1
|
Wölkart G, Gissing S, Stessel H, Fassett EK, Klösch B, Greene RW, Mayer B, Fassett JT. An adenosinergic positive feedback loop extends pharmacological cardioprotection duration. Br J Pharmacol 2024; 181:4920-4936. [PMID: 39256947 DOI: 10.1111/bph.17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Adenosine receptor activation induces delayed, sustained cardioprotection against ischaemia-reperfusion (IR) injury (24-72 h), but the mechanisms underlying extended cardioprotection duration remain unresolved. We hypothesized that a positive feedback loop involving adenosine receptor-induced proteasomal degradation of adenosine kinase (ADK) and decreased myocardial adenosine metabolism extends the duration of cardioprotection. EXPERIMENTAL APPROACH Mice were administered an ADK inhibitor, ABT-702, to induce endogenous adenosine signalling. Cardiac ADK protein and mRNA levels were analysed 24-120 h later. Theophylline or bortezomib was administered 24 h after ABT-702 to examine the late roles of adenosine receptors or proteasomal activity, respectively, in ADK expression and cardioprotection at 72 h. Coronary flow and IR tolerance were analysed by Langendorff technique. The potential for continuous adenosinergic cardioprotection was examined using heterozygous, cardiac-specific ADK KO (cADK+/-) mice. Cardiac ADK expression was also examined after A1 or A3 receptor agonist, phenylephrine, lipopolysaccharide or sildenafil administration. KEY RESULTS ABT-702 treatment decreased ADK protein content and provided cardioprotection from 24 to 72 h. ADK mRNA upregulation restored ADK protein after 96-120 h. Adenosine receptor or proteasome inhibition at 24 h reversed ABT-702-induced ADK protein deficit and cardioprotection at 72 h. cADK+/- hearts exhibited continuous cardioprotection. Diverse preconditioning agents also diminished cardiac ADK protein expression. CONCLUSION AND IMPLICATIONS A positive feedback loop driven by adenosine receptor-induced ADK degradation and renewed adenosine signalling extends the duration of cardioprotection by ABT-702 and possibly other preconditioning agents. The therapeutic potential of continuous adenosinergic cardioprotection is demonstrated in cADK+/- hearts.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Simon Gissing
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Burkhard Klösch
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, University of Graz, Graz, Austria
| | - Robert W Greene
- Department of Psychiatry and Neuroscience, Peter O'Donnell Brain Institute, UTSW Medical Center, Dallas, Texas, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - John T Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Campos-Martins A, Bragança B, Correia-de-Sá P, Fontes-Sousa AP. Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Front Pharmacol 2021; 12:724320. [PMID: 34489711 PMCID: PMC8417789 DOI: 10.3389/fphar.2021.724320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) roughly represents half of the cardiac failure events in developed countries. The proposed 'systemic microvascular paradigm' has been used to explain HFpHF presentation heterogeneity. The lack of effective treatments with few evidence-based therapeutic recommendations makes HFpEF one of the greatest unmet clinical necessities worldwide. The endogenous levels of the purine nucleoside, adenosine, increase significantly following cardiovascular events. Adenosine exerts cardioprotective, neuromodulatory, and immunosuppressive effects by activating plasma membrane-bound P1 receptors that are widely expressed in the cardiovascular system. Its proven benefits have been demonstrated in preclinical animal tests. Here, we provide a comprehensive and up-to-date critical review about the main therapeutic advantages of tuning adenosine signalling pathways in HFpEF, without discounting their side effects and how these can be seized.
Collapse
Affiliation(s)
- Alexandrina Campos-Martins
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Department of Cardiology, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
3
|
Wang W, Wang B, Sun S, Cao S, Zhai X, Zhang C, Zhang Q, Yuan Q, Sun Y, Xue M, Ma J, Xu F, Wei S, Chen Y. Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med 2021; 25:2931-2943. [PMID: 33523568 PMCID: PMC7957171 DOI: 10.1111/jcmm.16328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Increased adenosine helps limit infarct size in ischaemia/reperfusion‐injured hearts. In cardiomyocytes, 90% of adenosine is catalysed by adenosine kinase (ADK) and ADK inhibition leads to higher concentrations of both intracellular adenosine and extracellular adenosine. However, the role of ADK inhibition in myocardial ischaemia/reperfusion (I/R) injury remains less obvious. We explored the role of ADK inhibition in myocardial I/R injury using mouse left anterior ligation model. To inhibit ADK, the inhibitor ABT‐702 was intraperitoneally injected or AAV9 (adeno‐associated virus)—ADK—shRNA was introduced via tail vein injection. H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to elucidate the underlying mechanisms. ADK was transiently increased after myocardial I/R injury. Pharmacological or genetic ADK inhibition reduced infarct size, improved cardiac function and prevented cell apoptosis and necroptosis in I/R‐injured mouse hearts. In vitro, ADK inhibition also prevented cell apoptosis and cell necroptosis in H/R‐treated H9c2 cells. Cleaved caspase‐9, cleaved caspase‐8, cleaved caspase‐3, MLKL and the phosphorylation of MLKL and CaMKII were decreased by ADK inhibition in reperfusion‐injured cardiomyocytes. X‐linked inhibitor of apoptosis protein (XIAP), which is phosphorylated and stabilized via the adenosine receptors A2B and A1/Akt pathways, should play a central role in the effects of ADK inhibition on cell apoptosis and necroptosis. These data suggest that ADK plays an important role in myocardial I/R injury by regulating cell apoptosis and necroptosis.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Ma
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Mayer B, Bache RJ, Chen Y. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol 2019; 130:49-58. [PMID: 30910669 PMCID: PMC6555768 DOI: 10.1016/j.yjmcc.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Adenosine exerts numerous protective actions in the heart, including attenuation of cardiac hypertrophy. Adenosine kinase (ADK) converts adenosine to adenosine monophosphate (AMP) and is the major route of myocardial adenosine metabolism, however, the impact of ADK activity on cardiac structure and function is unknown. To examine the role of ADK in cardiac homeostasis and adaptation to stress, conditional cardiomyocyte specific ADK knockout mice (cADK-/-) were produced using the MerCreMer-lox-P system. Within 4 weeks of ADK disruption, cADK-/- mice developed spontaneous hypertrophy and increased β-Myosin Heavy Chain expression without observable LV dysfunction. In response to 6 weeks moderate left ventricular pressure overload (transverse aortic constriction;TAC), wild type mice (WT) exhibited ~60% increase in ventricular ADK expression and developed LV hypertrophy with preserved LV function. In contrast, cADK-/- mice exhibited significantly greater LV hypertrophy and cardiac stress marker expression (atrial natrurietic peptide and β-Myosin Heavy Chain), LV dilation, reduced LV ejection fraction and increased pulmonary congestion. ADK disruption did not decrease protein methylation, inhibit AMPK, or worsen fibrosis, but was associated with persistently elevated mTORC1 and p44/42 ERK MAP kinase signaling and a striking increase in microtubule (MT) stabilization/detyrosination. In neonatal cardiomyocytes exposed to hypertrophic stress, 2-chloroadenosine (CADO) or adenosine treatment suppressed MT detyrosination, which was reversed by ADK inhibition with iodotubercidin or ABT-702. Conversely, adenoviral over-expression of ADK augmented CADO destabilization of MTs and potentiated CADO attenuation of cardiomyocyte hypertrophy. Together, these findings indicate a novel adenosine receptor-independent role for ADK-mediated adenosine metabolism in cardiomyocyte microtubule dynamics and protection against maladaptive hypertrophy.
Collapse
Affiliation(s)
- John Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Ping Zhang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Wang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Robert J Bache
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Yingjie Chen
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| |
Collapse
|
5
|
Camici M, Allegrini S, Tozzi MG. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase. FEBS J 2018; 285:3337-3352. [PMID: 29775996 DOI: 10.1111/febs.14508] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP : ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed.
Collapse
|
6
|
Xu Y, Wang Y, Yan S, Yang Q, Zhou Y, Zeng X, Liu Z, An X, Toque HA, Dong Z, Jiang X, Fulton DJ, Weintraub NL, Li Q, Bagi Z, Hong M, Boison D, Wu C, Huo Y. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat Commun 2017; 8:943. [PMID: 29038540 PMCID: PMC5643397 DOI: 10.1038/s41467-017-00986-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/10/2017] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases.The molecular mechanisms underlying vascular inflammation are unclear. Here the authors show that pro-inflammatory stimuli lead to endothelial inflammation by increasing adenosine kinase expression, and that its knockdown in endothelial cells inhibits atherosclerosis and cerebral ischemic injury in mice.
Collapse
Affiliation(s)
- Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Siyuan Yan
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yaqi Zhou
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianqiu Zeng
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaofei An
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qinkai Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zsolt Bagi
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mei Hong
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, 97232, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77840, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Kiguti LRA, Borges CS, Mueller A, Silva KP, Polo CM, Rosa JL, Silva PV, Missassi G, Valencise L, Kempinas WG, Pupo AS. Gender-specific impairment of in vitro sinoatrial node chronotropic responses and of myocardial ischemia tolerance in rats exposed prenatally to betamethasone. Toxicol Appl Pharmacol 2017; 334:66-74. [PMID: 28887130 DOI: 10.1016/j.taap.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
Excessive fetal glucocorticoid exposure has been linked to increased susceptibility to hypertension and cardiac diseases in the adult life, a process called fetal programming. The cardiac contribution to the hypertensive phenotype of glucocorticoid-programmed progeny is less known, therefore, we investigated in vitro cardiac functional parameters from rats exposed in utero to betamethasone. Pregnant Wistar rats received vehicle (VEH) or betamethasone (BET, 0.1mg/kg, i.m.) at gestational days 12, 13, 18 and 19. Male and female offspring were killed at post-natal day 30 and the right atrium (RA) was isolated to in vitro evaluation of drug-induced chronotropic responses. Additionally, whole hearts were retrograde-perfused in a Langendorff apparatus and infarct size in response to in vitro ischemia/reperfusion (I/R) protocol was evaluated. Male and female progeny from BET-exposed pregnant rats had reduced birth weight, a hallmark of fetal programming. Male BET-progeny had increased basal RA rate, impaired chronotropic responses to noradrenaline and adenosine, and increased myocardial damage to I/R. Though a 12-fold reduction in the negative chronotropic responses to adenosine, the effects of non-metabolisable adenosine receptor agonists 5'-(N-ethylcarboxamido)adenosine or 2-Chloro-adenosine were not different between VEH- and BET-exposed male rats. BET-exposed female offspring presented no cardiac dysfunction. Prenatal BET exposure engenders male-specific impairment of sinoatrial node function and on myocardial ischemia tolerance resulting, at least in part, from an increased adenosine metabolism in the heart. In light of the importance of adenosine in the cardiac physiology our results suggest a link between reduced adenosinergic signaling and the cardiac dysfunctions observed in glucocorticoid-induced fetal programming.
Collapse
Affiliation(s)
- L R A Kiguti
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil.
| | - C S Borges
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A Mueller
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil; Instituto de Ciências da Saúde, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - K P Silva
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - C M Polo
- Department of Physiology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - J L Rosa
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - P V Silva
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - G Missassi
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - L Valencise
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - W G Kempinas
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A S Pupo
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
8
|
Xu Y, Wang Y, Yan S, Zhou Y, Yang Q, Pan Y, Zeng X, An X, Liu Z, Wang L, Xu J, Cao Y, Fulton DJ, Weintraub NL, Bagi Z, Hoda MN, Wang X, Li Q, Hong M, Jiang X, Boison D, Weber C, Wu C, Huo Y. Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Mol Med 2017; 9:1263-1278. [PMID: 28751580 PMCID: PMC5582416 DOI: 10.15252/emmm.201607066] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleoside adenosine is a potent regulator of vascular homeostasis, but it remains unclear how expression or function of the adenosine-metabolizing enzyme adenosine kinase (ADK) and the intracellular adenosine levels influence angiogenesis. We show here that hypoxia lowered the expression of ADK and increased the levels of intracellular adenosine in human endothelial cells. Knockdown (KD) of ADK elevated intracellular adenosine, promoted proliferation, migration, and angiogenic sprouting in human endothelial cells. Additionally, mice deficient in endothelial ADK displayed increased angiogenesis as evidenced by the rapid development of the retinal and hindbrain vasculature, increased healing of skin wounds, and prompt recovery of arterial blood flow in the ischemic hindlimb. Mechanistically, hypomethylation of the promoters of a series of pro-angiogenic genes, especially for VEGFR2 in ADK KD cells, was demonstrated by the Infinium methylation assay. Methylation-specific PCR, bisulfite sequencing, and methylated DNA immunoprecipitation further confirmed hypomethylation in the promoter region of VEGFR2 in ADK-deficient endothelial cells. Accordingly, loss or inactivation of ADK increased VEGFR2 expression and signaling in endothelial cells. Based on these findings, we propose that ADK downregulation-induced elevation of intracellular adenosine levels in endothelial cells in the setting of hypoxia is one of the crucial intrinsic mechanisms that promote angiogenesis.
Collapse
Affiliation(s)
- Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Yan
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Yaqi Zhou
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yue Pan
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Xianqiu Zeng
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiaofei An
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jiean Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yapeng Cao
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Md Nasrul Hoda
- Departments of Medical Laboratory, Imaging & Radiologic Sciences, and Neurology, Augusta University, Augusta, GA, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Qinkai Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mei Hong
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Savi L, Brindisi M, Alfano G, Butini S, La Pietra V, Novellino E, Marinelli L, Lossani A, Focher F, Cavella C, Campiani G, Gemma S. Site-directed Mutagenesis of Key Residues Unveiled a Novel Allosteric Site on Human Adenosine Kinase for Pyrrolobenzoxa(thia)zepinone Non-Nucleoside Inhibitors. Chem Biol Drug Des 2015; 87:112-20. [PMID: 26242695 DOI: 10.1111/cbdd.12630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Abstract
Most nucleoside kinases, besides the catalytic domain, feature an allosteric domain which modulates their activity. Generally, non-substrate analogs, interacting with allosteric sites, represent a major opportunity for developing more selective and safer therapeutics. We recently developed a series of non-nucleoside non-competitive inhibitors of human adenosine kinase (hAK), based on a pyrrolobenzoxa(thia)zepinone scaffold. Based on computational analysis, we hypothesized the existence of a novel allosteric site on hAK, topographically distinct from the catalytic site. In this study, we have adopted a multidisciplinary approach including molecular modeling, biochemical studies, and site-directed mutagenesis to validate our hypothesis. Based on a three-dimensional model of interaction between hAK and our molecules, we designed, cloned, and expressed specific, single and double point mutants of hAK (Q74A, Q78A, H107A, K341A, F338A, and Q74A-F338A). Kinetic characterization of recombinant enzymes indicated that these mutations did not affect enzyme functioning; conversely, mutated enzymes are endowed of reduced susceptibility to our non-nucleoside inhibitors, while maintaining comparable affinity for nucleoside inhibitors to the wild-type enzyme. This study represents the first characterization and validation of a novel allosteric site in hAK and may pave the way to the development of novel selective and potent non-nucleoside inhibitors of hAK endowed with therapeutic potential.
Collapse
Affiliation(s)
- Lida Savi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Margherita Brindisi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gloria Alfano
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Valeria La Pietra
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,Dipartimento di Farmacia, Università di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,Dipartimento di Farmacia, Università di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,Dipartimento di Farmacia, Università di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Andrea Lossani
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Federico Focher
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Caterina Cavella
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
10
|
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11:1-46. [PMID: 25527177 PMCID: PMC4336308 DOI: 10.1007/s11302-014-9436-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
11
|
Xu X, Lu Z, Fassett J, Zhang P, Hu X, Liu X, Kwak D, Li J, Zhu G, Tao Y, Hou M, Wang H, Guo H, Viollet B, McFalls EO, Bache RJ, Chen Y. Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2. Hypertension 2014; 63:723-8. [PMID: 24420540 DOI: 10.1161/hypertensionaha.113.02619] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK)-α2 protects the heart against pressure overload-induced heart failure in mice. Although metformin is a known activator of AMPK, it is unclear whether its cardioprotection acts independently of an AMPKα2-dependent pathway. Because the role of AMPKα1 stimulation on remodeling of failing hearts is poorly defined, we first studied the effects of disruption of both the AMPKα1 and AMPKα2 genes on the response to transverse aortic constriction-induced left ventricular (LV) hypertrophy and dysfunction in mice. AMPKα2 gene knockout significantly exacerbated the degree of transverse aortic constriction-induced LV hypertrophy and dysfunction, whereas AMPKα1 gene knockout had no effect on the degree of transverse aortic constriction-induced LV hypertrophy and dysfunction. Administration of metformin was equally effective in attenuating transverse aortic constriction-induced LV remodeling in both wild-type and AMPKα2 knockout mice, as evidenced by reduced LV and lung weights, a preserved LV ejection fraction, and reduced phosphorylation of mammalian target of rapamycin (p-mTOR(Ser2448)) and its downstream target p-p70S6K(Thr389). These data support the notion that activation of AMPKα1 plays a negligible role in protecting the heart against the adverse effects of chronic pressure overload, and that metformin protects against adverse remodeling through a pathway that seems independent of AMPKα2.
Collapse
Affiliation(s)
- Xin Xu
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Mayo Mail Cod 508, 420 Delaware St SE, Minneapolis, MN 55455.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Boison D. Role of adenosine in status epilepticus: a potential new target? Epilepsia 2013; 54 Suppl 6:20-2. [PMID: 24001064 DOI: 10.1111/epi.12268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homeostatic bioenergetic network regulator adenosine is an endogenous anticonvulsant of the brain that plays critical roles in seizure termination and postictal refractoriness. Adenosine homeostasis in the adult brain is largely under the control of metabolic clearance through adenosine kinase (ADK), expressed predominantly in astrocytes. The role of adenosine in status epilepticus (SE) appears to be a double-edged sword. We demonstrated that the severity of an SE clearly depends on the expression levels of ADK. A genetic knockdown of ADK prevented SE in a mouse model, whereas transgenic overexpression of the enzyme aggravated the SE. Therefore, ADK inhibition or adenosine augmentation might be a therapeutic strategy to terminate or attenuate an SE. On the other hand, SE triggers a surge of endogenous adenosine, which may initiate secondary events leading to epileptogenesis. Two new findings point into this direction: (1) Elevated adenosine triggers changes in the epigenome; and (2) SE triggers transient changes in ADK expression, which have been linked to neurogenesis. Although the ADK/adenosine system is an attractive target for the attenuation of an SE, the same system may also trigger downstream events related to epileptogenesis.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE 2nd Ave, Portland, OR 97232, U.S.A.
| |
Collapse
|
13
|
Bousquenaud M, Maskali F, Poussier S, Zangrando J, Marie PY, Boutley H, Fay R, Karcher G, Wagner DR, Devaux Y. Cardioprotective effects of adenosine within the border and remote areas of myocardial infarction. EJNMMI Res 2013; 3:65. [PMID: 24028474 PMCID: PMC3847228 DOI: 10.1186/2191-219x-3-65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022] Open
Abstract
Background Adenosine may have beneficial effects on left ventricular function after myocardial infarction (MI), but the magnitude of this effect on remote and MI areas is controversial. We assessed the long-term effects of adenosine after MI using electrocardiogram-triggered 18 F-fluorodeoxyglucose positron emission tomography. Methods Wistar rats were subjected to coronary ligation and randomized into three groups treated daily for 2 months by NaCl (control; n = 7), 2-chloroadenosine (CADO; n = 8) or CADO with 8-sulfophenyltheophilline, an antagonist of adenosine receptors (8-SPT; n = 8). Results After 2 months, control rats exhibited left ventricular remodelling, with increased end-diastolic volume and decreased ejection fraction. Left ventricular remodelling was not significantly inhibited by CADO. Segmental contractility, as assessed by the change in myocardial thickening after 2 months, was improved in CADO rats compared to control rats (+1.6% ± 0.8% vs. −2.3% ± 0.8%, p < 0.001). This improvement was significant in border (+5.6% ± 0.8% vs. +1.5% ± 0.8%, p < 0.001) and remote (−4.0% ± 1.0% vs. −10.4% ± 1.3%, p < 0.001) segments, but absent in MI segments. Histological analyses revealed that CADO reduced fibrosis, cardiomyocyte hypertrophy and apoptosis. Protective effects of CADO were blunted by 8-SPT. Conclusion Long-term administration of adenosine protects the left ventricle from contractile dysfunction following MI.
Collapse
Affiliation(s)
- Mélanie Bousquenaud
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé, 84 Val Fleuri, Luxembourg L1526, Luxembourg.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prévilon M, Le Gall M, Chafey P, Federeci C, Pezet M, Clary G, Broussard C, François G, Mercadier JJ, Rouet-Benzineb P. Comparative differential proteomic profiles of nonfailing and failing hearts after in vivo thoracic aortic constriction in mice overexpressing FKBP12.6. Physiol Rep 2013; 1:e00039. [PMID: 24303125 PMCID: PMC3834996 DOI: 10.1002/phy2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pressure overload (PO) induces pathological left ventricular hypertrophy (LVH) leading to congestive heart failure (HF). Overexpression of FKBP12.6 (FK506-binding protein [K]) in mice should prevent Ca2+-leak during diastole and may improve overall cardiac function. In order to decipher molecular mechanisms involved in thoracic aortic constriction (TAC)-induced cardiac remodeling and the influence of gender and genotype, we performed a proteomic analysis using two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and bioinformatics techniques to identify alterations in characteristic biological networks. Wild-type (W) and K mice of both genders underwent TAC. Thirty days post-TAC, the altered cardiac remodeling was accompanied with systolic and diastolic dysfunction in all experimental groups. A gender difference in inflammatory protein expression (fibrinogen, α-1-antitrypsin isoforms) and in calreticulin occurred (males > females). Detoxification enzymes and cytoskeletal proteins were noticeably increased in K mice. Both non- and congestive failing mouse heart exhibited down- and upregulation of proteins related to mitochondrial function and purine metabolism, respectively. HF was characterized by a decrease in enzymes related to iron homeostasis, and altered mitochondrial protein expression related to fatty acid metabolism, glycolysis, and redox balance. Moreover, two distinct differential protein profiles characterized TAC-induced pathological LVH and congestive HF in all TAC mice. FKBP12.6 overexpression did not influence TAC-induced deleterious effects. Huntingtin was revealed as a potential mediator for HF. A broad dysregulation of signaling proteins associated with congestive HF suggested that different sets of proteins could be selected as useful biomarkers for HF progression and might predict outcome in PO-induced pathological LVH.
Collapse
|
15
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
16
|
Zhang X, Jia D, Liu H, Zhu N, Zhang W, Feng J, Yin J, Hao B, Cui D, Deng Y, Xie D, He L, Li B. Identification of 5-Iodotubercidin as a genotoxic drug with anti-cancer potential. PLoS One 2013; 8:e62527. [PMID: 23667485 PMCID: PMC3646850 DOI: 10.1371/journal.pone.0062527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Tumor suppressor p53, which is activated by various stress and oncogene activation, is a target for anti-cancer drug development. In this study, by screening panels of protein kinase inhibitors and protein phosphatase inhibitors, we identified 5-Iodotubercidin as a strong p53 activator. 5-Iodotubercidin is purine derivative and is used as an inhibitor for various kinases including adenosine kinase. We found that 5-Iodotubercidin could cause DNA damage, verified by induction of DNA breaks and nuclear foci positive for γH2AX and TopBP1, activation of Atm and Chk2, and S15 phosphorylation and up-regulation of p53. As such, 5-Iodotubercidin induces G2 cell cycle arrest in a p53-dependent manner. Itu also induces cell death in p53-dependent and -independent manners. DNA breaks were likely generated by incorporation of 5-Iodotubercidin metabolite into DNA. Moreover, 5-Iodotubercidin showed anti-tumor activity as it could reduce the tumor size in carcinoma xenograft mouse models in p53-dependent and -independent manners. These findings reveal 5-Iodotubercidin as a novel genotoxic drug that has chemotherapeutic potential.
Collapse
Affiliation(s)
- Xin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Deyong Jia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Feng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Yin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Hao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daxiang Cui
- Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuezhen Deng
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Xie
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|