1
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
2
|
Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L229-L238. [PMID: 39772994 DOI: 10.1152/ajplung.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is-in addition to its well-established roles in the lung airway and extrapulmonary organs-increasingly recognized as a key regulator of alveolar homeostasis and defense. In the alveolar epithelium, CFTR mediates alveolar fluid secretion and liquid homeostasis; in the microvascular endothelium, CFTR maintains vascular barrier function. CFTR also contributes to alveolar immunity. Yet, in lung infection, diverse molecular mechanisms reduce CFTR abundance and otherwise impair its function, promoting alveolar inflammation, edema, and cell death. Preservation or restoration of CFTR function by CFTR modulator drugs thus presents a promising avenue to combat lung infection in a pathogen-independent manner.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Magaña-Ávila GR, Moreno E, Plata C, Carbajal-Contreras H, Murillo-de-Ozores AR, García-Ávila K, Vázquez N, Syed M, Wysocki J, Batlle D, Gamba G, Castañeda-Bueno M. Effect of SARS-CoV-2 S protein on the proteolytic cleavage of the epithelial Na+ channel ENaC. PLoS One 2024; 19:e0302436. [PMID: 38662786 PMCID: PMC11045049 DOI: 10.1371/journal.pone.0302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.
Collapse
Affiliation(s)
- Germán Ricardo Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kevin García-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vázquez
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Syed
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jan Wysocki
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniel Batlle
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Tang S, De Jesus AC, Chavez D, Suthakaran S, Moore SK, Suthakaran K, Homami S, Rathnasinghe R, May AJ, Schotsaert M, Britto CJ, Bhattacharya J, Hook JL. Rescue of alveolar wall liquid secretion blocks fatal lung injury due to influenza-staphylococcal coinfection. J Clin Invest 2023; 133:e163402. [PMID: 37581936 PMCID: PMC10541650 DOI: 10.1172/jci163402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Secondary lung infection by inhaled Staphylococcus aureus (SA) is a common and lethal event for individuals infected with influenza A virus (IAV). How IAV disrupts host defense to promote SA infection in lung alveoli, where fatal lung injury occurs, is not known. We addressed this issue using real-time determinations of alveolar responses to IAV in live, intact, perfused lungs. Our findings show that IAV infection blocked defensive alveolar wall liquid (AWL) secretion and induced airspace liquid absorption, thereby reversing normal alveolar liquid dynamics and inhibiting alveolar clearance of inhaled SA. Loss of AWL secretion resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel in the alveolar epithelium, and airspace liquid absorption was caused by stimulation of the alveolar epithelial Na+ channel (ENaC). Loss of AWL secretion promoted alveolar stabilization of inhaled SA, but rescue of AWL secretion protected against alveolar SA stabilization and fatal SA-induced lung injury in IAV-infected mice. These findings reveal a central role for AWL secretion in alveolar defense against inhaled SA and identify AWL inhibition as a critical mechanism of IAV lung pathogenesis. AWL rescue may represent a new therapeutic approach for IAV-SA coinfection.
Collapse
Affiliation(s)
- Stephanie Tang
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Ana Cassandra De Jesus
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Deebly Chavez
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sayahi Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Sarah K.L. Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Keshon Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sonya Homami
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Raveen Rathnasinghe
- Graduate School of Biomedical Sciences
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Alison J. May
- Department of Cell, Developmental and Regenerative Biology
- Department of Otolaryngology, and
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| |
Collapse
|
6
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
7
|
Brown EF, Mitaera T, Fronius M. COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells 2022; 11:cells11111801. [PMID: 35681496 PMCID: PMC9180030 DOI: 10.3390/cells11111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike ‘activates’ the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.
Collapse
Affiliation(s)
- Emily F. Brown
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Tamapuretu Mitaera
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
- Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Centre of Research Excellence, New Zealand
- Correspondence: ; Tel.: +64-3-471-6081
| |
Collapse
|
8
|
Schmidt H, Gutjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 2022; 322:C591-C604. [PMID: 35196166 PMCID: PMC8977148 DOI: 10.1152/ajpcell.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Cente, Ulm, Germany.,Institute of General Physiology, Ulm University, Ulm, Germany
| | - Lara Gutjahr
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
9
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Abstract
It has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection. Infection with influenza viruses is associated with a wide spectrum of disease, from mild symptoms to severe complications including respiratory failure, and the severity of influenza disease is driven by a complex interplay of viral and host factors. This chapter will discuss mechanisms of infection severity using concepts of disease resistance and tolerance as a framework for understanding the balance between viral clearance and immunopathology. We review mechanistic studies in animal models of infection and correlational studies in humans that have begun to define these factors and discuss promising host therapeutic targets to improve outcomes from severe influenza disease.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
13
|
Abstract
Influenza viruses infect the upper respiratory system, causing usually a self-limited disease with mild respiratory symptoms. Acute lung injury, pulmonary microvascular leakage and cardiovascular collapse may occur in severe cases, usually in the elderly or in immunocompromised patients. Acute lung injury is a syndrome associated with pulmonary oedema, hypoxaemia and respiratory failure. Influenza virus primarily binds to the epithelium, interfering with the epithelial sodium channel function. However, the main clinical devastating effects are caused by endothelial dysfunction, thought to be the main mechanism leading to pulmonary oedema, respiratory failure and cardiovascular collapse. A significant association was found between influenza infection and acute myocardial infarction (AMI). The incidence of admission due to AMI during an acute viral infection was six times as high during the 7 days after laboratory confirmation of influenza infection as during the control interval (10-fold in influenza B, 5-fold in influenza A, 3.5-fold in respiratory syncytial virus and 2.7-fold for all other viruses). Our review will focus on the mechanisms responsible for endothelial dysfunction during influenza infection leading to cardiovascular collapse and death.
Collapse
Affiliation(s)
- A Peretz
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Tiberias, Israel
- The Research Institute, Baruch Padeh Medical Center
- Azrieli Faculty of Medicine
| | - M Azrad
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Tiberias, Israel
- The Research Institute, Baruch Padeh Medical Center
- Azrieli Faculty of Medicine
| | - A Blum
- The Research Institute, Baruch Padeh Medical Center
- Azrieli Faculty of Medicine
- Vascular and Regenerative Research Laboratory, Bar-Ilan University, Galilee, Safed, Israel
| |
Collapse
|
14
|
Lee JY, Abundo MEC, Lee CW. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1663-1700. [PMID: 30612461 DOI: 10.1142/s0192415x18500854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapidly changing influenza virus has remained a consistent threat to the well-being of a variety of species on the planet. Influenza virus' high mutation rate has allowed the virus to rapidly and continuously evolve, as well as generate new strains that are resistant to the current commercially available antivirals. Thus, the increased resistance has compelled the scientific community to explore alternative compounds that have antiviral effects against influenza virus. In this paper, the authors systematically review numerous herbal extracts that were shown to have antiviral effects against the virus. Specifically, the herbal antiviral targets mainly include hemagglutinin, neuraminidase and matrix 2 proteins. In some instances, herbal extracts inhibited the replication of oseltamivir-resistant strains and certain pentacyclic triterpenes exhibited higher antiviral activity than oseltamivir. This paper also explores the possibility of targeting various host-cell signaling pathways that are utilized by the virus during its replication process. Infected cell pathways are hijacked by intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway and PKC/PKR signaling cascades. Herbal antivirals have been shown to target these pathways by suppressing nuclear export of influenza vRNP and thus inhibiting the phosphorylation signaling cascade. In conclusion, copious amounts of herbal antivirals have been shown to inhibit influenza virus, however further studies are needed for these new compounds to be up to modern pharmacological standards.
Collapse
Affiliation(s)
- Ju-Young Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,‡ Mom-Pyon Han Pharmacy, Nambusoonhwan-ro 770, Seosan City, Chungnam, Republic of Korea
| | - Michael Edward C Abundo
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chang-Won Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3:123467. [PMID: 30333319 DOI: 10.1172/jci.insight.123467] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ren-Jay Shei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Timothy Adewale
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| |
Collapse
|
16
|
Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, Berthiaume Y. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca 2+ and TRPV4 activation. Pflugers Arch 2018; 470:1615-1631. [PMID: 30088081 DOI: 10.1007/s00424-018-2182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.
Collapse
Affiliation(s)
- André Dagenais
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada.
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada.
| | - Julie Desjardins
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Antoine Roy
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Dominic Filion
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Rémy Sauvé
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
18
|
Matsui K, Ozawa M, Kiso M, Yamashita M, Maekawa T, Kubota M, Sugano S, Kawaoka Y. Stimulation of alpha2-adrenergic receptors impairs influenza virus infection. Sci Rep 2018; 8:4631. [PMID: 29545586 PMCID: PMC5854622 DOI: 10.1038/s41598-018-22927-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Influenza A viruses cause seasonal epidemics and occasional pandemics. The emergence of viruses resistant to neuraminidase (NA) inhibitors and M2 ion channel inhibitors underlines the need for alternate anti-influenza drugs with novel mechanisms of action. Here, we report the discovery of a host factor as a potential target of anti-influenza drugs. By using cell-based virus replication screening of a chemical library and several additional assays, we identified clonidine as a new anti-influenza agent in vitro. We found that clonidine, which is an agonist of the alpha2-adrenergic receptor (α2-AR), has an inhibitory effect on the replication of various influenza virus strains. α2-AR is a Gi-type G protein-coupled receptor that reduces intracellular cyclic AMP (cAMP) levels. In-depth analysis showed that stimulation of α2-ARs leads to impairment of influenza virus replication and that α2-AR agonists inhibit the virus assembly step, likely via a cAMP-mediated pathway. Although clonidine administration did not reduce lung virus titers or prevent body weight loss, it did suppress lung edema and improve survival in a murine lethal infection model. Clonidine may thus protect against lung damage caused by influenza virus infection. Our results identify α2-AR-mediated signaling as a key pathway to exploit in the development of anti-influenza agents.
Collapse
Affiliation(s)
- Ken Matsui
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-shi, Kagoshima, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshihiko Maekawa
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Minoru Kubota
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation, Kaisei-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Sumio Sugano
- Laboratory of Next Generation Drug Development, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan.,Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan. .,International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan. .,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA. .,Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
19
|
Yang G, Pillich H, White R, Czikora I, Pochic I, Yue Q, Hudel M, Gorshkov B, Verin A, Sridhar S, Isales CM, Eaton DC, Hamacher J, Chakraborty T, Lucas R. Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins (Basel) 2018; 10:toxins10020079. [PMID: 29439494 PMCID: PMC5848180 DOI: 10.3390/toxins10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Richard White
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Biomedical Sciences, Georgia Campus-Philadelphia College of Osteopathic Medicine, Atlanta, GA 30224, USA.
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Isabelle Pochic
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Sandoz Inc., 83607 Holzkirchen, Germany.
| | - Qiang Yue
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| | - Douglas C Eaton
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Department of Pneumology, Lindenhofspital, 3001 Bern, Switzerland.
- Internal, Pulmonary and Critical Care Medicine, Saarland University, 66424 Homburg/Saar, Germany.
- Lungen-und Atmungsstifung, 3001 Bern, Switzerland.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| |
Collapse
|
20
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
21
|
van de Sandt CE, Bárcena M, Koster AJ, Kasper J, Kirkpatrick CJ, Scott DP, de Vries RD, Herold S, Rimmelzwaan GF, Kuiken T, Short KR. Human CD8 + T Cells Damage Noninfected Epithelial Cells during Influenza Virus Infection In Vitro. Am J Respir Cell Mol Biol 2017; 57:536-546. [PMID: 28613916 DOI: 10.1165/rcmb.2016-0377oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During severe influenza A virus (IAV) infections, a large amount of damage to the pulmonary epithelium is the result of the antiviral immune response. Specifically, whilst CD8+ T cells are important for killing IAV-infected cells, during a severe IAV infection, they can damage uninfected epithelial cells. At present, the mechanisms by which this occurs are unclear. Here, we used a novel in vitro coculture model of human NCl-H441 cells and CD8+ T cells to provide a new insight into how CD8+ T cells may affect uninfected epithelial cells during severe IAV infections. Using this model, we show that human IAV-specific CD8+ T cells produce soluble factors that reduce the barrier integrity of noninfected epithelial cells (referred to as "bystander damage"). We show that this bystander damage is the result of a combination of TNF-α and IFN-γ. This bystander damage occurred in the absence of widespread epithelial cell death and was instead associated with decreased expression of epithelial cell ion channels and pumps. Together, these data suggest that ameliorating the function of epithelial cell ion channels and pumps may help reduce immunopathology during severe IAV infections.
Collapse
Affiliation(s)
| | - Montserrat Bárcena
- 2 Department of Molecular Cell Biology, Section of Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Abraham J Koster
- 2 Department of Molecular Cell Biology, Section of Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jennifer Kasper
- 3 Institute of Pathology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Charles J Kirkpatrick
- 3 Institute of Pathology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Dana P Scott
- 4 Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Rory D de Vries
- 1 Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Susanne Herold
- 5 University of Giessen and Marburg Lung Centre, Justus-Liebig-University of Giessen, Member of the German Centre for Lung Research, Giessen, Germany
| | - Guus F Rimmelzwaan
- 1 Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- 1 Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kirsty R Short
- 1 Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.,6 School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and.,7 Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
24
|
Wynne BM, Zou L, Linck V, Hoover RS, Ma HP, Eaton DC. Regulation of Lung Epithelial Sodium Channels by Cytokines and Chemokines. Front Immunol 2017; 8:766. [PMID: 28791006 PMCID: PMC5524836 DOI: 10.3389/fimmu.2017.00766] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury leading to acute respiratory distress (ARDS) is a global health concern. ARDS patients have significant pulmonary inflammation leading to flooding of the pulmonary alveoli. This prevents normal gas exchange with consequent hypoxemia and causes mortality. A thin fluid layer in the alveoli is normal. The maintenance of this thin layer results from fluid movement out of the pulmonary capillaries into the alveolar interstitium driven by vascular hydrostatic pressure and then through alveolar tight junctions. This is then balanced by fluid reabsorption from the alveolar space mediated by transepithelial salt and water transport through alveolar cells. Reabsorption is a two-step process: first, sodium enters via sodium-permeable channels in the apical membranes of alveolar type 1 and 2 cells followed by active extrusion of sodium into the interstitium by the basolateral Na+, K+-ATPase. Anions follow the cationic charge gradient and water follows the salt-induced osmotic gradient. The proximate cause of alveolar flooding is the result of a failure to reabsorb sufficient salt and water or a failure of the tight junctions to prevent excessive movement of fluid from the interstitium to alveolar lumen. Cytokine- and chemokine-induced inflammation can have a particularly profound effect on lung sodium transport since they can alter both ion channel and barrier function. Cytokines and chemokines affect alveolar amiloride-sensitive epithelial sodium channels (ENaCs), which play a crucial role in sodium transport and fluid reabsorption in the lung. This review discusses the regulation of ENaC via local and systemic cytokines during inflammatory disease and the effect on lung fluid balance.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Li Zou
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Valerie Linck
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, United States
| | - He-Ping Ma
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
26
|
Huppert LA, Matthay MA. Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Front Immunol 2017; 8:371. [PMID: 28439268 PMCID: PMC5383664 DOI: 10.3389/fimmu.2017.00371] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023] Open
Abstract
Critically ill patients with respiratory failure from acute respiratory distress syndrome (ARDS) have reduced ability to clear alveolar edema fluid. This reduction in alveolar fluid clearance (AFC) contributes to the morbidity and mortality in ARDS. Thus, it is important to understand why AFC is reduced in ARDS in order to design targeted therapies. In this review, we highlight experiments that have advanced our understanding of ARDS pathogenesis, with particular reference to the alveolar epithelium. First, we review how vectorial ion transport drives the clearance of alveolar edema fluid in the uninjured lung. Next, we describe how alveolar edema fluid is less effectively cleared in lungs affected by ARDS and describe selected in vitro and in vivo experiments that have elucidated some of the molecular mechanisms responsible for the reduced AFC. Finally, we describe one potential therapy that targets this pathway: bone marrow-derived mesenchymal stem (stromal) cells (MSCs). Based on preclinical studies, MSCs enhance AFC and promote the resolution of pulmonary edema and thus may offer a promising cell-based therapy for ARDS.
Collapse
Affiliation(s)
- Laura A Huppert
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, UCSF School of Medicine, Cardiovascular Research Institute, San Francisco, CA, USA
| |
Collapse
|
27
|
Trac PT, Thai TL, Linck V, Zou L, Greenlee M, Yue Q, Al-Khalili O, Alli AA, Eaton AF, Eaton DC. Alveolar nonselective channels are ASIC1a/α-ENaC channels and contribute to AFC. Am J Physiol Lung Cell Mol Physiol 2017; 312:L797-L811. [PMID: 28283476 DOI: 10.1152/ajplung.00379.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
A thin fluid layer in alveoli is normal and results from a balance of fluid entry and fluid uptake by transepithelial salt and water reabsorption. Conventional wisdom suggests the reabsorption is via epithelial Na+ channels (ENaC), but if all Na+ reabsorption were via ENaC, then amiloride, an ENaC inhibitor, should block alveolar fluid clearance (AFC). However, amiloride blocks only half of AFC. The reason for failure to block is clear from single-channel measurements from alveolar epithelial cells: ENaC channels are observed, but another channel is present at the same frequency that is nonselective for Na+ over K+, has a larger conductance, and has shorter open and closed times. These two channel types are known as highly selective channels (HSC) and nonselective cation channels (NSC). HSC channels are made up of three ENaC subunits since knocking down any of the subunits reduces HSC number. NSC channels contain α-ENaC since knocking down α-ENaC reduces the number of NSC (knocking down β- or γ-ENaC has no effect on NSC, but the molecular composition of NSC channels remains unclear). We show that NSC channels consist of at least one α-ENaC and one or more acid-sensing ion channel 1a (ASIC1a) proteins. Knocking down either α-ENaC or ASIC1a reduces both NSC and HSC number, and no NSC channels are observable in single-channel patches on lung slices from ASIC1a knockout mice. AFC is reduced in knockout mice, and wet wt-to-dry wt ratio is increased, but the percentage increase in wet wt-to-dry wt ratio is larger than expected based on the reduction in AFC.
Collapse
Affiliation(s)
- Phi T Trac
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Tiffany L Thai
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Valerie Linck
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Li Zou
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Megan Greenlee
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Qiang Yue
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Otor Al-Khalili
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Amity F Eaton
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| | - Douglas C Eaton
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
28
|
Lucas R, Yue Q, Alli A, Duke BJ, Al-Khalili O, Thai TL, Hamacher J, Sridhar S, Lebedyeva I, Su H, Tzotzos S, Fischer B, Gameiro AF, Loose M, Chakraborty T, Shabbir W, Aufy M, Lemmens-Gruber R, Eaton DC, Czikora I. The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the α-Subunit. J Biol Chem 2016; 291:23440-23451. [PMID: 27645999 DOI: 10.1074/jbc.m116.718163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.
Collapse
Affiliation(s)
- Rudolf Lucas
- From the Vascular Biology Center, .,the Department of Pharmacology and Toxicology, and.,the Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, Georgia 30912
| | - Qiang Yue
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Abdel Alli
- the Department of Physiology, Emory University, Atlanta, Georgia 30322.,the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | - Otor Al-Khalili
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Tiffany L Thai
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Jürg Hamacher
- the Department of Pulmonology, Saarland University, D-66421 Homburg, Germany
| | | | - Iryna Lebedyeva
- the Department of Chemistry, Augusta University, Augusta, Georgia 30912
| | - Huabo Su
- From the Vascular Biology Center
| | - Susan Tzotzos
- Apeptico Research and Development, 1150 Vienna, Austria
| | | | | | - Maria Loose
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Trinad Chakraborty
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Mohammed Aufy
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Douglas C Eaton
- the Department of Physiology, Emory University, Atlanta, Georgia 30322,
| | | |
Collapse
|
29
|
Erramilli S, Mannam P, Manthous CA. Influenza SIRS with Minimal Pneumonitis. Front Med (Lausanne) 2016; 3:37. [PMID: 27630988 PMCID: PMC5005447 DOI: 10.3389/fmed.2016.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement.
Collapse
Affiliation(s)
- Shruti Erramilli
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Praveen Mannam
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | | |
Collapse
|
30
|
Meliopoulos VA, Van de Velde LA, Van de Velde NC, Karlsson EA, Neale G, Vogel P, Guy C, Sharma S, Duan S, Surman SL, Jones BG, Johnson MDL, Bosio C, Jolly L, Jenkins RG, Hurwitz JL, Rosch JW, Sheppard D, Thomas PG, Murray PJ, Schultz-Cherry S. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog 2016; 12:e1005804. [PMID: 27505057 PMCID: PMC4978498 DOI: 10.1371/journal.ppat.1005804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.
Collapse
Affiliation(s)
- Victoria A. Meliopoulos
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lee-Ann Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicholas C. Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erik A. Karlsson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoff Neale
- The Hartwell Center, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Veterinary Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Cliff Guy
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shalini Sharma
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri L. Surman
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bart G. Jones
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. L. Johnson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Catharine Bosio
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Lisa Jolly
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - R. Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Dean Sheppard
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF Medical Center, San Francisco, California, United States of America
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter J. Murray
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
31
|
Abstract
Influenza infection can cause acute respiratory distress syndrome (ARDS), leading to poor disease outcome with high mortality. One of the driving features in the pathogenesis of ARDS is the accumulation of fluid in the alveoli, which causes severe pulmonary edema and impaired oxygen uptake. In this issue of the JCI, Peteranderl and colleagues define a paracrine communication between macrophages and type II alveolar epithelial cells during influenza infection where IFNα induces macrophage secretion of TRAIL that causes endocytosis of Na,K-ATPase by the alveolar epithelium. This reduction of Na,K-ATPase expression decreases alveolar fluid clearance, which in turn leads to pulmonary edema. Inhibition of the TRAIL signaling pathway has been shown to improve lung injury after influenza infection, and future studies will be needed to determine if blocking this pathway is a viable option in the treatment of ARDS.
Collapse
|
32
|
Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
In utero, fetal lung epithelial cells actively secrete Cl(-) ions into the lung air spaces while Na(+) ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na(+)-K(+)-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na(+) transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na(+) reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl(-) ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl(-) secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl(-) through apical cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels and absorb Na(+). Thus the coordinated action of Cl(-) secretion and Na(+) absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na(+) or Cl(-) transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
33
|
Gregory DJ, Kobzik L. Influenza lung injury: mechanisms and therapeutic opportunities. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1041-6. [PMID: 26408556 DOI: 10.1152/ajplung.00283.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
In this Perspectives, we discuss some recent developments in the pathogenesis of acute lung injury following influenza infection, with an emphasis on promising therapeutic leads. Damage to the alveolar-capillary barrier has been quantified in mice, and agents have been identified that can help to preserve barrier integrity, such as vasculotide, angiopoietin-like 4 neutralization, and sphingosine 1-phosphate mimics. Results from studies using mesenchymal stem cells have been disappointing, despite promising data in other types of lung injury. The roles of fatty acid binding protein 5, prostaglandin E2, and the interplay between IFN-γ and STAT1 in epithelial signaling during infection have been addressed in vitro. Finally, we discuss the role of autophagy in inflammatory cytokine production and the viral life cycle and the opportunities this presents for intervention.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health
| |
Collapse
|
34
|
Alli AA, Bao HF, Liu BC, Yu L, Aldrugh S, Montgomery DS, Ma HP, Eaton DC. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. Am J Physiol Renal Physiol 2015; 309:F456-63. [PMID: 26136560 DOI: 10.1152/ajprenal.00631.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/24/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane.
Collapse
Affiliation(s)
- Abdel A Alli
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Hui-Fang Bao
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Bing-Chen Liu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Ling Yu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Summer Aldrugh
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Darrice S Montgomery
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - He-Ping Ma
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Douglas C Eaton
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| |
Collapse
|
35
|
Zhu Y, Wei Y, Chen J, Cui G, Ding Y, Kohanawa M, Xu X, Diao H. Osteopontin Exacerbates Pulmonary Damage in Influenza-Induced Lung Injury. Jpn J Infect Dis 2015; 68:467-73. [PMID: 25866117 DOI: 10.7883/yoken.jjid.2014.467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The level of osteopontin (OPN) increases during bacterial lung infection. However, the OPN level in virus-induced lung injury is unclear, and the relationship between the hyer-production of OPN and lung injury remains to be thoroughly understood. Therefore, we sought to determine whether a relationship exists between OPN and pulmonary damage. Particularly, pulmonary edema and the destruction of pulmonary tissue. In this study, we found that the OPN level was significantly elevated in patients with pulmonary damage, and there was a positive correlation between the OPN serum level and disease severity in influenza lung injury. The epithelial sodium channel (ENaC) is the main mechanism of clearance of pulmonary edema fluid, and matrix metalloproteinase 7 (MMP7) can degrade the extracellular matrix. In lung epithelial cells, OPN markedly decreased the mRNA expression of the α-subunit of ENaC through integrin β3 and CD44 (OPN receptors); however, the expression of MMP7 was promoted by OPN interaction with integrin β1 and CD44. In addition, OPN increased the levels of tumor necrosis factor-α and interleukin-6. These findings suggested that OPN might increase influenza virus-induced lung injury by augmenting lung epithelial cell apoptosis and impairing ENaC and extracellular matrix destruction.
Collapse
Affiliation(s)
- Yunan Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Determining the role of NADPH oxidases in the context of virus infection is an emerging area of research and our knowledge is still sparse. The expression of various isoforms of NOX/DUOX (NADPH oxidase/dual oxidase) in the epithelial cells (ECs) lining the respiratory tract renders them primary sites from which to orchestrate the host defence against respiratory viruses. Accumulating evidence reveals distinct facets of the involvement of NOX/DUOX in host antiviral and pro-inflammatory responses and in the control of the epithelial barrier integrity, with individual isoforms mediating co-operative, but surprisingly also opposing, functions. Although in vivo studies in mice are in line with some of these observations, a complete understanding of the specific functions of epithelial NOX/DUOX awaits lung epithelial-specific conditional knockout mice. The goal of the present review is to summarize our current knowledge of the role of individual NOX/DUOX isoforms expressed in the lung epithelium in the context of respiratory virus infections so as to highlight potential opportunities for therapeutic intervention.
Collapse
|
37
|
Ji HL, Zhao R, Komissarov AA, Chang Y, Liu Y, Matthay MA. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites. J Biol Chem 2015; 290:5241-55. [PMID: 25555911 DOI: 10.1074/jbc.m114.623496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) level is extremely elevated in the edematous fluid of acutely injured lungs and pleurae. Elevated PAI-1 specifically inactivates pulmonary urokinase-type (uPA) and tissue-type plasminogen activators (tPA). We hypothesized that plasminogen activation and fibrinolysis may alter epithelial sodium channel (ENaC) activity, a key player in clearing edematous fluid. Two-chain urokinase (tcuPA) has been found to strongly stimulate heterologous human αβγ ENaC activity in a dose- and time-dependent manner. This activity of tcuPA was completely ablated by PAI-1. Furthermore, a mutation (S195A) of the active site of the enzyme also prevented ENaC activation. By comparison, three truncation mutants of the amino-terminal fragment of tcuPA still activated ENaC. uPA enzymatic activity was positively correlated with ENaC current amplitude prior to reaching the maximal level. In sharp contrast to uPA, neither single-chain tPA nor derivatives, including two-chain tPA and tenecteplase, affected ENaC activity. Furthermore, γ but not α subunit of ENaC was proteolytically cleaved at ((177)GR↓KR(180)) by tcuPA. In summary, the underlying mechanisms of urokinase-mediated activation of ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in opening rate, and activation of closed (electrically "silent") channels. This study for the first time demonstrates multifaceted mechanisms for uPA-mediated up-regulation of ENaC, which form the cellular and molecular rationale for the beneficial effects of urokinase in mitigating mortal pulmonary edema and pleural effusions.
Collapse
Affiliation(s)
- Hong-Long Ji
- From the Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, University of Texas Health Science Center, Tyler, Texas 75708,
| | - Runzhen Zhao
- From the Department of Cellular and Molecular Biology and
| | | | - Yongchang Chang
- the Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Yongfeng Liu
- the College of Public Health, Xinxiang Medical University, Xinxiang, Henan 453100, China, and
| | - Michael A Matthay
- the Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California 94143
| |
Collapse
|
38
|
Czikora I, Alli A, Bao HF, Kaftan D, Sridhar S, Apell HJ, Gorshkov B, White R, Zimmermann A, Wendel A, Pauly-Evers M, Hamacher J, Garcia-Gabay I, Fischer B, Verin A, Bagi Z, Pittet JF, Shabbir W, Lemmens-Gruber R, Chakraborty T, Lazrak A, Matthay MA, Eaton DC, Lucas R. A novel tumor necrosis factor-mediated mechanism of direct epithelial sodium channel activation. Am J Respir Crit Care Med 2014; 190:522-32. [PMID: 25029038 DOI: 10.1164/rccm.201405-0833oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.
Collapse
|
39
|
Cheung YY, Chen KC, Chen H, Seng EK, Chu JJH. Antiviral activity of lanatoside C against dengue virus infection. Antiviral Res 2014; 111:93-9. [PMID: 25251726 DOI: 10.1016/j.antiviral.2014.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/07/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses.
Collapse
Affiliation(s)
- Yan Yi Cheung
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Karen Caiyun Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | - Eng Khuan Seng
- School of Chemical & Life Sciences, 180 Ang Mo Kio Ave 8, Nanyang Polytechnic, Singapore 569830, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
40
|
Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189:1301-8. [PMID: 24881936 DOI: 10.1164/rccm.201403-0535oe] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the last 30 years, we have learned much about the molecular, cellular, and physiological mechanisms that regulate the resolution of pulmonary edema in both the normal and the injured lung. Although the physiological mechanisms responsible for the formation of pulmonary edema were identified by 1980, the mechanisms that explain the resolution of pulmonary edema were not well understood at that time. However, in the 1980s several investigators provided novel evidence that the primary mechanism for removal of alveolar edema fluid depended on active ion transport across the alveolar epithelium. Sodium enters through apical channels, primarily the epithelial sodium channel, and is pumped into the lung interstitium by basolaterally located Na/K-ATPase, thus creating a local osmotic gradient to reabsorb the water fraction of the edema fluid from the airspaces of the lungs. The resolution of alveolar edema across the normally tight epithelial barrier can be up-regulated by cyclic adenosine monophosphate (cAMP)-dependent mechanisms through adrenergic or dopamine receptor stimulation, and by several cAMP-independent mechanisms, including glucocorticoids, thyroid hormone, dopamine, and growth factors. Whereas resolution of alveolar edema in cardiogenic pulmonary edema can be rapid, the rate of edema resolution in most patients with acute respiratory distress syndrome (ARDS) is markedly impaired, a finding that correlates with higher mortality. Several mechanisms impair the resolution of alveolar edema in ARDS, including cell injury from unfavorable ventilator strategies or pathogens, hypoxia, cytokines, and oxidative stress. In patients with severe ARDS, alveolar epithelial cell death is a major mechanism that prevents the resolution of lung edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Departments of Medicine and Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
41
|
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol 2014; 307:L395-406. [PMID: 25038188 DOI: 10.1152/ajplung.00110.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral pneumonia is a major cause of acute respiratory distress syndrome (ARDS). Anti-inflammatory therapies for viral-induced lung injury show promise in preclinical models. Mesenchymal stem/stromal cells (MSCs) are multipotent, self-renewing cells that secrete anti-inflammatory cytokines and epithelial and endothelial growth factors. We inoculated mice intranasally with influenza A (murine-adapted Puerto Rico/8/34) or PBS, and the mice were killed at multiple time points after infection for measures of lung injury and viral load. We report that influenza induces marked, long-lasting dysfunction of the alveolar-capillary barrier peaking at 1 wk but lasting longer than 3 wk postinfection. Weight loss, commonly employed as a criterion for euthanasia (and hence "survival"), was found to be poorly predictive of the severity of lung injury at its peak; rather, persistent weight loss 11 days postinfection identified mice with impaired injury resolution. Murine and human bone marrow-derived MSCs (obtained from the National Institutes of Health repository) were then administered intravenously during the rapid phase of injury progression. Murine MSCs (mMSCs) given two times 24 h apart failed to improve weight loss, lung water, bronchoalveolar lavage inflammation, or histology. However, mMSCs prevented influenza-induced thrombocytosis and caused a modest reduction in lung viral load at day 7. Human MSCs administered intravenously showed a similar lack of efficacy. The results demonstrate that the influenza murine model bears important similarities to the slow resolution of ARDS in patients. Despite their potent therapeutic effects in many models of acute inflammation and lung injury, MSCs do not improve influenza-mediated lung injury in mice.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
42
|
Shimko MJ, Zaccone EJ, Thompson JA, Schwegler-Berry D, Kashon ML, Fedan JS. Nerve growth factor reduces amiloride-sensitive Na+ transport in human airway epithelial cells. Physiol Rep 2014; 2:2/7/e12073. [PMID: 25347857 PMCID: PMC4187554 DOI: 10.14814/phy2.12073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nerve growth factor (NGF) is overexpressed in patients with inflammatory lung diseases, including virus infections. Airway surface liquid (ASL), which is regulated by epithelial cell ion transport, is essential for normal lung function. No information is available regarding the effect of NGF on ion transport of airway epithelium. To investigate whether NGF can affect ion transport, human primary air‐interface cultured epithelial cells were placed in Ussing chambers to obtain transepithelial voltage (−7.1 ± 3.4 mV), short‐circuit current (Isc, 5.9 ± 1.0 μA), and transepithelial resistance (750 Ω·cm2), and to measure responses to ion transport inhibitors. Amiloride (apical, 3.5 × 10−5 mol/L) decreased Isc by 55.3%. Apically applied NGF (1 ng/mL) reduced Isc by 5.3% in 5 min; basolaterally applied NGF had no effect. The response to amiloride was reduced (41.6%) in the presence of NGF. K‐252a (10 nmol/L, apical) did not itself affect Na+ transport, but it attenuated the NGF‐induced reduction in Na+ transport, indicating the participation of the trkA receptor in the NGF‐induced reduction in Na+ transport. PD‐98059 (30 μmol/L, apical and basolateral) did not itself affect Na+ transport, but attenuated the NGF‐induced reduction in Na+ transport, indicating that trkA activated the Erk 1/2 signaling cascade. NGF stimulated phosphorylation of Erk 1/2 and the β‐subunit of ENaC. K‐252a and PD‐98059 inhibited these responses. NGF had no effect on Isc in the presence of apical nystatin (50 μmol/L). These results indicate that NGF inhibits Na+ transport through a trkA‐Erk 1/2‐activated signaling pathway linked to ENaC phosphorylation. Nerve growth factor (apical, 1 ng/mL) reduced amiloride‐sensitive Na+ transport in human cultured bronchial epithelial cells. We determined that this reduction in Na+ transport occurred through NGF‐mediated activation of the trkA receptor and Erk 1/2 signaling cascade to cause phosphorylation of ENaC.
Collapse
Affiliation(s)
- Michael J Shimko
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia
| | - Eric J Zaccone
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia
| | - Janet A Thompson
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| | | | - Michael L Kashon
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| | - Jeffrey S Fedan
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| |
Collapse
|
43
|
Abstract
Influenza is a major health problem worldwide. Both seasonal influenza and pandemics take a major toll on the health and economy of our country. The present review focuses on the virology and complex immunology of this RNA virus in general and in relation to pregnancy. The goal is to attempt to explain the increased morbidity and mortality seen in infection during pregnancy. We discuss elements of innate and adaptive immunity as well as placental cellular responses to infection. In addition, we delineate findings in animal models as well as human disease. Increased knowledge of maternal and fetal immunologic responses to influenza is needed. However, enhanced understanding of nonimmune, pregnancy-specific factors influencing direct interaction of the virus with host cells is also important for the development of more effective prevention and treatment options in the future.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Immune System/immunology
- Immune System/virology
- Immunity, Innate
- Immunization
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Pregnancy
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/mortality
- Pregnancy Complications, Infectious/prevention & control
- Pregnancy Complications, Infectious/virology
- Prognosis
- Risk Factors
Collapse
Affiliation(s)
- Renju S Raj
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Mark Phillippe
- Department of Obstetrics & Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
45
|
Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. THE LANCET. INFECTIOUS DISEASES 2013; 14:57-69. [PMID: 24239327 DOI: 10.1016/s1473-3099(13)70286-x] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal complication of influenza infection. In this Review we provide an integrated model for its pathogenesis. ARDS involves damage to the epithelial-endothelial barrier, fluid leakage into the alveolar lumen, and respiratory insufficiency. The most important part of the epithelial-endothelial barrier is the alveolar epithelium, strengthened by tight junctions. Influenza virus targets these epithelial cells, reducing sodium pump activity, damaging tight junctions, and killing infected cells. Infected epithelial cells produce cytokines that attract leucocytes--neutrophils and macrophages--and activate adjacent endothelial cells. Activated endothelial cells and infiltrated leucocytes stimulate further infiltration, and leucocytes induce production of reactive oxygen species and nitric oxide that damage the barrier. Activated macrophages also cause direct apoptosis of epithelial cells. This model for influenza-induced ARDS differs from the classic model, which is centred on endothelial damage, and provides a rationale for therapeutic intervention to moderate host response in influenza-induced ARDS.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
46
|
Greenlee MM, Mitzelfelt JD, Yu L, Yue Q, Duke BJ, Harrell CS, Neigh GN, Eaton DC. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. Am J Physiol Lung Cell Mol Physiol 2013; 305:L878-89. [PMID: 24097558 DOI: 10.1152/ajplung.00008.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Female sex predisposes individuals to poorer outcomes during respiratory disorders like cystic fibrosis and influenza-associated pneumonia. A common link between these disorders is dysregulation of alveolar fluid clearance via disruption of epithelial sodium channel (ENaC) activity. Recent evidence suggests that female sex hormones directly regulate expression and activity of alveolar ENaC. In our study, we identified the mechanism by which estradiol (E2) or progesterone (P4) independently regulates alveolar ENaC. Using cell-attached patch clamp, we measured ENaC single-channel activity in a rat alveolar cell line (L2) in response to overnight exposure to either E2 or P4. In contrast to P4, E2 increased ENaC channel activity (NPo) through an increase in channel open probability (Po) and an increased number of patches with observable channel activity. Apical plasma membrane abundance of the ENaC α-subunit (αENaC) more than doubled in response to E2 as determined by cell surface biotinylation. αENaC membrane abundance was approximately threefold greater in lungs from female rats in proestrus, when serum E2 is greatest, compared with diestrus, when it is lowest. Our results also revealed a significant role for the G protein-coupled estrogen receptor (Gper) to mediate E2's effects on ENaC. Overall, our results demonstrate that E2 signaling through Gper selectively activates alveolar ENaC through an effect on channel gating and channel density, the latter via greater trafficking of channels to the plasma membrane. The results presented herein implicate E2-mediated regulation of alveolar sodium channels in the sex differences observed in the pathogenesis of several pulmonary diseases.
Collapse
Affiliation(s)
- Megan M Greenlee
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Ste. 655B, Atlanta, GA 30322.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Influenza A virus (H1N1) increases airway epithelial cell secretion by up-regulation of potassium channel KCNN4. Biochem Biophys Res Commun 2013; 438:581-7. [PMID: 23954634 DOI: 10.1016/j.bbrc.2013.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022]
Abstract
Influenza infects the epithelial cells lining the airways. Normally epithelial cells move solutes through ion channels to create the osmotic drive to hydrate the airways. Viral alteration of this process could explain, in part, the fluid imbalance in the lungs and the resulting pulmonary edema that occurs during severe influenza infections. Using western blot and RT-qPCR, we measured ion channel and cytokine expression in the Calu3 airway cell line after infection with influenza virus (H1N1) for 48 h. We simultaneously measured chloride and potassium channel function by means of a short-circuit current (I(sc)) produced in an Ussing chamber. At a multiplicity of infection (MOI) of 10, viral M1 protein and pro-inflammatory cytokine expression was observed 24h post-infection, despite a lack of measurable change in Isc. However, we observed a decreased secretory response in cAMP- and calcium-induced Isc 48 h post-infection. This correlated with a decrease in CFTR and KCNN4 protein levels. Interestingly, a viral dose of an MOI 0.6 revealed an increased secretory response that correlated with pro-inflammatory cytokine expression. This increased secretory response seemed to be primarily driven through KCNN4. We detected an increase in KCNN4 mRNA and protein, while CFTR function and expression remained unchanged. Furthermore, inhibition of the KCNN4-stimulated I(sc) with TRAM-34, a specific inhibitor, ameliorated the response, implicating KCNN4 as the main driving force behind the secretory phenotype.
Collapse
|
48
|
Armstrong SM, Darwish I, Lee WL. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence 2013; 4:537-42. [PMID: 23863601 PMCID: PMC5359731 DOI: 10.4161/viru.25779] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The development of severe influenza has been attributed, in part, to a heightened innate immune response. Recent evidence suggests that endothelial activation, loss of barrier function, and consequent microvascular leak may also serve important mechanistic roles in the pathogenesis of severe influenza. The aim of this review is to summarize the current evidence in support of endothelial activation and dysfunction as a central feature preceding the development of severe influenza. We also discuss the effect of influenza on platelet–endothelial interactions.
Collapse
|
49
|
Armstrong SM, Mubareka S, Lee WL. The lung microvascular endothelium as a therapeutic target in severe influenza. Antiviral Res 2013; 99:113-8. [PMID: 23685311 DOI: 10.1016/j.antiviral.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Severe infections with influenza virus are characterized by acute respiratory distress syndrome (ARDS), a life-threatening disorder in which the alveolocapillary membrane in the lung becomes leaky. This leads to alveolar flooding, hypoxemia and respiratory failure. Recent data suggest that influenza virus can exert both direct and indirect effects on the lung endothelium, activating it and inducing microvascular leak. These findings raise the possibility that enhancing lung endothelial barrier integrity or modulating lung endothelial activation may prove therapeutically useful for severe influenza. In this paper, we review evidence that lung endothelial activation and vascular leak are a "final common pathway" in severe influenza, as has been reported in bacterial sepsis, and that enhancing endothelial barrier function may improve the outcome of illness. We describe a number of experimental therapies that have shown promise in preventing or reversing increased vascular leak in animal models of sepsis or influenza.
Collapse
|
50
|
Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. Am J Physiol Lung Cell Mol Physiol 2013; 304:L582-92. [PMID: 23457187 DOI: 10.1152/ajplung.00314.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.
Collapse
Affiliation(s)
- James D Londino
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|