1
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
2
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
4
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
5
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
6
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [PMID: 35461901 DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
7
|
Taguchi K, Kaneko N, Okudaira K, Matsumoto T, Kobayashi T. GLP-1 modulates insulin-induced relaxation response through β-arrestin2 regulation in diabetic mice aortas. Acta Physiol (Oxf) 2021; 231:e13573. [PMID: 33098611 DOI: 10.1111/apha.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
AIMS Diabetes impairs insulin-induced endothelium-dependent relaxation by reducing nitric oxide (NO) production. GLP-1, an incretin hormone, has been shown to prevent the development of endothelial dysfunction. In this study, we hypothesized that GLP-1 would improve the impaired insulin-induced relaxation response in diabetic mice. We also examined the underlying mechanisms. METHODS Using aortic rings from ob/ob mice, an animal model of obesity and type 2 diabetes, and from lean mice, vascular relaxation responses and protein expressions were evaluated using insulin, GLP-1, and pathway-specific inhibitors to elucidate the mechanisms of response. In parallel experiments, β-arrestin2 siRNA-transfected aortas were treated with GLP-1 to evaluate its effects on aortic response pathways. RESULTS When compared to that of untreated ob/ob aortas, GLP-1 increased insulin-induced vasorelaxation and NO production. AMPK inhibition did not alter this vasorelaxation in both GLP-1-treated lean and ob/ob aortas, while Akt inhibition reduced vasorelaxation in both groups, and co-treatment with GLP-1 and insulin caused Akt/eNOS activation. Additionally, GLP-1 decreased GRK2 activity and enhanced β-arrestin2 translocation from the cytosol to membrane in ob/ob aortas. β-Arrestin2 siRNA decreased insulin-induced relaxation both in lean aortas and GLP-1-treated ob/ob aortas. CONCLUSIONS We demonstrated that insulin-induced relaxation is dependent on β-arrestin2 translocation and Akt activation via GLP-1-stimulated GRK2 inactivation in ob/ob aortas. We showed a novel cross-talk between GLP-1-responsive β-arrestin2 and insulin signalling in diabetic aortas.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| |
Collapse
|
8
|
Akanji MA, Adeyanju AA, Rotimi D, Adeyemi OS. Nitric Oxide Balance in Health and Diseases: Implications for New Treatment Strategies. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitric Oxide (NO) is an essential signaling molecule with diverse physiological functions in humans. The steady-state concentration and site of production of nitric oxide determine its effects in biological systems. The human cells are exposed to both beneficial and harmful effects of NO. These dual effects of NO could depend on its local concentration in the cells. Additionally, the rate of synthesis, translocation, direct interaction with other molecules, and signals contribute to the biochemical and physiological effects of NO. In this review, the biochemical and physiological role of NO, particularly in health and disease as touching on cell signaling, oxidative stress, immunity, as well as cardiovascular protection amongst others, is focused on. Therefore, this review objectively discusses the dual functionality of NO in living cells.
Collapse
|
9
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Battson ML, Lee DM, Li Puma LC, Ecton KE, Thomas KN, Febvre HP, Chicco AJ, Weir TL, Gentile CL. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. Am J Physiol Heart Circ Physiol 2019; 317:H1210-H1220. [PMID: 31559829 DOI: 10.1152/ajpheart.00346.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiota has emerged as an important regulator of host physiology, with recent data suggesting a role in modulating cardiovascular health. The present study determined if gut microbial signatures could transfer cardiovascular risk phenotypes between lean and obese mice using cecal microbiota transplantation (CMT). Pooled cecal contents collected from obese leptin-deficient (Ob) mice or C57Bl/6j control (Con) mice were transplanted by oral gavage into cohorts of recipient Ob and Con mice maintained on identical low-fat diets for 8 wk (n = 9-11/group). Cardiovascular pathology was assessed as the degree of arterial stiffness (aortic pulse wave velocity) and myocardial infarct size following a 45/120 min ex vivo global cardiac ischemia-reperfusion protocol. Gut microbiota was characterized by 16S rDNA sequencing, along with measures of intestinal barrier function and cecal short-chain fatty acid (SCFA) composition. Following CMT, the gut microbiota of recipient mice was altered to resemble that of the donors. Ob CMT to Con mice increased arterial stiffness, left ventricular (LV) mass, and myocardial infarct size, which were associated with greater gut permeability and reduced cecal SCFA concentrations. Conversely, Con CMT to Ob mice increased cecal SCFA, reduced LV mass, and attenuated myocardial infarct size, with no effects on gut permeability or arterial stiffness. Collectively, these data demonstrate that obesity-related changes in the gut microbiota, independent of dietary manipulation, regulate hallmark measures of cardiovascular pathology in mice and highlight the potential of microbiota-targeted therapeutics for reducing cardiovascular pathology and risk in obesity.NEW & NOTEWORTHY These data are the first to demonstrate that cecal microbiota transplantation (CMT) can alter cardiovascular pathology in lean and obese mice independent from alterations in dietary intake. Myocardial infarct size was reduced in obese mice receiving lean CMT and worsened in lean mice receiving obese CMT. Lean mice receiving obese CMT also displayed increased aortic stiffness. These changes were accompanied by alterations in short-chain fatty acids and gut permeability.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Dustin M Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kayl E Ecton
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Keely N Thomas
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Hallie P Febvre
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
11
|
Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Front Pharmacol 2019; 10:112. [PMID: 30837878 PMCID: PMC6390810 DOI: 10.3389/fphar.2019.00112] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.
Collapse
Affiliation(s)
- Cristina Murga
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
12
|
Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 2017; 7:8436. [PMID: 28814745 PMCID: PMC5559446 DOI: 10.1038/s41598-017-08998-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023] Open
Abstract
Despite the associations between diabetic complications and vascular endothelial dysfunction, a direct therapeutic method targeting endothelial dysfunction remains poorly characterized. We have previously shown that chemical inhibition of G-protein-coupled receptor kinase 2 (GRK2) slightly enhances insulin sensitivity and reduces endothelial dysfunction in type 2 diabetic mice. In this study, we identified GRK2 as a novel therapeutic target of diabetic endothelial dysfunction and investigated the effect on diabetic endothelial dysfunction through the systemic administration of GRK2 siRNA using a hydrodynamic-based procedure, resulting in suppression of increased GRK2 protein levels in the liver. Suppressed GRK2 levels in the liver markedly improved glucose homeostasis, as well as improved the impaired endothelial Akt/eNOS-dependent signal activation (insulin-stimulated phosphorylation of Akt and eNOS) and vascular responses (clonidine-induced and insulin-induced endothelial-dependent relaxation response and phenylephrine-induced contractile response) in type 2 diabetic aortas. Interestingly, insulin-stimulated Akt/eNOS signaling was increased only by normalizing the glucose concentration in human umbilical vein endothelial cells (HUVECs) with GRK2 overexpression, suggesting of an important role of hepatic GRK2. Our results clarified the relationship among hepatic GRK2, glucose homeostasis, and vascular endothelial function. Liver-targeting GRK2 siRNA delivery represents a novel therapeutic tool to restore glucose homeostasis and reduce endothelial dysfunction.
Collapse
|
13
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
14
|
Taguchi K. [The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications]. YAKUGAKU ZASSHI 2016; 135:961-7. [PMID: 26234354 DOI: 10.1248/yakushi.15-00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A decrease in nitric oxide (NO) production may induce pathological conditions associated with endothelial dysfunction and diabetes. Although a decrease in NO production caused by impaired Akt/endothelial nitric oxide synthesis (eNOS) signaling has been demonstrated at the aorta in the presence of diabetic vascular complications, little is known regarding the details of the mechanism. We identified G-protein-coupled receptor kinase 2 (GRK2) as a critical factor in diabetic endothelial dysfunction. GRK2 plays a role in many physiological functions including regulation of G-protein-coupled receptors (GPCRs). We found that the vasculature affected by type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction caused by impaired Akt/eNOS signaling. GRK2 activation also induces changes in the subcellular localization of GRK2 and β-arrestin 2, a downstream protein, from the cytosol to membrane. In mouse aorta GRK2 may be, on translocation, a key negative regulator and an important regulator of β-arrestin 2/Akt/eNOS signaling, which has been implicated in diabetic endothelial dysfunction. Furthermore, in the aortic membrane of type 2 diabetic model mice under insulin stimulation, the impaired Akt/eNOS signaling was improved by a selective GRK2 inhibitor. These results suggest that in diabetes the GRK2 inhibitor ameliorates vascular endothelial dysfunction via Akt/eNOS signaling by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation to the membrane under GPCR or non-GPCR stimulation, thereby contributing to blood pressure- and blood glucose-lowering effects. We propose that the GRK2 inhibitor may be a promising therapeutic target for cardiovascular complications in type 2 diabetes.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
15
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
16
|
Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7364138. [PMID: 27651855 PMCID: PMC5019908 DOI: 10.1155/2016/7364138] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | - Valeria Conti
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Antonio Damato
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | | | - Annibale A. Puca
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
- IRCCS Multimedica, Milan, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carmine Vecchione
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Albino Carrizzo
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| |
Collapse
|
17
|
Westergren HU, Grönros J, Heinonen SE, Miliotis T, Jennbacken K, Sabirsh A, Ericsson A, Jönsson-Rylander AC, Svedlund S, Gan LM. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice. PLoS One 2015; 10:e0130648. [PMID: 26098416 PMCID: PMC4476758 DOI: 10.1371/journal.pone.0130648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. METHODS AND RESULTS In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. CONCLUSION In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
- Helena U. Westergren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Alan Sabirsh
- CVMD iMED, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- CVMD iMED, AstraZeneca R&D Mölndal, Mölndal, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
18
|
Lucas E, Cruces-Sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-Bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch Physiol Biochem 2015; 121:163-77. [PMID: 26643283 DOI: 10.3109/13813455.2015.1107589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.
Collapse
Affiliation(s)
- Elisa Lucas
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Marta Cruces-Sande
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Ana M Briones
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Mercedes Salaices
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Federico Mayor
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Cristina Murga
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Rocio Vila-Bedmar
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| |
Collapse
|
19
|
Taguchi K, Matsumoto T, Kobayashi T. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms. J Smooth Muscle Res 2015; 51:37-49. [PMID: 26447102 PMCID: PMC5137304 DOI: 10.1540/jsmr.51.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry,
Hoshi University, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry,
Hoshi University, Tokyo, Japan
| |
Collapse
|
20
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
21
|
Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol 2014; 174:230-42. [DOI: 10.1016/j.ijcard.2014.04.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/24/2022]
|
22
|
Taguchi K, Sakata K, Ohashi W, Imaizumi T, Imura J, Hattori Y. Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels. J Pharmacol Exp Ther 2014; 349:199-208. [PMID: 24570070 DOI: 10.1124/jpet.113.211854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) participates together with β-arrestins in the regulation of G protein-coupled receptor signaling, but emerging evidence suggests that GRK2 can interact with a growing number of proteins involved in signaling mediated by other membrane receptor families under various pathologic conditions. We tested the hypothesis that GRK2 may be an important contributor to vascular endothelial dysfunction in diabetes. Human umbilical venous endothelial cells (HUVECs) were exposed to high glucose and high insulin (HG/HI) to mimic insulin-resistant diabetic conditions. GRK2 expression and membrane translocation were up-regulated under HG/HI conditions. HG/HI did not modify activation of Akt or endothelial nitric-oxide synthase (eNOS), but GRK2 inhibitor or small interfering RNA (siRNA) resulted in an increase in Akt and eNOS activation in HUVECs exposed to HG/HI. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation was increased after exposure to HG/HI, which was prevented by GRK2 inhibitor or siRNA. ERK1/2-mediated GRK2 phosphorylation at Ser-670 confirmed that ERK1/2 participated in a negative feedback regulatory loop. In human embryonic kidney 293T cells that overexpressed GRK2, Akt activity was unchanged, whereas ERK1/2 activity was raised. The effect of GRK inhibitor treatment on Akt/eNOS signaling was associated with membrane translocation of β-arrestin 2. The experiments with β-arrestin 2 siRNA showed that β-arrestin 2 may act as a positive modulator of Akt/eNOS signaling. Our studies reveal that GRK2, which is up-regulated by HG/HI, leads to a tonic inhibition of the insulin Akt/eNOS pathway in endothelial cells. We provide new insights into the pathogenesis of diabetes-associated vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Departments of Molecular and Medical Pharmacology (K.T., K.S., W.O., T.I., Y.H.) and Diagnostic Pathology (J.I.), Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Li X, Zhao G, Ma B, Li R, Hong J, Liu S, Wang DW. 20-Hydroxyeicosatetraenoic acid impairs endothelial insulin signaling by inducing phosphorylation of the insulin receptor substrate-1 at Ser616. PLoS One 2014; 9:e95841. [PMID: 24763529 PMCID: PMC3998975 DOI: 10.1371/journal.pone.0095841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE) induces endothelial dysfunction and is correlated with diabetes. This study was designed to investigate the effects of 20-HETE on endothelial insulin signaling.Human umbilical vein endothelial cells (HUVECs) or C57BL/6J mice were treated with 20-HETE in the presence or absence of insulin, and p-ERK1/2, p-JNK, IRS-1/PI3K/AKT/eNOS pathway, were examined in endothelial cells and aortas by immunoblotting. eNOS activity and nitric oxide production were measured. 20-HETE increased ERK1/2 phosphorylation and IRS-1 phosphorylation at Ser616; these effects were reversed by ERK1/2 inhibition. We further observed that 20-HETE treatment resulted in impaired insulin-stimulated IRS-1 phosphorylation at Tyr632 and subsequent PI3-kinase/Akt activation. Furthermore, 20-HETE treatment blocked insulin-stimulated phosphorylation of eNOS at the stimulatory Ser1177 site, eNOS activation and NO production; these effects were reversed by inhibiting ERK1/2. Treatment of C57BL/6J mice with 20-HETE resulted in ERK1/2 activation and impaired insulin-dependent activation of the IRS-1/PI3K/Akt/eNOS pathway in the aorta. Our data suggest that the 20-HETE activation of IRS-1 phosphorylation at Ser616 is dependent on ERK1/2 and leads to impaired insulin-stimulated vasodilator effects that are mediated by the IRS-1/PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail:
| | - Gang Zhao
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ben Ma
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rui Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiang Hong
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shaowen Liu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
24
|
Abstract
The prevalence of obesity has increased remarkably in the past four decades. Because obesity can promote the development of type 2 diabetes and cardiovascular disease, understanding the mechanisms that engender weight gain and discovering safe antiobesity therapies are of critical importance. In particular, the gaseous signaling molecule, nitric oxide (NO), appears to be a central factor regulating adiposity and systemic metabolism. Obese and diabetic states are characterized by a deficit in bioavailable NO, with such decreases commonly attributed to downregulation of endothelial NO synthase (eNOS), loss of eNOS activity, or quenching of NO by its reaction with oxygen radicals. Gain-of-function studies, in which vascular-derived NO has been increased pharmacologically or genetically, reveal remarkable actions of NO on body composition and systemic metabolism. This review addresses the metabolic actions of eNOS and the potential therapeutic utility of harnessing its antiobesogenic effects.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|
25
|
Ciccarelli M, Sorriento D, Franco A, Fusco A, Giudice CD, Annunziata R, Cipolletta E, Monti MG, Dorn GW, Trimarco B, Iaccarino G. Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species. Arterioscler Thromb Vasc Biol 2013; 33:2415-24. [PMID: 23950144 PMCID: PMC4262246 DOI: 10.1161/atvbaha.113.302262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The role of endothelial G protein-coupled receptor kinase 2 (GRK2) was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2(fl/fl)). APPROACH AND RESULTS Aortas from Tie2-CRE/GRK2(fl/fl) presented functional and structural alterations as compared with control GRK2(fl/fl) mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species was increased, leading to expression of cytokines. Chronic treatment with a reactive oxygen species scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities, and reducing macrophage infiltration. CONCLUSIONS These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial reactive oxygen species production.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Salerno, Italy
- Temple University, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | - Guido Iaccarino
- University of Salerno, Salerno, Italy
- IRCCS “multimedica”, Milan, Italy
| |
Collapse
|
26
|
Ginseng extracts restore high-glucose induced vascular dysfunctions by altering triglyceride metabolism and downregulation of atherosclerosis-related genes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:797310. [PMID: 24194784 PMCID: PMC3806155 DOI: 10.1155/2013/797310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
Abstract
The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.
Collapse
|
27
|
Xing W, Li Y, Zhang H, Mi C, Hou Z, Quon MJ, Gao F. Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 305:H1111-9. [PMID: 23913704 DOI: 10.1152/ajpheart.00290.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training lowers blood pressure and is a recommended nonpharmacological strategy and useful adjunctive therapy for hypertensive patients. Studies demonstrate that physical activity attenuates progression of hypertension. However, underlying mechanisms remain elusive. Vascular insulin resistance and endothelial dysfunction plays a critical role in the development of hypertension. The present study investigated whether long-term physical exercise starting during the prehypertensive period prevents the development of hypertension via improving vascular insulin sensitivity. Young (4 wk old) prehypertensive spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) control rats were subjected to a 10-wk free-of-loading swim training session (60 min/day, 5 days/wk). Blood pressure, mesenteric arteriolar vasorelaxation, G protein-coupled receptor kinase-2 (GRK2) expression and activity, and insulin-stimulated Akt/endothelial nitric oxide synthase (eNOS) activation were determined. SHRs had higher systolic blood pressure, systemic insulin resistance, and impaired vasodilator actions of insulin in resistance vessels when compared with WKY rats. Systolic blood pressure in SHRs postexercise was significantly lower than that in sedentary rats. Vascular insulin sensitivity in mesenteric arteries was improved after exercise training as evidenced by an increased vasodilator response to insulin. In addition, exercise downregulated vascular GRK2 expression and activity, which further increased insulin-stimulated vascular Akt/eNOS activation in exercised SHRs. Specific small interfering RNA knockdown of GRK2 in endothelium mimicked the effect of exercise-enhanced vascular insulin sensitivity. Likewise, upregulation of GRK2 by Chariot-mediated delivery opposed exercise-induced vascular insulin sensitization. Taken together, our results suggest that long-term exercise beginning at the prehypertensive stage improves vascular insulin sensitivity via downregulation of vascular GRK2 that may help to limit the progression of hypertension.
Collapse
Affiliation(s)
- Wenjuan Xing
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Xie DP, Li S, Li L, Chang XW, Xi TF, Yang X, Jin Z, Zeng Y. Beta-arrestin2 is involved in the increase of distal colonic contraction in diabetic rats. ACTA ACUST UNITED AC 2013; 185:29-33. [PMID: 23816471 DOI: 10.1016/j.regpep.2013.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/07/2013] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
Colonic dysmotility occurs in diabetes and the patients exhibit diarrhea or constipation. The pathogenetic mechanisms underlying colonic dysmotility in diabetic patients remain poorly understood. The effects of β-arrestin2 on colonic contraction in diabetic rats were investigated for the first time. Male SD rats were treated with a single intraperitoneally injected dose of streptozotocin, and those displaying sustained high blood glucose were selected as diabetes mellitus models. Longitudinal muscle strips of the distal colon were prepared to monitor contraction of the colon in vitro. Expression of β-arrestin2 was investigated by Western blot analysis. Anti-β-arrestin2 antibody had no direct effect on the contraction of distal colonic strips in both normal and diabetic rats. Carbachol-induced contractions of distal colonic strips were higher in diabetic rats than in normal rats. Anti-β-arrestin2 antibody partly blocked carbachol-induced increases of distal colonic strips in diabetic rats. The expression level of β-arrestin2 protein in the colon was higher in diabetic rats than in normal rats. These results suggest that β-arrestin2 is involved in the increase of distal colonic contraction in diabetic rats.
Collapse
Affiliation(s)
- Dong-Ping Xie
- Department of Physiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Serine phosphorylation sites on IRS2 activated by angiotensin II and protein kinase C to induce selective insulin resistance in endothelial cells. Mol Cell Biol 2013; 33:3227-41. [PMID: 23775122 DOI: 10.1128/mcb.00506-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase C (PKC) activation, induced by hyperglycemia and angiotensin II (AngII), inhibited insulin-induced phosphorylation of Akt/endothelial nitric oxide (eNOS) by decreasing tyrosine phosphorylation of IRS2 (p-Tyr-IRS2) in endothelial cells. PKC activation by phorbol ester (phorbol myristate acetate [PMA]) reduced insulin-induced p-Tyr-IRS2 by 46% ± 13% and, similarly, phosphorylation of Akt/eNOS. Site-specific mutational analysis showed that PMA increased serine phosphorylation at three sites on IRS2 (positions 303, 343, and 675), which affected insulin-induced tyrosine phosphorylation of IRS2 at positions 653, 671, and 911 (p-Tyr-IRS2) and p-Akt/eNOS. Specific PKCβ2 activation decreased p-Tyr-IRS2 and increased the phosphorylation of two serines (Ser303 and Ser675) on IRS2 that were confirmed in cells overexpressing single point mutants of IRS2 (S303A or S675A) containing a PKCβ2-dominant negative or selective PKCβ inhibitor. AngII induced phosphorylation only on Ser303 of IRS2 and inhibited insulin-induced p-Tyr911 of IRS2 and p-Akt/eNOS, which were blocked by an antagonist of AngII receptor I, losartan, or overexpression of single mutant S303A of IRS2. Increases in p-Ser303 and p-Ser675 and decreases in p-Tyr911 of IRS2 were observed in vessels of insulin-resistant Zucker fatty rats versus lean rats. Thus, AngII or PKCβ activation can phosphorylate Ser303 and Ser675 in IRS2 to inhibit insulin-induced p-Tyr911 and its anti-atherogenic actions (p-Akt/eNOS) in endothelial cells.
Collapse
|
30
|
Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension: molecular insights and pathophysiological mechanisms. High Blood Press Cardiovasc Prev 2013; 20:5-12. [PMID: 23532739 DOI: 10.1007/s40292-013-0001-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022] Open
Abstract
Numerous factors partake in the fine-tuning of arterial blood pressure. The heptahelical G-protein-coupled receptors (GPCRs) represent one of the largest classes of cell-surface receptors. Further, ligands directed at GPCRs account for nearly 30 % of current clinical pharmaceutical agents available. Given the wide variety of GPCRs involved in blood pressure control, it is reasonable to speculate for a potential role of established intermediaries involved in the GPCR desensitization process, like the G-protein-coupled receptor kinases (GRKs), in the regulation of vascular tone. Of the seven mammalian GRKs, GRK2 seems to be the most relevant isoform at the cardiovascular level. This review attempts to assemble the currently available information concerning GRK2 and hypertension, opening new potential fields of translational investigation to treat this vexing disease.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131, Naples, Italy.
| | | | | |
Collapse
|
31
|
Abstract
A substantial body of evidence has reported that insulin has direct actions on the cardiovascular system independent of its systemic effects on plasma glucose or lipids. In particular, insulin regulates endothelial synthesis of the vasoactive mediators nitric oxide and endothelin-1, yet the importance of this in the maintenance of cardiovascular health remains poorly understood. Recent studies using animals with targeted downregulation of insulin signaling in vascular tissues are improving our understanding of the role of insulin in vascular health. This article focuses on the direct actions of insulin in cardiovascular tissues, with particular emphasis on the molecular mechanisms of insulin action on endothelial function. The potential contribution of impaired vascular insulin action to the cardiovascular complications of diabetes will also be discussed.
Collapse
Affiliation(s)
- Ian P Salt
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
32
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction. Acta Physiol (Oxf) 2013; 207:142-55. [PMID: 22925038 DOI: 10.1111/j.1748-1716.2012.02473.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/15/2012] [Accepted: 07/03/2012] [Indexed: 12/14/2022]
Abstract
AIM Pre-menopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Previously, we noted in mice that G-protein-coupled receptor kinase 2 (GRK2) negatively regulates the Akt/eNOS pathway in male diabetic aortas and that endothelial function via the Akt/eNOS pathway is less affected in female diabetic aortas. The cellular mechanisms underlying these sex differences remain unclear. We aimed to investigate the ways in which GRK2 might modulate vascular functions in male and female diabetic mice (DM). METHODS Vascular functions were examined in aortic rings. GRK2, β-arrestin 2 and Akt/eNOS-signalling-pathway protein levels and activities were assayed by Western blotting. RESULTS Phenylephrine-induced contraction was greater, while both clonidine-induced and insulin-induced relaxations were weaker (vs. male controls), in aortas from male type 2 DM, suggesting impairments of the Akt/eNOS pathway and α-adrenoceptor function. GRK2-inhibitor reversed only the impairment in Akt/eNOS-pathway-mediated relaxation in male DM. Increases in GRK2 activity, GRK2 expression in the membrane, plasma Ang II and systolic blood pressure were seen in male DM (vs. male controls) but not in female DM; these increases were attenuated by GRK2-inhibitor treatment. Repeatedly obtaining clonidine concentration-response curves led to reduced relaxation in male and in female DM aortas, indicating similar desensitization between female DM and male DM. This effect was reversed by GRK2-inhibitor in both sexes. CONCLUSION GRK2 plays a key role in modulating the aortic vasodilator effect of clonidine by selectively affecting the Akt/eNOS pathway. This action of GRK2 is more powerful in male than in female DM.
Collapse
Affiliation(s)
- K. Taguchi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - K. Kamata
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Kobayashi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| |
Collapse
|
33
|
Vascular disease in diabetic women: Why do they miss the female protection? EXPERIMENTAL DIABETES RESEARCH 2012; 2012:570598. [PMID: 22973304 PMCID: PMC3438753 DOI: 10.1155/2012/570598] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/02/2012] [Indexed: 02/06/2023]
Abstract
Gender plays a pivotal role in the onset as well as in the progression of the cardiovascular disease with a higher morbidity and mortality being detected in men with respect to women. Type 2 Diabetes Mellitus (T2DM) may reduce gender-related differences in the prevalence of cardiovascular disease by fading the vascular protective effects afforded by estrogen in females. This article will discuss the role of sex and sex hormones on the incidence and mechanisms involved in vascular dysfunction associated to T2DM, which might explain why women with T2DM lack the vascular protection.
Collapse
|
34
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. G protein-coupled receptor kinase 2, with β-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta. Diabetes 2012; 61:1978-85. [PMID: 22688330 PMCID: PMC3402304 DOI: 10.2337/db11-1729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein-coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction.
Collapse
|
35
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction. Endocrinology 2012; 153:2985-96. [PMID: 22581458 DOI: 10.1210/en.2012-1101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In type 2 diabetes, although Akt/endothelial NO synthase (eNOS) activation is known to be negatively regulated by G protein-coupled receptor kinase 2 (GRK2), it is unclear whether the GRK2 inhibitor would have therapeutic effects. Here we examined the hypotensive effect of the GRK2 inhibitor and its efficacy agonist both vascular (aortic) endothelial dysfunction (focusing especially on the Akt/eNOS pathway) and glucose intolerance in two type 2 diabetic models (ob/ob mice and nicotinamide+streptozotocin-induced diabetic mice). Mice were treated with a single injection of the GRK2 inhibitor or vehicle, and the therapeutic effects were compared by examining vascular function and by Western blotting. The GRK2 inhibitor lowered blood pressure in both diabetic models but not in their age-matched controls. The GRK2 inhibitor significantly improved clonidine-induced relaxation only in diabetic (ob/ob and DM) mice, with accompanying attenuations of GRK2 activity and translocation to the plasma membrane. These protective effects of the GRK2 inhibitor may be attributable to the augmented Akt/eNOS pathway activation (as evidenced by increases in Akt phosphorylation at Ser(473) and at Thr(308), and eNOS phosphorylation at Ser(1177)) and to the prevention of the GRK2 translocation and promotion of β-arrestin 2 translocation to the membrane under clonidine stimulation. Moreover, the GRK2 inhibitor significantly improved the glucose intolerance seen in the ob/ob mice. Our work provides the first evidence that in diabetes, the GRK2 inhibitor ameliorates vascular endothelial dysfunction via the Akt/eNOS pathway by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation under clonidine stimulation, thereby contributing to a blood pressure-lowering effect. We propose that the GRK2 inhibitor may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
36
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Akt/eNOS pathway activation in endothelium-dependent relaxation is preserved in aortas from female, but not from male, type 2 diabetic mice. Pharmacol Res 2011; 65:56-65. [PMID: 21933713 DOI: 10.1016/j.phrs.2011.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Cardiovascular problems are major causes of morbidity and mortality, the main problems being coronary artery disease and atherosclerosis, in type 2 diabetes mellitus. However, female gender is a protective factor in the development of, for example, atherosclerosis and hypertension. Our aim was to investigate possible gender differences in the activation of Akt/eNOS signaling in aortas from a mouse type 2 diabetic model. Nonfasting plasma glucose was significantly above control in the diabetic mice (both males and females). Plasma insulin was not different between the age-matched controls and the diabetic mice (of either gender). In diabetic males (vs male controls and/or diabetic females): (a) systemic blood pressure was elevated, (b) the clonidine- and insulin-induced Akt-dependent aortic relaxations were impaired, but the ACh-induced Akt-independent and SNP-induced endothelium-independent aortic relaxations were not, (c) Akt and eNOS expression levels were lower, (d) both Akt phosphorylation at Ser(473) and eNOS phosphorylation at Ser(1177) in the aorta were lower under clonidine- or insulin-stimulation, but not under ACh-stimulation. These results suggest that in mice: (i) endothelial functions mediated via the Akt/eNOS pathway are abrogated in type 2 diabetes only in males and (ii) in females (vs males), eNOS expression is elevated and the endothelium resists dysfunction.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|