1
|
Huang T, Su C, Su Q, Nie Y, Xiao Z, Tang Y, Wang J, Luo X, Tang Y. Identification and validation of three diagnostic autophagy-related genes associated with advanced plaques and immune cell infiltration in carotid atherosclerosis based on integrated bioinformatics analyses. PeerJ 2024; 12:e18543. [PMID: 39588003 PMCID: PMC11587871 DOI: 10.7717/peerj.18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Autophagy plays a key role in the development of carotid atherosclerosis (CAS). This study aimed to identify key autophagy-related genes (ATGs) related with CAS using bioinformatics analysis, in vivo AS mouse model, and in vitro experiments. Methods The GSE100927 and GSE28829 datasets were downloaded from the Gene Expression Omnibus (GEO) database. An integrated bioinformatics analyses of differentially expressed ATGs (DE-ATGs) was conducted. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the biological processes and pathways associated with DE-ATGs. Protein-protein interaction (PPI) network was constructed with the DE-ATGs to identify the key CAS-related DE-ATGs. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of the key CAS-related DE-ATGs. CIBERSORT analysis was performed to determine the infiltration status of 22 immune cell types and their correlation with the expression levels of the key CAS-related DE-ATGs. Hematoxylin and eosin (HE) staining was used to estimate the plaque histology in the AS mouse model. Western blotting, quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) were performed to validate the protein and mRNA expression levels of the key CAS-related DE-ATGs in the in vitro and in vivo models. Results We compared transcriptome profiles of 12 early CAS plaques and 29 advanced CAS plaques in the GSE100927 dataset and identified 41 DE-ATGs (33 up-regulated and eight down-regulated). Functional enrichment analysis showed that the DE-ATGs were closely related with apoptosis, autophagy, and immune activation. ROC curve analysis showed that the area under the curve (AUC) values for the three key CAS-related DE-ATGs (CCL2, LAMP2, and CTSB) were 0.707, 0.977, and 0.951, respectively. CIBERSORT analyses showed close association between the three key CAS-related DE-ATGs and the infiltration of immune cell types in the plaques. Finally, the western blot, qRT-PCR, and IHC staining confirmed that CCL2, LAMP2, and CTSB were highly expressed in the plaques of the AS model mice or ox-LDL-treated human umbilical vein endothelial cells (HUVECs) and human aorta vascular smooth muscle cells (HAoSMCs). Conclusion We identified and validated three key CAS-associated ATGs, namely, CCL2, LAMP2, and CTSB with high diagnostic value. These three key CAS-associated ATGs are promising diagnostic markers and therapeutic targets for patients with CAS.
Collapse
Affiliation(s)
- Tiegen Huang
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Chen Su
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Quanli Su
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Yali Nie
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Zhenni Xiao
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Yao Tang
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Jiahao Wang
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Xiaotian Luo
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
| | - Yixin Tang
- Hengyang Medical School, University of South China, The First Affiliated Hospital, Department of Cardiology, Hengyang, Hunan, China
- University of South China, Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, Hengyang, Hunan, China
| |
Collapse
|
2
|
Yang Y, Li B. Effect of Oral Administration of Collagen Peptide OG-5 on Advanced Atherosclerosis Development in ApoE -/- Mice. Nutrients 2024; 16:3752. [PMID: 39519585 PMCID: PMC11547735 DOI: 10.3390/nu16213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a chronic inflammatory disease of the arterial wall, which involves multiple cell types. Peptide OG-5 is identified from collagen hydrolysates derived from Salmo salar and exhibits an inhibitory effect on early atherosclerosis. The primary objective of this study was to investigate the impact of OG-5 on advanced atherosclerotic lesions as well as its stability during absorption. METHODS In this study, the ApoE-/- mice were employed to establish advanced atherosclerosis model to investigate the treatment effect of peptide OG-5. RESULTS The results showed that oral administration of OG-5 at a dosage of 150 mg/kg bw resulted in a 30% reduction in the aortic plaque formation area in ApoE-/- mice with few bleeding risks. Specifically, intervention with a low dose of OG-5 (50 mg/kg bw), initiated in the early stage of atherosclerosis, continues to provide benefits into the middle and late stages without bleeding risks. Furthermore, treatment of OG-5 increased expression levels of contractile phenotype markers and reduced the accumulation of lipoprotein in VSMCs induced by ox-LDL. Peptide OG-5 could ensure transport across Caco-2 cell monolayers, exhibiting a Papp value of 1.80 × 10-5 cm/s, and exhibited a robust stability in plasma with remaining content >70% after 8 h incubation. In vivo studies revealed that OG-5 reached maximum concentration in blood after 120 min. CONCLUSION The present results demonstrate the potential efficacy of peptide OG-5 as a promising agent for intervention in anti-atherogenesis strategies.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
3
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Parker WAE, Storey RF. The role of platelet P2Y 12 receptors in inflammation. Br J Pharmacol 2024; 181:515-531. [PMID: 37771103 DOI: 10.1111/bph.16256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet-leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- William A E Parker
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robert F Storey
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
5
|
Lofrumento F, Irrera N, Licordari R, Perfetti S, Nasso E, Liotta P, Isgrò G, Garcia-Ruiz V, Squadrito F, Carerj S, Di Bella G, Micari A, Costa F. Off-Target Effects of P2Y12 Receptor Inhibitors: Focus on Early Myocardial Fibrosis Modulation. Int J Mol Sci 2023; 24:17546. [PMID: 38139379 PMCID: PMC10743395 DOI: 10.3390/ijms242417546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have demonstrated that, beyond their antithrombotic effects, P2Y12 receptor inhibitors may provide additional off-target effects through different mechanisms. These effects range from the preservation of endothelial barrier function to the modulation of inflammation or stabilization of atherosclerotic plaques, with an impact on different cell types, including endothelial and immune cells. Many P2Y12 inhibitors have been developed, from ticlopidine, the first thienopyridine, to the more potent non-thienopyridine derivatives such as ticagrelor which may promote cardioprotective effects following myocardial infarction (MI) by inhibiting adenosine reuptake through sodium-independent equilibrative nucleoside transporter 1 (ENT1). Adenosine may affect different molecular pathways involved in cardiac fibrosis, such as the Wnt (wingless-type)/beta (β)-catenin signaling. An early pro-fibrotic response of the epicardium and activation of cardiac fibroblasts with the involvement of Wnt1 (wingless-type family member 1)/β-catenin, are critically required for preserving cardiac function after acute ischemic cardiac injury. This review discusses molecular signaling pathways involved in cardiac fibrosis post MI, focusing on the Wnt/β-catenin pathway, and the off-target effect of P2Y12 receptor inhibition. A potential role of ticagrelor was speculated in the early modulation of cardiac fibrosis, thanks to its off-target effect.
Collapse
Affiliation(s)
- Francesca Lofrumento
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Roberto Licordari
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Silvia Perfetti
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Enrica Nasso
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Paolo Liotta
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Giovanni Isgrò
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | | | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Antonio Micari
- BIOMORF Department, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (A.M.); (F.C.)
| | - Francesco Costa
- BIOMORF Department, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (A.M.); (F.C.)
| |
Collapse
|
6
|
Liu L, Gao J, Tang Y, Guo G, Gan H. Increased expression of the P2Y 12 receptor is involved in the failure of autogenous arteriovenous fistula caused by stenosis. Ren Fail 2023; 45:2278314. [PMID: 38532720 PMCID: PMC11073481 DOI: 10.1080/0886022x.2023.2278314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE This study investigated the role of the P2Y12 receptor in autogenous arteriovenous fistula (AVF) failure resulting from stenosis. METHODS Stenotic venous tissues and blood samples were obtained from patients with end-stage renal disease (ESRD) together with AVF stenosis, while venous tissues and blood samples were collected from patients with ESRD undergoing initial AVF surgery as controls. Immunohistochemistry and/or immunofluorescence techniques were utilized to assess the expression of P2Y12, transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein 1 (MCP-1), and CD68 in the venous tissues. The expression levels of P2Y12, TGFβ1, and MCP-1 were quantified using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Double and triple immunofluorescence staining was performed to precisely localize the cellular localization of P2Y12 expression. RESULTS Expression levels of P2Y12, TGFβ1, MCP-1, and CD68 were significantly higher in stenotic AVF venous tissues than in the control group tissues. Double and triple immunofluorescence staining of stenotic AVF venous tissues indicated that P2Y12 was predominantly expressed in α-SMA-positive vascular smooth muscle cells (VSMCs) and, to a lesser extent, in CD68-positive macrophages, with limited expression in CD31-positive endothelial cells. Moreover, a subset of macrophage-like VSMCs expressing P2Y12 were observed in both stenotic AVF venous tissues and control venous tissues. Additionally, a higher number of P2Y12+/TGF-β1+ double-positive cells were identified in stenotic AVF venous tissues than in the control group tissues. CONCLUSION Increased expression of P2Y12 in stenotic AVF venous tissues of patients with ESRD suggests its potential involvement in the pathogenesis of venous stenosis within AVFs.
Collapse
Affiliation(s)
- Lei Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Guangfeng Guo
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Ma C, Lu T, He Y, Guo D, Duan L, Jia R, Cai D, Gao T, Chen Z, Xue B, Li T, He Y. Comprehensive analysis of autophagy-related gene expression profiles identified five gene biomarkers associated with immune infiltration and advanced plaques in carotid atherosclerosis. Orphanet J Rare Dis 2023; 18:66. [PMID: 36959587 PMCID: PMC10037854 DOI: 10.1186/s13023-023-02660-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in the progression of carotid atherosclerosis (CAS). This study aimed to identify hub autophagy-related genes (ATGs) associated with CAS. METHODS GSE43292 and GSE28829 datasets of early and advanced CAS plaques were enrolled from the Gene Expression Omnibus (GEO) database. A comprehensive analysis of differentially expressed ATGs (DE-ATGs) was conducted. Functional enrichment assay was used to explore biological functions of DE-ATGs. The hub ATGs were identified by protein-protein interaction (PPI) network. Immunohistochemistry (IHC) and Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to validate hub ATGs at the protein level and mRNA level. Correlation analysis of hub ATGs with immune cells was also conducted. In addition, a competitive endogenous RNA (ceRNA) network was constructed, and diagnostic value of hub ATGs was evaluated. RESULTS A total of 19 DE-ATGs were identified in early and advanced CAS plaques. Functional enrichment analysis of DE-ATGs suggested that they were closely correlated to autophagy, apoptosis, and lipid regulation. Moreover, 5 hub ATGs, including TNFSF10, ITGA6, CTSD, CCL2, and CASP1, were identified and further verified by IHC. The area under the curve (AUC) values of the 5 hub ATGs were 0.818, 0.732, 0.792, 0.814, and 0.812, respectively. Competing endogenous RNA (ceRNA) networks targeting the hub ATGs were also constructed. In addition, the 5 hub ATGs were found to be closely associated with immune cell infiltration in CAS. CONCLUSION In this study, we identified 5 hub ATGs including CASP1, CCL2, CTSD, ITGA6 and TNFSF10, which could serve as candidate diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Yanyan He
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Dehua Guo
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Lin Duan
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Rufeng Jia
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Dongyang Cai
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Tao Gao
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Binghua Xue
- Department of Endocrinology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China.
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Yingkun He
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
8
|
Yokota S, Chosa N, Matsumoto S, Satoh K, Ishisaki A. Extracellular adenosine 5'-diphosphate promotes MCP-1/CCL2 expression via the P2Y 13 purinergic receptor/ERK signaling axis in temporomandibular joint-derived mouse fibroblast-like synoviocytes. Mol Biol Rep 2023; 50:1595-1602. [PMID: 36526849 PMCID: PMC9889505 DOI: 10.1007/s11033-022-08125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) causes cartilage degeneration, bone cavitation, and fibrosis of the TMJ. However, the mechanisms underlying the fibroblast-like synoviocyte (FLS)-mediated inflammatory activity in TMJ-OA remain unclear. METHODS AND RESULTS Reverse transcription-quantitative polymerase chain reaction analysis revealed that the P2Y1, P2Y12, and P2Y13 purinergic receptor agonist adenosine 5'-diphosphate (ADP) significantly induces monocyte chemotactic protein 1 (MCP-1)/ C-C motif chemokine ligand 2 (CCL2) expression in the FLS1 synovial cell line. In contrast, the uracil nucleotide UTP, which is a P2Y2 and P2Y4 agonist, has no significant effect on MCP-1/CCL2 production in FLS1 cells. In addition, the P2Y13 antagonist MRS 2211 considerably decreases the expression of ADP-induced MCP-1/CCL2, whereas ADP stimulation enhances extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, it was found that the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor U0126 reduces ADP-induced MCP-1/CCL2 expression. CONCLUSION ADP enhances MCP-1/CCL2 expression in TMJ FLSs via P2Y13 receptors in an MEK/ERK-dependent manner, thus resulting in inflammatory cell infiltration in the TMJ. Collectively, the findings of this study contribute to a partial clarification of the signaling pathway underlying the development of inflammation in TMJ-OA and can help identify potential therapeutic targets for suppressing ADP-mediated purinergic signaling in this disease.
Collapse
Affiliation(s)
- Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan.
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 19-1 Uchimal, 020-8505, Morioka-shi, Iwate, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 19-1 Uchimal, 020-8505, Morioka-shi, Iwate, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan.
| |
Collapse
|
9
|
Yang Y, Liu H, Cui L, Liu Y, Fu L, Li B. A Collagen-Derived Oligopeptide from Salmo salar Collagen Hydrolysates Restrains Atherogenesis in ApoE -/- Mice via Targeting P 2 Y 12 Receptor. Mol Nutr Food Res 2022; 66:e2200166. [PMID: 35490399 DOI: 10.1002/mnfr.202200166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Collagen hydrolysates have been reported with a variety of biological activities. The previous study has separated and identified a series of Hyp-Gly containing antiplatelet peptides from collagen hydrolysates from Salmo salar. But the target and underlying mechanism in platelets remains unknown. METHODS AND RESULTS In this study, peptide OGEFG (OG-5) inhibits platelet aggregation especially induced by 2MeS-ADP and attenuates tail thrombosis formation by 30% in a dose-dependent manner, via apparent antagonism effects on P2 Y12 receptors to regulate Gβγi-PI3K-Akt signaling and Gαi-cAMP-VASP signaling is demonstrated. The molecular docking results also reveal a strong binding energy with the P2 Y12 receptor of peptide OG-5 (-10.70 kcal mol-1 ). In vitro study suggests that OG-5 inhibited the release of inflammatory cytokines in endothelial cells and macrophage cells, migration of vascular smooth muscle cell induced by ADP, which is highly released in ApoE-/- mice. Long-term administration of OG-5 significantly reduces atherosclerotic plaque formation without side effects in ApoE-/- mice, exhibiting a comparable effect with aspirin. CONCLUSION These results reveal that collagen hydrolysates with OG-containing peptides have potential to be developed as an effective diet supplement to prevent the occurrence of atherogenesis and thrombotic disease.
Collapse
Affiliation(s)
- Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hui Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liyuan Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yibo Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lulu Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
10
|
Hatakeyama S, Tojo A, Satonaka H, Yamada NO, Senda T, Ishimitsu T. Decreased Podocyte Vesicle Transcytosis and Albuminuria in APC C-Terminal Deficiency Mice with Puromycin-Induced Nephrotic Syndrome. Int J Mol Sci 2021; 22:ijms222413412. [PMID: 34948207 PMCID: PMC8708520 DOI: 10.3390/ijms222413412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
In minimal change nephrotic syndrome, podocyte vesicle transport is enhanced. Adenomatous polyposis coli (APC) anchors microtubules to cell membranes and plays an important role in vesicle transport. To clarify the role of APC in vesicle transport in podocytes, nephrotic syndrome was induced by puromycin amino nucleoside (PAN) injection in mice expressing APC1638T lacking the C-terminal of microtubule-binding site (APC1638T mouse); this was examined in renal tissue changes. The kidney size and glomerular area of APC1638T mice were reduced (p = 0.014); however, the number of podocytes was same between wild-type (WT) mice and APC1638T mice. The ultrastructure of podocyte foot process was normal by electron microscopy. When nephrotic syndrome was induced, the kidneys of WT+PAN mice became swollen with many hyaline casts, whereas these changes were inhibited in the kidneys of APC1638T+PAN mice. Electron microscopy showed foot process effacement in both groups; however, APC1638T+PAN mice had fewer vesicles in the basal area of podocytes than WT+PAN mice. Cytoplasmic dynein-1, a motor protein for vesicle transport, and α-tubulin were significantly reduced in APC1638T+PAN mice associated with suppressed urinary albumin excretion compared to WT+PAN mice. In conclusion, APC1638T mice showed reduced albuminuria associated with suppressed podocyte vesicle transport when minimal change nephrotic syndrome was induced.
Collapse
Affiliation(s)
- Saaya Hatakeyama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
- Correspondence: ; Tel.: +81-282-86-1111
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| | - Nami O. Yamada
- Department of Anatomy, Gifu University, Gifu 501-1193, Japan; (N.O.Y.); (T.S.)
| | - Takao Senda
- Department of Anatomy, Gifu University, Gifu 501-1193, Japan; (N.O.Y.); (T.S.)
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, Tochigi 321-0293, Japan; (S.H.); (H.S.); (T.I.)
| |
Collapse
|
11
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
12
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Ishimitsu A, Tojo A, Satonaka H, Ishimitsu T. Eucommia ulmoides (Tochu) and its extract geniposidic acid reduced blood pressure and improved renal hemodynamics. Biomed Pharmacother 2021; 141:111901. [PMID: 34328117 DOI: 10.1016/j.biopha.2021.111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Eucommia ulmoides leaves are used as Tochu tea, which has a blood pressure lowering effect of unknown mechanism. PURPOSE AND METHODS The effects of Tochu tea and its component, geniposidic acid, on blood pressure and renal hemodynamics were investigated in Dahl salt-sensitive (DS) rats received 1% saline solution from 4 weeks of age. At 9 weeks of age, 1% saline alone (DSHS), Tochu tea extract added 1% saline (DSHS+T), or geniposidic acid added 1% saline (DSHS+G) was administered for another 4 weeks. DS rats fed with tap water were used as controls (DSLS). At 13 weeks, the blood pressure, the renal plasma flow (RPF) and the renal NADPH oxidase, endothelial nitric oxide synthase (eNOS) were examined. RESULTS Blood pressure in DSHS rats was significantly increased in comparison to DSLS (144 vs. 196 mmHg, p < 0.01), and was significantly reduced in DSHS+T (158 mmHg) and DSHS+G (162 mmHg) rats. RPF in DSHS+T rats was significantly higher than in DSHS rats (p < 0.05). The expression of NADPH oxidase in DSHS rats was enhanced in comparison to DSLS rats; however, it was suppressed in DSHS+T and DSHS+G rats, and the NO production by eNOS was increased; thus, RPF was improved. The urinary Na excretion in DSHS rats was higher than that in DSLS rats; however it was further increased in DSHS+T rats without changes in the tubular Na transporters. CONCLUSION Tochu tea and geniposidic acid suppressed NADPH oxidase, increased eNOS, and improved blood pressure and renal hemodynamics.
Collapse
Affiliation(s)
- Akira Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
14
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
15
|
Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 2021; 22:ijms22041636. [PMID: 33561958 PMCID: PMC7915979 DOI: 10.3390/ijms22041636] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are immune brain cells involved in neuroinflammation. They express a lot of proteins on their surface such as receptors that can be activated by mediators released in the microglial environment. Among these receptors, purinergic receptor expression could be modified depending on the activation status of microglia. In this review, we focus on P2Y receptors and more specifically on P2RY12 that is involved in microglial motility and migration, the first step of neuroinflammation process. We describe the purinergic receptor families, P2RY12 structure, expression and physiological functions. The pharmacological and genetic tools for studying this receptor are detailed thereafter. Last but not least, we report the contribution of microglial P2RY12 to neuroinflammation in acute and chronic brain pathologies in order to better understand P2RY12 microglial role.
Collapse
|
16
|
da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ. Potential Therapeutic Applications of P2 Receptor Antagonists: From Bench to Clinical Trials. Curr Drug Targets 2020; 20:919-937. [PMID: 30760187 DOI: 10.2174/1389450120666190213095923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular purines and pyrimidines have important physiological functions in mammals. Purines and pyrimidines act on P1 and P2 purinergic receptors, which are widely expressed in the plasma membrane in various cell types. P2 receptors act as important therapeutic targets and are associated with several disorders, such as pain, neurodegeneration, cancer, inflammation, and thrombosis. However, the use of antagonists for P2 receptors in clinical therapy, with the exception of P2Y12, is a great challenge. Currently, many research groups and pharmaceutical companies are working on the development of specific antagonist molecules for each receptor subtype that could be used as new medicines to treat their respective disorders. OBJECTIVE The present review compiles some interesting findings on the application of P2 receptor antagonists in different in vitro and in vivo experimental models as well as the progress of advanced clinical trials with these compounds. CONCLUSION Despite all of the exciting results obtained on the bench, few antagonists of P2 receptors advanced to the clinical trials, and once they reach this stage, the effectiveness of the therapy is not guaranteed, as in the example of P2X7 antagonists. Despite this, P2Y12 receptor antagonists have a history of success and have been used in therapy for at least two decades to prevent thrombosis in patients at risk for myocardial infarctions. This breakthrough is the motivation for scientists to develop new drugs with antagonistic activity for the other P2 receptors; thus, in a matter of years, we will have an evolution in the field of purinergic therapy.
Collapse
Affiliation(s)
- Natiele C da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Rômulo J Soares-Bezerra
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
17
|
Olgar Y, Tuncay E, Billur D, Durak A, Ozdemir S, Turan B. Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Mol Cell Biochem 2020; 469:97-107. [PMID: 32301059 DOI: 10.1007/s11010-020-03731-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Ticagrelor, a P2Y12-receptor inhibitor, and a non-thienopyridine agent are used to treat diabetic patients via its effects on off-target mechanisms. However, the exact sub-cellular mechanisms by which ticagrelor exerts those effects remains to be elucidated. Accordingly, the present study aimed to examine whether ticagrelor influences directly the cardiomyocytes function under insulin resistance through affecting mitochondria-sarco(endo)plasmic reticulum (SER) cross-talk. Therefore, we analyzed the function and ultrastructure of mitochondria and SER in insulin resistance-mimicked (50-μM palmitic acid for 24-h) H9c2 cardiomyocytes in the presence or absence of ticagrelor (1-µM for 24-h). We found that ticagrelor treatment significantly prevented depolarization of mitochondrial membrane potential and increases in reactive oxygen species with a marked increase in the ATP level in insulin-resistant H9c2 cells. Ticagrelor treatment also reversed the increases in the resting level of free Ca2+ and mRNA level of P2Y12 receptors as well as preserved ER stress and apoptosis in insulin-resistant H9c2 cells. Furthermore, we determined marked repression with ticagrelor treatment in the increased number of autophagosomes and degeneration of mitochondrion, including swelling and loss of crista besides recoveries in enlargement and irregularity seen in SER in insulin-resistant H9c2 cells. Moreover, ticagrelor treatment could prevent the altered mRNA levels of Becklin-1 and type 1 equilibrative nucleoside transporter (ENT1), which are parallel to the preservation of ultrastructural ones. Our overall data demonstrated that ticagrelor can directly affect cardiomyocytes and provide marked protection against ER stress and dramatic induction of autophagosomes, and therefore, can alleviate the ER stress-induced oxidative stress increase and cell apoptosis during insulin resistance.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Departments of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Belma Turan
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
18
|
P2Y 12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci 2020; 21:ijms21041391. [PMID: 32092903 PMCID: PMC7073040 DOI: 10.3390/ijms21041391] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/18/2022] Open
Abstract
The P2Y12 receptor is a key player in platelet activation and a major target for antithrombotic drugs. The beneficial effects of P2Y12 receptor antagonists might, however, not be restricted to the primary and secondary prevention of arterial thrombosis. Indeed, it has been established that platelet activation also has an essential role in inflammation. Additionally, nonplatelet P2Y12 receptors present in immune cells and vascular smooth muscle cells might be effective players in the inflammatory response. This review will investigate the biological and clinical impact of P2Y12 receptor inhibition beyond its platelet-driven antithrombotic effects, focusing on its anti-inflammatory role. We will discuss the potential molecular and cellular mechanisms of P2Y12-mediated inflammation, including cytokine release, platelet–leukocyte interactions and neutrophil extracellular trap formation. Then we will summarize the current evidence on the beneficial effects of P2Y12 antagonists during various clinical inflammatory diseases, especially during sepsis, acute lung injury, asthma, atherosclerosis, and cancer.
Collapse
|
19
|
Propofol attenuates monocyte-endothelial adhesion via modulating connexin43 expression in monocytes. Life Sci 2019; 232:116624. [PMID: 31276689 DOI: 10.1016/j.lfs.2019.116624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/22/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
Abstract
AIMS Monocyte-endothelial adhesion is considered to be the primary initiator of inflammatory vascular diseases, such as atherosclerosis. Connexin 43 (Cx43) has been reported to play an important part in this process, however, the underlying mechanisms are not fully understood. Intravenous anesthetics, propofol is commonly used in the perioperative period and in the intensive care unit, and considered to have good anti-inflammatory and antioxidant effects. Thus, we speculate that propofol could influence monocyte-endothelial adhesion, and explore whether its possible mechanism is relative with Cx43 expression in U937 monocytes influencing cell adhesion of U937 monocytes to human umbilical vein endothelial cells (HUVEC). MAIN METHODS Cx43-siRNAs or pc-DNA-Cx43 were used to alter Cx43 expression in U937 monocytes. Propofol was given as pretreatments to U937 monocytes. Then, cell adhesion, ZO-1, LFA-1, VLA-4, COX and MCP-1 were determined. PI3K/AKT/NF-κB signaling pathway was explored to clarify the possible mechanism. KEY FINDINGS Alternation of Cx43 expression affects cell adhesion and adhesion molecules significantly, such as ZO-1, LFA-1, VLA-4, COX-2 and MCP-1, the mechanism of which is relative with Cx43 influencing the activation of PI3K/AKT/NF-κB signaling pathway. Preconditioning with propofol at its clinically relevant anesthesia concentration attenuates cell adhesion. Propofol not only decreases Cx43 expression in U937 monocytes, but also depresses the activation of PI3K/AKT/NF-κB signaling pathway. SIGNIFICANCE Modulation Cx43 expression in U937 monocytes could affect cell adhesion via regulating the activation of PI3K/AKT/NF-κB signaling pathway. Propofol attenuates cell adhesion via inhibiting Cx43 and its downstream signaling pathway of PI3K/AKT/NF-κB.
Collapse
|
20
|
Zhi M, Zhang Y, Liu L, Wang H. Diagnostic value of urinary RBP, ALB and AQP2 in neonatal hydronephrosis and the relationship with expression of MCP-1 in the prenatal maternal peripheral blood. Exp Ther Med 2019; 17:373-377. [PMID: 30651806 PMCID: PMC6307484 DOI: 10.3892/etm.2018.6913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Diagnostic value of urinary retinol binding protein (RBP), albumin (ALB) and aquaporin-2 (AQP2) in neonatal hydronephrosis and their relationship with the expression of monocyte chemoattractant protein 1 (MCP-1) in the prenatal maternal peripheral blood was investigated. Forty-six child patients with hydronephrosis admitted to Hongqi Hospital Affiliated to Mudanjiang Medical College from December 2016 to November 2017 were selected as the observation group and the control included 46 normal newborn infants. The urinary RBP, ALB, AQP2 and the expression of MCP-1 in the prenatal maternal peripheral blood in the two groups were compared. The diagnostic value of the combination of urinary RBP, ALB and AQP2 for the neonatal hydronephrosis was accessed through the area under curve (AUC). The changes of urinary RBP, ALB and AQP2 of child patients were observed and the correlations between RBP, ALB, AQP2 and MCP-1 were analyzed. The concentrations of RBP and ALB in the observation group were obviously increased compared to those in the control group. The AQP2 concentration in the observation group was lower than that in the control group. In the observation group, the MCP-1 level in the prenatal maternal blood was significantly higher than that in the control group (P<0.05). After treatment, the concentration of RBP and ALB in the child patients were significantly decreased and AQP2 concentration was increased compared with that before treatment (P<0.05). The AUC of the diagnosis combining with RBP, ALB and AQP2 was 0.913. RBP and ALB were positively correlated to MCP-1 in the prenatal maternal peripheral blood and there was a negative correlation between AQP2 and MCP-1 (P<0.05). In conclusion, urinary RBP, ALB and AQP2 can be regarded as markers for the diagnosis of the neonatal hydronephrosis and they are also closely related to the MCP-1 level in the prenatal maternal peripheral blood.
Collapse
Affiliation(s)
- Ma Zhi
- Department of Pediatric Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanan Zhang
- Department of Obstetrics and Gynecology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lixia Liu
- Department of Obstetrics and Gynecology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Huizhi Wang
- Department of Obstetrics and Gynecology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
21
|
Liu D, Cao Y, Zhang X, Peng C, Tian X, Yan C, Liu Y, Liu M, Han Y. Chemokine CC-motif ligand 2 participates in platelet function and arterial thrombosis by regulating PKCα-P38MAPK-HSP27 pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2901-2912. [PMID: 29864522 DOI: 10.1016/j.bbadis.2018.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies indicate that chemokine CC-motif ligand 2 (CCL2) is involved in inflammation and atherosclerosis. However, the roles and mechanisms of CCL2 on platelet function and arterial thrombosis are unknown. METHODS The expressions of CCL2 or CCR2 in the plasma, platelets and coronary thrombus of ST-elevated myocardial infarction (STEMI) patients were examined by ELISA, Western blot, immunohistochemistry and immunofluorescence. The roles of CCL2 on platelet aggregation, activation and secretion were examined by light transmission aggregometry, flow cytometry and ELISA. RESULTS The expressions of CCL2 or CCR2 in the plasma or platelets of STEMI patients with platelet high response were higher than those with platelet normal response; In vitro, exogenous recombinant human CCL2 markedly increased platelet aggregation, activation and granule secretion, which were abolished by CCL2 neutralizing antibody or CCR2 inhibiter. CCL2 increased the phosphorylation levels of PKCα (Thr638), P38MAPK (Thr180/Tyr182) and HSP27 (S78/S82) in human platelets, which were abrogated by PKCα inhibitor (RO 318220) or P38MAPK inhibitor (SB 203580). RO 318220 or SB 203580 diminished CCL2-induced platelet function. In CCL2-/- mice, platelet aggregation and secretion were attenuated; the phosphorylation of PKCα, P38MAPK and HSP27 were decreased. In a carotid arterial thrombus mouse model, CCL2-/- mice displayed a significantly extended carotid artery occlusion time compared with wild type. CONCLUSIONS CCL2 played important roles in regulating platelet function and arterial thrombosis through the PKCα-P38MAPK-HSP27 pathway, which might provide theoretical basis for searching new antiplatelet drugs and the treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yu Cao
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Xiaolin Zhang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Chengfei Peng
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yanxia Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Meili Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China.
| |
Collapse
|
22
|
Ganbaatar B, Fukuda D, Salim HM, Nishimoto S, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Soeki T, Sata M. Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 2018; 275:124-132. [PMID: 29902700 DOI: 10.1016/j.atherosclerosis.2018.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Ticagrelor reduces cardiovascular events in patients with acute coronary syndrome (ACS). Recent studies demonstrated the expression of P2Y12 on vascular cells including endothelial cells, as well as platelets, and suggested its contribution to atherogenesis. We investigated whether ticagrelor attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein E-deficient (apoe-/-) mice. METHODS Eight-week-old male apoe-/- mice were fed a western-type diet (WTD) supplemented with 0.1% ticagrelor (approximately 120 mg/kg/day). Non-treated animals on WTD served as control. Atherosclerotic lesions were examined by en-face Sudan IV staining, histological analyses, quantitative RT-PCR analysis, and western blotting. Endothelial function was analyzed by acetylcholine-dependent vasodilation using aortic rings. Human umbilical vein endothelial cells (HUVEC) were used for in vitro experiments. RESULTS Ticagrelor treatment for 20 weeks attenuated atherosclerotic lesion progression in the aortic arch compared with control (p < 0.05). Ticagrelor administration for 8 weeks attenuated endothelial dysfunction (p < 0.01). Ticagrelor reduced the expression of inflammatory molecules such as vascular cell adhesion molecule-1, macrophage accumulation, and lipid deposition. Ticagrelor decreased the phosphorylation of JNK in the aorta compared with control (p < 0.05). Ticagrelor and a JNK inhibitor ameliorated impairment of endothelium-dependent vasodilation by adenosine diphosphate (ADP) in wild-type mouse aortic segments. Furthermore, ticagrelor inhibited the expression of inflammatory molecules which were promoted by ADP in HUVEC (p < 0.001). Ticagrelor also inhibited ADP-induced JNK activation in HUVEC (p < 0.05). CONCLUSIONS Ticagrelor attenuated vascular dysfunction and atherogenesis through the inhibition of inflammatory activation of endothelial cells. These effects might be a potential mechanism by which ticagrelor decreases cardiovascular events in patients with ACS.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Hotimah Masdan Salim
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Sachiko Nishimoto
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoichiro Hirata
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
23
|
Elaskalani O, Falasca M, Moran N, Berndt MC, Metharom P. The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance. Cancers (Basel) 2017; 9:cancers9100142. [PMID: 29064388 PMCID: PMC5664081 DOI: 10.3390/cancers9100142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets have been demonstrated to be vital in cancer epithelial-mesenchymal transition (EMT), an important step in metastasis. Markers of EMT are associated with chemotherapy resistance. However, the association between the development of chemoresistance, EMT, and the contribution of platelets to the process, is still unclear. Here we report that platelets regulate the expression of (1) human equilibrative nucleoside transporter 1 (hENT1) and (2) cytidine deaminase (CDD), markers of gemcitabine resistance in pancreatic cancer. Human ENT1 (hENT1) is known to enable cellular uptake of gemcitabine while CDD deactivates gemcitabine. Knockdown experiments demonstrate that Slug, a mesenchymal transcriptional factor known to be upregulated during EMT, regulates the expression of hENT1 and CDD. Furthermore, we demonstrate that platelet-derived ADP and ATP regulate Slug and CDD expression in pancreatic cancer cells. Finally, we demonstrate that pancreatic cancer cells express the purinergic receptor P2Y12, an ADP receptor found mainly on platelets. Thus ticagrelor, a P2Y12 inhibitor, was used to examine the potential therapeutic effect of an ADP receptor antagonist on cancer cells. Our data indicate that ticagrelor negated the survival signals initiated in cancer cells by platelet-derived ADP and ATP. In conclusion, our results demonstrate a novel role of platelets in modulating chemoresistance in pancreatic cancer. Moreover, we propose ADP/ATP receptors as additional potential drug targets for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.
| | - Niamh Moran
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
24
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
25
|
Kim HK, Jeong MH, Lim KS, Kim JH, Lim HC, Kim MC, Hong YJ, Kim SS, Park KH, Chang KS. Effects of ticagrelor on neointimal hyperplasia and endothelial function, compared with clopidogrel and prasugrel, in a porcine coronary stent restenosis model. Int J Cardiol 2017; 240:326-331. [PMID: 28487152 DOI: 10.1016/j.ijcard.2017.04.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Several investigations have been conducted to evaluate the off-target effects of ticagrelor. The aim of the present study was to evaluate the off-target effects of ticagrelor such as neointimal formation and endothelial function after drug-eluting stent implantation in a porcine restenosis model. METHODS A total of 30 pigs were randomly allocated based on the following P2Y12 inhibitor: (1) clopidogrel 300mg loading plus 75mg maintenance (n=10); (2) prasugrel 60mg loading plus 10mg maintenance (n=10); (3) ticagrelor 180mg loading plus 180mg maintenance (n=10). In each group, zotarolimus-eluting stents were implanted in the proximal portion of the left anterior descending artery and left circumflex artery. One month after stenting, the animals underwent follow-up angiography, endothelial function assessment, optical coherence tomography (OCT) and histopathological analysis. RESULTS Regarding vasomotor responses to acetylcholine infusion, there were significant vasoconstrictions to maximal acetylcholine infusion in the clopidogrel and prasugrel group compared with those in the ticagrelor group. The mean neointimal area were significantly lower in the ticagrelor group (1.0±0.3 by OCT, 0.9±0.3 by histology), than in the clopidogrel (1.8±0.7, p=0.003, 1.6±0.8, p=0.030) and prasugrel (1.8±0.5, p=0.001, 1.5±0.5, p=0.019) groups. Percentages of moderate to dense peri-strut inflammatory cell infiltration were significantly lower in the ticagrelor group (9.0%) compared with the clopidogrel (17.3%, p<0.001) and prasugrel groups (15.7%, p=0.002). There were no significant differences in all findings between clopidogrel and prasugrel groups. CONCLUSIONS Compared to clopidogrel and prasugrel, ticagrelor reduced neointimal formation, endothelial dysfunction, and peri-strut inflammation.
Collapse
Affiliation(s)
- Hyun Kuk Kim
- Chosun University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Chonnam National University Hospital, Gwangju, Republic of Korea.
| | - Kyung Seob Lim
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jung Ha Kim
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Han Chul Lim
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Min Chul Kim
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young Joon Hong
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sung Soo Kim
- Chosun University Hospital, Gwangju, Republic of Korea
| | - Keun-Ho Park
- Chosun University Hospital, Gwangju, Republic of Korea
| | | |
Collapse
|
26
|
Verzola D, Milanesi S, Bertolotto M, Garibaldi S, Villaggio B, Brunelli C, Balbi M, Ameri P, Montecucco F, Palombo D, Ghigliotti G, Garibotto G, Lindeman JH, Barisione C. Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular smooth muscle cell dysfunction and monocyte recruitment. Sci Rep 2017; 7:46362. [PMID: 28406165 PMCID: PMC5390310 DOI: 10.1038/srep46362] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Myostatin (Mstn) is a skeletal muscle growth inhibitor involved in metabolic disorders and heart fibrosis. In this study we sought to verify whether Mstn is also operative in atherosclerosis of abdominal aorta. In human specimens, Mstn expression was almost absent in normal vessels, became detectable in the media of non-progressive lesions and increased with the severity of the damage. In progressive atherosclerotic lesions, Mstn was present in the media, neointima, plaque shoulder and in infiltrating macrophages. Mstn co-localized with α-smooth muscle actin (α-SMA) staining and with some CD45+ cells, indicating Mstn expression in VSMCs and bloodstream-derived leukocytes. In vitro, Mstn was tested in VSMCs and monocytes. In A7r5 VSMCs, Mstn downregulated proliferation and Smoothelin mRNA, induced cytoskeletal rearrangement, increased migratory rate and MCP-1/CCR2 expression. In monocytes (THP-1 cells and human monocytes), Mstn acted as a chemoattractant and increased the MCP-1-dependent chemotaxis, F-actin, α-SMA, MCP-1 and CCR2 expression; in turn, MCP-1 increased Mstn mRNA. Mstn induced JNK phosphorylation both in VSMCs and monocytes. Our results indicate that Mstn is overexpressed in abdominal aortic wall deterioration, affects VSMCs and monocyte biology and sustains a chronic inflammatory milieu. These findings propose to consider Mstn as a new playmaker in atherosclerosis progression.
Collapse
Affiliation(s)
- D. Verzola
- Nephrology Division, Department of Internal Medicine, IRCCS University Hospital San Martino, University of Genova, Genova, Italy
| | - S. Milanesi
- Nephrology Division, Department of Internal Medicine, IRCCS University Hospital San Martino, University of Genova, Genova, Italy
| | - M. Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genova, viale Benedetto XV, 6, 16132 Genova, Italy
| | - S. Garibaldi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| | - B. Villaggio
- Nephrology Division, Department of Internal Medicine, IRCCS University Hospital San Martino, University of Genova, Genova, Italy
| | - C. Brunelli
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| | - M. Balbi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| | - P. Ameri
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| | - F. Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genova, viale Benedetto XV, 6, 16132 Genova, Italy
- IRCCS AOU San Martino-IST, Genova, largo Benzi 10 16143 Genova, Italy
| | - D. Palombo
- Unit of Vascular and Endovascular Surgery, University of Genova, Genova, Italy
| | - G. Ghigliotti
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| | - G. Garibotto
- Nephrology Division, Department of Internal Medicine, IRCCS University Hospital San Martino, University of Genova, Genova, Italy
| | - J. H. Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C. Barisione
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy
| |
Collapse
|
27
|
Sugidachi A, Mizuno M, Ohno K, Jakubowski JA, Tomizawa A. The active metabolite of prasugrel, R-138727, improves cerebral blood flow and reduces cerebral infarction and neurologic deficits in a non-human primate model of acute ischaemic stroke. Eur J Pharmacol 2016; 788:132-139. [DOI: 10.1016/j.ejphar.2016.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/02/2023]
|
28
|
Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection. J Mol Cell Cardiol 2016; 99:76-86. [PMID: 27534720 DOI: 10.1016/j.yjmcc.2016.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. However, the mechanism whereby signaling leads to SMC loss is unclear. We used senescence-associated (SA)-β-gal staining and analysis of expression of senescence-related proteins (p53, p21, p19) to show that excessive mechanical stretch (20% elongation, 3600cycles/h, 48h) induced SMC senescence. SMC senescence was also detected in TAAD specimens from both mice and humans. High-performance liquid chromatography and luciferin-luciferase-based assay revealed that excessive mechanical stretch increased adenosine diphosphate (ADP) release from SMCs both in vivo and in vitro. Elevated ADP induced SMC senescence while genetic knockout of the ADP receptor, P2Y G protein-coupled receptor 12 (P2ry12), in mice protected against SMC senescence and inflammation. Both TAAD formation and rupture were significantly reduced in P2ry12-/- mice. SMCs from P2ry12-/- mice were resistant to senescence induced by excessive mechanical stretch or ADP treatment. Mechanistically, ADP treatment sustained Ras activation, whereas pharmacological inhibition of Ras protected against SMC senescence and reduced TAAD formation. Taken together, excessive mechanical stress may induce a sustained release of ADP and promote SMC senescence via P2ry12-dependent sustained Ras activation, thereby contributing to excessive inflammation and degeneration, which provides insights into TAAD formation and progression.
Collapse
|
29
|
Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173:1163-78. [PMID: 26758983 PMCID: PMC5341337 DOI: 10.1111/bph.13429] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023] Open
Abstract
The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| |
Collapse
|
30
|
Thomas MR, Outteridge SN, Ajjan RA, Phoenix F, Sangha GK, Faulkner RE, Ecob R, Judge HM, Khan H, West LE, Dockrell DH, Sabroe I, Storey RF. Platelet P2Y12 Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model. Arterioscler Thromb Vasc Biol 2015; 35:2562-70. [PMID: 26515417 DOI: 10.1161/atvbaha.115.306528] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Clinical studies suggest that platelet P2Y12 inhibitors reduce mortality from sepsis, although the underlying mechanisms have not been clearly defined in vivo. We hypothesized that P2Y12 inhibitors may improve survival from sepsis by suppressing systemic inflammation and its prothrombotic effects. We therefore determined whether clopidogrel and the novel, more potent P2Y12 inhibitor, ticagrelor, modify these responses in an experimental human model. APPROACH AND RESULTS We randomized 30 healthy volunteers to ticagrelor (n=10), clopidogrel (n=10), or no antiplatelet medication (controls; n=10). We examined the effect of P2Y12 inhibition on systemic inflammation, which was induced by intravenous injection of Escherichia coli endotoxin. Both P2Y12 inhibitors significantly reduced platelet-monocyte aggregate formation and peak levels of major proinflammatory cytokines, including tumor necrosis factor α, interleukin-6, and chemokine (C-C motif) ligand 2. In contrast to clopidogrel, ticagrelor also significantly reduced peak levels of IL-8 and growth colony-stimulating factor and increased peak levels of the anti-inflammatory cytokine IL-10. In addition, ticagrelor altered leukocyte trafficking. Both P2Y12 inhibitors suppressed D-dimer generation and scanning electron microscopy revealed that ticagrelor also suppressed prothrombotic changes in fibrin clot ultrastructure. CONCLUSIONS Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 inhibitors demonstrates critical importance of platelets as central orchestrators of systemic inflammation induced by bacterial endotoxin. This provides novel mechanistic insight into the lower mortality associated with P2Y12 inhibitors in patients with sepsis in clinical studies.
Collapse
Affiliation(s)
- Mark R Thomas
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Samuel N Outteridge
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Ramzi A Ajjan
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Fladia Phoenix
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Gurpreet K Sangha
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Rachael E Faulkner
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Rosemary Ecob
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Heather M Judge
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Haroon Khan
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Laura E West
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - David H Dockrell
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Ian Sabroe
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.)
| | - Robert F Storey
- From the Departments of Cardiovascular Science (M.R.T., S.N.O., G.K.S., R.E.F., R.E., H.M.J., H.K., L.E.W., R.F.S.) and Infection and Immunity (D.H.D., I.S.), University of Sheffield, Sheffield, United Kingdom; and Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom (R.A.A., F.P.).
| |
Collapse
|
31
|
Prevention of occlusive arterial thrombus formation by a single loading dose of prasugrel suppresses neointimal hyperplasia in mice. Thromb Res 2015; 136:1245-51. [PMID: 26489728 DOI: 10.1016/j.thromres.2015.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022]
Abstract
The present study examined the effects of prasugrel in a mouse model of thrombosis-induced neointimal hyperplasia. Following carotid artery injury by application of ferric chloride solution, thrombus formation was assessed on Day 1 and neointimal thickening was assessed on Day 21. Single administrations of prasugrel at 0.3-3mg/kg (p.o.) resulted in a dose-related and sustained inhibition of ADP-induced platelet aggregation through 24h. Single and multiple (1 and 3 weeks) administration of prasugrel (3mg/kg loading and 1mg/kg/day maintenance doses) resulted in a marked inhibition of neointimal thickening in the injured artery. In the dose-response study, a single administration of prasugrel at 0.3-3mg/kg (p.o.) dose-relatedly inhibited thrombus formation and neointimal thickening on Days 1 and 21, respectively. The degree of neointimal hyperplasia in the injured artery correlated significantly with the thrombus indices, time to occlusion and patency rate. To explore possible mechanisms of inhibition of neointimal hyperplasia by prasugrel, mRNA expression levels of inflammatory and fibrosis markers were determined in injured arteries. Prasugrel treatment resulted in reduced MCP-1, ICAM-1 and TGF-β mRNA levels on Day 2 (24h after the injury) and Day 8 (1 week after the injury) in the target arteries. In conclusion, we found that a single oral loading dose of prasugrel markedly prevented neointimal hyperplasia by inhibiting platelet activation and thrombus formation and was associated with inhibition of the expression of inflammatory and fibrosis markers, including MCP-1, ICAM-1 and TGF-β, in the injured arteries.
Collapse
|
32
|
Thomas MR, Storey RF. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost 2015; 114:490-7. [PMID: 26156883 DOI: 10.1160/th14-12-1068] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
Platelet P2Y12 inhibitors form a major part of the treatment strategy for patients with acute coronary syndromes (ACS) due to the importance of the platelet P2Y12 receptor in mediating the pathophysiology of arterial thrombosis. It has been increasingly recognised that platelets also have a critical role in inflammation and immune responses. P2Y12 inhibitors reduce platelet release of pro-inflammatory α-granule contents and the formation of pro-inflammatory platelet-leukocyte aggregates. These are important mediators of inflammation in a variety of different contexts. Clinical evidence shows that P2Y12 inhibition by clopidogrel is associated with a reduction in platelet-related mediators of inflammation, such as soluble P-selectin and CD40L, following atherothrombosis. Clopidogrel in addition to aspirin, compared to aspirin alone, also reduces markers of systemic inflammation such as tumour necrosis factor (TNF) α and C-reactive protein (CRP) following ACS. The more potent thienopyridine P2Y12 inhibitor, prasugrel, has been shown to decrease platelet P-selectin expression and platelet-leukocyte aggregate formation compared to clopidogrel. The PLATO study suggested that the novel P2Y12 inhibitor ticagrelor might improve clinical outcomes from pulmonary infections and sepsis compared to clopidogrel in patients with ACS. Ticagrelor is a more potent P2Y12 inhibitor than clopidogrel and also inhibits cellular adenosine uptake via equilibrative nucleoside transporter (ENT) 1, whereas clopidogrel does not. Further examination of the involvement of these mechanisms in inflammation and immunity is therefore warranted.
Collapse
Affiliation(s)
- Mark R Thomas
- Dr. Mark R. Thomas, BMedSci BMBS MRCP, Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Tel.: +44 114 3052019, Fax: +44 114 2266159, E-mail
| | | |
Collapse
|