailored to the individual risk of autonomic imbalance should be implemented. New agents that may improve autonomic function, such as SGLT2 inhibitors, should be considered and the use of incretins monitored. One of the central mechanisms of dysfunction is disturbance of the hypothalamic cardiac clock, a consequence of dopamine deficiency that leads to sympathetic dominance, insulin resistance, and features of the metabolic syndrome. An improvement in ANS balance may be critical to reducing cardiovascular events, cardiac failure, and early mortality in the diabetic population.
Collapse
Affiliation(s)
- Aaron I. Vinik
- Division of Endocrinology and Metabolism, Strelitz Diabetes Center and Neuroendocrine Unit, Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Carolina Casellini
- Division of Endocrinology and Metabolism, Strelitz Diabetes Center and Neuroendocrine Unit, Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Henri K. Parson
- Division of Endocrinology and Metabolism, Strelitz Diabetes Center and Neuroendocrine Unit, Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Sheri R. Colberg
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, United States
| | | |
Collapse
|
11
|
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018; 107:306-328. [PMID: 30098549 DOI: 10.1016/j.biopha.2018.07.157] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023] Open
Abstract
Chronic exposure of glucose rich environment creates several physiological and pathophysiological changes. There are several pathways by which hyperglycemia exacerbate its toxic effect on cells, tissues and organ systems. Hyperglycemia can induce oxidative stress, upsurge polyol pathway, activate protein kinase C (PKC), enhance hexosamine biosynthetic pathway (HBP), promote the formation of advanced glycation end-products (AGEs) and finally alters gene expressions. Prolonged hyperglycemic condition leads to severe diabetic condition by damaging the pancreatic β-cell and inducing insulin resistance. Numerous complications have been associated with diabetes, thus it has become a major health issue in the 21st century and has received serious attention. Dysregulation in the cardiovascular and reproductive systems along with nephropathy, retinopathy, neuropathy, diabetic foot ulcer may arise in the advanced stages of diabetes. High glucose level also encourages proliferation of cancer cells, development of osteoarthritis and potentiates a suitable environment for infections. This review culminates how elevated glucose level carries out its toxicity in cells, metabolic distortion along with organ dysfunction and elucidates the complications associated with chronic hyperglycemia.
Collapse
Affiliation(s)
- Biplab Giri
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Tanaya Das
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Mrinmoy Sarkar
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India.
| |
Collapse
|
12
|
Bulani Y, Sharma SS. Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression. Cardiovasc Drugs Ther 2018; 31:255-267. [PMID: 28695302 DOI: 10.1007/s10557-017-6732-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Chronic diabetes is associated with cardiovascular dysfunctions. Diabetic cardiomyopathy (DCM) is one of the serious cardiovascular complications associated with diabetes. Despite significant efforts in understanding the pathophysiology of DCM, management of DCM is not adequate due to its complex pathophysiology. Recently, involvement of protease-activated receptors (PARs) has been postulated in cardiovascular diseases. These receptors are activated by thrombin, trypsin, or other serine proteases. Expression of PAR has been shown to be increased in cardiac diseases such as myocardial infarction, viral myocarditis, and pulmonary arterial hypertension. However, the role of PAR in DCM has not been elucidated yet. Therefore, in the present study, we have investigated the role of PAR in the condition of DCM using a pharmacological approach. We used argatroban, a direct thrombin inhibitor for targeting PAR. METHODS Type-2 diabetes mellitus (T2DM) was induced by high-fat feeding along with low dose streptozotocin (STZ 35 mg/kg, i.p. single dose) in male Sprague-Dawley rats. After 16 weeks of diabetes induction, animals were treated with argatroban at 0.3 and 1 mg/kg dose daily for 4 weeks. After 20 weeks, ventricular functions were measured using ventricular catheterization. Cardiac histology, TUNEL staining, and immunoblotting were performed to evaluate cardiac fibrosis, DNA fragmentation, and expression level of different proteins, respectively. RESULTS T2DM was associated with cardiac structural and functional disturbances as evidenced from impaired cardiac functional parameters and increased fibrosis. There was a significant increase in PAR expression after 20 weeks of diabetes induction. Four weeks argatroban treatment ameliorated metabolic alterations (reduced plasma glucose and cholesterol), ventricular dysfunctions (improved systolic and diastolic functions), cardiac fibrosis (reduced percentage area of collagen in picro-sirius red staining), and apoptosis (reduced TUNEL positive nuclei). Reduced expression of PAR1 and PAR4 in the argatroban-treated group indicates a response towards inhibition of thrombin. In addition, AKT (Ser-473), GSK-3β (Ser-9), p-65 NFĸB phosphorylation, TGF-β, COX-2, and caspase-3 expression were reduced significantly along with an increase in SERCA expression in argatroban-treated diabetic rats which indicated the anti-fibrotic, anti-inflammatory, and anti-apoptotic potential of argatroban in DCM. CONCLUSION This study suggests the ameliorative effects of argatroban in diabetic cardiomyopathy by improving ventricular functions and reducing fibrosis, inflammation, apoptosis, and PAR expression.
Collapse
Affiliation(s)
- Yogesh Bulani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS, Nagar (Mohali), Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS, Nagar (Mohali), Punjab, 160062, India.
| |
Collapse
|
13
|
Vinik AI, Casellini C, Névoret ML. Alternative Quantitative Tools in the Assessment of Diabetic Peripheral and Autonomic Neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:235-85. [PMID: 27133153 DOI: 10.1016/bs.irn.2016.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we review some seldom-discussed presentations of diabetic neuropathy, including large fiber dysfunction and peripheral autonomic dysfunction, emphasizing the impact of sympathetic/parasympathetic imbalance. Diabetic neuropathy is the most common complication of diabetes and contributes additional risks in the aging adult. Loss of sensory perception, loss of muscle strength, and ataxia or incoordination lead to a risk of falling that is 17-fold greater in the older diabetic compared to their young nondiabetic counterparts. A fall is accompanied by lacerations, tears, fractures, and worst of all, traumatic brain injury, from which more than 60% do not recover. Autonomic neuropathy has been hailed as the "Prophet of Doom" for good reason. It is conducive to increased risk of myocardial infarction and sudden death. An imbalance in the autonomic nervous system occurs early in the evolution of diabetes, at a stage when active intervention can abrogate the otherwise relentless progression. In addition to hypotension, many newly recognized syndromes can be attributed to cardiac autonomic neuropathy such as orthostatic tachycardia and bradycardia. Ultimately, this constellation of features of neuropathy conspire to impede activities of daily living, especially in the patient with pain, anxiety, depression, and sleep disorders. The resulting reduction in quality of life may worsen prognosis and should be routinely evaluated and addressed. Early neuropathy detection can only be achieved by assessment of both large and small- nerve fibers. New noninvasive sudomotor function technologies may play an increasing role in identifying early peripheral and autonomic neuropathy, allowing rapid intervention and potentially reversal of small-fiber loss.
Collapse
Affiliation(s)
- A I Vinik
- Eastern Virginia Medical School, Strelitz Diabetes and Neuroendocrine Center, Norfolk, VA, United States.
| | - C Casellini
- Eastern Virginia Medical School, Strelitz Diabetes and Neuroendocrine Center, Norfolk, VA, United States
| | - M-L Névoret
- Impeto Medical Inc., San Diego, CA, United States
| |
Collapse
|
14
|
Wang K, Li L, Wu Y, Yang Y, Chen J, Zhang D, Liu Z, Xu J, Cao M, Mao X, Liu C. Increased serum gamma-glutamyltransferase levels are associated with ventricular instability in type 2 diabetes. Endocrine 2016; 52:63-72. [PMID: 26433737 DOI: 10.1007/s12020-015-0760-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022]
Abstract
The purpose of our study is to examine the association between serum GGT levels and ventricular instability in Chinese patients with T2DM. We conducted a cross-sectional, community-based study in Nanjing, China from June to November 2011. Among 10,050 patients aged 40-79 years, we enrolled 2444 with pre-diabetes, 2496 with T2DM, and 4521 without diabetes (non-diabetes). Electrocardiograms were performed to measure the QT interval corrected for heart rate (QTc) and QT interval dispersion (QTd). Serum GGT levels, metabolic parameters, body mass index, and blood pressure were also measured. We found that there were no significant associations of increased QTc/QTd with serum GGT levels in participants with pre-existing T2DM and non-diabetes, after adjusting for age, duration of diabetes, and metabolic parameters. Even after adjustment, higher risks of QTc ≥ 440 ms/√s and QTd ≥ 58 ms were found in participants with serum GGT levels ≥49 U/L compared with those with <15 U/L in the pre-diabetes (QTc: OR 1.96, 95 % CI 1.23-2.47; QTd: OR 1.34, 95 % CI 1.07-1.94) and newly diagnosed T2DM (QTc: OR 2.01, 95 % CI 1.39-2.51; QTd: OR 1.53, 95 % CI 1.03-1.99) groups. We conclude that Increased serum GGT levels are associated with some markers of ventricular repolarization abnormalities in the early stage of T2DM.
Collapse
Affiliation(s)
- Kun Wang
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, 87, Dingjiaqiao Road, Nanjing, 210009, China
| | - Yang Wu
- Department of Endocrinology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, 185, Juqian Road, Changzhou, 213003, China
| | - Yu Yang
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Jie Chen
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Danyu Zhang
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Zhoujun Liu
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Juan Xu
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Meng Cao
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Xiaodong Mao
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China.
| |
Collapse
|
15
|
Avendaño MS, Martínez-Revelles S, Aguado A, Simões MR, González-Amor M, Palacios R, Guillem-Llobat P, Vassallo DV, Vila L, García-Puig J, Beltrán LM, Alonso MJ, Cachofeiro MV, Salaices M, Briones AM. Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension. Br J Pharmacol 2016; 173:1541-55. [PMID: 26856544 DOI: 10.1111/bph.13457] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostanoids derived from COX-2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX-2 and EP1 receptors to vascular remodelling and function in hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)-infused (1.44 mg · kg(-1) · day(-1), 2 weeks) mice were treated with the COX-2 inhibitor celecoxib (25 mg · kg(-1) · day(-1) i.p) or with the EP1 receptor antagonist SC19220 (10 mg · kg(-1) · day(-1) i.p.). COX-2(-/-) mice with or without AngII infusion were also used. KEY RESULTS Celecoxib and SC19220 treatment did not modify the altered lumen diameter and wall : lumen ratio in mesenteric resistance arteries from SHR-infused and/or AngII-infused animals. However, both treatments and COX-2 deficiency decreased the augmented vascular stiffness in vessels from hypertensive animals. This was accompanied by diminished vascular collagen deposition, normalization of altered elastin structure and decreased connective tissue growth factor and plasminogen activator inhibitor-1 gene expression. COX-2 deficiency and SC19220 treatment diminished the increased vasoconstrictor responses and endothelial dysfunction induced by AngII infusion. Hypertensive animals showed increased mPGES-1 expression and PGE2 production in vascular tissue, normalized by celecoxib. Celecoxib treatment also decreased AngII-induced macrophage infiltration and TNF-α expression. Macrophage conditioned media (MCM) increased COX-2 and collagen type I expression in vascular smooth muscle cells; the latter was reduced by celecoxib treatment. CONCLUSIONS AND IMPLICATIONS COX-2 and EP1 receptors participate in the increased extracellular matrix deposition and vascular stiffness, the impaired vascular function and inflammation in hypertension. Targeting PGE2 receptors might have benefits in hypertension-associated vascular damage.
Collapse
Affiliation(s)
- M S Avendaño
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - S Martínez-Revelles
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - A Aguado
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - M R Simões
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.,Dept. Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - M González-Amor
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - R Palacios
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - P Guillem-Llobat
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Madrid, Spain
| | - D V Vassallo
- Dept. Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - L Vila
- Laboratorio de Angiología, Biología Vascular e Inflamación, Instituto de Investigación Biomédica (IIB Sant Pau), Barcelona, Spain
| | - J García-Puig
- Servicio de Medicina Interna, Hospital Universitario La Paz, UAM, IdiPaz, Madrid, Spain
| | - L M Beltrán
- Servicio de Medicina Interna, Hospital Universitario La Paz, UAM, IdiPaz, Madrid, Spain
| | - M J Alonso
- Dept Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - M V Cachofeiro
- Dept. Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - M Salaices
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - A M Briones
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
16
|
Thomas J, Garg ML. Dietary Long Chain Omega-3 Polyunsaturated Fatty Acids and Inflammatory Gene Expression in Type 2 Diabetes. MOLECULAR NUTRITION AND DIABETES 2016:291-299. [DOI: 10.1016/b978-0-12-801585-8.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Differential impact of type-1 and type-2 diabetes on control of heart rate in mice. Auton Neurosci 2015; 194:17-25. [PMID: 26725752 DOI: 10.1016/j.autneu.2015.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
AIMS Cardiac autonomic dysfunction is a serious complication of diabetes. One consequence is disruption of the normal beat-to-beat regulation of heart rate (HR), i.e. HR variability (HRV). However, our understanding of the disease process has been limited by inconsistent HR/HRV data from previous animal studies. We hypothesized that differences in the method of measurement, time of day, and level of stress account for the differing results across studies. Thus, our aim was to systematically assess HR and HRV in two common diabetic mouse models. METHODS ECG radiotelemetry devices were implanted into db/db (type-2 diabetic), STZ-treated db/+ (type-1 diabetic), and control db/+ mice (n=4 per group). HR and HRV were analyzed over 24 h and during treadmill testing. RESULTS 24 h analysis revealed that db/db mice had an altered pattern of circadian HR changes, and STZ-treated mice had reduced HR throughout. HRV measures linked to sympathetic control were reduced in db/db mice in the early morning and early afternoon, and partially reduced in STZ-treated mice. HR response to treadmill testing was blunted in both models. CONCLUSIONS It is important to consider both time of day and level of stress when assessing HR and HRV in diabetic mice. db/db mice may have altered circadian rhythm of sympathetic control of HR, whereas STZ-treated mice have a relative reduction. This study provides baseline data and a framework for HR analysis that may guide future investigations.
Collapse
|
18
|
Effects of nimesulide, a selective COX-2 inhibitor, on cardiovascular function in 2 rat models of diabetes. J Cardiovasc Pharmacol 2015; 64:79-86. [PMID: 24621649 DOI: 10.1097/fjc.0000000000000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclooxygenase-2 (COX-2) has been found to be activated in diabetes. We investigated whether nimesulide (selective COX-2 inhibitor) alters cardiovascular responses to adrenaline in 2 rat models of diabetes. Wistar rats (5-week old) were continuously fed a normal or high-fructose diet (60% of caloric intake). At week 2, half of the rats in each diet regimen were given streptozotocin (STZ) (60 mg/kg, intravenously). At week 6, cardiovascular effects of adrenaline (6 and 16 × 10 mol·kg·min, intravenously) were measured in 4 groups of thiobutabarbital-anesthetized rats (control, fructose, STZ, and fructose-streptozotocin [F-STZ]) before and after the injection of nimesulide (3 mg/kg, intravenously). Both the STZ and F-STZ groups exhibited hyperglycemia and significantly (P < 0.05) reduced left ventricular contractility, mean arterial pressure, arterial and venous resistance, and mean circulatory filling pressure (index of venous tone) responses to adrenaline, relative to the control and fructose groups. Nimesulide did not affect responses in the control and fructose groups but increased the venous and, to a less extent, arterial constriction to adrenaline in both the groups of diabetic rats. The cardiac contractile responses, however, were not altered after nimesulide treatment. The results show that nimesulide partially restored arterial and venous constriction to adrenaline in rats with STZ- and F-STZ-induced diabetes.
Collapse
|
19
|
Cyclooxygenase 2, toll-like receptor 4 and interleukin 1β mRNA expression in atherosclerotic plaques of type 2 diabetic patients. Inflamm Res 2014; 63:851-8. [PMID: 25095741 DOI: 10.1007/s00011-014-0759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES AND DESIGN Inflammation has a prominent role in the development of atherosclerosis. Type 2 diabetes could contribute to atherosclerosis development by promoting inflammation. This status might accelerate changes in intrinsic vascular wall cells and favor plaque formation. Cyclooxygenase 2 (COX-2) is highly expressed in atherosclerotic plaques. COX-2 gene expression is promoted through activation of toll-like receptor 4 (TLR4) and pro-inflammatory cytokine interleukin 1β (IL1-β). Aim of this study is to investigate whether expression profiles of pro-inflammatory genes such as COX-2, TLR4 and IL1-β in atherosclerotic plaques are altered in type 2 diabetes (T2D). METHODS Total RNA was isolated from plaques of atherosclerotic patients and expression of COX-2, TLR4, IL1-β analyzed using real-time PCR. Histological analysis was performed on sections of the plaque to establish the degree of instability. RESULTS Statistically significant differences in mRNA expression of COX-2 and IL1-β were found in plaques of T2D compared with non-T2D patients. A multi-variable linear regression model suggests that COX-2 mRNA expression is affected by T2D pathology and IL1-β mRNA expression in atherosclerotic plaques. CONCLUSIONS Our results support the hypothesis that T2D pathology contributes in vivo to increase the inflammatory process associated with the atherosclerotic plaque formation, as shown by an increment of COX-2 and IL1-β mRNA expression.
Collapse
|
20
|
Abstract
Neuropathy is the most common complication of diabetes. As a consequence of longstanding hyperglycemia, a downstream metabolic cascade leads to peripheral nerve injury through an increased flux of the polyol pathway, enhanced advanced glycation end‐products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress, as well as other confounding factors. Although these metabolic aberrations are deemed as the main stream for the pathogenesis of diabetic microvascular complications, organ‐specific histological and biochemical characteristics constitute distinct mechanistic processes of neuropathy different from retinopathy or nephropathy. Extremely long axons originating in the small neuronal body are vulnerable on the most distal side as a result of malnutritional axonal support or environmental insults. Sparse vascular supply with impaired autoregulation is likely to cause hypoxic damage in the nerve. Such dual influences exerted by long‐term hyperglycemia are critical for peripheral nerve damage, resulting in distal‐predominant nerve fiber degeneration. More recently, cellular factors derived from the bone marrow also appear to have a strong impact on the development of peripheral nerve pathology. As evident from such complicated processes, inhibition of single metabolic factors might not be sufficient for the treatment of neuropathy, but a combination of several inhibitors might be a promising approach to overcome this serious disorder. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00070.x, 2010)
Collapse
Affiliation(s)
| | | | - Kazuhiro Sugimoto
- Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
21
|
Microarray analysis of gene expression in 3-methylcholanthrene-treated human endothelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0003-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Joers V, Emborg ME. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:125-159. [PMID: 24753981 PMCID: PMC3992208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients' symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can seriously impact daily life of PD patients, as these symptoms do not respond to classical anti-parkinsonian medications and can be worsened by them. New diagnostic tools and therapies aiming to prevent cardiac neurodegeneration and dysautonomia are needed. In this manuscript we critically review the relationship between the cardiovascular and nervous system in normal and PD conditions, current animal models of cardiac dysautonomia and the application of molecular imaging methods to visualize cardiac neurodegeneration. Our goal is to highlight current progress in the development of tools to understand cardiac neurodegeneration and dysautonomia and monitor the effects of novel therapies aiming for global neuroprotection.
Collapse
Affiliation(s)
- Valerie Joers
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison1220 Capitol Court, Madison, WI 53715, USA
- Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI 53715, USA
| | - Marina E Emborg
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison1220 Capitol Court, Madison, WI 53715, USA
- Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI 53715, USA
- Department of Medical Physics, 1111 Highland Avenue, University of Wisconsin-MadisonMadison WI 53705, USA
| |
Collapse
|
23
|
Oxidative Stress and Cardiovascular Disease in Diabetes. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4899-8035-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 2013; 49:536-46. [PMID: 23990376 DOI: 10.1007/s12035-013-8537-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/15/2013] [Indexed: 11/26/2022]
Abstract
There are still no approved treatments for the prevention or of cure of diabetic neuropathy, and only symptomatic pain therapies of variable efficacy are available. Inflammation is a cardinal pathogenic mechanism of diabetic neuropathy. The relationships between inflammation and the development of diabetic neuropathy involve complex molecular networks and processes. Herein, we review the key inflammatory molecules (inflammatory cytokines, adhesion molecules, chemokines) and pathways (nuclear factor kappa B, JUN N-terminal kinase) implicated in the development and progression of diabetic neuropathy. Advances in the understanding of the roles of these key inflammatory molecules and pathways in diabetic neuropathy will facilitate the discovery of the potential of anti-inflammatory approaches for the inhibition of the development of neuropathy. Specifically, many anti-inflammatory drugs significantly inhibit the development of different aspects of diabetic neuropathy in animal models and clinical trials.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China,
| | | |
Collapse
|
25
|
Diabetic cardiac autonomic neuropathy: insights from animal models. Auton Neurosci 2013; 177:74-80. [PMID: 23562143 DOI: 10.1016/j.autneu.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022]
Abstract
Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used.
Collapse
|
26
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
27
|
Abstract
Autonomic neuropathy, once considered to be the Cinderella of diabetes complications, has come of age. The autonomic nervous system innervates the entire human body, and is involved in the regulation of every single organ in the body. Thus, perturbations in autonomic function account for everything from abnormalities in pupillary function to gastroparesis, intestinal dysmotility, diabetic diarrhea, genitourinary dysfunction, amongst others. "Know autonomic function and one knows the whole of medicine!" It is now becoming apparent that before the advent of severe pathological damage to the autonomic nervous system there may be an imbalance between the two major arms, namely the sympathetic and parasympathetic nerve fibers that innervate the heart and blood vessels, resulting in abnormalities in heart rate control and vascular dynamics. Cardiac autonomic neuropathy (CAN) has been linked to resting tachycardia, postural hypotension, orthostatic bradycardia and orthostatic tachycardia (POTTS), exercise intolerance, decreased hypoxia-induced respiratory drive, loss of baroreceptor sensitivity, enhanced intraoperative or perioperative cardiovascular lability, increased incidence of asymptomatic ischemia, myocardial infarction, and decreased rate of survival after myocardial infarction and congestive heart failure. Autonomic dysfunction can affect daily activities of individuals with diabetes and may invoke potentially life-threatening outcomes. Intensification of glycemic control in the presence of autonomic dysfunction (more so if combined with peripheral neuropathy) increases the likelihood of sudden death and is a caveat for aggressive glycemic control. Advances in technology, built on decades of research and clinical testing, now make it possible to objectively identify early stages of CAN with the use of careful measurement of time and frequency domain analyses of autonomic function. Fifteen studies using different end points report prevalence rates of 1% to 90%. CAN may be present at diagnosis, and prevalence increases with age, duration of diabetes, obesity, smoking, and poor glycemic control. CAN also cosegregates with distal symmetric polyneuropathy, microangiopathy, and macroangiopathy. It now appears that autonomic imbalance may precede the development of the inflammatory cascade in type 2 diabetes and there is a role for central loss of dopaminergic restraint on sympathetic overactivity. Restoration of dopaminergic tone suppresses the sympathetic dominance and reduces cardiovascular events and mortality by close to 50%. Cinderella's slipper can now be worn!
Collapse
Affiliation(s)
- Aaron I Vinik
- Eastern Virginia Medical School, Strelitz Diabetes Center, Division of Endocrinology and Metabolism, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | |
Collapse
|
28
|
Stavniichuk R, Obrosov AA, Drel VR, Nadler JL, Obrosova IG, Yorek MA. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. ACTA ACUST UNITED AC 2013; 3. [PMID: 24175152 DOI: 10.4236/jdm.2013.33015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. METHODS To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in 5.5 mM or 30 mM glucose with or without CDC. RESULTS 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. CONCLUSION 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pop-Busui R, Cleary PA, Braffett BH, Martin CL, Herman WH, Low PA, Lima JAC, Bluemke DA. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol 2012; 61:447-454. [PMID: 23265339 DOI: 10.1016/j.jacc.2012.10.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The goal of these studies was to determine the association between cardiovascular autonomic neuropathy (CAN) and indices of left ventricle (LV) structure and function in patients with type 1 diabetes (T1DM) in the DCCT/EDIC (Diabetes Control and Complications Trial /Epidemiology of Diabetes Interventions and Complications) study. BACKGROUND The pathophysiology of LV dysfunction in T1DM remains unclear, especially when the LV ejection fraction (EF) is preserved. Whether CAN is associated with LV dysfunction is unclear. METHODS Indices of LV structure and function were obtained by cardiac magnetic resonance imaging (CMRI). CAN was assessed by cardiovascular reflex testing (R-R response to paced breathing, Valsalva ratio, and blood pressure response to standing). Analyses were performed in 966 DCCT/EDIC participants with valid CMRI and CAN data (mean age 51 years, 52% men, mean diabetes duration 29 years, and mean glycosylated hemoglobin 7.9%). RESULTS Systolic function (EF, end-systolic and end-diastolic volumes, stroke volumes) was not different in 371 subjects with CAN compared with 595 subjects without CAN. In multiple-adjusted analyses, participants with either abnormal R-R variation or a composite of abnormal R-R variation, abnormal Valsalva ratio, and postural blood pressure changes had significantly higher LV mass, mass-to-volume-ratio, and cardiac output compared with those with normal tests (p < 0.0001 for all). After further adjustment for traditional cardiovascular risk factors, subjects with abnormal R-R variation had higher LV mass and cardiac output compared with those with a normal R-R variation (p < 0.05). CONCLUSIONS In this large cohort of patients with T1DM, CAN is associated with increased LV mass and concentric remodeling as assessed by CMRI independent of age, sex, and other factors. (Diabetes Control and Complications Trial [DCCT]; NCT00360815) (Epidemiology of Diabetes Interventions and Complications [EDIC]; NCT00360893).
Collapse
Affiliation(s)
- Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan.
| | - Patricia A Cleary
- Biostatistics Center, George Washington University, Rockville, Maryland
| | | | - Catherine L Martin
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - William H Herman
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - David A Bluemke
- Radiology and Imaging Sciences, National Center for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
30
|
Abstract
In patients with diabetes, nerve injury is a common complication that leads to chronic pain, numbness and substantial loss of quality of life. Good glycemic control can decrease the incidence of diabetic neuropathy, but more than half of all patients with diabetes still develop this complication. There is no approved treatment to prevent or halt diabetic neuropathy, and only symptomatic pain therapies, with variable efficacy, are available. New insights into the mechanisms leading to the development of diabetic neuropathy continue to point to systemic and cellular imbalances in metabolites of glucose and lipids. In the PNS, sensory neurons, Schwann cells and the microvascular endothelium are vulnerable to oxidative and inflammatory stress in the presence of these altered metabolic substrates. This Review discusses the emerging cellular mechanisms that are activated in the diabetic milieu of hyperglycemia, dyslipidemia and impaired insulin signaling. We highlight the pathways to cellular injury, thereby identifying promising therapeutic targets, including mitochondrial function and inflammation.
Collapse
|
31
|
Abstract
It has long been recognized that cardiac autonomic neuropathy increases morbidity and mortality in diabetes and may have greater predictive power than traditional risk factors for cardiovascular events. Significant morbidity and mortality can now be attributable to autonomic imbalance between the sympathetic and parasympathetic nervous system regulation of cardiovascular function. New and emerging syndromes include orthostatic tachycardia, orthostatic bradycardia and an inability to use heart rate as a guide to exercise intensity because of the resting tachycardia. Recent studies have shown that autonomic imbalance may be a predictor of risk of sudden death with intensification of glycaemic control. This review examines an association of autonomic dysregulation and the role of inflammatory cytokines and adipocytokines that promote cardiovascular risk. In addition, conditions of autonomic imbalance associated with cardiovascular risk are discussed. Potential treatment for restoration of autonomic balance is outlined.
Collapse
Affiliation(s)
- A I Vinik
- Eastern Virginia Medical School, Strelitz Diabetes Research Center and Neuroendocrine Unit, 855 W Brambleton Avenue, Norfolk, VA 23510, USA.
| | | | | |
Collapse
|
32
|
Yang H, Lee SE, Ryu DS, Park CS, Jin YH, Park YS. Expression profile analysis of human umbilical vein endothelial cells treated with salvianolic acid B from Salvia miltiorrhiza. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5108-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Obrosova IG, Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Nadler JL, Schmidt RE. Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1436-47. [PMID: 20724598 DOI: 10.2353/ajpath.2010.100178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Up-regulation of 12/15-lipoxygenase, which converts arachidonic acid to 12(S)- and 15(S)-hydroxyeicosatetraenoic acids, causes impaired cell signaling, oxidative-nitrosative stress, and inflammation. This study evaluated the role for 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Control and streptozotocin-diabetic wild-type and 12/15-lipoxygenase-deficient mice were maintained for 14 to 16 weeks. 12/15-lipoxygenase gene deficiency did not affect weight gain or blood glucose concentrations. Diabetic wild-type mice displayed increased sciatic nerve 12/15-lipoxygenase and 12(S)-hydroxyeicosatetraenoic acid levels. 12/15-lipoxygenase deficiency prevented or alleviated diabetes-induced thermal hypoalgesia, tactile allodynia, motor and sensory nerve conduction velocity deficits, and reduction in tibial nerve myelinated fiber diameter, but not intraepidermal nerve fiber loss. The frequencies of superior mesenteric-celiac ganglion neuritic dystrophy, the hallmark of diabetic autonomic neuropathy in mouse prevertebral sympathetic ganglia, were increased 14.8-fold and 17.2-fold in diabetic wild-type and 12/15-lipoxygenase-deficient mice, respectively. In addition, both diabetic groups displayed small (<1%) numbers of degenerating sympathetic neurons. In conclusion, whereas 12/15-lipoxygenase up-regulation provides an important contribution to functional changes characteristic for both large and small fiber peripheral diabetic neuropathies and axonal atrophy of large myelinated fibers, its role in small sensory nerve fiber degeneration and neuritic dystrophy and neuronal degeneration characteristic for diabetic autonomic neuropathy is minor. This should be considered in the selection of endpoints for future clinical trials of 12/15-lipoxygenase inhibitors.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wright AP, Öhman MK, Hayasaki T, Luo W, Russo HM, Guo C, Eitzman DT. Atherosclerosis and leukocyte-endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice. Atherosclerosis 2010; 212:414-7. [PMID: 20619838 DOI: 10.1016/j.atherosclerosis.2010.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/19/2010] [Accepted: 06/09/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the effect of myocardial infarction (MI) on progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. METHODS AND RESULTS MI was induced following left anterior descending coronary artery (LAD) ligation in wild-type (WT) (n=9) and ApoE-/- (n=25) mice. Compared to sham-operated animals, MI mice demonstrated increased intravascular leukocyte rolling and firm adhesion by intravital microscopy, reflecting enhanced systemic leukocyte-endothelial interactions. To determine if MI was associated with accelerated atherogenesis, LAD ligation was performed in ApoE-/- mice. Six weeks following surgery, atherosclerosis was quantitated throughout the arterial tree by microdissection and Oil-Red-O staining. There was 1.6-fold greater atherosclerotic burden present in ApoE-/- MI mice compared to sham-operated mice. CONCLUSIONS Acute MI accelerates atherogenesis in mice. These results may be related to the increased risk of recurrent ischemic coronary events following MI in humans.
Collapse
Affiliation(s)
- Andrew P Wright
- University of Michigan, Department of Internal Medicine, Cardiovascular Research Center, Ann Arbor, MI 48109-0644, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen F, Kan H, Hobbs G, Finkel MS. p38 MAP kinase inhibitor reverses stress-induced myocardial dysfunction in vivo. J Appl Physiol (1985) 2009; 106:1132-41. [PMID: 19213930 DOI: 10.1152/japplphysiol.90542.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent clinical reports strongly support the intriguing possibility that emotional stress alone is sufficient to cause reversible myocardial dysfunction in patients. We previously reported that a combination of prenatal stress followed by restraint stress (PS+R) results in echocardiographic evidence of myocardial dysfunction in anesthetized rats compared with control rats subjected to the same restraint stress (Control+R). We now report results of our catheter-based hemodynamic studies in both anesthetized and freely ambulatory awake rats, comparing PS+R vs. Control+R. Systolic function [positive rate of change in left ventricular pressure over time (+dP/dt)] was significantly depressed (P < 0.01) in PS+R vs. Control+R both under anesthesia (6,287 +/- 252 vs. 7,837 +/- 453 mmHg/s) and awake (10,438 +/- 741 vs. 12,111 +/- 652 mmHg/s). Diastolic function (-dP/dt) was also significantly depressed (P < 0.05) in PS+R vs. Control+R both under anesthesia (-5,686 +/- 340 vs. -7,058 +/- 458 mmHg/s) and awake (-8,287 +/- 444 vs. 10,440 +/- 364 mmHg/s). PS+R also demonstrated a significantly attenuated (P < 0.05) hemodynamic response to increasing doses of the beta-adrenergic agonist isoproterenol. Intraperitoneal injection of the p38 MAP kinase inhibitor SB-203580 reversed the baseline reduction in +dP/dt and -dP/dt as well as the blunted isoproterenol response. Intraperitoneal injection of SB-203580 also reversed p38 MAP kinase and troponin I phosphorylation in cardiac myocytes isolated from PS+R. Thus the combination of prenatal stress followed by restraint stress results in reversible depression in both systolic and diastolic function as well as defective beta-adrenergic receptor signaling. Future studies in this animal model may provide insights into the basic mechanisms contributing to reversible myocardial dysfunction in patients with ischemic and nonischemic cardiomyopathies.
Collapse
Affiliation(s)
- Fangping Chen
- Department of Medicine, West Virginia University, Morgantown, WV 26506-9157, USA
| | | | | | | |
Collapse
|