1
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
2
|
Tang XY, Xiong YL, Zhao YB, Yang J, Shi AP, Zheng KF, Liu YJ, Shu C, Jiang T, Ma N, Zhao JB. Dual immunological and proliferative regulation of immune checkpoint FGL1 in lung adenocarcinoma: The pivotal role of the YY1–FGL1–MYH9 axis. Front Immunol 2022; 13:1014053. [PMID: 36268014 PMCID: PMC9577086 DOI: 10.3389/fimmu.2022.1014053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rational Lung cancer is the most common tumor worldwide, with the highest mortality rate and second highest incidence. Immunotherapy is one of the most important treatments for lung adenocarcinoma (LUAD); however, it has relatively low response rate and high incidence of adverse events. Herein, we explored the therapeutic potential of fibrinogen-like protein 1 (FGL1) for LUAD. Methods Data from GEPIA and ACLBI databases were assessed to explore gene–gene correlations and tumor immune infiltration patterns. A total of 200 patients with LUAD were recruited. FGL1 levels in the serum and cellular supernatant were determined by enzyme-linked immunosorbent assay. In vitro and in vivo experiments were performed to assess the effect FGL1 on the proliferation of LUAD cells. Cocultures were performed to explore the effect of FGL1 knockdown in lung cancer cells on T cells, concerning cytokine secretion and viability. PROMO and hTFtarget databases were used for transcription factor prediction. Quantitative polymerase chain reaction (qPCR), chromatin immunoprecipitation, and dual luciferase reporter assays were performed to validate the identified transcription factor of FGL1. Immunoprecipitation, mass spectrometry and gene ontology analysis were performed to explore the downstream partners of FGL1. Results FGL1 expression in LUAD was positively associated with PDL1, but not for PD1 expression. Moreover, FGL1 was positively associated with the CD3D expression and negatively associated with FOXP3, S100A9, and TPSB2 within the tumor site. FGL1 promotes the secretion of interleukin-2 by T cells in vitro, simultaneously inducing their apoptosis. Indeed, YY1 is the upstream molecule of FGL1 was found to be transcriptionally regulated by YY1 and to directly by to MYH9 to promote the proliferation of LUAD cells in vitro and in vivo. Conclusions FGL1 is involved in the immunological and proliferative regulation of LUAD cells by controlling the secretion of important immune-related cytokines via the YY1–FGL1–MYH9 axis. Hence, targeting FGL1 in LUAD may pave the way for the development of new immunotherapies for tackling this malignancy.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ya-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jie Yang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - An-Ping Shi
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chen Shu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jin-Bo Zhao, ; Nan Ma, ; Tao Jiang,
| |
Collapse
|
3
|
Marciano BE, Olivier KN, Folio LR, Zerbe CS, Hsu AP, Freeman AF, Filie AC, Spinner MA, Sanchez LA, Lovell JP, Parta M, Cuellar-Rodriguez JM, Hickstein DD, Holland SM. Pulmonary Manifestations of GATA2 Deficiency. Chest 2021; 160:1350-1359. [PMID: 34089740 PMCID: PMC8546236 DOI: 10.1016/j.chest.2021.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND GATA2 deficiency is a genetic disorder of hematopoiesis, lymphatics, and immunity caused by autosomal dominant or sporadic mutations in GATA2. The disease has a broad phenotype encompassing immunodeficiency, myelodysplasia, leukemia, and vascular or lymphatic dysfunction as well as prominent pulmonary manifestations. RESEARCH QUESTION What are the pulmonary manifestations of GATA2 deficiency? STUDY DESIGN AND METHODS A retrospective review was conducted of clinical medical records, diagnostic imaging, pulmonary pathologic specimens, and tests of pulmonary function. RESULTS Of 124 patients (95 probands and 29 ascertained), the lung was affected in 56%. In addition to chronic infections, pulmonary alveolar proteinosis (11 probands) and pulmonary arterial hypertension (nine probands) were present. Thoracic CT imaging found small nodules in 54% (54 probands and 12 relatives), reticular infiltrates in 40% (45 probands and four relatives), paraseptal emphysema in 25% (30 probands and one relative), ground-glass opacities in 35% (41 probands and two relatives), consolidation in 21% (23 probands and two relatives), and a typical crazy-paving pattern in 7% (eight probands and no relatives). Nontuberculous mycobacteria were the most frequent organisms associated with chronic infection. Allogeneic hematopoietic stem cell transplantation successfully reversed myelodysplasia and immune deficiency and also improved pulmonary hypertension and pulmonary alveolar proteinosis in most patients. INTERPRETATION GATA2 deficiency has prominent pulmonary manifestations. These clinical observations confirm the essential role of hematopoietic cells in many aspects of pulmonary function, including infections, alveolar proteinosis, and pulmonary hypertension, many of which precede the formal diagnosis, and many of which respond to stem cell transplantation.
Collapse
Affiliation(s)
- Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung and Blood Institute, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Les R Folio
- Department of Radiology and Imaging Sciences, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Armando C Filie
- Cytology Services Laboratory Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A Spinner
- Division of Oncology, Department of Medicine, Stanford University, Stanford
| | - Lauren A Sanchez
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, CA
| | - Jana P Lovell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer M Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Klein D. Lung Multipotent Stem Cells of Mesenchymal Nature: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy. Antioxid Redox Signal 2021; 35:204-216. [PMID: 33167666 DOI: 10.1089/ars.2020.8190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Tissue-resident stem cells are essential for normal organ homeostasis as well as for functional tissue regeneration after severe injury. Herein, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace dysfunctional cells or secrete cytokines locally and thus support the repair and healing processes of affected tissues. Recent Advances: Besides epithelial stem and progenitor cells, substantial evidence exists that tissue-resident multipotent stem cells of mesenchymal nature also exist in adult human lungs. These lung MSCs may function to regulate pulmonary tissue repair and/or regeneration, inflammation, fibrosis, and tumor formation. Critical Issues: Although therapeutically applied MSCs turned out to be a valuable therapeutic option for the prevention of lung diseases and/or the regeneration of diseased lung tissue, the true function of tissue-resident MSCs within the lung, and identification of their niche, which presumably dictates function, remain elusive. Future Directions: A detailed understanding of lung MSC localization (in the potential vascular stem cell niche) as well as of the signaling pathways controlling stem cell fate is prerequisite to unravel how (i) endogenous MSCs contribute to lung diseases, (ii) exogenous MSCs affect the proliferation of endogenous stem cells to repair damaged tissue, and (iii) a potential on-site manipulation of these cells directly within their endogenous niche could be used for therapeutic benefits. This review focuses on the central role of lung-resident MSCs, which are closely associated with the pulmonary vasculature, in a variety of chronic and acute lung diseases. Antioxid. Redox Signal. 35, 204-216.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Naito H, Wakabayashi T, Kidoya H, Muramatsu F, Takara K, Eino D, Yamane K, Iba T, Takakura N. Endothelial Side Population Cells Contribute to Tumor Angiogenesis and Antiangiogenic Drug Resistance. Cancer Res 2016; 76:3200-10. [DOI: 10.1158/0008-5472.can-15-2998] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
|
6
|
Hayase S, Sasaki Y, Matsubara T, Seo D, Miyakoshi M, Murata T, Ozaki T, Kakudo K, Kumamoto K, Ylaya K, Cheng SY, Thorgeirsson SS, Hewitt SM, Ward JM, Kimura S. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells. Thyroid 2015; 25:425-36. [PMID: 25647164 PMCID: PMC4390205 DOI: 10.1089/thy.2014.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. METHOD Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. RESULTS Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. CONCLUSION These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.
Collapse
Affiliation(s)
- Suguru Hayase
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshihito Sasaki
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Kuwana East Medical Center, Kuwana, Mie, Japan
| | - Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Bioinformatics Core, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Masaaki Miyakoshi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tsubasa Murata
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Dental and Oral Surgery, Tomakomai City Hospital, Tomakomai, Hokkaido, Japan
| | - Takashi Ozaki
- Department of Pathology, Wakayama Medical University, Wakayama City, Japan
| | - Kennichi Kakudo
- Department of Pathology, Nara Hospital Kinki University Faculty of Medicine, Ikoma, Japan
| | - Kensuke Kumamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Banerjee ER. Looking for the elusive lung stem cell niche. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:7. [PMID: 25932380 PMCID: PMC4406986 DOI: 10.1186/2213-0802-2-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/04/2014] [Indexed: 01/24/2023]
Abstract
This discourse contains three perspectives on various aspects of Stem Cell Biology and tools available to study and translate into Regenerative Medicine. The lung incessantly faces onslaught of the environment, constantly undergoes oxidative stress, and is an important organ of detoxification. In degenerative diseases and inflammation, the lung undergoes irreversible remodeling that is difficult to therapeutically address and/or transplant a dying tissue. The other difficulty is to study its development and regenerative aspects to best address the aforementioned problems. This perspective therefore addresses- firstly, review of types of stem cells, their pathway of action and models in invertebrate organisms vis-a-vis microenvironment and its dynamics; secondly, stem cells in higher organisms and niche; and lastly data and inference on a novel approach to study stem cell destruction patterns in an injury model and information on putative lung stem cell niche. Stem cells are cryptic cells known to retain certain primitive characteristics making them akin to ancient cells of invertebrates, developmental stages in invertebrates and vertebrates and pliant cells of complex creatures like mammals that demonstrate stimulus-specific behavious, whether to clonally propagate or to remain well protected and hidden within specialized niches, or mobilize and differentiate into mature functionally operative cells to house-keep, repair injury or make new tissues. In lung fibrosis, alveolar epithelium degenerates progressively. In keeping with the goal of regenerative medicine, various models and assays to evaluate long and short term identity of stem cells and their niches is the subject of this perspective. We also report identification and characterization of functional lung stem cells to clarify how stem cell niches counteract this degenerative process. Inferences drawn from this injury model of lung degeneration using a short term assay by tracking side population cells and a long term assay tracking label retaining cells have been presented.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Zoology, Immunology and Regenerative Medicine Research Laboratory, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 West Bengal India
| |
Collapse
|
8
|
Abstract
Many tissues if not all are thought to contain stem cells that are responsible for regeneration and repair of the tissue after injury. Dysregulation of tissue regeneration may result in various pathological conditions, among which cancer is the most extensively studied. Notably, the so-called cancer stem cells or tumor-initiating cells, have been studied in order to understand the mechanisms of carcinogenesis and/or metastasis. However, the nature of cancer stem cells, let alone normal stem/progenitor cells, particularly those of the thyroid remains elusive. There remains a gap in knowledge between adult thyroid stem/progenitor cells and cancer stem cells of the thyroid, and if and/or how they are related to each other. Understanding of the mechanism for thyroid regeneration and mode of participation of normal adult thyroid stem/progenitor cells in this process will hopefully yield a more complete understanding of the nature of thyroid cancer stem cells, and/or help understand the pathogenesis of other thyroid diseases. This review summarizes the current understanding of adult thyroid stem/progenitor cells, with particular emphasis on how they contribute to thyroid regeneration.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Shioko Kimura, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892, USA e-mail:
| |
Collapse
|
9
|
Okamoto M, Hayase S, Miyakoshi M, Murata T, Kimura S. Stem cell antigen 1-positive mesenchymal cells are the origin of follicular cells during thyroid regeneration. PLoS One 2013; 8:e80801. [PMID: 24278321 PMCID: PMC3836768 DOI: 10.1371/journal.pone.0080801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/16/2013] [Indexed: 01/02/2023] Open
Abstract
Many tissues are thought to contain adult stem/progenitor cells that are responsible for repair of the tissue where they reside upon damage and/or carcinogenesis, conditions when cellular homeostasis becomes uncontrolled. While the presence of stem/progenitor cells of the thyroid has been suggested, how these cells contribute to thyroid regeneration remains unclear. Here we show the origin of thyroid follicular cells and the process of their maturation to become follicular cells during regeneration. By using β-galactosidase (β-gal) reporter mice in conjunction with partial thyroidectomy as a model for thyroid regeneration, and bromodeoxyuridine (BrdU) long label-retaining cell analysis, we demonstrated that stem cell antigen 1 (Sca1) and BrdU-positive, but β-gal and NKX2-1 negative cells were found in the non-follicular mesenchymal area 7 days after partial thyroidectomy. They temporarily co-expressed cytokeratin 14, and were observed in part of follicles by day 35 post-partial thyroidectomy. Sca1, BrdU, β-gal, and NKX2-1-positive cells were found 120 days post-partial thyroidectomy. These results suggested that Sca1 and BrdU positive cells may participate in the formation of new thyroid follicles after partial thyroidectomy. The process of thyroid follicular cell regeneration was recapitulated in ex vivo thyroid slice collagen gel culture studies. These studies will facilitate research on thyroid stem/progenitor cells and their roles in thyroid diseases, particularly thyroid carcinomas.
Collapse
Affiliation(s)
- Minoru Okamoto
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suguru Hayase
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaaki Miyakoshi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tsubasa Murata
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sen N, Weprin S, Peter Y. Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties. Stem Cells Dev 2013; 22:2036-46. [PMID: 23461422 DOI: 10.1089/scd.2012.0468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem/progenitor cells and their lineage derivatives are often identified by patterns and intensity of cell clusters of differentiation presentation. However, the cell biochemical façade can prove to be elusive, transient, and subject to interlaboratory disparities. To enhance current methods of lung stem cell isolation and identification and to investigate biophysical changes, which occur during homeostasis and in response to acute lung injury, we separated cells on a discontinuous density gradient, of 1.025-1.074 g/cm(3), and characterized the eluted lineages. At homeostasis, surfactant protein-C (SFTPC)-expressing cells of the alveolar type (AT)-2 lineage possessed average densities ≥1.039 g/cm(3) and aquaporin-5 producing AT1 cells equilibrated at densities <1.039 g/cm(3). While 0.74%±0.32% of lung cells were determined proliferating or postmitotic by BrdU nucleotide uptake, 73% of CD49f-, 72% of c-KIT-, and 61% of SCA-1-positive cells (putative alveolar progenitor lineage markers) showed densities ≤1.039 g/cm(3). CD49f/EpCAM(hi) progenitors, as well as c-KIT(pos)/CD45(neg) cells, could be enriched at the 1.039 g/cm(3) interface. Following acute bleomycin-induced injury, the frequency of BrdU-incorporating cells rose to 0.92%±0.36% and density could largely explain cell-lineage distribution. Specifically, a decline in the density of mitotic/postmitotic SFTPC-positive cells to ≤1.029 g/cm(3), in conjunction with an increase in CD45-positive, and proliferating CD45 and c-KIT cells in the heaviest fraction (≥1.074 g/cm(3)) were observed. These data attest to the generation of AT2 cells from low-density precursors and emphasize a relationship between cell density and molecular expression following injury, expanding on our current understanding of lung and progenitor cell dynamics.
Collapse
Affiliation(s)
- Namita Sen
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | | | | |
Collapse
|
11
|
Lung. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Banerjee ER, Henderson WR. Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther 2012; 3:21. [PMID: 22643035 PMCID: PMC3392768 DOI: 10.1186/scrt112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 03/30/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In lung fibrosis, alveolar epithelium degenerates progressively. The goal of regenerative medicine is to aid repair and regeneration of the lost tissues in parenchyma and airways for which mobilization of tissue-resident endogenous or bone marrow-derived exogenous stem cells niches is a critical step. We used a lung injury model in mice to identify and characterize functional lung stem cells to clarify how stem cell niches counteract this degenerative process. METHODS Short term assay (STA) - Bleomycin-induced lung inflammation and fibrosis were assessed in a model of idiopathic pulmonary fibrosis in wild-type (WT), gp91phox-/- (NOX-/-), and gp91phoxMMP-12 double knockout (DKO) mice on C57Bl/6 background and Hoechst 33322 dye effluxing side population (SP) cells characterized. Long term assay (LTA) - In a bleomycin induced lung fibrosis model in C57Bl6 mice, the number of mature cells were quantified over 7, 14, and 21 days in bone marrow (BM), peripheral blood (PB), lung parenchyma (LP) and bronchoalveolar lavage (BAL) fluid by FACS. BrdU pulse chase experiment (10 weeks) was used to identify label retaining cells (LRC). BrdU+ and BrdU- cells were characterized by hematopoietic (CD45+), pluripotency (TTF1+, Oct3/4+, SSEA-3+, SSEA-4+, Sca1+, Lin-, CD34+, CD31+), and lung lineage-specific (SPC+, AQP-5+, CC-10+) markers. Clonogenic potential of LRCs were measured by CFU-c assays. RESULTS STA- In lung, cellularity increased by 5-fold in WT and 6-fold in NOX-/- by d7. Lung epithelial markers were very low in expression in all SP flow sorted from lung of all three genotypes cultured ex vivo. (p < 0.01). Post-bleomycin, the SP in NOX-/- lung increased by 3.6-fold over WT where it increased by 20-fold over controls. Type I and II alveolar epithelial cells progressively diminished in all three genotypes by d21 post-bleomycin. D7 post-bleomycin, CD45+ cells in BALf in NOX-/- was 1.7-fold > WT, 57% of which were Mf that decreased by 67% in WT and 83% in NOX-/- by d21.LTA- Cellularity as a factor of time remained unchanged in BM, PB, LP and BAL fluid. BrdU+ (LRC) were the putative stem cells. BrdU+CD45+ cells increased by 0.7-fold and SPC+CC10+ bronchoalveolar stem cells (BASC), decreased by ~40-fold post-bleomycin. BrdU+VEGF+ cells decreased by 1.8-fold while BrdU-VEGF+ cells increased 4.6-fold. Most BrdU- cells were CD45-. BrdU- BASCs remained unchanged post-bleomycin. CFU-c of the flow-sorted BrdU+ cells remained similar in control and bleomycin-treated lungs. CONCLUSION STA- Inflammation is a pre-requisite for fibrosis; SP cells, being the putative stem cells in the lungs, were increased (either by self renewal or by recruitment from the exogenous bone marrow pool) post-bleomycin in NOX-/- but not in DKO indicating the necessity of cross-talk between gp91phox and MMP-12 in this process; ex vivo cultured SP progressively lose pluripotent markers, notably BASC (SPC+CC10+) - significance is unknown. LTA- The increase in the hematopoietic progenitor pool in lung indicated that exogenous progenitors from circulation contribute to lung regeneration. Most non-stem cells were non-hematopoietic in origin indicating that despite tissue turnover, BASCs are drastically depleted possibly necessitating recruitment of progenitors from the hematopoietic pool. Loss of VEGF+ LRC may indicate a signal for progenitor mobilization from niches. BrdU- BASC population may be a small quiescent population that remains as a reserve for more severe lung injury. Increase in VEGF+ non-LRC may indicate a checkpoint to counterbalance the mobilization of VEGF+ cells from the stem cell niche.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Allergy and Inflammation, University of Washington, Room 254, 815 Mercer Street, Seattle, WA, 98195, USA
- Associate Professor, Dept of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata- 700019, West Bengal, India
| | - William Reed Henderson
- Professor and Head, Department of Medicine, Division of Allergy and Infectious Diseases, Center for Allergy and Inflammation, University of Washington, Room 254, 815 Mercer Street, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Peter Y, Sen N, Levantini E, Keller S, Ingenito EP, Ciner A, Sackstein R, Shapiro SD. CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 2012; 7:572-83. [PMID: 22585451 DOI: 10.1002/term.553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/19/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023]
Abstract
Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between stem/progenitor cells that proliferate or differentiate and somatic cells of the lung, we used a novel organotypic ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free-floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3 and β7, and constituted 37% of the total culture at day 14, yielding a mixed yet conservative population that recapitulated RNA expression patterns of the healthy lung. AICs exhibited rapid proliferation manifested by a marked 60-fold increase in cell numbers by day 21. More than 50% of the AIC population was c-KIT(+) or double-positive for CD45(+) and CD11b(+) antigenic determinants, consistent with cells of hematopoietic origin. The latter subset was found to be enriched with prosurfactant protein-C and SCGB1A1 expressing putative stem cells and with aquaporin-5 producing cells, characteristic of terminally differentiated alveolar epithelial type-1 pneumocytes. At the air/gel interface, AICs undergo remodeling to form a cellular lining, whereas TGF(β)1 treatment modifies protein expression properties to further imply a robust effect of the microenvironment on AIC phenotypic changes. These data confirm the active participation of clonogenic hematopoietic stem cells in a mammalian model of lung repair and validate mixed stem/somatic cell cultures, which license sustained cell viability, proliferation and differentiation, for use in studies of compensatory pulmonary growth.
Collapse
Affiliation(s)
- Yakov Peter
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Andersen DC, Kristiansen GQ, Jensen L, Füchtbauer EM, Schrøder HD, Jensen CH. Quantitative gene expression profiling of CD45+ and CD45− skeletal muscle-derived side population cells. Cytometry A 2011; 81:72-80. [DOI: 10.1002/cyto.a.21121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/02/2023]
|
15
|
Critical Appraisal of the Side Population Assay in Stem Cell and Cancer Stem Cell Research. Cell Stem Cell 2011; 8:136-47. [DOI: 10.1016/j.stem.2011.01.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Lung. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Abstract
Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow-derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow-derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure.
Collapse
Affiliation(s)
- Michael E. Yeager
- Department of Pediatrics and Critical Care, University of Colorado at Denver and Health Sciences Center, Colorado, USA
| | - Maria G. Frid
- Developmental Lung Biology Laboratory, Denver, Colorado, USA
| | | |
Collapse
|
18
|
Wan F, Zhang S, Xie R, Gao B, Campos B, Herold-Mende C, Lei T. The utility and limitations of neurosphere assay, CD133 immunophenotyping and side population assay in glioma stem cell research. Brain Pathol 2010; 20:877-89. [PMID: 20331619 PMCID: PMC8094830 DOI: 10.1111/j.1750-3639.2010.00379.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/01/2010] [Indexed: 01/07/2023] Open
Abstract
The newly proposed glioma stem cell (GSC) hypothesis may re-model the way we diagnose and treat the tumor, which highlights the need for a complete knowledge on the genetic and epigenetic "blueprints" of GSCs. To identify the true "stemness" signatures, pure GSC populations are primarily needed. Reliable in vitro methods enriching for GSCs and thereby identifying the key stem-like characteristics constitute the preliminary step forward. We discuss in this review the current widely used methods for enriching and isolating GSCs, namely neurosphere assay, CD133 Immunophenotyping and side population assay, and detail their limitations and potential pitfalls that could complicate interpretation of corresponding results.
Collapse
Affiliation(s)
- Feng Wan
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Okamoto I, Kaneda H, Satoh T, Okamoto W, Miyazaki M, Morinaga R, Ueda S, Terashima M, Tsuya A, Sarashina A, Konishi K, Arao T, Nishio K, Kaiser R, Nakagawa K. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther 2010; 9:2825-33. [PMID: 20688946 DOI: 10.1158/1535-7163.mct-10-0379] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BIBF 1120 is an oral multitargeted tyrosine kinase inhibitor that blocks the activity of vascular endothelial growth factor (VEGF) and other growth factor receptors. We have done a phase I study to evaluate the safety, pharmacokinetics, and pharmacodynamic biomarkers of BIBF 1120. Patients with advanced refractory solid tumors were treated with BIBF 1120 at oral doses of 150 to 250 mg twice daily. Drug safety and pharmacokinetics were evaluated, as were baseline and post-treatment levels of circulating CD117-positive bone marrow-derived progenitor cells and plasma soluble VEGF receptor 2 as potential biomarkers for BIBF 1120. Twenty-one patients were treated at BIBF 1120 doses of 150 (n = 3), 200 (n = 12), or 250 mg twice daily (n = 6). Dose-limiting toxicities of reversible grade 3 or 4 elevations of liver enzymes occurred in 3 of 12 patients at 200 mg twice daily and 3 of 6 patients at 250 mg twice daily. Stable disease was achieved in 16 (76.2%) patients, and median progression-free survival was 113 days (95% confidence interval, 77-119 d). Pharmacokinetic analysis indicated that the maximum plasma concentration and area under the curve for BIBF 1120 increased with the dose within the dose range tested. Levels of CD117-positive bone marrow-derived progenitors and soluble VEGF receptor 2 decreased significantly during treatment over all BIBF 1120 dose cohorts. In conclusion, the maximum tolerated dose of BIBF 1120 in the current study was determined to be 200 mg twice daily, and our biomarker analysis indicated that this angiokinase inhibitor is biologically active.
Collapse
Affiliation(s)
- Isamu Okamoto
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu FF, Jing Xu, Cui YG, Qian XQ, Mao YD, Liao LM, Liu JY. Isolation and Characterization of Side Population Cells in the Postpartum Murine Endometrium. Reprod Sci 2010; 17:629-42. [DOI: 10.1177/1933719110369180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fei-Fei Hu
- Jiangsu Province Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China, Centre of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Centre of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Gui Cui
- Jiangsu Province Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao-Qiao Qian
- Centre of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Dong Mao
- Centre of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lian-Ming Liao
- Stem Cell Laboratory, Fujian Second People's Hospital, Fuzhou, China
| | - Jia-Yin Liu
- Jiangsu Province Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China, Centre of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
21
|
|
22
|
Ohnishi S, Nagaya N. Tissue regeneration as next-generation therapy for COPD--potential applications. Int J Chron Obstruct Pulmon Dis 2009; 3:509-14. [PMID: 19281069 PMCID: PMC2650613 DOI: 10.2147/copd.s1092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
COPD is a major cause of chronic morbidity and mortality worldwide, and there is a need to develop more effective therapeutic strategies to replace specialized treatment such as lung transplantation. Recent studies suggest that recognition of apoptotic lung epithelial or endothelial cells may result in growth factors to stimulate cell replacement, and defects in these processes may contribute to the pathogenesis of COPD. Furthermore, recent animal and human studies have revealed that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for activation of endogenous stem/progenitor cells may be a potent next-generation therapy for COPD.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | |
Collapse
|
23
|
Stem Cells and Organ Replacement. Artif Organs 2009. [DOI: 10.1007/978-1-84882-283-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril 2008; 90:1528-37. [DOI: 10.1016/j.fertnstert.2007.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/31/2007] [Accepted: 08/04/2007] [Indexed: 12/20/2022]
|
25
|
Andersen DC, Schrøder HD, Jensen CH. Non-cultured adipose-derived CD45- side population cells are enriched for progenitors that give rise to myofibres in vivo. Exp Cell Res 2008; 314:2951-64. [PMID: 18647602 DOI: 10.1016/j.yexcr.2008.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 01/31/2023]
Abstract
Side population (SP) cells are highly able to exclude the Hoechst 33342 dye through membrane transporters, a feature associated with cell immaturity and therefore proposed as a marker of stem cells. Herein we demonstrate that the adipose tissue derived stromal vascular fraction (SVF) contains a novel population of non-haematopoietic "side population" (SPCD45(-)) cells. Simultaneous qRT-PCR of 64 genes revealed that the freshly isolated SPCD45(-) was highly enriched for cells expressing genes related to stem cells, the Notch pathway, and early vascular precursors. Notably, the expression of smooth muscle actin, C-met and Cd34 together with Angpt2, Flk1, VE-cadherin, and Cd31 suggested a phenotypic resemblance to pericytes and aorta-derived mesoangioblasts. Recent evidence suggests that cells residing within the vascular niche may participate in regeneration of skeletal muscle and although skeletal muscle repair mainly relies on the satellite cell, several reports have shown that vessel-associated cells may adopt a myogenic phenotype when exposed to a muscle environment. In accordance with these findings, we also observed in vitro myogenic specification of SPCD45(-) cells when cocultured with myoblasts. Furthermore, immediate intramuscular engraftment of non-cultured SPCD45(-) cells gave rise to myofibres and cells lining blood vessels, whereas the SVF only provided donor derived mononuclear cells. We therefore conclude that the SPCD45(-) fraction of adipose-derived SVF is enriched for cells expressing vascular associated markers and that the myogenic differentiation potential of these cells does not depend on prior in vitro expansion.
Collapse
Affiliation(s)
- Ditte C Andersen
- Department of Clinical Pathology, Odense University Hospital, Odense C, 5000, Denmark
| | | | | |
Collapse
|
26
|
Martin U. Methods for studying stem cells: adult stem cells for lung repair. Methods 2008; 45:121-32. [PMID: 18554523 PMCID: PMC7128960 DOI: 10.1016/j.ymeth.2008.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/21/2022] Open
Abstract
Recent progress in lung biology includes the description of a series of pulmonary stem and progenitor cells involved in homeostasis and regeneration of the respiratory system. Moreover, the contribution of extrapulmonary stem cells to healthy and pathological lung tissue has been observed and the developmental biology of such processes should provide important hints for understanding maintenance and repair of adult lung structure and function. Despite such remarkable advances, the phenotypic and especially the functional characterization of these stem and progenitor cells, and their derivatives, along with an understanding of the molecular cues and pathways underlying differentiation into specific respiratory lineages is still in its infancy. Accordingly, the role of endogenous and extrapulmonary stem cells in normal tissue repair and pathogenesis is still largely mysterious and added basic knowledge is required in order to explore their potential for novel regenerative therapies. This review provides an overview of the current state of the art in adult lung stem cell biology including technical aspects of isolation, characterization and differentiation, and a discussion of perspectives for future regenerative therapies.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Abstract
Very little is known regarding the function, origin, and turnover of airway smooth muscle (ASM). In this article, we discuss the embryological development of ASM, and provide information regarding candidate mesenchymal ASM progenitor cell populations specifically in relation to airway remodeling. This review also highlights the current limitations in studying ASM biology, and underscores the need for novel molecular tools and markers that will refine our understanding of this cell type in lung homeostasis and disease.
Collapse
|
28
|
Wilson AA, Kwok LW, Hovav AH, Ohle SJ, Little FF, Fine A, Kotton DN. Sustained expression of alpha1-antitrypsin after transplantation of manipulated hematopoietic stem cells. Am J Respir Cell Mol Biol 2008; 39:133-41. [PMID: 18323534 DOI: 10.1165/rcmb.2007-0133oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inherited mutations in the human alpha(1)-antitrypsin (AAT) gene lead to deficient circulating levels of AAT protein and a predisposition to developing emphysema. Gene therapy for individuals deficient in AAT is an attractive goal, because transfer of a normal AAT gene into any cell type able to secrete AAT should reverse deficient AAT levels and attenuate progression of lung disease. Here we present an approach for AAT gene transfer based on the transplantation of lentivirally transduced hematopoietic stem cells (HSCs). We develop a novel dual-promoter lentiviral system to transfer normal human AAT cDNA as well as a fluorescent tracking "reporter gene" into murine HSCs. After transplantation of 3,000 transduced HSCs into irradiated mouse recipients, we demonstrate simultaneous and sustained systemic expression of both genes in vivo for at least 31 weeks. The stem cells transduced with this protocol maintain multipotency, self-renewal potential, and the ability to reconstitute the hematopoietic systems of both primary and secondary recipients. This lentiviral-based system may be useful for investigations requiring the systemic secretion of anti-proteases or cytokines relevant to the pathogenesis of a variety of lung diseases.
Collapse
Affiliation(s)
- Andrew A Wilson
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue. Blood 2008; 111:1131-7. [DOI: 10.1182/blood-2007-08-104299] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
We previously showed that side population (SP) cells, characterized by specific Hoechst dye efflux pattern in flow cytometric analysis, were present in teleost kidney hematopoietic tissue, and that kidney SP cells were enriched in hematopoietic stem cells (HSCs). ABCG2/Abcg2 is an ATP-binding cassette (ABC) transporter that is known to be associated with Hoechst dye efflux activity of mammalian HSCs. In the present study, we examined the expression and function of Abcg2 in kidney SP cells from zebrafish (Danio rerio). Although the zebrafish genome has 4 paralogous copies of ABCG2 (zAbcg2a, b, c, and d), zAbcg2a and zAbcg2c mRNA was expressed in kidney SP cells. Transfection of COS-7 cells with zAbcg2a and zAbcg2c showed that zAbcg2a was directly associated with the SP phenotype. These results indicate that zAbcg2a mRNA is a useful marker for zebrafish HSCs. In situ hybridization in kidney tissue showed that zAbcg2a-positive cells were sporadically localized on the surface of renal tubules, and tightly adhered to renal tubule epithelial cells. This result suggests that teleost HSCs adhere to the surface of renal tubules, and that renal tubule epithelial cells are a key component of HSC niche in teleosts.
Collapse
|
30
|
Yamashita M, Hirano S, Kanemaru SI, Tsuji S, Suehiro A, Ito J. Side population cells in the human vocal fold. Ann Otol Rhinol Laryngol 2008; 116:847-52. [PMID: 18074671 DOI: 10.1177/000348940711601110] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The regenerative processes of the vocal fold, or the existence of stem cells in the folds, are unknown. Side population (SP) cells are defined as cells that have the ability to exclude the DNA binding dye, Hoechst 33342. They are regarded as a cell population enriched with stem cells and can be isolated from non-SP cells by a fluorescence-activated cell sorter. This study was designed to determine whether SP cells exist in the human vocal fold, as a first step in elucidating the regenerative mechanisms of the vocal fold. METHODS Seven human excised larynges were used in this study. Two were used for fluorescence-activated cell sorter analysis, and 5 were subjected to immunohistochemical analysis with antibodies against an adenosine triphosphate binding cassette transporter family member, ABCG2, which is expressed in SP cells. RESULTS The number of SP cells in the human vocal fold was about 0.2% of the total number of cells. ABCG2-positive cells were identified in both the epithelium and subepithelial tissue throughout the entire vocal fold. CONCLUSIONS This preliminary study demonstrated the existence of SP cells in the human vocal fold. Further studies are warranted to clarify how these cells work in the vocal fold, particularly in the regenerative process.
Collapse
Affiliation(s)
- Masaru Yamashita
- Division of Otolaryngology-Head and Neck Surgery, Dept of Surgery, University of Wisconsin-Madison, K4/723 Clinical Science Center, 600 Highland Ave, Madison, WI 53792, USA
| | | | | | | | | | | |
Collapse
|
31
|
Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S. Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 2008; 10:140-51. [DOI: 10.1080/14653240801895296] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2007; 15:504-14. [PMID: 18049477 DOI: 10.1038/sj.cdd.4402283] [Citation(s) in RCA: 1250] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lung carcinoma is often incurable and remains the leading cancer killer in both men and women. Recent evidence indicates that tumors contain a small population of cancer stem cells that are responsible for tumor maintenance and spreading. The identification of the tumorigenic population that sustains lung cancer may contribute significantly to the development of effective therapies. Here, we found that the tumorigenic cells in small cell and non-small cell lung cancer are a rare population of undifferentiated cells expressing CD133, an antigen present in the cell membrane of normal and cancer-primitive cells of the hematopoietic, neural, endothelial and epithelial lineages. Lung cancer CD133(+) cells were able to grow indefinitely as tumor spheres in serum-free medium containing epidermal growth factor and basic fibroblast growth factor. The injection of 10(4) lung cancer CD133(+) cells in immunocompromised mice readily generated tumor xenografts phenotypically identical to the original tumor. Upon differentiation, lung cancer CD133(+) cells acquired the specific lineage markers, while loosing the tumorigenic potential together with CD133 expression. Thus, lung cancer contains a rare population of CD133(+) cancer stem-like cells able to self-renew and generates an unlimited progeny of non-tumorigenic cells. Molecular and functional characterization of such a tumorigenic population may provide valuable information to be exploited in the clinical setting.
Collapse
Affiliation(s)
- A Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Irwin D, Helm K, Campbell N, Imamura M, Fagan K, Harral J, Carr M, Young KA, Klemm D, Gebb S, Dempsey EC, West J, Majka S. Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 2007; 293:L941-51. [PMID: 17693487 DOI: 10.1152/ajplung.00054.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung side population (SP) cells are resident lung precursor cells with both epithelial and mesenchymal potential that are believed to play a role in normal lung development and repair. Neonatal hyperoxic exposure impairs lung development leading to a long-term decrease in gas exchange surfaces. The hypothesis that lung SP cells are altered during impaired lung development has not been studied. To address this issue, we characterized the endothelial potential of neonatal lung SP and subsets of lung SP from neonatal mice following hyperoxic exposure during room air recovery. Lung SP cells were isolated and sorted on the basis of their capacity to efflux Hoechst 33342. The lung SP was further sorted based on expression of Flk-1 and CD45. In vitro, both CD45pos/Flk-1pos and CD45neg/Flk-1pos bind isolectin B4 and incorporate LDL and form networks in matrigel, indicating that these populations have endothelial cell characteristics. Hyperoxic exposure of neonatal mice resulted in subtle changes in vascular and alveolar density on P13, which persisted with room air recovery to P41. During room air recovery, a decrease in lung SP cells was detected in the hyperoxic-exposed group on postnatal day 13 followed by an increase on day 41. Within this group, the lung SP subpopulation of cells expressing CD45 increased on day 21, 41, and 55. Here, we show that lung SP cells demonstrate endothelial potential and that the population distribution changes in number as well as composition following hyperoxic exposure. The hyperoxia-induced changes in lung SP cells may limit their ability to effectively contribute to tissue morphogenesis during room air recovery.
Collapse
Affiliation(s)
- D Irwin
- Department of Medicine, Cardiovascular Pulmonary Research Section, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoshi N, Kusakabe T, Taylor BJ, Kimura S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 2007; 148:4251-8. [PMID: 17584961 PMCID: PMC2582754 DOI: 10.1210/en.2006-0490] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Side population (SP) cells are characterized by their ability to efflux the vital dye Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) due to expression of the ATP binding cassette (ABC)-dependent transporter ABCG2, and are highly enriched for stem/progenitor cell activity. In this study we identified SP cells in murine thyroid, which are composed of two populations of cells: CD45(-)/c-kit(-)/Sca1(+) and CD45(-)/c-kit(-)/Sca1(-) cells. Quantitative RT-PCR analysis revealed that SP cells highly express ABCG2 and the stem cell marker genes encoding nucleostemin and Oct4, whereas the expression of genes encoding the thyroid differentiation markers, thyroid peroxidase, thyroglobulin (TG), and TSH receptor, and two transcription factors, thyroid transcription factor 1 (TITF1) and paired PAX8, critical for thyroid specific gene expression, are low in SP cells as compared with the main population cells. In situ hybridization and double immunofluorescence demonstrated that cells expressing Abcg2 gene reside in the interfollicular space of the thyroid gland. Approximately half and a small percentage of the ABCG2-positive cells were also positive for vimentin and calcitonin, respectively. After 9 wk under three-dimensional thyroid primary culture conditions, main population cells formed an epithelial arrangement and follicle-like structures that are immunoreactive for TITF1 and TG. In contrast, SP cells demonstrated very few morphological changes without any epithelial or follicle-like structure and negative immunostaining for TITF1 and TG. These results demonstrate that thyroid possesses SP cells that may represent stem/progenitor cells.
Collapse
Affiliation(s)
- Nobuo Hoshi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
35
|
Mehrad B, Keane MP, Gomperts BN, Strieter RM. Circulating progenitor cells in chronic lung disease. Expert Rev Respir Med 2007; 1:157-65. [PMID: 20477275 PMCID: PMC3353522 DOI: 10.1586/17476348.1.1.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue regeneration and repair are fundamental both to recovery of the lung from injury and to the pathology of many chronic lung diseases. There are two potential sources for the adult progenitor cells that participate in this reparative process: resident lung progenitors and bone marrow-derived circulating cells. Bone marrow-derived cells, in particular, have been shown to give rise to airway and alveolar epithelial cells, as well as lung mesenchymal cells. Emerging data have linked specific chemokine ligand-receptor interactions to the recruitment of these cells to the lung and has implicated these cells in chronic lung disorders such as asthma and interstitial lung diseases. In this review, we summarize the current understanding of the biology of adult circulating progenitors as related to lung disease.
Collapse
Affiliation(s)
- Borna Mehrad
- University of Virginia, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Box 800546, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
36
|
Herzog EL, Van Arnam J, Hu B, Zhang J, Chen Q, Haberman AM, Krause DS. Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. FASEB J 2007; 21:2592-601. [PMID: 17449722 DOI: 10.1096/fj.06-7861com] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell fusion is one mechanism by which bone marrow-derived cells (BMDCs) take on the gene expression pattern of nonhematopoietic cells. This process occurs in a number of organs with postengraftment injury but has never been found in the lung. We performed bone marrow (BM) transplant in a murine model of lung inflammation to test whether transplanted BMDCs develop lung-specific gene expression by fusing with diseased pneumocytes. Mice lacking the lung-specific protein surfactant protein C (Sp-C) were lethally irradiated, transplanted with sex mismatched wild-type marrow, and sacrificed 6 months later. Nineteen/38 recipients exhibited Sp-C mRNA (RT-PCR) and/or protein (mean 0.95+/-1.18 Sp-C+ cells per 1000 type II pneumocytes by confocal microscopy). In male recipients of female BM, 65% of Sp-C + cells contained the Y chromosome, indicating their origin from fusion. Only 28% of Sp-C+ cells in female recipients of male BMDCs contained the Y chromosome, suggesting that 72% of Sp-C-expressing cells lost the Y chromosome. In the setting of post-transplant inflammation, pneumocyte-specific reprogramming of transplanted BMDCs predominantly derives from heterokaryon formation. This process does not reverse inflammation caused by Sp-C deficiency; nevertheless, further investigation may identify phenotypes benefiting from such an approach.
Collapse
Affiliation(s)
- Erica L Herzog
- Yale University School of Medicine, Internal Medicine-Pulmonary and Critical Care Division, 333 Cedar St., TAC 441-S, New Haven CT 06511, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Stem cells have been shown to contribute to the repair and regeneration of injured lungs. These stem cells are resident in specific protected niches in the lung, or they can be mobilized from the bone marrow and recruited from the circulation in the setting of severe injury. Normal repair of the airway involves regeneration of the airway epithelium by stem cells in both the proximal airway and distal airspace, whereas aberrant repair of the lung may result from stem cells that lead to fibrosis. The stem cell niche in the lung is probably critical in determining whether "good" or "bad" stem cells are involved in local repair, and therefore whether fibrosis predominates. There is much excitement about the possibility of harnessing stem cells for repair and regeneration of the lungs. This review highlights current knowledge of this area and identifies gaps in our understanding of this complicated process.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Mattel Children's Hospital, Department of Pediatrics, Division of Pediatric Hematology, Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | |
Collapse
|
38
|
Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A. Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 2007; 37:152-9. [PMID: 17395889 PMCID: PMC1976547 DOI: 10.1165/rcmb.2006-0386oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Contained within the adult lung are differentiated mesenchymal cell types (cartilage, smooth muscle, and myofibrobasts) that provide structural support for airways and vessels. Alterations in the number and phenotype of these cells figure prominently in the pathogenesis of a variety of lung diseases. While these cells are thought to arise locally, progenitors have yet to be purified. In previous work, we developed a method for isolating progenitors from lung tissue: this technique takes advantage of the unique ability of cell populations enriched for somatic stem and progenitor activity to efflux the vital dye Hoechst 33342, a feature that permits isolation by flow cytometry-based procedures. Using this method, we determined that a rare population of mesenchymal progenitors resides within the CD45- CD31- Hoechst low fraction of the adult murine lung. Similar to other mesenchymal progenitors, these cells express Sca-1, CD106, and CD44; can be serially passaged; and can differentiate to smooth muscle, cartilage, bone, and fat. Overall, these findings demonstrate that a phenotypically distinct mesenchymal progenitor resides within the adult murine lung, and provide a scheme for their isolation and study.
Collapse
Affiliation(s)
- Ross Summer
- The Pulmonary Center, R-304, Boston University School of Medicine, 80 East Concord St., Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
39
|
Giangreco A, Groot KR, Janes SM. Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 2007; 175:547-53. [PMID: 17158280 DOI: 10.1164/rccm.200607-984pp] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is a significant disease with survival rates remaining poor despite numerous therapeutic advances during the last 30 years. Understanding lung cancer pathogenesis through murine modeling may improve future human therapies, and new data indicate that mutations within different endogenous stem cells situated throughout airways can drive cancer formation. Airway stem cells maintain prototumorigenic characteristics, including high proliferative capacity, multipotent differentiation, and a long lifespan relative to other cells. These cells localize to proximal airway submucosal glands/intercartilagenous rings, neuroepithelial bodies, and terminal bronchioles/bronchoalveolar duct junctions. Recent studies suggest that endogenous stem cell signaling and differentiation pathways are maintained within distinct cancer types, and that destabilization of this signaling machinery may initiate region-specific lung cancers. A better understanding of this relationship among stem cell regulation, cellular mutation, and lung cancer oncogenesis is critical for developing the next wave of lung cancer therapies.
Collapse
|
40
|
Herzog EL, Van Arnam J, Hu B, Krause DS. Threshold of lung injury required for the appearance of marrow-derived lung epithelia. Stem Cells 2006; 24:1986-92. [PMID: 16868209 DOI: 10.1634/stemcells.2005-0579] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone marrow-derived cells (BMDCs) can adopt an epithelial phenotype in the lung following bone marrow transplantation (BMT). This phenomenon has been assumed to result from the lung injury that occurs with myeloablative radiation. To date, no study has related the degree of epithelial chimerism following bone marrow transplantation to the lung damage induced by preconditioning for BMT. Such a goal is crucial to understanding the local host factors that promote the engraftment of BMDCs as lung epithelia. We undertook this aim by performing sex-mismatched bone marrow transplantation using a variety of preconditioning regimens and comparing measurements of lung injury (bronchoalveolar lavage [BAL] cell count, alveolar-capillary leak assayed by BAL protein levels, and terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis on epithelial cells) with rigorous methods to quantify bone marrow-derived lung epithelia (costaining for epithelial and donor markers on tissue sections and isolated lung epithelia in recipient mice). We found that only at doses that induced lung injury could marrow derived lung epithelium be identified following BMT. With irradiation doses less than 1,000 centigray (cGy), there was little to no apparent injury to the lung, and there were no marrow-derived pneumocytes despite high levels of hematopoietic chimerism. In contrast, 4 days after either split or single-dose 1,000 cGy irradiation, nearly 15% of lung epithelia were apoptotic, and with this dose, marrow-derived type II pneumocytes (0.2%) were present at 28 days. These data indicate a critical relationship between lung injury and the phenotypic change from BMDCs to lung epithelial cells.
Collapse
Affiliation(s)
- Erica L Herzog
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
A defining property of murine hematopoietic stem cells (HSCs) is low fluorescence after staining with Hoechst 33342 and Rhodamine 123. These dyes have proven to be remarkably powerful tools in the purification and characterization of HSCs when used alone or in combination with antibodies directed against stem cell epitopes. Hoechst low cells are described as side population (SP) cells by virtue of their typical profiles in Hoechst red versus Hoechst blue bivariate fluorescent-activated cell sorting dot plots. Recently, excitement has been generated by the findings that putative stem cells from solid tissues may also possess this SP phenotype. SP cells have now been isolated from a wide variety of mammalian tissues based on this same dye efflux phenomenon, and in many cases this cell population has been shown to contain apparently multipotent stem cells. What is yet to be clearly addressed is whether cell fusion accounts for this perceived SP multipotency. Indeed, if low fluorescence after Hoechst staining is a phenotype shared by hematopoietic and organ-specific stem cells, do all resident tissue SP cells have bone marrow origins or might the SP phenotype be a property common to all stem cells? Subject to further analysis, the SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell-surface markers and may have broad-ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.
Collapse
Affiliation(s)
- Grant A Challen
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, 306 Carmody Road, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | | |
Collapse
|
42
|
Abstract
One of the most active areas of research in medicine today is stem cell biology. This review introduces the reader to the field of stem cell biology and its therapeutic potential. More importantly, the potential application of stem cell therapy in acute lung injury will be explored.
Collapse
Affiliation(s)
- Ronald C Sanders
- Divison of Pediatric Critical Care, Department of Pediatrics, University of Florida, Gainesville, 32610, USA.
| | | | | | | | | |
Collapse
|
43
|
Borok Z, Li C, Liebler J, Aghamohammadi N, Londhe VA, Minoo P. Developmental pathways and specification of intrapulmonary stem cells. Pediatr Res 2006; 59:84R-93R. [PMID: 16549554 DOI: 10.1203/01.pdr.0000203563.37626.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissues have the capacity to maintain a homeostatic balance between wear-and-tear and regeneration. Repair of non-lethal injury also activates cell proliferation to repopulate the injured sites with appropriate cell types and to restore function. Although controversial, the source of the material appears to be at least partly from pools of unique, multipotent stem cells that reside in specialized locations referred to as "niches." Molecular interactions between the niche and the intracellular factors within stem cells are crucial in maintaining stem cell functions, particularly the balance between self-renewal and differentiation. Many of the mediators of the stem cell-niche interactions are similar or identical to those that control developmental pathways during organogenesis. In this review, we present a systematic discussion and evaluation of the relevant literature with a focused emphasis on three primary signaling pathways, WNT, SHH and BMP with potentially overlapping roles during both development and stem cell maintenance.
Collapse
Affiliation(s)
- Zea Borok
- Department of Medicine, Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, 90033, USA
| | | | | | | | | | | |
Collapse
|
44
|
Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005; 65:6207-19. [PMID: 16024622 DOI: 10.1158/0008-5472.can-05-0592] [Citation(s) in RCA: 670] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, several human cancers including leukemia and breast and brain tumors were found to contain stem-like cancer cells called cancer stem cells (CSC). Most of these CSCs were identified using markers that identify putative normal stem cells. In some cases, stem-like cancer cells were identified using the flow cytometry-based side population technique. In this study, we first show that approximately 30% of cultured human cancer cells and xenograft tumors examined ( approximately 30 in total) possess a detectable side population. Purified side population cells from two cell lines (U373 glioma and MCF7 breast cancer) and a xenograft prostate tumor (LAPC-9) are more tumorigenic than the corresponding non-side population cells. These side population cells also possess some intrinsic stem cell properties as they generate non-side population cells in vivo, can be further transplanted, and preferentially express some "stemness" genes, including Notch-1 and beta-catenin. Because the side population phenotype is mainly mediated by ABCG2, an ATP-binding cassette half-transporter associated with multidrug resistance, we subsequently studied ABCG2+ and ABCG2- cancer cells with respect to their tumorigenicity in vivo. Although side population cells show increased ABCG2 mRNA expression relative to the non-side population cells and all cancer cells and xenograft tumors examined express ABCG2 in a small fraction (0.5-3%) of the cells, highly purified ABCG2+ cancer cells, surprisingly, have very similar tumorigenicity to the ABCG2- cancer cells. Mechanistic studies indicate that ABCG2 expression is associated with proliferation and ABCG2+ cancer cells can generate ABCG2- cells. However, ABCG2- cancer cells can also generate ABCG2+ cells. Furthermore, the ABCG2- cancer cells form more and larger clones in the long-term clonal analyses and the ABCG2- population preferentially expresses several "stemness" genes. Taken together, our results suggest that (a) the side population is enriched with tumorigenic stem-like cancer cells, (b) ABCG2 expression identifies mainly fast-cycling tumor progenitors, and (c) the ABCG2- population contains primitive stem-like cancer cells.
Collapse
Affiliation(s)
- Lubna Patrawala
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Elucidation of the biology of stem cells of the lung parenchyma could revolutionise treatment of patients with lung disorders such as cancer, acute respiratory distress syndrome, emphysema, and fibrotic lung disease. How close is this goal? Despite remarkable observations and ensuing advances, more questions than answers have been generated. Progenitors of the alveolar epithelium remain largely mysterious, so the prospect of isolating enough of these cells and delivering them effectively to cure disease remains remote. Similarly, the bone-marrow-derived cell that might most effectively engraft the lung remains unknown. If this mechanism is an important process for lung repair, why will the administration of additional cells be more effective? Finally, there is an issue of control of multipotent cells to avoid the generation of multiple teratomas, longevity of the graft, and possible immunological reactions to gene products inserted to replace a deficiency. The biology is exciting but not yet well enough understood to support therapeutic advances.
Collapse
Affiliation(s)
- Mark J D Griffiths
- Unit of Critical Care, Imperial College London at National Heart and Lung Institute and Royal Brompton Hospital, London, UK
| | | | | |
Collapse
|
46
|
Majka SM, Beutz MA, Hagen M, Izzo AA, Voelkel N, Helm KM. Identification of novel resident pulmonary stem cells: form and function of the lung side population. Stem Cells 2005; 23:1073-81. [PMID: 15987674 DOI: 10.1634/stemcells.2005-0039] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Resident lung stem cells function to replace all lineages of pulmonary tissue, including mesenchyme, epithelium, and vasculature. The phenotype of the lung side population (SP) cells is currently under investigation; their function is currently unknown. Recent data suggest lung SP cells are an enriched tissue-specific source of organ-specific pulmonary precursors and, therefore, a source of adult stem cells. The adult lung SP cell population has been isolated and characterized for expression of markers indicative of stem cell, epithelial, and mesenchymal lineages. These studies determined that the adult mouse lung SP has epithelial and mesenchymal potential that resides within a CD45- mesenchymal subpopulation, as well as limited hematopoietic ability, which resides in the bone marrow-derived CD45+ subpopulation. The ability to identify these adult lung precursor cells allows us to further study the potential of these cells and their role in the regulation of tissue homeostasis and response to injury. The identification of this target population will potentially allow earlier treatment and, long term, a functional restoration of injured pulmonary tissue and lung health.
Collapse
Affiliation(s)
- Susan M Majka
- Department of Medicine, Cardiovascular Pulmonary Research Section, University of Colorado Health Sciences Center, 4200 East 9th Avenue, SOM 3811, mail stop B-133, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the last years stem cells (SC) have generated huge expectations and have become a new hope for the development of novel cell therapies in the context of regenerative medicine. So far, the hypothetic therapeutic effects of SC, both of embryonic and adult origin, have been demonstrated only in a very few cases. Embryonic SC are pluripotential and have, in theory, more plasticity to differentiate into a wide range of cell or tissue types. However, the society still has to decide on the ethics of its use. Regarding adult SC, they are readily available and are fully matched. However, whether their potential will translate into therapeutic benefits in humans needs to be determined as yet. This article is intended to give a general overview on this field, based on the current scientific knowledge.
Collapse
Affiliation(s)
- Jordi Barquinero
- Unitat de Diagnòstic i Teràpia Molecular, Centre de Transfusió i Banc de Teixits, Barcelona, Spain.
| | | | | |
Collapse
|
48
|
Dubin PJ, Kolls JK. Further defining lung SP cells: their origin and their heterogeneity, now if we only knew their fate! Am J Physiol Lung Cell Mol Physiol 2004; 287:L475-6. [PMID: 15308496 DOI: 10.1152/ajplung.00149.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|