1
|
Chen H, Hu Q, Lu Z, Zhao J, Liu A, Liu Z, Luo J, Ye Q, Zhong Z. Aldehyde dehydrogenase 2 attenuates renal injury through inhibiting CYP4A expression. Transl Res 2024; 277:1-12. [PMID: 39746575 DOI: 10.1016/j.trsl.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a prevalent clinical syndrome, yet its underlying pathogenesis remains largely unknown. Aldehyde dehydrogenase 2 (ALDH2), an enzyme responsible for detoxifying lipid aldehydes, has been suggested to play a protective role against IRI. In our study, we observed that Aldh2 knock-out C57BL/6 mice experienced more severe renal functional impairment following IRI. This was characterized by elevated levels of creatinine and blood urea nitrogen, as well as increased apoptosis. Proteomic analysis further revealed that ALDH2 deficiency significantly disrupted lipid metabolism, resulting in higher levels of the proinflammatory protein CYP4A and its metabolic byproduct, 20-HETE. This metabolic disruption exacerbated renal inflammation and triggered endoplasmic reticulum stress. However, we found that administration of the CYP4A inhibitor, HET0016, could ameliorate these effects. Mechanistically, we discovered that after IRI, ALDH2 translocates to the nucleus and interacts with nuclear receptor corepressor 1 (NCOR1) to repress Cyp4a transcription. ALDH2 specifically interacts with the N-terminal domain of NCOR1, which is responsible for its interaction with its E3 ligase SIAH2. This interaction inhibits the proteasome degradation of NCOR1, ultimately stabilizing the NCOR1 transcriptional repression complex. In summary, our research uncovers the role of ALDH2 in mitigating renal IRI by inhibiting 20-HETE synthesis through the transcriptional repression of Cyp4a.
Collapse
Affiliation(s)
- Hao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong New Area,Shanghai 200127, China
| | - Anxiong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.; Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha 410013, China..
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| |
Collapse
|
2
|
Maclean KN, Jiang H, Neill PD, Chanin RR, Hurt KJ, Orlicky DJ, Bottiglieri T, Roede JR, Stabler SP. Dysregulation of hepatic one-carbon metabolism in classical homocystinuria: Implications of redox-sensitive DHFR repression and tetrahydrofolate depletion for pathogenesis and treatment. FASEB J 2024; 38:e23795. [PMID: 38984928 DOI: 10.1096/fj.202302585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip D Neill
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan R Chanin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - K Joseph Hurt
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
4
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Lukaszewicz K, Falck JR, Lombard J. Effect of Chronically Suppressed Plasma Angiotensin II on Regulation of the CYP4A/20-HETE Pathway in the Dahl Salt-Sensitive Rat. Antioxidants (Basel) 2023; 12:antiox12040783. [PMID: 37107157 PMCID: PMC10135295 DOI: 10.3390/antiox12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In Dahl salt-sensitive (SS) rats, impaired vascular relaxation can be restored by: (1) minipump infusion of a low (sub-pressor) dose of angiotensin II (ANG II) to restore physiological levels of plasma ANG II, (2) inhibition of 20-HETE production, and (3) introgression of a normally functioning renin allele from the Brown Norway rat (SS-13BN consomic rat). Unlike SS rats, SS-13BN rats have normal levels of ANG II on a normal-salt diet and suppressed ANG II on a high-salt (HS) diet. This study tested whether chronically low ANG II levels in SS rats upregulate cytochrome P450-4A (CYP4A) increasing the production of the vasoconstrictor 20-HETE. Although salt-induced suppression of ANG II levels increased reactive oxygen species (ROS) in basilar arteries from SS-13BN rats in previous studies, this study showed no change in vascular 20-HETE levels in response to ANGII suppression. CYP4A inhibition significantly reduced vascular ROS levels and restored endothelium-dependent relaxation in response to acetylcholine in the middle cerebral artery (MCA) of SS rats and HS-fed SS-13BN rats. These data demonstrate that both the renin-angiotensin system and the CYP4A/20-HETE pathway play a direct role in the vascular dysfunction of the Dahl SS rat but are independent of each other, even though they may both contribute to vascular dysfunction through ROS production.
Collapse
Affiliation(s)
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Julian Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
7
|
Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, Ali S, Kim N, Baruch DE, Yahaya MAF, Dirice E, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:229-255. [PMID: 37236760 PMCID: PMC10683332 DOI: 10.1016/bs.apha.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Yonaton Kadish
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | | | - Danait Yemane
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Samir Ali
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Namhee Kim
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - David E Baruch
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Muhamad Afiq Faisal Yahaya
- Department of Basic Sciences, MAHSA University, Selangor Darul Ehsan, Malaysia; Department of Human Anatomy, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ercument Dirice
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
8
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Tang C, Tang Y, Wang Q, Chu D, Zhou J, Zhou Y. Yangyinqingfei decoction attenuates PM 2.5-induced lung injury by enhancing arachidonic acid metabolism. Front Pharmacol 2022; 13:1056078. [PMID: 36467030 PMCID: PMC9708729 DOI: 10.3389/fphar.2022.1056078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2024] Open
Abstract
Yangyinqingfei Decoction (YYQFD), a traditional Chinese prescription, is well known in the treatment of diphtheria and lung-related diseases in clinic. However, whether it can be used to block the lung injury caused by air pollutant remains unclear. In the present study, the effect of YYQFD was addressed using a PM2.5-induced lung injury mice model. It was shown that YYQFD significantly improved pulmonary functions of mice exposed to PM2.5, the levels of IL-6, TNF-α and MDA were decreased while SOD levels were increased in serum and bronchoalveolar fluid. The potential mechanism of YYQFD was then delved using metabolomic and proteomic techniques. The protein-metabolite joint analysis showed that YYQFD regulated the biosynthesis of unsaturated fatty acids, linoleic acid and arachidonic acid metabolism, causing a significant decrement of pro-inflammatory mediator arachidonic acid with its downstream metabolites like 20-HETE, prostaglandin E2, accompanied by the up-regulation of PTGES2, GPX2 and CBR3 in lung tissue. These data were used to construct a regulatory metabolic network map in terms of the therapeutic role of YYQFD in PM2.5-induced lung injury, thereby provided a novel insight into potential application in the respiratory diseases caused by air pollutants.
Collapse
Affiliation(s)
- Chunlan Tang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhengjiang, China
- School of Medicine, Ningbo University, Ningbo, Zhengjiang, China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, Zhengjiang, China
| | - Yuqing Tang
- School of Medicine, Ningbo University, Ningbo, Zhengjiang, China
| | - Qinwen Wang
- School of Medicine, Ningbo University, Ningbo, Zhengjiang, China
| | - Donghui Chu
- School of Medicine, Ningbo University, Ningbo, Zhengjiang, China
| | - Jinyue Zhou
- School of Medicine, Ningbo University, Ningbo, Zhengjiang, China
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhengjiang, China
| |
Collapse
|
10
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
11
|
Muñoz M, López-Oliva E, Pinilla E, Rodríguez C, Martínez MP, Contreras C, Gómez A, Benedito S, Sáenz-Medina J, Rivera L, Prieto D. Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity. Biochem Pharmacol 2022; 195:114850. [PMID: 34822809 DOI: 10.1016/j.bcp.2021.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Estéfano Pinilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Alfonso Gómez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
12
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
13
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Yi X, Zhou Q, Qing T, Ming B, Lin J, Li J, Lin J. 20-hydroxyeiscosatetraenoic acid may be as a predictor of malignant middle cerebral artery infarction in patients with massive middle cerebral artery infarction. BMC Neurol 2021; 21:437. [PMID: 34753429 PMCID: PMC8576932 DOI: 10.1186/s12883-021-02456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Early identification of massive middle cerebral artery infarction (MCAI) at risk for malignant MCAI (m-MCAI) may be useful in selecting patients for aggressive therapies. The aim of this study was to determine whether CYP metabolites may help to predict impending m-MCAI. Methods This is a prospective, two-center observational study in 256 patients with acute massive MCAI. Plasma levels of 20-hydroxyeicosatetraenoic acid (20-HETE), epoxyeicosatrienoic acids, and dihydroxyeicosatrienoic acids were measured at admission. Brain computed tomography (CT) was performed at admission and repeated between day 3 and 7, or earlier if there was neurological deterioration. The primary outcome was m-MCAI. The m-MCAI was diagnosed when follow-up brain CT detected a more than two-thirds space-occupying MCAI with midline shift, compression of the basal cisterns, and neurological worsening. Results In total of 256 enrolled patients, 77 (30.1%) patients developed m-MCAI. Among the 77 patients with m-MCAI, 60 (77.9%) patients died during 3 months of stroke onset. 20-HETE level on admission was significantly higher in patients with m-MCAI than those without m-MCAI. There was an increase in the risk of m-MCAI with increase of 20-HETE levels. The third and fourth quartiles of 20-HETE levels were independent predictors of m-MCAI (OR: 2.86; 95% CI: 1.16 – 6.68; P = 0.025, and OR: 4.23; 95% CI: 1.35 – 8.26; P = 0.002, respectively). Conclusions Incidence of m-MCAI was high in patients with massive MCAI and the prognosis of m-MCAI is very poor. Elevated plasma 20-HETE may be as a predictor for m-MCAI in acute massive MCAI, and it might useful in clinical practice in therapeutic decision making.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Ting Qing
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Bing Ming
- Department of Radiology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Jing Lin
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Jie Li
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Jie Lin
- Department of PET/CT, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
15
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
16
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
17
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
18
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
19
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102160. [PMID: 32717531 DOI: 10.1016/j.plefa.2020.102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Oxylipins, which are circulating bioactive lipids generated from polyunsaturated fatty acids (PUFAs) by cyclooxygenase, lipooxygenase and cytochrome P450 enzymes, have diverse effects on endothelial cells. Although studies of the effects of oxylipins on endothelial cell function are accumulating, a review that provides a comprehensive compilation of current knowledge and recent advances in the context of vascular homeostasis is lacking. This is the first compilation of the various in vitro, ex vivo and in vivo reports to examine the effects and potential mechanisms of action of oxylipins on endothelial cells. The aggregate data indicate docosahexaenoic acid-derived oxylipins consistently show beneficial effects related to key endothelial cell functions, whereas oxylipins derived from other PUFAs exhibit both positive and negative effects. Furthermore, information is lacking for certain oxylipin classes, such as those derived from α-linolenic acid, which suggests additional studies are required to achieve a full understanding of how oxylipins affect endothelial cells.
Collapse
Affiliation(s)
- Youjia Du
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada.
| |
Collapse
|
21
|
Mavangira V, Brown J, Gandy JC, Sordillo LM. 20-hydroxyeicosatetraenoic acid alters endothelial cell barrier integrity independent of oxidative stress and cell death. Prostaglandins Other Lipid Mediat 2020; 149:106425. [PMID: 32032703 DOI: 10.1016/j.prostaglandins.2020.106425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022]
Abstract
Unregulated inflammation during bovine mastitis is characterized by severe mammary tissue damage with systemic involvement. Vascular dysfunction underlies tissue pathology because of concurrent oxidative stress mediated by several inflammatory mediators. We recently demonstrated increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450-derived (CYP) oxylipid that correlated with oxidative stress during severe bovine coliform mastitis. The hypothesis for this study was that 20-HETE-induced oxidative stress disrupts barrier function of endothelial cells. Primary endothelial cells from the bovine aorta were utilized to investigate the effects of 20-HETE on barrier integrity in an in-vitro model of oxidative stress. The effects of various antioxidants on modulating the 20-HETE barrier integrity effects also were investigated. Our results showed that 20-HETE decreased endothelial barrier integrity, which was associated with increased reactive metabolite production and decreased total glutathione. The antioxidant, vitamin E, partially delayed the loss of endothelial resistance upon exposure to 20-HETE but did not prevent complete loss of barrier integrity. The decrease in barrier resistance due to 20-HETE was neither associated with oxidative stress as assessed by oxidative protein or lipid damage nor endothelial cell apoptosis; however, selenium supplementation conferred resistance to loss of barrier integrity suggesting a role for shifts in redox status. Specific mechanisms by which 20-HETE alters vascular barrier integrity require further investigation to identify targets for therapy during inflammatory conditions with enhanced CYP450 activity.
Collapse
Affiliation(s)
- Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 United States
| | - Jennifer Brown
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 United States
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 United States.
| |
Collapse
|
22
|
Afshinnia F, Zeng L, Byun J, Wernisch S, Deo R, Chen J, Hamm L, Miller ER, Rhee EP, Fischer MJ, Sharma K, Feldman HI, Michailidis G, Pennathur S. Elevated lipoxygenase and cytochrome P450 products predict progression of chronic kidney disease. Nephrol Dial Transplant 2020; 35:303-312. [PMID: 30137494 PMCID: PMC7391277 DOI: 10.1093/ndt/gfy232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The clinical relevance of arachidonic acid (AA) metabolites in chronic kidney disease (CKD) progression is poorly understood. We aimed to compare the concentrations of 85 enzymatic pathway products of AA metabolism in patients with CKD who progressed to end-stage kidney disease (ESKD) versus patients who did not in a subcohort of Chronic Renal Insufficiency Cohort (CRIC) and to estimate the risk of CKD progression and major cardiovascular events by levels of AA metabolites and their link to enzymatic metabolic pathways. METHODS A total 123 patients in the CRIC study who progressed to ESKD were frequency matched with 177 nonprogressors and serum eicosanoids were quantified by mass spectrometry. We applied serum collected at patients' Year 1 visit and outcome of progression to ESKD was ascertained over the next 10 years. We used logistic regression models for risk estimation. RESULTS Baseline 15-hydroxyeicosatetraenoate (HETE) and 20-HETE levels were significantly elevated in progressors (false discovery rate Q ≤ 0.026). The median 20-HETE level was 7.6 pmol/mL [interquartile range (IQR) 4.2-14.5] in progressors and 5.4 pmol/mL (IQR 2.8-9.4) in nonprogressors (P < 0.001). In an adjusted model, only 20-HETE independently predicted CKD progression. Each 1 standard deviation increase in 20-HETE was independently associated with 1.45-fold higher odds of progression (95% confidence interval 1.07-1.95; P = 0.017). Principal components of lipoxygenase (LOX) and cytochrome P450 (CYP450) pathways were independently associated with CKD progression. CONCLUSIONS We found higher odds of CKD progression associated with higher 20-HETE, LOX and CYP450 metabolic pathways. These alterations precede CKD progression and may serve as targets for interventions aimed at halting progression.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Stefanie Wernisch
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Chen
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Lee Hamm
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Edgar R Miller
- Department of Internal Medicine, Jones Hopkins University, Baltimore, MD, USA
| | - Eugene P Rhee
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Fischer
- Department of Medicine, University of Illinois, Center of Innovation for Complex Chronic Healthcare, Jesse Brown VAMC, Chicago, IL, USA
| | - Kumar Sharma
- Department of Internal Medicine-Nephrology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Zhou C, Shen D, Li C, Cai W, Liu S, Yin H, Shi S, Cao M, Zhang S. Comparative Transcriptomic and Proteomic Analyses Identify Key Genes Associated With Milk Fat Traits in Chinese Holstein Cows. Front Genet 2019; 10:672. [PMID: 31456815 PMCID: PMC6700372 DOI: 10.3389/fgene.2019.00672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Milk fat is the most important energy substance in milk and contributes to its quality and health benefits. However, the genetic mechanisms underlying milk fat synthesis are not fully understood. The development of RNA sequencing and tandem mass tag technologies has facilitated the identification of eukaryotic genes associated with complex traits. In this study, we used these methods to obtain liver transcriptomic and proteomic profiles of Chinese Holstein cows (n = 6). Comparative analyses of cows with extremely high vs. low milk fat percentage phenotypes yielded 321 differentially expressed genes (DEGs) and 76 differentially expressed proteins (DEPs). Functional annotation of these DEGs and DEPs revealed 26 genes that were predicted to influence lipid metabolism through insulin, phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, 5′ AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor signaling pathways; these genes are considered as the most promising candidate regulators of milk fat synthesis. The findings of this study enhance the understanding of the genetic basis and molecular mechanisms of milk fat synthesis, which could lead to the development of cow breeds that produce milk with higher nutritional value.
Collapse
Affiliation(s)
- Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaolei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Dakarapu R, Errabelli R, Manthati VL, Michael Adebesin A, Barma DK, Barma D, Garcia V, Zhang F, Laniado Schwartzman M, Falck JR. 19-Hydroxyeicosatetraenoic acid analogs: Antagonism of 20-hydroxyeicosatetraenoic acid-induced vascular sensitization and hypertension. Bioorg Med Chem Lett 2019; 29:126616. [PMID: 31439380 DOI: 10.1016/j.bmcl.2019.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
Abstract
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.
Collapse
Affiliation(s)
- Rambabu Dakarapu
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramu Errabelli
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijaya L Manthati
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deb K Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Deepan Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | - Fan Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | | | - John R Falck
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Chen L, Tang S, Zhang FF, Garcia V, Falck JR, Schwartzman ML, Arbab AS, Guo AM. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells. Am J Physiol Heart Circ Physiol 2019; 316:H1468-H1479. [PMID: 30951365 PMCID: PMC6620690 DOI: 10.1152/ajpheart.00690.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center , Guangzhou , People's Republic of China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Frank F Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- University of Texas Southwestern Medical Center , Dallas, Texas
| | | | - Ali S Arbab
- Cancer Center, Augusta University , Augusta, Georgia
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
26
|
Subterminal hydroxyeicosatetraenoic acids: Crucial lipid mediators in normal physiology and disease states. Chem Biol Interact 2018; 299:140-150. [PMID: 30543782 DOI: 10.1016/j.cbi.2018.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are superfamily of monooxygenases that hold the utmost diversity of substrate structures and catalytic reaction forms amongst all other enzymes. P450 enzymes metabolize arachidonic acid (AA) to a wide array of biologically active lipid mediators. P450-mediated AA metabolites have a significant role in normal physiological and pathophysiological conditions, hence they could be promising therapeutic targets in different disease states. P450 monooxygenases mediate the (ω-n)-hydroxylation reactions, which involve the introduction of a hydroxyl group to the carbon skeleton of AA, forming subterminal hydroxyeicosatetraenoic acids (HETEs). In the current review, we specified different P450 isozymes implicated in the formation of subterminal HETEs in varied tissues. In addition, we focused on the role of subterminal HETEs namely 19-HETE, 16-HETE, 17-HETE and 18-HETE in different organs, importantly the kidneys, heart, liver and brain. Furthermore, we highlighted their role in hypertension, acute coronary syndrome, diabetic retinopathy, non-alcoholic fatty liver disease, ischemic stroke as well as inflammatory diseases. Since each member of subterminal HETEs exist as R and S enantiomer, we addressed the issue of stereoselectivity related to the formation and differential effects of these enantiomers. In conclusion, elucidation of different roles of subterminal HETEs in normal and disease states leads to identification of novel therapeutic targets and development of new therapeutic modalities in different disease states.
Collapse
|
27
|
Possible Role of CYP450 Generated Omega-3/Omega-6 PUFA Metabolites in the Modulation of Blood Pressure and Vascular Function in Obese Children. Nutrients 2018; 10:nu10111689. [PMID: 30400671 PMCID: PMC6267577 DOI: 10.3390/nu10111689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is often accompanied by metabolic and haemodynamic disorders such as hypertension, even during childhood. Arachidonic acid (AA) is metabolized by cytochrome P450 (CYP450) enzymes to epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE), vasoactive and natriuretic metabolites that contribute to blood pressure (BP) regulation. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) omega-3 polyunsaturated fatty acids may compete with AA for CYP450-dependent bioactive lipid mediator formation. We aimed at investigating the role of AA, EPA and DHA and their CYP450-dependent metabolites in BP control and vascular function in 66 overweight/obese children. Fatty acid profile moderately correlated with the corresponding CYP450-derived metabolites but their levels did not differ between children with normal BP (NBP) and high BP (HBP), except for higher EPA-derived epoxyeicosatetraenoic acids (EEQs) and their diols in HBP group, in which also the estimated CYP450-epoxygenase activity was higher. In the HBP group, EPA inversely correlated with BP, EEQs inversely correlated both with systolic BP and carotid Intima-Media Thickness (cIMT). The DHA-derived epoxydocosapentaenoic acids (EDPs) were inversely correlated with diastolic BP. Omega-3 derived epoxymetabolites appeared beneficially associated with BP and vascular structure/function only in obese children with HBP. Further investigations are needed to clarify the role of omega-3/omega-6 epoxymetabolites in children's hemodynamics.
Collapse
|
28
|
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15-F 2t-isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J Dairy Sci 2018; 101:9287-9295. [PMID: 30077444 DOI: 10.3168/jds.2018-14669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023]
Abstract
Oxidative stress contributes to dysfunctional immune responses and predisposes dairy cattle to several metabolic and inflammatory-based diseases. Although the negative effects of oxidative stress on transition cattle are well established, biomarkers that accurately measure oxidative damage to cellular macromolecules are not well defined in veterinary medicine. Measuring 15-F2t-isoprostane, a lipid peroxidation product, is the gold standard biomarker for quantifying oxidative stress in human medicine. The aim of our study was to determine whether changes in 15-F2t-isoprostane concentrations in plasma and milk could accurately reflect changes in oxidant status during different stages of lactation. Using liquid chromatography-tandem mass spectrometry, 15-F2t-isoprostane concentrations were quantified in milk and plasma of 12 multiparous Holstein-Friesian cows that were assigned to 3 different sampling periods, including the periparturient period (1-2 d in milk; n = 4), mid lactation (80-84 d in milk; n = 4), and late lactation (183-215 d in milk; n = 4). Blood samples also were analyzed for indicators of oxidant status, inflammation, and negative energy balance. Our data revealed that 15-F2t-isoprostane concentrations changed at different stages of lactation and coincided with changes in other gauges of oxidant status in both plasma and milk. Interestingly, milk 15-F2t-isoprostane concentrations and other indices of oxidant status did not follow the same trends as plasma values at each stage of lactation. Indeed, during the periparturient period, systemic 15-F2t-isoprostane increased significantly accompanied by an increase in the systemic oxidant status index. Milk 15-F2t-isoprostane was significantly decreased during the periparturient period compared with other lactation stages in conjunction with a milk oxidant status index that trended lower during this period. The results from this study indicate that changes in 15-F2t-isoprostane concentrations in both milk and plasma may be strong indicators of an alteration in redox status both systemically and within the mammary gland.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
29
|
Shoieb SM, El-Kadi AOS. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy. Drug Metab Dispos 2018; 46:1157-1168. [PMID: 29880629 DOI: 10.1124/dmd.118.082073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 02/13/2025] Open
Abstract
We had recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II)-induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether the R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 μM Ang II in the absence and presence of 20 μM 19(R)-HETE or 19(S)-HETE for 24 hours. Thereafter, the level of midchain HETEs was determined using liquid chromatography-mass spectrometry. Gene- and protein-expression levels were measured using real-time polymerase chain reaction and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs, namely 8-, 9-, 12-, and 15-HETE, compared with control group, whereas the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxygenase (LOX) as well as cyclo-oxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Interestingly, both enantiomers protected against Ang II-induced cellular hypertrophy, as evidenced by a significant decrease in mRNA expression of β/α-myosin heavy chain ratio, atrial natriuretic peptide, and interleukins 6 and 8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy by decreasing the level of midchain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes, and decreasing mRNA expression of IL-6 and IL-8.
Collapse
Affiliation(s)
- Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
31
|
Abstract
Globally, cardiovascular diseases (CVDs) are the number one cause of mortality. Approximately 18 million people died from CVDs in 2015, representing more than 30% of all global deaths. New diagnostic tools and therapies are eagerly required to decrease the prevalence of CVDs related to mortality and/or risk factors leading to CVDs. Oxylipins are a group of metabolites, generated via oxygenation of polyunsaturated fatty acids that are involved in inflammation, immunity, and vascular functions, etc. Thus far, over 100 oxylipins have been identified, and have overlapping and interconnected roles. Important CVD pathologies such as hyperlipidemia, hypertension, thrombosis, hemostasis and diabetes have been linked to abnormal oxylipin signaling. Oxylipins represent a new era of risk markers and/or therapeutic targets in several diseases including CVDs. The role of many oxylipins in the progression or regression in CVD, however, is still not fully understood. An increased knowledge of the role of these oxygenated polyunsaturated fatty acids in cardiovascular dysfunctions or CVDs including hypertension could possibly lead to the development of biomarkers for the detection and their treatment in the future.
Collapse
|
32
|
Costa TJ, Ceravolo GS, Echem C, Hashimoto CM, Costa BP, Santos-Eichler RA, Oliveira MA, Jiménez-Altayó F, Akamine EH, Dantas AP, Carvalho MHC. Detrimental Effects of Testosterone Addition to Estrogen Therapy Involve Cytochrome P-450-Induced 20-HETE Synthesis in Aorta of Ovariectomized Spontaneously Hypertensive Rat (SHR), a Model of Postmenopausal Hypertension. Front Physiol 2018; 9:490. [PMID: 29867542 PMCID: PMC5952044 DOI: 10.3389/fphys.2018.00490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
Postmenopausal period has been associated to different symptoms such as hot flashes, vulvovaginal atrophy, hypoactive sexual desire disorder (HSDD) and others. Clinical studies have described postmenopausal women presenting HSDD can benefit from the association of testosterone to conventional hormonal therapy. Testosterone has been linked to development of cardiovascular diseases including hypertension and it also increases cytochrome P-450-induced 20-HETE synthesis which in turn results in vascular dysfunction. However, the effect of testosterone plus estrogen in the cardiovascular system is still very poorly studied. The aim of the present study is to evaluate the role of cytochrome P-450 pathway in a postmenopausal hypertensive female treated with testosterone plus estrogen. For that, hypertensive ovariectomized rats (OVX-SHR) were used as a model of postmenopausal hypertension and four groups were created: SHAM-operated (SHAM), ovariectomized SHR (OVX), OVX treated for 15 days with conjugated equine estrogens [(CEE) 9.6 μg/Kg/day/po] or CEE associated to testosterone [(CEE+T) 2.85 mg/kg/weekly/im]. Phenylephrine-induced contraction and generation of reactive oxygen species (ROS) were markedly increased in aortic rings from OVX-SHR compared to SHAM rats which were restored by CEE treatment. On the other hand, CEE+T abolished vascular effects by CEE and augmented both systolic and diastolic blood pressure of SHR. Treatment of aortic rings with the CYP/20-HETE synthesis inhibitor HET0016 (1 μM) reduced phenylephrine hyperreactivity and the augmented ROS generation in the CEE+T group. These results are paralleled by the increased CYP4F3 protein expression and activity in aortas of CEE+T. In conclusion, we showed that association of testosterone to estrogen therapy produces detrimental effects in cardiovascular system of ovariectomized hypertensive females via CYP4F3/20-HETE pathway. Therefore, our findings support the standpoint that the CYP/20-HETE pathway is an important therapeutic target for the prevention of cardiovascular disease in menopausal women in the presence of high levels of testosterone.
Collapse
Affiliation(s)
- Tiago J Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Group of Atherosclerosis and Coronary Disease, Institut Clinic del Torax, Institut d'Investigacions Biomédiques August Pi I Sunyer, Barcelona, Spain
| | - Graziela S Ceravolo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Cinthya Echem
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina M Hashimoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosangela A Santos-Eichler
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eliana H Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Dantas
- Group of Atherosclerosis and Coronary Disease, Institut Clinic del Torax, Institut d'Investigacions Biomédiques August Pi I Sunyer, Barcelona, Spain
| | - Maria Helena C Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J Adv Res 2018; 11:43-55. [PMID: 30034875 PMCID: PMC6052660 DOI: 10.1016/j.jare.2018.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA 20:4n-6) is an essential component of cell membranes and modulates cell membrane fluidity. AA is metabolized by cyclo-oxygenase (COX), lipoxygenase (LOX) and cytochrome P450 enzymes to form several metabolites that have important biological actions. Of all the actions, role of AA in the regulation of blood pressure and its ability to prevent both type 1 and type 2 diabetes mellitus seems to be interesting. Studies showed that AA and its metabolites especially, lipoxin A4 (LXA4) and epoxyeicosatrienoic acids (EETs), potent anti-inflammatory metabolites, have a crucial role in the pathobiology of hypertension and diabetes mellitus. AA, LXA4 and EETs regulate smooth muscle function and proliferation, voltage gated ion channels, cell membrane fluidity, membrane receptors, G-coupled receptors, PPARs, free radical generation, nitric oxide formation, inflammation, and immune responses that, in turn, participate in the regulation blood pressure and pathogenesis of diabetes mellitus. In this review, role of AA and its metabolites LXA4 and EETs in the pathobiology of hypertension, pre-eclampsia and diabetes mellitus are discussed. Based on several lines of evidences, it is proposed that a combination of aspirin and AA could be of benefit in the prevention and management of hypertension, pre-eclampsia and diabetes mellitus.
Collapse
|
34
|
Soler A, Hunter I, Joseph G, Hutcheson R, Hutcheson B, Yang J, Zhang FF, Joshi SR, Bradford C, Gotlinger KH, Maniyar R, Falck JR, Proctor S, Schwartzman ML, Gupte SA, Rocic P. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 2018; 117:88-99. [PMID: 29428638 PMCID: PMC5877315 DOI: 10.1016/j.yjmcc.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/08/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
Arterial stiffness plays a causal role in development of systolic hypertension. 20-hydroxyeicosatetraeonic acid (20-HETE), a cytochrome P450 (CYP450)-derived arachidonic acid metabolite, is known to be elevated in resistance arteries in hypertensive animal models and loosely associated with obesity in humans. However, the role of 20-HETE in the regulation of large artery remodeling in metabolic syndrome has not been investigated. We hypothesized that elevated 20-HETE in metabolic syndrome increases matrix metalloproteinase 12 (MMP12) activation leading to increased degradation of elastin, increased large artery stiffness and increased systolic blood pressure. 20-HETE production was increased ~7 fold in large, conduit arteries of metabolic syndrome (JCR:LA-cp, JCR) vs. normal Sprague-Dawley (SD) rats. This correlated with increased elastin degradation (~7 fold) and decreased arterial compliance (~75% JCR vs. SD). 20-HETE antagonists blocked elastin degradation in JCR rats concomitant with blocking MMP12 activation. 20-HETE antagonists normalized, and MMP12 inhibition (pharmacological and MMP12-shRNA-Lnv) significantly improved (~50% vs. untreated JCR) large artery compliance in JCR rats. 20-HETE antagonists also decreased systolic (182 ± 3 mmHg JCR, 145 ± 3 mmHg JCR + 20-HETE antagonists) but not diastolic blood pressure in JCR rats. Whereas diastolic pressure was fully angiotensin II (Ang II)-dependent, systolic pressure was only partially Ang II-dependent, and large artery stiffness was Ang II-independent. Thus, 20-HETE-dependent regulation of systolic blood pressure may be a unique feature of metabolic syndrome related to high 20-HETE production in large, conduit arteries, which results in increased large artery stiffness and systolic blood pressure. These findings may have implications for management of systolic hypertension in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jenny Yang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Chastity Bradford
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, United States
| | - Katherine H Gotlinger
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rachana Maniyar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
35
|
Lukaszewicz KM, Paudyal MP, Falck JR, Lombard JH. Role of vascular reactive oxygen species in regulating cytochrome P450-4A enzyme expression in Dahl salt-sensitive rats. Microcirculation 2018; 23:540-548. [PMID: 27537772 DOI: 10.1111/micc.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The potential contribution of CYP4A enzymes to endothelial dysfunction in Dahl salt-sensitive rats was determined by comparison to SS-5BN consomic rats having chromosome 5 carrying CYP4A alleles from the BN rat introgressed into the SS genetic background. METHODS The following experiments were performed in cerebral arteries from HS-fed SS and SS-5BN rats ± the SOD inhibitor DETC and/or the superoxide scavenger Tempol: (i) endothelial function was determined via video microscopy ± acute addition of the CYP4A inhibitor DDMS or Tempol; (ii) vascular oxidative stress was assessed with DHE fluorescence ± acute addition of DDMS, l-NAME, or PEG-SOD; and (iii) CYP4A protein levels were compared by western blotting. RESULTS In DETC-treated SS-5BN and HS-fed SS rats, (i) DDMS or Tempol ameliorated vascular dysfunction, (ii) DDMS reduced vascular oxidative stress to control levels, (iii) chronic Tempol treatment reduced vascular CYP4A protein expression, and (iv) combined treatment with Tempol and l-NAME prevented the reduction in CYP4A protein expression in MCA of HS-fed SS rats. CONCLUSION The CYP4A pathway plays a role in vascular dysfunction in SS rats and there appears to be a direct role of reduced NO availability due to salt-induced oxidant stress in upregulating CYP4A enzyme expression.
Collapse
Affiliation(s)
| | - Mahesh P Paudyal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
36
|
Abstract
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.
Collapse
Affiliation(s)
- Eva Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Pandey V, Garcia V, Gilani A, Mishra P, Zhang FF, Paudyal MP, Falck JR, Nasjletti A, Wang WH, Schwartzman ML. The Blood Pressure-Lowering Effect of 20-HETE Blockade in Cyp4a14(-/-) Mice Is Associated with Natriuresis. J Pharmacol Exp Ther 2017; 363:412-418. [PMID: 28912346 PMCID: PMC5698946 DOI: 10.1124/jpet.117.243618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023] Open
Abstract
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) has been linked to pro-hypertensive and anti-hypertensive actions through its ability to promote vasoconstriction and inhibit Na transport in the ascending limb of the loop of Henle, respectively. In this study, we assessed the effects of 20-HETE blockade on blood pressure, renal hemodynamics, and urinary sodium excretion in Cyp4a14(-/-) male mice, which display androgen-driven 20-HETE-dependent hypertension. Administration of 2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyicosa-6(Z),15(Z)-dienoate (20-SOLA), a water-soluble 20-HETE antagonist, in the drinking water normalized the blood pressure of male Cyp4a14(-/-) hypertensive mice (±124 vs. ±153 mmHg) while having no effect on age-matched normotensive wild-type (WT) male mice. Hypertension in Cyp4a14(-/-) male mice was accompanied by decreased renal perfusion and reduced glomerular filtration rates, which were corrected by treatment with 20-SOLA. Interestingly, Cyp4a14(-/-) male mice treated with 20-SOLA displayed increased urinary sodium excretion that was paralleled by the reduction of blood pressure suggestive of an antinatriuretic activity of endogenous 20-HETE in the hypertensive mice. This interpretation is in line with the observation that the natriuretic response to acute isotonic saline loading in hypertensive Cyp4a14(-/-) male mice was significantly impaired relative to that in WT mice; this impairment was corrected by 20-SOLA treatment. Hence, endogenous 20-HETE appears to promote sodium conservation in hypertensive Cyp4a14(-/-) male mice, presumably, as a result of associated changes in renal hemodynamics and/or direct stimulatory action on tubular sodium reabsorption.
Collapse
Affiliation(s)
- Varunkumar Pandey
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Ankit Gilani
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Priyanka Mishra
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Mahesh P Paudyal
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - John R Falck
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Alberto Nasjletti
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Michal Laniado Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| |
Collapse
|
38
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Yan FX, Li HM, Li SX, He SH, Dai WP, Li Y, Wang TT, Shi MM, Yuan HX, Xu Z, Zhou JG, Ning DS, Mo ZW, Ou ZJ, Ou JS. The oxidized phospholipid POVPC impairs endothelial function and vasodilation via uncoupling endothelial nitric oxide synthase. J Mol Cell Cardiol 2017; 112:40-48. [DOI: 10.1016/j.yjmcc.2017.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
|
40
|
Özen N, Nasırcılar Ülker S, Ülker P, Özcan F, Aslan M, Şentürk ÜK, Basralı F. Effect of 20-HETE inhibition on L-NAME-induced hypertension in rats. Clin Exp Hypertens 2017; 40:292-302. [DOI: 10.1080/10641963.2017.1368540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nur Özen
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | | | - Pınar Ülker
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Filiz Özcan
- Medical Faculty, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Medical Faculty, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Ümit Kemal Şentürk
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Filiz Basralı
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
41
|
Reduced coronary reactive hyperemia in mice was reversed by the soluble epoxide hydrolase inhibitor (t-AUCB): Role of adenosine A 2A receptor and plasma oxylipins. Prostaglandins Other Lipid Mediat 2017; 131:83-95. [PMID: 28890385 DOI: 10.1016/j.prostaglandins.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
Abstract
Coronary reactive hyperemia (CRH) protects the heart against ischemia. Adenosine A2AAR-deficient (A2AAR-/-) mice have increased expression of soluble epoxide hydrolase (sEH); the enzyme responsible for breaking down the cardioprotective epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). sEH-inhibition enhances CRH, increases EETs, and modulates oxylipin profiles. We investigated the changes of oxylipins and their impact on CRH in A2AAR-/- and wild type (WT) mice. We hypothesized that the attenuated CRH in A2AAR-/- mice is mediated by changes in oxylipin profiles, and that it can be reversed by either sEH- or ω-hydroxylases-inhibition. Compared to WT mice, A2AAR-/- mice had attenuated CRH and changed oxylipin profiles, which were consistent between plasma and heart perfusate samples, including decreased EET/DHET ratios, and increased hydroxyeicosatetraenoic acids (HETEs). Plasma oxylipns in A2AAR-/- mice indicated an increased proinflammatory state including increased ω-terminal HETEs, decreased epoxyoctadecaenoic/dihydroxyoctadecaenoic acids (EpOMEs/DiHOMEs) ratios, increased 9-hydroxyoctadecadienoic acid, and increased prostanoids. Inhibition of either sEH or ω-hydroxylases reversed the reduced CRH in A2AAR-/- mice. In WT and sEH-/- mice, blocking A2AAR decreased CRH. These data demonstrate that A2AAR-deletion was associated with changes in oxylipin profiles, which may contribute to the attenuated CRH. Also, inhibition of sEH and ω-hydroxylases reversed the reduction in CRH.
Collapse
|
42
|
Fan F, Roman RJ. Effect of Cytochrome P450 Metabolites of Arachidonic Acid in Nephrology. J Am Soc Nephrol 2017; 28:2845-2855. [PMID: 28701518 DOI: 10.1681/asn.2017030252] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thirty-five years ago, a third pathway for the metabolism of arachidonic acid by cytochrome P450 enzymes emerged. Subsequent work revealed that 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids formed by these pathways have essential roles in the regulation of renal tubular and vascular function. Sequence variants in the genes that produce 20-hydroxyeicosatetraenoic acid are associated with hypertension in humans, whereas the evidence supporting a role for variants in the genes that alter levels of epoxyeicosatrienoic acids is less convincing. Studies in animal models suggest that changes in the production of cytochrome P450 eicosanoids alter BP. However, the mechanisms involved remain controversial, especially for 20-hydroxyeicosatetraenoic acid, which has both vasoconstrictive and natriuretic actions. Epoxyeicosatrienoic acids are vasodilators with anti-inflammatory properties that oppose the development of hypertension and CKD; 20-hydroxyeicosatetraenoic acid levels are elevated after renal ischemia and may protect against injury. Levels of this eicosanoid are also elevated in polycystic kidney disease and may contribute to cyst formation. Our review summarizes the emerging evidence that cytochrome P450 eicosanoids have a role in the pathogenesis of hypertension, polycystic kidney disease, AKI, and CKD.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
43
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice. PLoS One 2017; 12:e0174137. [PMID: 28328948 PMCID: PMC5362206 DOI: 10.1371/journal.pone.0174137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | | | - John R. Falck
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohammed A. Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
44
|
Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, Gandham SK, Reddy NR, Graves JP, Gruzdev A, Zeldin DC, Capdevila JH, Falck JR, Schwartzman ML. 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (G q) to Affect Vascular Function and Trigger Hypertension. Circ Res 2017; 120:1776-1788. [PMID: 28325781 DOI: 10.1161/circresaha.116.310525] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKβ, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Victor Garcia
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Ankit Gilani
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Brian Shkolnik
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Varunkumar Pandey
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Frank Fan Zhang
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Rambabu Dakarapu
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Shyam K Gandham
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - N Rami Reddy
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Joan P Graves
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Artiom Gruzdev
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Darryl C Zeldin
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Jorge H Capdevila
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - John R Falck
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Michal Laniado Schwartzman
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.).
| |
Collapse
|
45
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular Endothelial Over-Expression of Human Soluble Epoxide Hydrolase (Tie2-sEH Tr) Attenuates Coronary Reactive Hyperemia in Mice: Role of Oxylipins and ω-Hydroxylases. PLoS One 2017; 12:e0169584. [PMID: 28056085 PMCID: PMC5215949 DOI: 10.1371/journal.pone.0169584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 02/03/2023] Open
Abstract
Cytochromes P450 metabolize arachidonic acid (AA) into two vasoactive oxylipins with opposing biologic effects: epoxyeicosatrienoic acids (EETs) and omega-(ω)-terminal hydroxyeicosatetraenoic acids (HETEs). EETs have numerous beneficial physiological effects, including vasodilation and protection against ischemia/reperfusion injury, whereas ω-terminal HETEs induce vasoconstriction and vascular dysfunction. We evaluated the effect of these oxylipins on post-ischemic vasodilation known as coronary reactive hyperemia (CRH). CRH prevents the potential harm associated with transient ischemia. The beneficial effects of EETs are reduced after their hydrolysis to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). ω-terminal HETEs are formed by ω-hydroxylase family members. The relationship among endothelial over-expression of sEH (Tie2-sEH Tr), the changes in oxylipins it may produce, the pharmacologic inhibition of ω-hydroxylases, activation of PPARγ, and CRH response to a brief ischemia is not known. We hypothesized that CRH is attenuated in isolated mouse hearts with endothelial sEH over-expression through modulation of oxylipin profiles, whereas both inhibition of ω-hydroxylases and activation of PPARγ enhance CRH. Compared to WT mice, Tie2-sEH Tr mice had decreased CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05), whereas inhibition of ω-hydroxylases increased these same CRH parameters in Tie2-sEH Tr mice. Inhibition of sEH with t-AUCB reversed the decreased CRH in Tie2-sEH Tr mice. Endothelial over-expression of sEH significantly changed oxylipin profiles, including decreases in DHETs, mid-chain HETEs, and prostaglandins (P < 0.05). Treatment with rosiglitazone, PPARγ-agonist, enhanced CRH (P < 0.05) in both Tie2-sEH Tr and wild type (WT) mice. These data demonstrate that endothelial over-expression of sEH (through changing the oxylipin profiles) attenuates CRH, whereas inhibition of ω-hydroxylases and activation of PPARγ enhance it.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Christophe Morisseau
- University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - John R. Falck
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohammed A. Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
46
|
Omega-3 fatty acids and cytochrome P450-derived eicosanoids in cardiovascular diseases: Which actions and interactions modulate hemodynamics? Prostaglandins Other Lipid Mediat 2017; 128-129:34-42. [DOI: 10.1016/j.prostaglandins.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
|
47
|
Joseph G, Soler A, Hutcheson R, Hunter I, Bradford C, Hutcheson B, Gotlinger KH, Jiang H, Falck JR, Proctor S, Schwartzman ML, Rocic P. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. Am J Physiol Heart Circ Physiol 2016; 312:H528-H540. [PMID: 28011587 PMCID: PMC5402017 DOI: 10.1152/ajpheart.00561.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE.
Collapse
Affiliation(s)
- Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | | | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
48
|
Wei Y, Xu M, Ren Y, Lu G, Xu Y, Song Y, Ji H. The cardioprotection of dihydrotanshinone I against myocardial ischemia–reperfusion injury via inhibition of arachidonic acid ω-hydroxylase. Can J Physiol Pharmacol 2016; 94:1267-1275. [DOI: 10.1139/cjpp-2016-0036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) is a precursor that is metabolized by several enzymes to many biological eicosanoids. Accumulating data indicate that the ω-hydroxylation metabolite of AA, 20-hydroxyeicosatetraenoic acid (20-HETE), is considered to be involved in the myocardial ischemia–reperfusion injury (MIRI). The inhibitors of AA ω-hydroxylase, however, are demonstrated to exhibit protective effects on MIRI. Dihydrotanshinone I (DI), a bioactive constituent of danshen, is proven to be a potent inhibitor of AA ω-hydroxylase by our preliminary study in vitro. The purpose of the present study was to investigate the cardioprotection of DI against MIRI and its effects on the concentrations of 20-HETE in vivo. Rats subjected to 30 min of ischemia followed by 24 h of reperfusion were assigned to intravenously receive vehicle (sham and ischemia–reperfusion), low (1 mg/kg), middle (2 mg/kg), or high (4 mg/kg) doses of DI before reperfusion. The results demonstrated that DI treatment could improve cardiac function, reduce infarct size, ameliorate the variations in myocardial zymogram and histopathological disorders, decrease 20-HETE generation, and regulate apoptosis-related protein in myocardial ischemia–reperfusion rats. These findings suggested DI could exert considerable cardioprotective action on MIRI by the attenuation of 20-HETE generation, subsequent myocardial injury, and apoptosis through inhibition on AA ω-hydroxylase.
Collapse
Affiliation(s)
- Yidan Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| | - Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, Jiangsu, China
| | - Yi Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| | - Guo Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| | - Yangmei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| | - Yangyang Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Yi X, Lin J, Wang C, Zhou Q. CYP Genetic Variants, CYP Metabolite Levels, and Neurologic Deterioration in Acute Ischemic Stroke in Chinese Population. J Stroke Cerebrovasc Dis 2016; 26:969-978. [PMID: 27916259 DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The mechanisms of neurologic deterioration (ND) are not fully understood. The aim of the present study was to evaluate the relationship between CYP genetic variants and CYP metabolite levels with ND in acute ischemic stroke patients. METHODS Eleven single nucleotide polymorphisms (SNPs) of seven CYP genes were genotyped in 396 patients with acute ischemic stroke. The CYP plasma metabolite levels (20-hydroxyeicosatetraenoic acid [HETE], total epoxyeicosatrienoic acids [EETs], and dihydroxyeicosatrienoic acids [DiHETEs]) were also assessed. The primary outcome was ND within 10 days on admission. ND was defined as an increase of two or more points in the National Institutes of Health Stroke Scale score. RESULTS Among 396 patients, 101 patients (25.5%) experienced ND. The plasma levels of 20-HETE and DiHETEs were significantly higher and the EET levels were significantly lower in patients with ND compared to patients without ND. Univariate analyses revealed that old age, diabetes mellitus (DM), higher fasting glucose, and higher hemoglobin A1c (HbA1c) were associated with ND. CYP2C8 rs17110453 CC, EPHX2 rs751141 GG, and CYP4A11 rs9333025 GG were independently associated with ND after adjusting age, DM, fasting glucose, and HbA1c (odds ratio [OR]: 1.60, 95% confidence interval [CI]: 1.02-3.72; OR: 3.01, 95% CI: 1.29-7.13; OR: 2.75, 95% CI: 1.17-6.24, respectively). Also, these polymorphisms were associated with CYP metabolite levels in patients with ND. CONCLUSIONS ND is fairly common in acute ischemic stroke. Specific CYP gene SNPs are associated with CYP plasma metabolite levels, which may explain their associations with ND. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, The People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Jing Lin
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China.
| | - Chun Wang
- Department of Neurology, The People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
Yi X, Han Z, Zhou Q, Lin J, Liu P. 20-Hydroxyeicosatetraenoic Acid as a Predictor of Neurological Deterioration in Acute Minor Ischemic Stroke. Stroke 2016; 47:3045-3047. [PMID: 27834744 DOI: 10.1161/strokeaha.116.015146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE The relationship between high plasma 20-hydroxyeicosatetraenoic acid (20-HETE) levels and neurological deterioration (ND) has not been investigated in patients with acute minor ischemic stroke. METHOD We conducted a prospective, multicenter observational study in patients with acute minor ischemic stroke. Plasma levels of 20-HETE were measured at admission in all patients. The primary end point of the study was ND within 10 days after admission. The degree of disability was assessed using modified Rankin scale at 3 months after admission. RESULTS A total of 322 patients were enrolled, of which 85 patients (26.4%) developed ND. Mean 20-HETE level was 1687±158 pmol/L. On multivariate analyses, high level (>1675 pmol/L) of 20-HETE was an independent predictor of ND (third and fourth quartiles). Neurological deterioration was associated with a higher risk of poor outcome (modified Rankin scale scores 3-6) at 3 months. CONCLUSIONS ND is fairly common in acute minor ischemic stroke and is associated with poor prognosis. Elevated plasma level of 20-HETE may be a predictor for ND in acute minor ischemic stroke.
Collapse
Affiliation(s)
- Xingyang Yi
- From the Department of Neurology, People's Hospital of Deyang City, Sichuan, China (X.Y., P.L.); Department of Neurology, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Z.H.); and Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Q.Z., J.L.).
| | - Zhao Han
- From the Department of Neurology, People's Hospital of Deyang City, Sichuan, China (X.Y., P.L.); Department of Neurology, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Z.H.); and Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Q.Z., J.L.).
| | - Qiang Zhou
- From the Department of Neurology, People's Hospital of Deyang City, Sichuan, China (X.Y., P.L.); Department of Neurology, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Z.H.); and Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Q.Z., J.L.)
| | - Jing Lin
- From the Department of Neurology, People's Hospital of Deyang City, Sichuan, China (X.Y., P.L.); Department of Neurology, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Z.H.); and Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Q.Z., J.L.)
| | - Ping Liu
- From the Department of Neurology, People's Hospital of Deyang City, Sichuan, China (X.Y., P.L.); Department of Neurology, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Z.H.); and Department of Neurology, Third Affiliated Hospital of Wenzhou Medical College, Zhejiang, China (Q.Z., J.L.)
| |
Collapse
|