1
|
Kim TE, Kim DY, Kim H, Kim SH. Sex and Age Differences in the Impact of Metabolic Syndrome on Heart Failure Development. Metabolites 2024; 14:653. [PMID: 39728435 DOI: 10.3390/metabo14120653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic syndrome (MetS), a cluster of metabolic dysregulations, is recognized as a significant risk factor for the development of heart failure (HF). The pathophysiological mechanisms linking MetS to HF are complex and multifaceted, with the components of MetS contributing to cardiac deterioration through impaired myocardial energy metabolism, increased inflammation, and endothelial dysfunction. Numerous clinical studies have confirmed the relationship between MetS and HF. Multiple studies have demonstrated that the impact of MetS on HF varies by sex and age. Metabolic disorders, including MetS, have a greater impact on HF incidence in younger adults compared to the elderly population and in women compared to men. Although the reasons for these differences are not yet fully understood, recognizing the sex- and age-related variations is crucial for developing targeted strategies to prevent HF in individuals with MetS. Future research should continue to investigate the underlying mechanisms behind these variations and identify optimal management approaches that account for both sex and age in reducing HF risk.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Department of Clinical Pharmacology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| | - Do Young Kim
- Division of Cardiology, Department of Internal Medicine, Ajou University Hospital, Ajou School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeongsu Kim
- Department of Preventive Medicine, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Sung Hea Kim
- Division of Cardiology, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| |
Collapse
|
2
|
Appunni S, Zhang Y, Khosla AA, Rubens M, Giri AR, Saxena A, Ramamoorthy V, Doke M, McGranaghan P, Chaparro S, Jimenez J. Sex disparities in outcomes among hospitalizations for heart failure. Sci Rep 2024; 14:27054. [PMID: 39511271 PMCID: PMC11543837 DOI: 10.1038/s41598-024-77109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
This study investigated sex differences in clinical characteristics and in-hospital outcomes of heart failure (HF) hospitalizations using the National Inpatient Sample data, 2016-2019. HF hospitalizations ≥ 41 years of age were included and stratified by sex. Study outcomes were in-hospital mortality, prolonged length of stay, mechanical ventilation, mechanical circulatory support, vasopressor use, and disposition other than home. Propensity score matched regression analysis was done to compare outcomes between sex. A total of 4,704,684 primary HF hospitalizations were included in the analysis. Of these, 2,447,784 (52.0%) were males and 2,256,899 (48.0%) were females. Regression analysis showed that females had significantly lower odds for mortality (aOR, 0.92, 95% CI: 0.89-0.94), mechanical ventilation (aOR, 0.89, 95% CI: 0.86-0.92), mechanical circulatory support (aOR, 0.54, 95% CI: 0.51-0.58), and vasopressor use (aOR, 0.71, 95% CI: 0.66-0.74), compared to males. However, the odds for prolonged length of stay (aOR, 1.05, 95% CI: 1.04-1.06) and disposition other than home (aOR, 1.32, 95% CI: 1.31-1.34) were significantly higher among females, compared to males. There were significant differences in outcomes between males and females hospitalized for HF. Further research is required to delineate how sex affects several aspects of HF, including epidemiology, risk factors, pathogenesis, and response to medications.
Collapse
Affiliation(s)
| | | | - Atulya A Khosla
- William Beaumont University Hospital, Royal Oak, MI, 48073, USA
| | - Muni Rubens
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Universidad Espíritu Santo, Samborondón, Ecuador
| | - Abhishek R Giri
- Department of Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH, USA
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Mayur Doke
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter McGranaghan
- Semmelweis Doctoral College, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary.
| | - Sandra Chaparro
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, FL, USA
| | - Javier Jimenez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, FL, USA.
- Advance Heart Failure and Pulmonary Hypertension, South Miami Hospital, Baptist Health South, Miami, FL, USA.
| |
Collapse
|
3
|
Warnock RK, Modi RD, Westerman SB. Sex and Gender Differences in Ventricular Arrhythmias. US CARDIOLOGY REVIEW 2023; 17:e12. [PMID: 39559519 PMCID: PMC11571389 DOI: 10.15420/usc.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 11/20/2024] Open
Abstract
Ventricular arrhythmias, including ventricular tachycardia and VF, commonly occur in patients with underlying cardiomyopathy. Sex differences exist in almost every aspect of ventricular arrhythmia from epidemiology, anatomy, and physiology to management and response to therapy. Some of these may be attributed to variations in etiology, types, and rates of cardiomyopathy as well as biological differences between males and females, but the full explanation for these differences remains incomplete. Additionally, women have been underrepresented in many trials studying therapies for ventricular arrhythmias including ICD placement and ablation; thus, there remains a need for continued research in this population. This review will discuss the differences between the sexes as well as outline opportunities for future research in women with ventricular arrhythmias.
Collapse
Affiliation(s)
| | - Roshan D Modi
- Department of Medicine, Emory University School of Medicine Atlanta, GA
| | - Stacy B Westerman
- Division of Cardiology, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
4
|
Shawky NM, Soliman E, Abdel-Rahman AA, Rezq S. Editorial: Cardiorenal dysregulation in endocrine disorders: innovative mechanisms and therapeutic interventions. Front Pharmacol 2023; 14:1275919. [PMID: 37693912 PMCID: PMC10486096 DOI: 10.3389/fphar.2023.1275919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Noha M. Shawky
- Department of Pharmacology and Toxicology, Mississippi Center of Excellence in Perinatal Research, Women’s Health Research Center, Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Abdel A. Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Mississippi Center of Excellence in Perinatal Research, Women’s Health Research Center, Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Medzikovic L, Azem T, Sun W, Rejali P, Esdin L, Rahman S, Dehghanitafti A, Aryan L, Eghbali M. Sex Differences in Therapies against Myocardial Ischemia-Reperfusion Injury: From Basic Science to Clinical Perspectives. Cells 2023; 12:2077. [PMID: 37626887 PMCID: PMC10453147 DOI: 10.3390/cells12162077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Mortality from myocardial infarction (MI) has declined over recent decades, which could be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of current MI treatment. However, reoxygenation via restored blood flow induces further damage to the myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelmingly demonstrate that females experience greater functional recovery from MI and decreased severity in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared with men. Distressingly, women are also reported to benefit less from current guideline-based therapies compared with men. These seemingly contradicting outcomes between experimental and clinical studies show a need for further investigation of sex-based differences in disease pathophysiology, treatment response, and a sex-specific approach in the development of novel therapeutic methods against myocardial IRI. In this literature review, we summarize the current knowledge on sex differences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly, we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mansoureh Eghbali
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, CHS BH-550 CHS, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
6
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Wang Y, Shou X, Fan Z, Cui J, Xue D, Wu Y. A Systematic Review and Meta-Analysis of Phytoestrogen Protects Against Myocardial Ischemia/Reperfusion Injury: Pre-Clinical Evidence From Small Animal Studies. Front Pharmacol 2022; 13:847748. [PMID: 35668938 PMCID: PMC9166621 DOI: 10.3389/fphar.2022.847748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Phytoestrogens are a class of natural compounds that have structural similarities to estrogens. They have been identified to confer potent cardioprotective effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms. Methods: A systematic search was conducted to identify PEs that have been validated in animal studies or clinical studies as effective against MIRI. Then, we collected studies that met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE's RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software. Results: The search yielded 18 phytoestrogens effective against heart disease. They are genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin, rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total of 20 studies from 17 articles with a total of 355 animals were included in this meta-analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI animals compared with the control group (p < 0.001). PE treatment significantly reduced the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001). Conclusion: Preclinical evidence suggests that PE can be multi-targeted for cardioprotective effects in MIRI. More large animal studies and clinical research are still needed in the future to further confirm its role in MIRI.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xintian Shou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjing Fan
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Donghua Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Caloric restriction reduces the pro-inflammatory eicosanoid 20- hydroxyeicosatetraenoic acid to protect from acute kidney injury. Kidney Int 2022; 102:560-576. [PMID: 35654224 DOI: 10.1016/j.kint.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction-induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important pre-requisite for moving towards translation to the clinical setting.
Collapse
|
9
|
Sex-Related Effects on Cardiac Development and Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9030090. [PMID: 35323638 PMCID: PMC8949052 DOI: 10.3390/jcdd9030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality. Interestingly, male and female patients with CVD exhibit distinct epidemiological and pathophysiological characteristics, implying a potentially important role for primary and secondary sex determination factors in heart development, aging, disease and therapeutic responses. Here, we provide a concise review of the field and discuss current gaps in knowledge as a step towards elucidating the “sex determination–heart axis”. We specifically focus on cardiovascular manifestations of abnormal sex determination in humans, such as in Turner and Klinefelter syndromes, as well as on the differences in cardiac regenerative potential between species with plastic and non-plastic sexual phenotypes. Sex-biased cardiac repair mechanisms are also discussed with a focus on the role of the steroid hormone 17β-estradiol. Understanding the “sex determination–heart axis” may offer new therapeutic possibilities for enhanced cardiac regeneration and/or repair post-injury.
Collapse
|
10
|
The effect of oestrogen supplementation on antioxidant enzymes and mitochondrial respiratory function after myocardial infarction of ovariectomized rats. J Cardiovasc Pharmacol 2022; 79:663-669. [DOI: 10.1097/fjc.0000000000001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022]
|
11
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
12
|
Barta BA, Ruppert M, Fröhlich KE, Cosenza-Contreras M, Oláh A, Sayour AA, Kovács K, Karvaly GB, Biniossek M, Merkely B, Schilling O, Radovits T. Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia. J Transl Med 2021; 19:507. [PMID: 34895263 PMCID: PMC8666068 DOI: 10.1186/s12967-021-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.
Collapse
Affiliation(s)
- Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Klemens Erwin Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,MeInBio Graduate School, University of Freiburg, Freiburg, Germany
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Biniossek
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
13
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
14
|
Costa SP, Domingues TE, Rodrigues CM, Silva SB, Diniz E Magalhães CO, Costa-Pereira LV, Peixoto MFD, da Fonseca SF, Sampaio KH, Mendonça VA, Lacerda ACR. Does endurance training prior to ovariectomy protect against myocardial contractility dysfunction in rats? Exp Gerontol 2021; 155:111556. [PMID: 34537279 DOI: 10.1016/j.exger.2021.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endurance training prevents cardiac dysfunction induced by menopause, but to date, no studies compared the effects of endurance training prior to menopause versus estrogen replacement therapy during menopause on heart function of rats. METHODS Female Wistar rats aged three months were randomly assigned into three groups: Untrained ovariectomized rats (UN-OVX), untrained ovariectomized rats treated with estradiol (UN-OVX-E2), and ovariectomized rats previously exercised (EX-OVX). The endurance training protocol consisted of running on a treadmill at 60-70% of maximal aerobic capacity, 60 min per day, five days per week, for eight weeks. Estradiol replacement therapy consisted of silastic capsules containing the hormone for twelve days. After euthanasia, hearts were harvested, weighed and cardiac function was evaluated by the Langendorff technique. RESULTS Both cardiac contractility and relaxation indexes improved similarly in the EX-OVX and UN-OVX-E2 rats compared to UN-OVX. CONCLUSION Our findings reveal similar beneficial effects between endurance training previously to menopause and estradiol replacement therapy during menopause on cardiac function of rats.
Collapse
Affiliation(s)
- Sabrina Paula Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Cíntia Maria Rodrigues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Liliane Vanessa Costa-Pereira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Marco Fabricio Dias Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Kinulpe Honorato Sampaio
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil.
| |
Collapse
|
15
|
Feng D, Li C, Yang X, Wang L. Gender differences and survival after an out-of-hospital cardiac arrest: a systematic review and meta-analysis. Intern Emerg Med 2021; 16:765-775. [PMID: 33174152 DOI: 10.1007/s11739-020-02552-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022]
Abstract
Patients who experience out-of-hospital cardiac arrest (OHCA) have unacceptably high mortality rates. It remains unclear whether gender has an association with survival in this regard. Hence, we aimed to investigate the association between gender and survival by conducting a systematic review and meta-analysis. The databases of PubMed, Embase, and Cochrane Database of Systematic Reviews were searched from inception to 17 March, 2020. Studies assessing the association between gender and survival to discharge or 30-day survival after OHCA were included. Two reviewers independently assessed the eligibility of the identified studies. The random-effects model was used to pool data, and the outcome was reported as odds ratios (ORs) and 95% confidence intervals, as the relative measure of association. Twenty-three eligible studies enrolling 897,805 patients were included in this systematic review. Overall, women were older and less likely to experience arrest in public places. When arrest occurred, women had less initial shockable rhythm, were less likely to be witnessed by bystanders, and were less likely provided with CPR compared with men. After admission, women underwent less coronary angiography, percutaneous coronary angiography, and targeted temperature management therapy. Eleven studies with ORs were pooled, showing a significant survival benefit in women (OR = 1.08, p < 0.05, I2 = 52.3%). In the subgroup analysis, both premenopausal women (< 50 years) (OR = 1.42, p < 0.001, I2 = 0%) and postmenopausal women (≥ 50 years) (OR = 1.07, p < 0.05, I2 = 16.4%) had higher odds of survival compared with age-matched men. Despite the unfavorable factors, the pooled results showed a significant survival benefit in women after OHCA, especially in premenopausal women.
Collapse
Affiliation(s)
- Dejing Feng
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Chuang Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China
| | - Lefeng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing, 10020, China.
| |
Collapse
|
16
|
Cardioprotective effects of severe calorie restriction from birth in adult ovariectomized rats. Life Sci 2021; 275:119411. [PMID: 33774029 DOI: 10.1016/j.lfs.2021.119411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
AIMS Menopause is a female condition induced by a reduction of ovarian hormone and is related to an increase in cardiovascular diseases in women. We have shown that severe calorie restriction (SCR) from birth reduces the cardiometabolic risk in adult male Wistar rats. In this study, we investigated the effects of SCR from birth to adulthood on cardiovascular function of ovariectomized rats. MAIN METHODS From birth to adulthood, rats were daily fed ad libitum (control group - C) or with 50% of the amount consumed by the control group (calorie-restricted group - R). At 90 days, half of the rats in each group underwent bilateral ovariectomy (OVX), totaling 4 groups: C-Sham, C-OVX, R-Sham, R-OVX. Systolic blood pressure (SBP), heart rate (HR) and, double product (DP) index were recorded by tail-cuff plethysmography. Cardiac function was analyzed by the Langendorff technique and cardiomyocyte diameter was accessed by histologic analysis. Additionally, cardiac SERCA2 content and redox status were evaluated. KEY FINDINGS C-OVX rats exhibited reduced cardiac function and cardiac non-enzymatic total antioxidant capacity (TAC). R-Sham animals showed reduced SBP, DP, HR, improved cardiac function, reduced cardiac protein carbonyl derivatives and increased TAC, catalase, and superoxide dismutase activities. R-OVX rats maintained reduced SBP, DP, HR, and increased contractility and relaxation indexes. R-Sham and R-OVX rats exhibited preserved heart mass and reduced cardiomyocyte diameter. Cardiac SERCA2 content did not differ between the groups. SIGNIFICANCE Taken together, our findings show cardioprotective effects of SCR from birth in adult ovariectomized rats.
Collapse
|
17
|
Vakrou S, Nana MA, Nanas IA, Nana-Leventaki E, Bonios M, Kapelios C, Nanas J. Safety and efficacy of global intracoronary administration of cardiosphere-derived cells or conditioned medium immediately after coronary reperfusion in rats. Hellenic J Cardiol 2020; 61:256-261. [PMID: 30904729 DOI: 10.1016/j.hjc.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Cardiosphere-derived cells (CDCs) have been shown to reduce infarct size after myocardial infarction (MI). In the present study we investigated the safety and efficacy of global intracoronary administration (GIA) of CDCs or CDC-conditioned medium (CM) immediately after reperfusion in a rat model of ischemia-reperfusion. METHODS CDCs were grown from myocardial biopsies obtained from male Wistar Kyoto rats (WKY). Female WKY rats underwent MI for 45minutes, followed by reperfusion for 1hour. Infarcted rats were randomized to receive GIA of CDCs (CDC group), CM (CM group) or vehicle (control group) immediately after the onset of reperfusion. Cell retention was quantified by PCR for the male specific SRY gene; area at risk (AR) and no reflow area (NR) were measured by histopathology. Cardiac function was evaluated by echocardiography at 1 and 2 months post-MI. RESULTS Cell retention at 1hour after GIA was 25.1% ±5.1. The myocardial AR and NR (measured at 1 hour post-reperfusion) were similar between groups [AR: 28.8% ±7.4 of LV mass in control vs 27.2% ±8 in CM vs 27% ±7 in CDCs group. NR: 7.0% ±3.3 in control vs 7.3% ±3.8 in CM vs 7.1% ±3.6 in CDCs]. One and 2 months post-MI, systolic function and LV volumes did not differ between control and CM groups. CONCLUSION Intracoronary administration of CDCs during the acute phase of MI, at the beginning of reperfusion, does not aggravate microvascular obstruction and results in high cell retention. Delivery of CM in the acute phase of MI did not confer long-term cardiac functional benefits.
Collapse
Affiliation(s)
- Styliani Vakrou
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria A Nana
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ioannis A Nanas
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Emmeleia Nana-Leventaki
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Michael Bonios
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Chris Kapelios
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - John Nanas
- 3(rd) Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
18
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
19
|
Gholampour F, Mohammadi Z, Karimi Z, Owji SM. Protective effect of genistein in a rat model of ischemic acute kidney injury. Gene 2020; 753:144789. [PMID: 32442578 DOI: 10.1016/j.gene.2020.144789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study determined the possible anti-inflammatory and antioxidant renal protective effect of genistein, a soy isoflavone, against kidney damage and functional disorders following renal ischemia/reperfusion (I/R) in male rats. MATERIALS AND METHODS The animals were dedicated to five groups (n = 7 per group): Sham, Sham + Geni (genistein, 15 mg/kg in 1 ml 1% DMSO, i.p.), Sham + DMSO (1 ml 1% DMSO, i.p.), I/R (bilateral renal ischemia for 45 min followed by 24 h reperfusion), I/R + Geni (genistein, 15 mg/kg). 24-h urine samples, blood and tissue samples of the kidney were collected at the end of 24 h reperfusion period. RESULTS Compared to sham, sham + Geni and sham + DMSO groups, IR injury (IRI) ended in kidney dysfunction (decreased creatinine clearance, and increased fractional excretion of sodium), increased levels of malondialdehyde, decreased activities of antioxidant enzymes (superoxide dismutase, gluthatione peroxidase, and catalase), increased gene expression levels of TLR4 (Toll-like receptor 4) and TNF-α (tumor necrosis factor-alpha), as well as histological damages in kidney tissue. Genistein administration decreased all the changes. Therefore, genistein apparently protects the kidney against IRI by mitigating both oxidative stress and inflammation. The antioxidant and anti-inflammatory properties of genistein probably exert important roles in improving functional disorders and offer renal protection against IRI.
Collapse
Affiliation(s)
| | - Zahra Mohammadi
- Department of Biology, School of Sciences, Shiraz University, Shiraz, Iran
| | - Zeinab Karimi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Owji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Sex and Gender Differences in Heart Failure. ACTA ACUST UNITED AC 2020; 2:157-181. [PMID: 36262368 PMCID: PMC9536682 DOI: 10.36628/ijhf.2020.0004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
|
21
|
Billah M, Ridiandries A, Rayner BS, Allahwala UK, Dona A, Khachigian LM, Bhindi R. Egr-1 functions as a master switch regulator of remote ischemic preconditioning-induced cardioprotection. Basic Res Cardiol 2019; 115:3. [PMID: 31823016 DOI: 10.1007/s00395-019-0763-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Despite improved treatment options myocardial infarction (MI) is still a leading cause of mortality and morbidity worldwide. Remote ischemic preconditioning (RIPC) is a mechanistic process that reduces myocardial infarction size and protects against ischemia reperfusion (I/R) injury. The zinc finger transcription factor early growth response-1 (Egr-1) is integral to the biological response to I/R, as its upregulation mediates the increased expression of inflammatory and prothrombotic processes. We aimed to determine the association and/or role of Egr-1 expression with the molecular mechanisms controlling the cardioprotective effects of RIPC. This study used H9C2 cells in vitro and a rat model of cardiac ischemia reperfusion (I/R) injury. We silenced Egr-1 with DNAzyme (ED5) in vitro and in vivo, before three cycles of RIPC consisting of alternating 5 min hypoxia and normoxia in cells or hind-limb ligation and release in the rat, followed by hypoxic challenge in vitro and I/R injury in vivo. Post-procedure, ED5 administration led to a significant increase in infarct size compared to controls (65.90 ± 2.38% vs. 41.00 ± 2.83%, p < 0.0001) following administration prior to RIPC in vivo, concurrent with decreased plasma IL-6 levels (118.30 ± 4.30 pg/ml vs. 130.50 ± 1.29 pg/ml, p < 0.05), downregulation of the cardioprotective JAK-STAT pathway, and elevated myocardial endothelial dysfunction. In vitro, ED5 administration abrogated IL-6 mRNA expression in H9C2 cells subjected to RIPC (0.95 ± 0.20 vs. 6.08 ± 1.40-fold relative to the control group, p < 0.05), resulting in increase in apoptosis (4.76 ± 0.70% vs. 2.23 ± 0.34%, p < 0.05) and loss of mitochondrial membrane potential (0.57 ± 0.11% vs. 1.0 ± 0.14%-fold relative to control, p < 0.05) in recipient cells receiving preconditioned media from the DNAzyme treated donor cells. This study suggests that Egr-1 functions as a master regulator of remote preconditioning inducing a protective effect against myocardial I/R injury through IL-6-dependent JAK-STAT signaling.
Collapse
Affiliation(s)
- M Billah
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh.
| | - A Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - B S Rayner
- Inflammation Group, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - U K Allahwala
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - A Dona
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - L M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - R Bhindi
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
22
|
Riera Leal A, Ortiz-Lazareno PC, Jave-Suárez LF, Ramírez De Arellano A, Aguilar-Lemarroy A, Ortiz-García YM, Barrón-Gallardo CA, Solís-Martínez R, Luquin De Anda S, Muñoz-Valle JF, Pereira-Suárez AL. 17β‑estradiol‑induced mitochondrial dysfunction and Warburg effect in cervical cancer cells allow cell survival under metabolic stress. Int J Oncol 2019; 56:33-46. [PMID: 31746421 PMCID: PMC6910176 DOI: 10.3892/ijo.2019.4912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria from different types of cancer show bioenergetics and dysfunction that favor cell proliferation. The mechanistic understanding of estrogen in cervical cancer is poorly understood. Therefore, the objective of this study was to determine how 17β-estradiol (E2) affects mitochondrial function and the Warburg effect in SiHa, HeLa and C33A cervical cancer cells. Mitochondrial compromise was evaluated measuring changes in the membrane permeability by immunofluorescence, calcium concentration, redox status, iron and ferritin reserves. Glucose consumption and lactic acid assays were used to detect the metabolic activity. Results were confirmed at molecular level by analysis of the differential gene expression using RNA sequencing. E2 modified the mitochondrial permeability and produced an alteration in the calcium signaling pathway. In HeLa and SiHa, there was a significant decrease in nitric oxide levels and lipid peroxidation, and an increase in glucose consumption and lactic acid levels when stimulated with E2. Intracellular iron or ferritin reserves were not affected by the E2 treatment. Genes differentially modulated by E2 were involved in the mitochondrial electron transport chain, oxidative phosphorylation system, glycolysis, pentose phosphate pathway and the regulation of metabolic signaling pathways. Herein, we provide evidence for a primary effect of estrogen on mitochondrial function and the Warburg effect, favoring the metabolic adaptation of the cervical cancer cell lines and their survival.
Collapse
Affiliation(s)
- Annie Riera Leal
- Laboratory of Immunology, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Pablo César Ortiz-Lazareno
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Adrián Ramírez De Arellano
- Research Institute in Biomedical Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Yveth Marlene Ortiz-García
- Laboratory of Immunology, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Raúl Solís-Martínez
- Diagnostic Laboratory, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Sonia Luquin De Anda
- Department of Neurosciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - José Francisco Muñoz-Valle
- Research Institute in Biomedical Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Ana Laura Pereira-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
23
|
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med 2019; 25:1657-1666. [PMID: 31700185 DOI: 10.1038/s41591-019-0643-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of cardiometabolic disorders in both women and men has increased worldwide and is linked to a rise in obesity and obesity-associated associated clustering of other cardiometabolic risk factors such as hypertension, impaired glucose regulation and dyslipidemia. However, the predominance of common types of cardiometabolic disorders such as heart failure, atrial fibrillation and ischemic heart disease is sex specific, and our identification of these and the underlying mechanisms is only just emerging. New evidence suggests that sex hormones, sex-specific molecular mechanisms and gender influence glucose and lipid metabolisms, as well as cardiac energy metabolism, and function. Here we review sex differences in cardiometabolic risk factors, associated preclinical and clinical cardiac disorders and potential therapeutic avenues.
Collapse
Affiliation(s)
- Eva Gerdts
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Vera Regitz-Zagrosek
- Berlin Institute for Gender in Medicine, Charité Universitätsmedizin, Berlin, Germany.,DZHK, partner site Berlin, Berlin, Germany
| |
Collapse
|
24
|
Ghimire A, Bisset ES, Howlett SE. Ischemia and reperfusion injury following cardioplegic arrest is attenuated by age and testosterone deficiency in male but not female mice. Biol Sex Differ 2019; 10:42. [PMID: 31443710 PMCID: PMC6708213 DOI: 10.1186/s13293-019-0256-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular disease increases with age in both sexes. Treatment can require cardiac surgery, where the hearts are pre-treated with protective cardioplegic solution before ischemia and reperfusion (I/R). While endogenous estrogen is beneficial in I/R, whether testosterone is involved is uncertain and whether age modifies responses to I/R is unclear. We investigated sex- and age-specific differences in I/R injury in the hearts pre-treated with clinically relevant cardioplegic solution. METHODS The hearts were isolated from young (6-9 months) and old (20-28 months) mice of both sexes and perfused (Langendorff) with Krebs-Henseleit buffer (15 min, 37 °C), followed by St. Thomas' two cardioplegia (6 min, 6-7 °C), global ischemia (90 min, 23-24 °C), and reperfusion (30 min, 37 °C). The hearts were perfused with triphenyltetrazolium chloride to quantify infarct area. Testosterone's role was investigated in gonadectomized (GDX, 6-9 months) male mice; serum testosterone and estradiol were measured with ELISA assays. RESULTS Left ventricular developed pressure (LVDP) recovered to 67.3 ± 7.4% in the old compared to 21.8 ± 9.2% in the young male hearts (p < 0.05). Similar results were seen for rates of pressure development (+dP/dt) and decay (-dP/dt). Infarct areas were smaller in the old male hearts (16.6 ± 1.6%) than in the younger hearts (55.8 ± 1.2%, p < 0.05). By contrast, the hearts from young and old females exhibited a similar post-ischemic functional recovery and no age-dependent difference in infarcts. There was a sex difference in the young group, where ventricular function (LVDP, +dP/dt, -dP/dt) recovered better and infarcts were smaller in females than males. Estradiol levels were highest in young females. Testosterone was high in young males but low in females and old males, which suggested beneficial effects of low testosterone. Indeed, the hearts from GDX males exhibited much better recovery of LVDP in reperfusion than that from intact males (values were 64.4 ± 7.5 % vs. 21.8 ± 9.2%; p < 0.05). The GDX hearts also had smaller infarcts than the hearts from intact males (p < 0.05). CONCLUSIONS Although age had no effect on susceptibility to I/R injury after cardioplegic arrest in females, it actually protected against injury in older males. Our findings indicate that low testosterone may be protective against I/R injury following cardioplegic arrest in older males.
Collapse
Affiliation(s)
- Anjali Ghimire
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Elise S. Bisset
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia Canada
| |
Collapse
|
25
|
Puhl SL, Steffens S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution? Front Cardiovasc Med 2019; 6:25. [PMID: 30937305 PMCID: PMC6431642 DOI: 10.3389/fcvm.2019.00025] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation not only plays a crucial role in acute ischemic cardiac injury, but also contributes to post-infarction repair and remodeling. Traditionally, neutrophils have been merely considered as detrimental in the setting of an acute myocardial infarction. However, recently published studies demonstrated that neutrophils might also play an important role in cardiac repair by regulating reparative processes. An emerging concept is that different neutrophil subsets exist, which might exhibit separate functional properties. In support of the existence of distinct neutrophil subsets in the ischemic heart, transcriptional changes in cardiac neutrophils have been reported within the first few days after myocardial infarction. In addition, there is an increasing awareness of sex-specific differences in many physiological and pathophysiological responses, including cardiovascular parameters and inflammation. Of particular interest in this context are recent experimental data dissecting sex-specific differences in neutrophil signaling after myocardial infarction. Unraveling the distinct and possibly stage-dependent properties of neutrophils in cardiac repair may provide new therapeutic strategies in order to improve the clinical outcome for myocardial infarction patients. This review will briefly discuss recent advances in our understanding of the neutrophil functional repertoire and emerging insights of sex-specific differences in post-myocardial infarction inflammatory responses.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
26
|
Friedenthal J, Naftolin F, Nachtigall L, Goldstein S. Menopause and HRT. EVIDENCE‐BASED OBSTETRICS AND GYNECOLOGY 2019:155-162. [DOI: 10.1002/9781119072980.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
28
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
29
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Randhawa PK, Bali A, Virdi JK, Jaggi AS. Conditioning-induced cardioprotection: Aging as a confounding factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:467-479. [PMID: 30181694 PMCID: PMC6115349 DOI: 10.4196/kjpp.2018.22.5.467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/28/2018] [Accepted: 05/15/2018] [Indexed: 01/15/2023]
Abstract
The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of Na+ and K+, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Anjana Bali
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur 148002, India
| | - Jasleen Kaur Virdi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
31
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
32
|
Augustine JA, Nunemacher KN, Heffernan KS. Menstrual phase and the vascular response to acute resistance exercise. Eur J Appl Physiol 2018; 118:937-946. [PMID: 29455431 DOI: 10.1007/s00421-018-3815-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Aerobic exercise has a favorable effect on systemic vascular function, reducing both central (large elastic artery) and peripheral (smaller muscular artery) stiffness. The effects of resistance exercise (RE) on arterial stiffness are more complex. Acute RE increases central artery stiffness while decreasing peripheral stiffness. To date, the majority of studies have been performed in predominantly male participants. PURPOSE To examine the effect of acute RE on central and peripheral arterial stiffnesses in women, a secondary purpose was to explore the influence of cyclic changes in estrogen status across the menstrual cycle on the arterial response to acute RE. METHODS 18 healthy women [28 ± 7 years, body mass index (BMI) 22.6 ± 2.9 kg/m2] completed an acute RE bout during the early follicular and the early luteal phase of their menstrual cycle. Salivary 17β-Estradiol concentration was measured during each phase, using a passive drool technique. Pulse-wave velocity (PWV) was obtained from the carotid-femoral and carotid-radial pulse sites to measure central and peripheral stiffness, respectively, using applanation tonometry. PWV was measured at rest, immediately, 10, 20, and 30 min post-RE. RESULTS 17β-Estradiol concentration was significantly lower in the early follicular vs. the early luteal phase of the menstrual cycle (1.78 ± 0.51 vs. 2.40 ± 0.26 pg/ml, p = 0.01). Central PWV significantly increased (p < 0.05) and peripheral PWV significantly decreased (p < 0.05) post-RE in both the early follicular and early luteal phases. No phase-by-time interaction was detected for either vascular segment (p > 0.05). CONCLUSION Women experience increases in central arterial stiffness and reductions in peripheral arterial stiffness following acute RE. Menstrual cycle phase may not influence changes in arterial stiffness in response to acute RE.
Collapse
Affiliation(s)
- Jacqueline A Augustine
- The Department of Exercise Science, Syracuse University, 820 Comstock Avenue, Room 202, Syracuse, NY, 13210, USA.
| | - Kayla N Nunemacher
- The Department of Exercise Science, Syracuse University, 820 Comstock Avenue, Room 202, Syracuse, NY, 13210, USA
| | - Kevin S Heffernan
- The Department of Exercise Science, Syracuse University, 820 Comstock Avenue, Room 202, Syracuse, NY, 13210, USA
| |
Collapse
|
33
|
Bulut EC, Abueid L, Ercan F, Süleymanoğlu S, Ağırbaşlı M, Yeğen BÇ. Treatment with oestrogen-receptor agonists or oxytocin in conjunction with exercise protects against myocardial infarction in ovariectomized rats. Exp Physiol 2018; 101:612-27. [PMID: 26958805 DOI: 10.1113/ep085708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Could the activation of oxytocin or oestrogen receptors be protective against myocardial injury after ovariectomy? If so, would exercising have an additional ameliorating effect? What is the main finding and its importance? The results revealed that when accompanied by exercise, both oestrogen receptor agonists and oxytocin improved cardiac dysfunction, inhibited the generation of pro-inflammatory cytokines and reduced myocardial injury in ovariectomized female rats, suggesting a new approach for protecting postmenopausal women against ischaemia-induced myocardial injury. To investigate the putative protective effects of oxytocin or oestrogen receptor agonists against myocardial injury of ovariectomized sedentary or exercised rats, female Sprague-Dawley rats assigned to sham-operated control and ovariectomized (OVX) groups were kept sedentary or undertook swimming exercise for 4 weeks and were treated with saline, an oestrogen receptor (ER) β (DPN) or ERα agonist (PPT) or oxytocin. Ovariectomy increased weight gain and anxiety in sedentary rats, whereas exercise prevented weight gain. When accompanied by exercise, both ER agonists and oxytocin inhibited weight gain and anxiety; oxytocin, in the absence or presence of exercise, increased the left ventricular diastolic dimensions and ejection fraction, whereas ER agonists also increased left ventricular diameter when given to exercised rats. Upon the induction of myocardial ischaemia-reperfusion in the OVX rats, plasma creatine kinase-(muscle-brain) was depressed by PPT and oxytocin, whereas DPN, PPT and OT reduced plasminogen activator inhibitor-1 concentrations. The increased tumour necrosis factor-α concentration in OVX rats was also suppressed by exercise or DPN, PPT or oxytocin treatments, whereas the interleukin-6 concentration was diminished by all the treatments when given in conjunction with exercise. Disorganization of cardiac muscle fibres was reduced in all exercised rats. Oestrogen receptor agonists, as well as oxytocin, in conjunction with exercise may be effective new therapeutics to protect against myocardial ischaemia in postmenopausal women.
Collapse
Affiliation(s)
- Erman Caner Bulut
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Abueid
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Selami Süleymanoğlu
- Department of Pediatric Cardiology, Gulhane Military Medical Academy, Istanbul, Turkey
| | - Mehmet Ağırbaşlı
- Department of Cardiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
34
|
Liu A, Philip J, Vinnakota KC, Van den Bergh F, Tabima DM, Hacker T, Beard DA, Chesler NC. Estrogen maintains mitochondrial content and function in the right ventricle of rats with pulmonary hypertension. Physiol Rep 2017; 5:5/6/e13157. [PMID: 28320896 PMCID: PMC5371553 DOI: 10.14814/phy2.13157] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
The typical cause of death in pulmonary hypertension (PH) is right ventricular (RV) failure, with females showing better survival rates than males. Recently, metabolic shift and mitochondrial dysfunction have been demonstrated in RV failure secondary to PH In light of evidence showing that estrogen protects mitochondrial function and biogenesis in noncardiovascular systems, we hypothesized that the mechanism by which estrogen preserves RV function is via protection of mitochondrial content and oxidative capacity in PH We used a well-established model of PH (Sugen+Hypoxia) in ovariectomized female rats with/without estrogen treatment. RV functional measures were derived from pressure-volume relationships measured via RV catheterization in live rats. Citrate synthase activity, a marker of mitochondrial density, was measured in both RV and LV tissues. Respiratory capacity of mitochondria isolated from RV was measured using oxygraphy. We found that RV ventricular-vascular coupling efficiency decreased in the placebo-treated SuHx rats (0.78 ± 0.10 vs. 1.50 ± 0.13 in control, P < 0.05), whereas estrogen restored it. Mitochondrial density decreased in placebo-treated SuHx rats (0.12 ± 0.01 vs. 0.15 ± 0.01 U citrate synthase/mg in control, P < 0.05), and estrogen attenuated the decrease. Mitochondrial quality and oxidative capacity tended to be lower in placebo-treated SuHx rats only. The changes in mitochondrial biogenesis and function paralleled the expression levels of PGC-1α in RV Our results suggest that estrogen protects RV function by preserving mitochondrial content and oxidative capacity. This provides a mechanism by which estrogen provides protection in female PH patients and paves the way to develop estrogen and its targets as a novel RV-specific therapy for PH.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer Philip
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kalyan C Vinnakota
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Francoise Van den Bergh
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Timothy Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel A Beard
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin .,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
35
|
Assessment of leukocyte activity in mice devoid of the glucocorticoid receptor in the noradrenergic system (GR DBHCre). Immunobiology 2017; 223:227-238. [PMID: 29030008 DOI: 10.1016/j.imbio.2017.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022]
Abstract
Disturbances in brain monoamines, overactivity of the hypothalamo-pituitary adrenal (HPA) axis and pro-inflammatory tendency in the immune system are the key features of depressive disorders. Recently, several murine lines with mutations in glucocorticoid receptors (GRs) have been generated and these animals may be utilized for study depressive-like disorders. In the present study, we have investigated whether selective ablation of GRs in noradrenergic neurons affects functional properties of leukocytes and redirects them towards pro-inflammatory activity. Transgenic mice selectively devoid of GRs on noradrenergic cells were constructed using the Cre/loxP approach. Peritoneal leukocytes were collected from mutant and wild type (WT) animals of both sexes and were cultured in vitro for 24h both in basal conditions and after application of selected pro- or anti-inflammatory stimuli. Metabolic activity and adherence were measured in basal conditions. Nitric oxide (NO) synthesis and arginase (ARG) activity were assessed as the markers of functional status of the cells. Because adult mutant mice lack adrenal medulla and thereby peripheral adrenaline, we modulated pro- and anti-inflammatory culture conditions by addition of noradrenaline (10-6M). Finally, effects of in vivo pro-inflammatory challenge (with intraperitoneal administration of lipopolysaccharide) on properties of leukocytes were assessed 24h (in both sexes) and 48h later (in males only). The experiments indicated that selective ablation of GR in noradrenergic neurons did not affect fundamental properties of peritoneal leukocytes and exerted effects only under conditions of selected pro- or anti-inflammatory stimuli in vitro. Stronger response to pro-inflammatory stimulation in terms of NO synthesis and ARG activity may suggest pro-inflammatory tendency in mutant mice. In vivo inflammatory challenge failed to show any effect of GR ablation on selected parameters of leukocyte activity. Both in vitro studies and in vivo challenge revealed mainly sex-related differences in leukocyte activity.
Collapse
|
36
|
Cardiovascular susceptibility to in vivo ischemic myocardial injury in male and female rat offspring exposed to prenatal hypoxia. Clin Sci (Lond) 2017; 131:2303-2317. [DOI: 10.1042/cs20171122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
Intrauterine growth restriction (IUGR) following prenatal hypoxia exposure leads to a higher risk of developing cardiovascular disease (CVD) in later life. Our aim was to evaluate cardiac susceptibility and its pathophysiological mechanisms following acute myocardial infarction (MI) in adult rat offspring exposed to prenatal hypoxia. Male and female rat offspring, which experienced normoxia (21% O2) or hypoxia (11% O2) in utero underwent sham or MI surgery at 12 weeks of age. Echocardiographic data revealed that both sexes had systolic dysfunction following MI surgery, independent of prenatal hypoxia. Male offspring exposed to prenatal hypoxia, however, had left ventricular dilatation, global dysfunction, and signs of diastolic dysfunction following MI surgery as evident by increased left ventricular internal diameter (LVID) during diastole (MI effect, P<0.01), Tei index (MI effect, P<0.001), and E/E′ ratio (prenatal hypoxia or MI effect, P<0.01). In contrast, diastolic dysfunction in female offspring was not as evident. Cardiac superoxide levels increased only in prenatal hypoxia exposed male offspring. Cardiac sarcoendoplasmic reticulum Ca2+-ATPase2a (SERCA2a) levels, a marker of cardiac injury and dysfunction, decreased in both male and female MI groups independent of prenatal hypoxia. Prenatal hypoxia increased cardiac ryanodine receptor 2 (RYR2) protein levels, while MI reduced RYR2 in only male offspring. In conclusion, male offspring exposed to prenatal hypoxia had an increased susceptibility to ischemic myocardial injury involving cardiac phenotypes similar to heart failure involving diastolic dysfunction in adult life compared with both offspring from healthy pregnancies and their female counterparts.
Collapse
|
37
|
Garvin AM, Aurigemma NC, Hackenberger JL, Korzick DH. Age and ischemia differentially impact mitochondrial ultrastructure and function in a novel model of age-associated estrogen deficiency in the female rat heart. Pflugers Arch 2017; 469:1591-1602. [PMID: 28776263 DOI: 10.1007/s00424-017-2034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022]
Abstract
Altered mitochondrial respiration, morphology, and quality control collectively contribute to mitochondrial dysfunction in the aged heart. Because myocardial infarction remains the leading cause of death in aged women, the present study utilized a novel rodent model to recapitulate human menopause to interrogate the combination of age and estrogen deficiency on mitochondrial ultrastructure and function with cardiac ischemia/reperfusion (I/R) injury. Female F344 rats were ovariectomized (OVX) at 15 months and studied at 24 months (MO OVX; n = 40) vs adult ovary intact (6 months; n = 41). Temporal declines in estrogen concomitant with increased visceral adipose tissue were observed in MO OVX vs adult. Following in vivo coronary artery ligation or sham surgery, state 3 mitochondrial respiration was selectively reduced by age in subsarcolemmal mitochondria (SSM) and by I/R in interfibrillar mitochondria (IFM); left ventricular maximum dP/dt was reduced in MO OVX (p < 0.05). Elevated cyclophilin D and exacerbated I/R-induced mitochondrial acetylation in MO OVX suggest permeability transition pore involvement and reduced protection vs adult (p < 0.05). Mitochondrial morphology by TEM revealed an altered time course of autophagy coordinate with attenuated Drp1 and LC3BII protein levels with age-associated estrogen loss (p < 0.05). Here, reductions in both SSM and IFM function may play an additive role in enhanced susceptibility to regional I/R injury in aged estrogen-deficient female hearts. Moreover, novel insight into altered cardiac mitochondrial quality control garnered here begins to unravel the potentially important regulatory role of mitochondrial dynamics on sustaining respiratory function in the aged female heart.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA
| | - Nicole C Aurigemma
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA
| | - Jenna L Hackenberger
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donna H Korzick
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, 106 Noll Laboratory, University Park, PA, 16802, USA. .,Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
38
|
Casós K, Ferrer-Curriu G, Soler-Ferrer P, Pérez ML, Permanyer E, Blasco-Lucas A, Gracia-Baena JM, Castro MA, Sureda C, Barquinero J, Galiñanes M. Response of the human myocardium to ischemic injury and preconditioning: The role of cardiac and comorbid conditions, medical treatment, and basal redox status. PLoS One 2017; 12:e0174588. [PMID: 28380047 PMCID: PMC5381881 DOI: 10.1371/journal.pone.0174588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The diseased human myocardium is highly susceptible to ischemia/reoxygenation (I/R)-induced injury but its response to protective interventions such as ischemic preconditioning (IPreC) is unclear. Cardiac and other pre-existing clinical conditions as well as previous or ongoing medical treatment may influence the myocardial response to I/R injury and protection. This study investigated the effect of both on myocardial susceptibility to I/R-induced injury and the protective effects of IPreC. METHODS AND RESULTS Atrial myocardium from cardiac surgery patients (n = 300) was assigned to one of three groups: aerobic control, I/R alone, and IPreC. Lactate dehydrogenase leakage, as a marker of cell injury, and cell viability were measured. The basal redox status was determined in samples from 90 patients. The response to I/R varied widely. Myocardium from patients with aortic valve disease was the most susceptible to injury whereas myocardium from dyslipidemia patients was the least susceptible. Tissue from females was better protected than tissue from males. Myocardium from patients with mitral valve disease was the least responsive to IPreC. The basal redox status was altered in the myocardium from patients with mitral and aortic valve disease. CONCLUSIONS The response of the myocardium to I/R and IPreC is highly variable and influenced by the underlying cardiac pathology, dyslipidemia, sex, and the basal redox status. These results should be taken into account in the design of future clinical studies on the prevention of I/R injury and protection.
Collapse
Affiliation(s)
- Kelly Casós
- Reparative Therapy of the Heart, Vall d’Hebron Research Institute (VHIR), University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Ferrer-Curriu
- Reparative Therapy of the Heart, Vall d’Hebron Research Institute (VHIR), University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Paula Soler-Ferrer
- Reparative Therapy of the Heart, Vall d’Hebron Research Institute (VHIR), University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - María L Pérez
- Reparative Therapy of the Heart, Vall d’Hebron Research Institute (VHIR), University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Eduard Permanyer
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Arnau Blasco-Lucas
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Juan Manuel Gracia-Baena
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Miguel A Castro
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Carlos Sureda
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Manuel Galiñanes
- Reparative Therapy of the Heart, Vall d’Hebron Research Institute (VHIR), University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Department of Cardiac Surgery, University Hospital Vall d’Hebron, Autonomous University of Barcelona (UAB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
17β-Estradiol enhances sulforaphane cardioprotection against oxidative stress. J Nutr Biochem 2017; 42:26-36. [DOI: 10.1016/j.jnutbio.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|
40
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
41
|
DPP-4 Inhibitor and Estrogen Share Similar Efficacy Against Cardiac Ischemic-Reperfusion Injury in Obese-Insulin Resistant and Estrogen-Deprived Female Rats. Sci Rep 2017; 7:44306. [PMID: 28281660 PMCID: PMC5345038 DOI: 10.1038/srep44306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Estrogen deprivation aggravates cardiac injury after myocardial ischemia and reperfusion (I/R) injury. Although either estrogen or the dipeptidyl peptidase-4 (DPP-4) inhibitor, vildagliptin, reduces myocardial damage following cardiac I/R, their effects on the heart in obese-insulin resistant and estrogen deprived conditions remain unknown. Ovariectomized (O) rats (n = 36) were divided to receive either normal diet (NDO) or high-fat diet (HFO) for 12 weeks, followed by treatment with a vehicle, estrogen or vildagliptin for 4 weeks. The setting of in vivo cardiac I/R injury, 30-min ischemia and 120-min reperfusion, was performed. At 12 weeks after ovariectomy, both NDO and HFO rats exhibited an obese-insulin resistant condition. Both NDO and HFO rats treated with estrogen and vildagliptin showed reduced fasting plasma glucose, insulin and HOMA index. Both treatments improved cardiac function indicated by restoration of heart rate variability and increased %left ventricular ejection fraction (%LVEF). The treatments similarly protected cardiac mitochondrial function against I/R injury, leading to a reduction in the infarct size, oxidative stress and apoptosis in the ischemic myocardium. These findings demonstrate that vildagliptin effectively improves metabolic status, and shares similar efficacy to estrogen in reducing myocardial infarction and protecting cardiac mitochondrial function against I/R injury in estrogen-deprived obese-insulin resistant rats.
Collapse
|
42
|
Boisvert A, Jones S, Issop L, Erythropel HC, Papadopoulos V, Culty M. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity. ENVIRONMENTAL RESEARCH 2016; 150:496-512. [PMID: 27423704 DOI: 10.1016/j.envres.2016.06.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates target mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health.
Collapse
Affiliation(s)
- Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Hanno C Erythropel
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Medicine, McGill University, Montreal, Quebec, Canada H4A 3J1; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada H4A 3J1.
| |
Collapse
|
43
|
Sivasinprasasn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury. J Cardiovasc Transl Res 2016; 9:23-39. [PMID: 26786980 DOI: 10.1007/s12265-016-9675-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
44
|
Ghanbari M, Jeddi S, Bagheripuor F, Ghasemi A. The effect of maternal hypothyroidism on cardiac function and tolerance to ischemia-reperfusion injury in offspring male and female rats. J Endocrinol Invest 2015; 38:915-22. [PMID: 25823371 DOI: 10.1007/s40618-015-0267-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Accumulating evidence indicates that intrauterine evolution disturbance can contribute to myocardial ischemia reperfusion (IR) injury; in addition, thyroid hormones (THs) have a crucial role in the development of different systems during fetal life. The aim of this study was to determine the effect of TH deficiency during fetal life on tolerance of isolated heart to ischemia during adulthood in both genders. METHODS Hypothyroidism was induced in pregnant Wistar rats by administrating 0.025 % 6-propyl-2-thiouracil in drinking water throughout pregnancy. Offspring of rats with maternal hypothyroidism (MH) and control groups were tested in adulthood. Isolated hearts were perfused with Langendorff setup and exposed to 30 min of ischemia, followed by 45 min of reperfusion. Baseline values of the left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), heart rate (HR), and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) were recorded. RESULTS In the MH groups the baseline levels of LVDP (male: 23 %, female: 33 %), HR (male: 31 %, female: 26 %), and ±dp/dt were significantly (p < 0.01) lower, compared to controls. After ischemia, hearts from male rats with MH had less tolerance to IR injury as assessed in terms of reductions in recovery of hemodynamic parameters compared to controls, while in female rats there were no significant differences between MH and controls. CONCLUSIONS MH decreases hemodynamic parameters in the heart of both male and female offspring in adulthood; in addition, hearts of male rats with MH show less tolerance to ischemia, compared to those of females.
Collapse
Affiliation(s)
- M Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, 1985717413, Tehran, Iran
| | | | | | | |
Collapse
|
45
|
Xue Q, Xiao D, Zhang L. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats. Biol Reprod 2015; 93:6. [PMID: 25972014 DOI: 10.1095/biolreprod.115.129619] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Qin Xue
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
46
|
Bell JR, Bernasochi GB, Wollermann AC, Raaijmakers AJA, Boon WC, Simpson ER, Curl CL, Mellor KM, Delbridge LMD. Myocardial and cardiomyocyte stress resilience is enhanced in aromatase-deficient female mouse hearts through CaMKIIδ activation. Endocrinology 2015; 156:1429-40. [PMID: 25625588 DOI: 10.1210/en.2014-1700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of sex steroids in cardioprotection is contentious, with large clinical trials investigating hormone supplementation failing to deliver outcomes expected from observational studies. Mechanistic understanding of androgen/estrogen myocardial actions is lacking. Using a genetic model of aromatase tissue deficiency (ArKO) in female mice, the goal of this investigation was to evaluate the capacity of a shift in cardiac endogenous steroid conversion to influence ischemia-reperfusion resilience by optimizing cardiomyocyte Ca2+ handling responses. In isolated normoxic cardiomyocytes, basal Ca2+ transient amplitude and extent of shortening were greater in ArKO myocytes, with preservation of diastolic Ca2+ levels. Isolated ArKO cardiomyocytes exposed to a high Ca2+ load exhibited greater Ca2+ transient and contractile amplitudes, associated with a greater postrest spontaneous sarcoplasmic reticulum Ca2+ load-release. Microarray differential gene expression analysis of normoxic ventricular tissues from ArKO vs wild-type identified a significant influence of aromatase on genes involved in cardiac Ca2+ handling and signaling [including calmodulin dependent kinase II (CaMKII)-δ], myofilament structure and function, glucose uptake and signaling, and enzymes controlling phosphorylation-specific posttranslational modification status. CaMKII expression was not changed in ventricular tissues, although CaMKIIδ activation and phosphorylation of downstream targets was enhanced in ArKO hearts subjected to ischemia-reperfusion. Overall, this investigation shows that relative withdrawal of estrogen in favor of testosterone through genetically induced tissue aromatase deficiency in females modifies the gene expression profile to effect inotropic support via optimized Ca2+ handling in response to stress, with a modest impact on basal function. Consideration of aromatase inhibition, acutely or chronically, may have a role in cardioprotection, of particular relevance to women.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Phenomics Laboratory (J.R.B., G.B.B., A.C.W., A.J.A.R., C.L.C., K.M.M., L.M.D.D.), Department of Physiology, and The Florey Institute of Neuroscience and Mental Health (W.C.B.), University of Melbourne, Victoria 3010, Australia; Monash Institute of Medical Research-Prince Henry's Institute of Medical Research (E.R.S.), Clayton 3168, Victoria, Australia; and Department of Physiology (K.M.M.), University of Auckland, 1142 Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rattanasopa C, Phungphong S, Wattanapermpool J, Bupha-Intr T. Significant role of estrogen in maintaining cardiac mitochondrial functions. J Steroid Biochem Mol Biol 2015; 147:1-9. [PMID: 25448746 DOI: 10.1016/j.jsbmb.2014.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 01/16/2023]
Abstract
Increased susceptibility to stress-induced myocardial damage is a significant concern in addition to decreased cardiac performance in postmenopausal females. To determine the potential mechanisms underlying myocardial vulnerability after deprivation of female sex hormones, cardiac mitochondrial function is determined in 10-week ovariectomized rats (OVX). Significant mitochondrial swelling in the heart of OVX rats is observed. This structural alteration can be prevented with either estrogen or progesterone supplementation. Using an isolated mitochondrial preparation, a decrease in ATP synthesis by complex I activation in an OVX rat is completely restored by estrogen, but not progesterone. At basal activation, reactive oxygen species (ROS) production from the mitochondria is not affected by the ovariectomy. However, after incubated in the presence of either high Ca(2+) or antimycin-A, there is a significantly higher mitochondrial ROS production in the OVX sample compared to the control. This increased stress-induced ROS production is not observed in the preparation isolated from the hearts of OVX rats with estrogen or progesterone supplementation. However, deprivation of female sex hormones has no effect on the protein expression of electron transport chain complexes, mitofusin 2, or superoxide dismutase 2. Taken together, these findings suggest that female sex hormones, estrogen and progesterone, play significant regulatory roles in maintaining normal mitochondrial properties by stabilizing the structural assembly of mitochondria as well as attenuating mitochondrial ROS production. Estrogen, but not progesterone, also plays an important role in modulating mitochondrial ATP synthesis.
Collapse
Affiliation(s)
- Chutima Rattanasopa
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Jonggonnee Wattanapermpool
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand.
| |
Collapse
|
48
|
Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 2014; 6:233-40. [PMID: 25400405 PMCID: PMC4231382 DOI: 10.4103/0975-7406.142951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/05/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Postconditioning (PoCo) is an adaptive phenomenon whereby brief repetitive cycles of ischemia with intermittent reperfusion instituted immediately after prolonged ischemia at the onset of prolonged reperfusion elicit tissue protection. PoCo is noted to exert a protective effect in various organs like heart, liver, kidney and brain. Various triggers, mediators and end effectors are suggested to contribute to the protective effect of PoCo. However, the neuroprotective mechanism of PoCo is poorly understood. OBJECTIVES The present study has been designed to investigate the role of nitric oxide pathway in the neuroprotective mechanism of ischemic postconditioning (iPoCo) employing a mouse model of global cerebral ischemia and reperfusion-induced injury. MATERIALS AND METHODS Bilateral carotid artery occlusion (BCAO) of 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion (I/R)-induced cerebral injury in mice. Cerebral injury was assessed in the terms of cerebral infarct, memory impairment and motor in-coordination. Brain nitrite/nitrate; acetylcholinesterase activity, thiobarbituric acid reactive species (TBARS) and glutathione level were also estimated. RESULTS BCAO followed by reperfusion produced a significant rise in cerebral infarct size, memory impairment and motor incoordination. Further a rise in acetylcholinesterase activity and TBARS level along with fall in brain nitrite/nitrate and glutathione levels was also noted. iPoCo consisting of three episodes of 10 s carotid artery occlusion and reperfusion (instituted immediately after BCAO) significantly attenuated infarct size, memory impairment, motor incoordination as well as altered biochemicals. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment of L-NAME, a nonselective NOS inhibitor. CONCLUSION It may be concluded that the nitric oxide pathway probably plays a vital role in the neuroprotective mechanism of iPoCo.
Collapse
Affiliation(s)
- Puja Gulati
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
49
|
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 2014; 307:H1401-11. [PMID: 25217653 PMCID: PMC4233302 DOI: 10.1152/ajpheart.00755.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
50
|
MicroRNA-23a mediates mitochondrial compromise in estrogen deficiency-induced concentric remodeling via targeting PGC-1α. J Mol Cell Cardiol 2014; 75:1-11. [DOI: 10.1016/j.yjmcc.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023]
|