1
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
2
|
Lee CH, Liu KS, Cheng CW, Chan EC, Hung KC, Hsieh MJ, Chang SH, Fu X, Juang JH, Hsieh IC, Wen MS, Liu SJ. Codelivery of Sustainable Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds. ACS Infect Dis 2020; 6:2688-2697. [PMID: 32902952 DOI: 10.1021/acsinfecdis.0c00321] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
More than half of diabetic wounds demonstrate clinical signs of infection at presentation and lead to poor outcomes. This work develops coaxial sheath-core nanofibrous poly(lactide-co-glycolide) (PLGA) scaffolds that are loaded with bioactive antibiotics and platelet-derived growth factor (PDGF) for the repair of diabetic infectious wounds. PDGF and PLGA/antibiotic solutions were pumped, respectively, into two independent capillary tubings for coaxial electrospinning to prepare biodegradable sheath-core nanofibers. Spun nanofibrous scaffolds sustainably released PDGF, vancomycin, and gentamicin for 3 weeks. The scaffolds also reduced the phosphatase and tensin homologue content, enhanced the amount of angiogenesis marker (CD31) around the wound area, and accelerated healing in the early stage of infected diabetic wound repair. Antibiotic/biomolecule-loaded PLGA nanofibers may provide a very effective way to aid tissue regeneration at the sites of infected diabetic wounds.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Che-Wei Cheng
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Xuebin Fu
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan
| |
Collapse
|
3
|
Guo Q, Yang J, Chen Y, Jin X, Li Z, Wen X, Xia Q, Wang Y. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur J Pharmacol 2020; 884:173394. [PMID: 32730833 DOI: 10.1016/j.ejphar.2020.173394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Angiogenesis is essential for bone formation during skeletal development. HIF-1α and the HIF-responsive gene VEGF (vascular endothelial growth factor) are reported to be a key mechanism for coupling osteogenesis and angiogenesis. Salidroside (SAL), a major biologically active compound of Rhodiola rosea L., possesses diverse pharmacological effects. However, whether SAL can protect against bone loss via the HIF-1α/VEGF pathway, specifically by inducing angiogenesis-osteogenesis coupling in vivo, remains unknown. Therefore, in the present study, we employed primary human umbilical vein endothelial cells (HUVECs) and the permanent EA.hy926 human endothelial cell line to determine the cellular and molecular effects of SAL on vascular endothelial cells and the HIF-1α-VEGF signalling pathway in the coupling of angiogenesis-osteogenesis. The in vitro study revealed that the HUVECs and EA.hy926 cells treated with conditioned medium from osteoblast cells (MG-63 cells) treated with SAL or treated directly with SAL showed enhanced proliferation, migration and capillary structure formation. However, supplementation with an anti-VEGF antibody during the treatment of endothelial cells (ECs) significantly reversed the pro-angiogenic effect of SAL. Moreover, SAL upregulated HIF-1α expression and increased its transcriptional activity, consequently upregulating VEGF expression at the mRNA and protein levels. In addition, our in vivo analysis demonstrated that SAL can stimulate endothelial sprouting from metatarsal bones. Thus, our mechanistic study demonstrated that the pro-angiogenic effects of SAL involve HIF-1α-VEGF signalling by coordinating the coupling of angiogenesis-osteogenesis in the bone environment. Therefore, we have discovered an ideal molecule that simultaneously enhances angiogenesis and osteogenesis and thereby accelerates bone healing.
Collapse
Affiliation(s)
- Qiaoyun Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Yumeng Chen
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Zongmin Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China; Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police Forces, Shanghai, China
| | - Xiaochang Wen
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Qun Xia
- Department of Orthopaedics, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
4
|
Ambade AS, Jung B, Lee D, Doods H, Wu D. Triple-tyrosine kinase inhibition attenuates pulmonary arterial hypertension and neointimal formation. Transl Res 2019; 203:15-30. [PMID: 30142307 DOI: 10.1016/j.trsl.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of simultaneous inhibition of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) receptor signaling with BIBF1000, a novel triple tyrosine kinase inhibitor on preventing and reversing the progression of severe pulmonary arterial hypertension (PAH) in an experimental model in rats. Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Treatment with BIBF1000 from day 1 to day 21 after monocrotaline injection attenuated PAH development, as evidenced by lower values for pulmonary artery pressure (mPAP), right ventricular pressure (RVSP), pulmonary arterial neointimal formation, and the ratio of right ventricular weight to left ventricular and septum weight [RV/(LV+S)] on day 21 compared to control rats. Treatment with BIBF1000 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values for mPAP and RVSP, RV/(LV+S) ratio, pulmonary arterial occlusion scores, levels of heart and lung fibrosis, as well as improved survival. Treatment with BIBF1000 reduced inflammatory cell recruitment in bronchoalveolar lavage and lung tissues, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen in the perivascular areas, and reduced TNF-α and growth factor productions, and inhibited the phosphorylation of AKT and GSK3β in lungs. In addition, BIBF1000 inhibited pulmonary artery smooth muscle cells migration and proliferation from rat pulmonary artery explant cultures. Simultaneous inhibition of VEGF, PDGF, and FGF receptor signaling by BIBF1000 prevents and reverses the progression of severe pulmonary arterial hypertension and vascular remodeling in this experimental model.
Collapse
Affiliation(s)
- Anjira S Ambade
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Birgit Jung
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea; Department of Research, Mount Sinai Medical Center, Miami Beach, Florida.
| |
Collapse
|
5
|
Salter B, Pray C, Radford K, Martin JG, Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 2017; 18:156. [PMID: 28814293 PMCID: PMC5559796 DOI: 10.1186/s12931-017-0640-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023] Open
Abstract
Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Cara Pray
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - James G. Martin
- Meakins Christie Laboratories, McGill University, Montreal, QC Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
6
|
Yoo EJ, Ojiaku CA, Sunder K, Panettieri RA. Phosphoinositide 3-Kinase in Asthma: Novel Roles and Therapeutic Approaches. Am J Respir Cell Mol Biol 2017; 56:700-707. [PMID: 27977296 DOI: 10.1165/rcmb.2016-0308tr] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Asthma manifests as airway hyperresponsiveness and inflammation, including coughing, wheezing, and shortness of breath. Immune cells and airway structural cells orchestrate asthma pathophysiology, leading to mucus secretion, airway narrowing, and obstruction. Phosphoinositide 3-kinase, a lipid kinase, plays a crucial role in many of the cellular and molecular mechanisms driving asthma pathophysiology and represents an attractive therapeutic target. Here, we summarize the diverse roles of phosphoinositide 3-kinase in the pathogenesis of asthma and discuss novel therapeutic approaches to treatment.
Collapse
Affiliation(s)
- Edwin J Yoo
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and.,2 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christie A Ojiaku
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and.,2 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Krishna Sunder
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and
| | - Reynold A Panettieri
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and
| |
Collapse
|
7
|
Lu JJ, Xu GN, Yu P, Song Y, Wang XL, Zhu L, Chen HZ, Cui YY. The activation of M3 mAChR in airway epithelial cells promotes IL-8 and TGF-β1 secretion and airway smooth muscle cell migration. Respir Res 2016; 17:25. [PMID: 26956674 PMCID: PMC4784334 DOI: 10.1186/s12931-016-0344-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/05/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Muscarinic acetylcholine receptors (mAChRs) have been identified in airway epithelium, and epithelium-derived chemokines can initiate the migration of airway smooth muscle (ASM) cells. However, the mAChRs that are expressed in airway epithelium and the mechanism underlying the regulation of ASM cell migration are not clear. The aim of this study was to test whether the effects of the epithelium-derived chemokines on ASM cell migration could be modulated by mAChRs. METHOD Human epithelial cells (A549 cells) were stimulated with cigarette smoke extract (CSE) or the mAChRs agonist carbachol. IL-8 and TGF-β1 production were measured by ELISA, and human ASM cell migration was measured using the transwell migration assay and scratch assay. The mRNA levels of the mAChRs subtypes and the acetylcholine concentrations were measured using RT-PCR and LC-MS/MS, respectively. RESULTS ASM cell migration toward CSE-stimulated A549 cells was markedly reduced by Ac-RRWWCR-NH2 (IL-8 inhibitor) and SB431542 (TGF-β1 inhibitor). CSE-induced ASM cell migration was also suppressed by the mAChRs antagonist tiotropium. Interestingly, carbachol-stimulated A549 cells also induced ASM cell migration; this migration event was suppressed by tiotropium, Ac-RRWWCR-NH2 and SB431542. In addition, the effects of CSE on ASM cell migration were significantly and cooperatively enhanced by carbachol compared to CSE alone. Carbachol-induced ASM cell migration was reduced by selective inhibitors of PI3K/Akt (LY294002) and p38 (SB203580), suggesting that it occurred through p38 and Akt phosphorylation, which was inhibited by the M3 mAChR antagonist 4-DAMP. CONCLUSIONS These findings indicate that M3 mAChR may be important therapeutic target for obstructive airway diseases, as it regulates the effects of the epithelial-derived chemokines on ASM cell migration, which results in lung remodeling.
Collapse
Affiliation(s)
- Juan-Juan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guang-Ni Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yun Song
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiao-Lin Wang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Liang Zhu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Fougerat A, Smirnova NF, Gayral S, Malet N, Hirsch E, Wymann MP, Perret B, Martinez LO, Douillon M, Laffargue M. Key role of PI3Kγ in monocyte chemotactic protein-1-mediated amplification of PDGF-induced aortic smooth muscle cell migration. Br J Pharmacol 2012; 166:1643-53. [PMID: 22251152 DOI: 10.1111/j.1476-5381.2012.01866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cell (SMC) migration within the arterial wall is a crucial event in atherogenesis and restenosis. Monocyte chemotactic protein-1/CC-chemokine receptor 2 (MCP-1/CCR2) signalling is involved in SMC migration processes but the molecular mechanisms have not been well characterized. We investigated the role of PI3Kγ in SMC migration induced by MCP-1. EXPERIMENTAL APPROACHES A pharmacological PI3Kγ inhibitor, adenovirus encoding inactive forms of PI3Kγ and genetic deletion of PI3Kγ were used to investigate PI3Kγ functions in the MCP-1 and platelet-derived growth factor (PDGF) signalling pathway and migration process in primary aortic SMC. KEY RESULTS The γ isoform of PI3K was shown to be the major signalling molecule mediating PKB phosphorylation in MCP-1-stimulated SMC. Using a PI3Kγ inhibitor and an adenovirus encoding a dominant negative form of PI3Kγ, we demonstrated that PI3Kγ is essential for SMC migration triggered by MCP-1. PDGF receptor stimulation induced MCP-1 mRNA and protein accumulation in SMCs. Blockade of the MCP-1/CCR2 pathway or pharmacological inhibition of PI3Kγ reduced PDGF-stimulated aortic SMC migration by 50%. Thus PDGF promotes an autocrine loop involving MCP-1/CCR2 signalling which is required for PDGF-mediated SMC migration. Furthermore, SMCs isolated from PI3Kγ-deficient mice (PI3Kγ(-/-)), or mice expressing an inactive PI3Kγ (PI3Kγ(KD/KD)), migrated less than control cells in response to MCP-1 and PDGF. CONCLUSIONS AND IMPLICATIONS PI3Kγ is essential for MCP-1-stimulated aortic SMC migration and amplifies cell migration induced by PDGF by an autocrine/paracrine loop involving MCP-1 secretion and CCR2 activation. PI3Kγ is a promising target for the treatment of aortic fibroproliferative pathologies.
Collapse
|
9
|
Abstract
Airway smooth muscle has classically been of interest for its contractile response linked to bronchoconstriction. However, terminally differentiated smooth muscle cells are phenotypically plastic and have multifunctional capacity for proliferation, cellular hypertrophy, migration, and the synthesis of extracellular matrix and inflammatory mediators. These latter properties of airway smooth muscle are important in airway remodeling which is a structural alteration that compounds the impact of contractile responses on limiting airway conductance. In this overview, we describe the important signaling components and the functional evidence supporting a view of smooth muscle cells at the core of fibroproliferative remodeling of hollow organs. Signal transduction components and events are summarized that control the basic cellular processes of proliferation, cell survival, apoptosis, and cellular migration. We delineate known intracellular control mechanisms and suggest future areas of interest to pursue to more fully understand factors that regulate normal myocyte function and airway remodeling in obstructive lung diseases.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | | | | | | | | |
Collapse
|
10
|
Xiong W, Cheng BH, Jia SB, Tang LS. Involvement of the PI3K/Akt signaling pathway in platelet-derived growth factor-induced migration of human lens epithelial cells. Curr Eye Res 2010; 35:389-401. [PMID: 20450252 DOI: 10.3109/02713680903584686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Posterior capsular opacification (PCO) is caused partially by the migration of lens epithelial cells. To date, the mechanism of the migration is largely unknown. The purpose of this study was to investigate the effect of platelet-derived growth factor (PDGF)-triggered signaling pathways and its downstream effectors in the migration of lens epithelial cells. METHODS In vitro scratch-wound healing and transwell migration assays were used to measure the migration of lens epithelial cells. The activation of PDGFR beta, phosphatidylinositol 3-kinas (PI3K)/protein kinase B (Akt) and mitogen activation protein kinase (MAPK) pathways, the impact of PDGF stimulation on the expression of cell protrusion molecules, and the stabilization of beta-catenin were measured by western blotting. The translocation of beta-catenin was detected using indirect immunofluorescence. RESULTS PDGF was found to enhance cell migration, which depended on the PI3K/Akt pathway. The activation of the PI3K/Akt pathway by the PDGF/PDGFR beta axis induced the up regulation of cell protrusion molecules and stabilization and translocation of beta-catenin, contributing to enhanced cell migration. CONCLUSION Data from this study directly linked the central PI3K/Akt pathway to lens epithelial cell migration and pointed to new avenues for therapeutic intervention in PCO.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Ophthalmology, The Second Xiang Ya Hospital of Central South University, Changsha, China
| | | | | | | |
Collapse
|
11
|
Issaka RB, Oommen S, Gupta SK, Liu G, Myers JL, Ryu JH, Vlahakis NE. Vascular endothelial growth factors C and D induces proliferation of lymphangioleiomyomatosis cells through autocrine crosstalk with endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1410-20. [PMID: 19717640 DOI: 10.2353/ajpath.2009.080830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a potentially fatal lung disease characterized by nodules of proliferative smooth muscle-like cells. The exact nature of these LAM cells and their proliferative stimuli are poorly characterized. Herein we report the novel findings that the lymphangiogenic vascular endothelial growth factors (VEGF) C and D induce LAM cell proliferation through activation of their cognate receptor VEGF-R3 and activation of the signaling intermediates Akt/mTOR/S6. Furthermore, we identify expression of the proteoglycan NG2, a marker of immature smooth muscle cells, as a characteristic of LAM cells both in vitro and in human lung tissue. VEGF-C-induced LAM cell proliferation was in part a result of autocrine stimulation that resulted from cross talk with lymphatic endothelial cells. Ultimately, these findings identify the lymphangiogenic VEGF proteins as pathogenic growth factors in LAM disease and at the same time provide a novel pharmacotherapeutic target for a lung disease that to date has no known effective treatment.
Collapse
Affiliation(s)
- Rachel B Issaka
- Thoracic Disease Research Unit, Division of Pulmonary, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Takeda N, Sumi Y, Préfontaine D, Al Abri J, Al Heialy N, Al-Ramli W, Michoud MC, Martin JG, Hamid Q. Epithelium-derived chemokines induce airway smooth muscle cell migration. Clin Exp Allergy 2009; 39:1018-26. [PMID: 19364333 DOI: 10.1111/j.1365-2222.2009.03238.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The remodelling of airway smooth muscle (ASM) associated with asthma severity may involve the migration of ASM cells towards the epithelium. However, little is known about the mechanisms of cell migration and the effect of epithelial-derived mediators on this process. OBJECTIVE The main objective of the current study is to assess the effects of epithelial-derived chemokines on ASM cell migration. METHODS Normal human ASM cells were incubated with supernatants from cells of the bronchial epithelial cell line BEAS-2B and normal human bronchial epithelial (NHBE) cells. To induce chemokine production, epithelial cells were treated with TNF-alpha. Chemokine expression by epithelial cells was evaluated by quantitative real-time PCR, ELISA and membrane antibody array. To identify the role of individual chemokines in ASM cell migration, we performed migration assays with a modified Boyden chamber using specific neutralizing antibodies to block chemokine effects. RESULTS Supernatants from BEAS-2B cells treated with TNF-alpha increased ASM cell migration; migration was increased 1.6 and 2.5-fold by supernatant from BEAS-2B cells treated with 10 and 100 ng/mL TNF-alpha, respectively. Protein levels in supernatants and mRNA expression by BEAS-2B cells of regulated on activation, normal T cell expressed and secreted (RANTES) and IL-8 were significantly increased by 100 ng/mL TNF-alpha treatment. The incubation of supernatant with antibodies to RANTES or IL-8 significantly reduced ASM cell migration, and the combined antibodies further inhibited the cell migration. The migratory effects of supernatants and inhibiting effects of RANTES and/or IL-8 were confirmed also using NHBE cells. CONCLUSION The results show that chemokines from airway epithelial cells cause ASM cell migration and might potentially play a role in the process of airway remodelling in asthma.
Collapse
Affiliation(s)
- N Takeda
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including beta-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling.
Collapse
|
14
|
Lu D, Xie S, Sukkar MB, Lu X, Scully MF, Chung KF. Inhibition of Airway Smooth Muscle Adhesion and Migration by the Disintegrin Domain of ADAM-15. Am J Respir Cell Mol Biol 2007; 37:494-500. [PMID: 17575078 DOI: 10.1165/rcmb.2006-0364oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Disintegrin and metalloprotease proteins (ADAMs) are membrane-anchored glycoproteins involved in cell adhesion, cell fusion, protein ecto-domain shedding, and intracellular signaling. We examined whether the disintegrin domain of ADAM-15 (named ddADAM-15) containing an Asp-Gly-Asp (RGD) integrin-binding motif could interfere with airway smooth muscle cell (ASMC) adhesion and migration. Recombinant ddADAM-15 adhered to human ASMCs with saturation kinetics, and was beta(1)-integrin dependent. ddADAM-15 inhibited the binding of fibrinogen but not of fibronectin to ASMCs. ddADAM-15 also inhibited platelet-derived growth factor (PDGF)-induced ASMC migration, and this was reversed by an anti-beta(1)-integrin antibody. PDGF induced the activation of phosphoinositol-3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK), and selective inhibitors of these kinases inhibited PDGF-induced ASMC migration. ddADAM-15 did not inhibit PDGF-induced activation of PI3K or p38, thereby excluding these kinase pathways as a mechanism by which ddADAM-15 inhibits ASMC migration. ADAM-15 mRNA and protein were expressed under basal conditions, and both gene and protein expression were inhibited by PDGF. In summary, ddADAM-15 inhibits ASMC adhesion and migration through the beta(1)-integrin, without modulating signaling pathways involved in ASMC migratory responses.
Collapse
Affiliation(s)
- Dong Lu
- Molecular Immunology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
15
|
An S, Bai T, Bates J, Black J, Brown R, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman D, Fabry B, Fairbank N, Ford L, Fredberg J, Gerthoffer W, Gilbert S, Gosens R, Gunst S, Halayko A, Ingram R, Irvin C, James A, Janssen L, King G, Knight D, Lauzon A, Lakser O, Ludwig M, Lutchen K, Maksym G, Martin J, Mauad T, McParland B, Mijailovich S, Mitchell H, Mitchell R, Mitzner W, Murphy T, Paré P, Pellegrino R, Sanderson M, Schellenberg R, Seow C, Silveira P, Smith P, Solway J, Stephens N, Sterk P, Stewart A, Tang D, Tepper R, Tran T, Wang L. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 2007; 29:834-60. [PMID: 17470619 PMCID: PMC2527453 DOI: 10.1183/09031936.00112606] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.
Collapse
Affiliation(s)
- S.S. An
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.R. Bai
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - J.H.T. Bates
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - J.L. Black
- Dept of Pharmacology, University of Sydney, Sydney
| | - R.H. Brown
- Dept of Anesthesiology and Critical Care medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - V. Brusasco
- Dept of Internal Medicine, University of Genoa, Genoa
| | - P. Chitano
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - L. Deng
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
- Bioengineering College, Chongqing University, Chongqing, China
| | - M. Dowell
- Section of Pulmonary and Critical Care Medicine
| | - D.H. Eidelman
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - B. Fabry
- Center for Medical Physics and Technology, Erlangen, Germany
| | - N.J. Fairbank
- School of Biomedical Engineering, Dalhousie University, Halifax
| | | | - J.J. Fredberg
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - W.T. Gerthoffer
- Dept of Pharmacology, University of Nevada School of Medicine, Reno, NV
| | | | - R. Gosens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - S.J. Gunst
- Dept of Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - A.J. Halayko
- Dept of Physiology, University of Manitoba, Winnipeg
| | - R.H. Ingram
- Dept of Medicine, Emory University School of Medicine, Atlanta, GA
| | - C.G. Irvin
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - A.L. James
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands
| | - L.J. Janssen
- Dept of Medicine, McMaster University, Hamilton, Canada
| | - G.G. King
- Woolcock Institute of Medical Research, Camperdown
| | - D.A. Knight
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - A.M. Lauzon
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - O.J. Lakser
- Section of Paediatric Pulmonary Medicine, University of Chicago, Chicago, IL
| | - M.S. Ludwig
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - K.R. Lutchen
- Dept of Biomedical Engineering, Boston University, Boston
| | - G.N. Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax
| | - J.G. Martin
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - T. Mauad
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | | | - S.M. Mijailovich
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - H.W. Mitchell
- Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Perth
| | | | - W. Mitzner
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.M. Murphy
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - P.D. Paré
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - R. Pellegrino
- Dept of Respiratory Physiopathology, S. Croce e Carle Hospital, Cuneo, Italy
| | - M.J. Sanderson
- Dept of Physiology, University of Massachusetts Medical School, Worcester, MA
| | - R.R. Schellenberg
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - C.Y. Seow
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - P.S.P. Silveira
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - P.G. Smith
- Dept of Paediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - J. Solway
- Section of Pulmonary and Critical Care Medicine
| | - N.L. Stephens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - P.J. Sterk
- Dept of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A.G. Stewart
- Dept of Pharmacology, University of Melbourne, Parkville, Australia
| | - D.D. Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, USA
| | - R.S. Tepper
- Dept of Paediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - T. Tran
- Dept of Physiology, University of Manitoba, Winnipeg
| | - L. Wang
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| |
Collapse
|
16
|
Goncharova EA, Goncharov DA, Spaits M, Noonan DJ, Talovskaya E, Eszterhas A, Krymskaya VP. Abnormal growth of smooth muscle-like cells in lymphangioleiomyomatosis: Role for tumor suppressor TSC2. Am J Respir Cell Mol Biol 2006; 34:561-72. [PMID: 16424383 PMCID: PMC2644221 DOI: 10.1165/rcmb.2005-0300oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The TSC1 and TSC2 proteins, which function as a TSC1/TSC2 tumor suppressor complex, are associated with lymphangioleiomyomatosis (LAM), a genetic disorder characterized by the abnormal growth of smooth muscle-like cells in the lungs. The precise molecular mechanisms that modulate LAM cell growth remain unknown. We demonstrate that TSC2 regulates LAM cell growth. Cells dissociated from LAM nodules from the lungs of five different patients with LAM have constitutively activated S6K1, hyperphosphorylated ribosomal protein S6, activated Erk, and increased DNA synthesis compared with normal cells from the same patients. These effects were augmented by PDGF stimulation. Akt activity was unchanged in LAM cells. Rapamycin, a specific S6K1 inhibitor, abolished increased LAM cell growth. The full-length TSC2 was necessary for inhibition of S6 hyperphosphorylation and DNA synthesis in LAM cells, as demonstrated by co-microinjection of the C-terminus, which contains the GTPase activating protein homology domain, and the N-terminus, which binds TSC1. Our data demonstrate that increased LAM cell growth is associated with constitutive S6K1 activation, which is extinguishable by TSC2 expression. Loss of TSC2 GAP activity or disruption of the TSC1/TSC2 complex dysregulates S6K1 activation, which leads to abnormal cell proliferation associated with LAM disease.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRB II/III, Philadelphia, PA 19104-6160, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Goncharova EA, Goncharov DA, Lim PN, Noonan D, Krymskaya VP. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2005; 34:473-80. [PMID: 16388022 PMCID: PMC2644208 DOI: 10.1165/rcmb.2005-0374oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM.
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
18
|
Wei JJ, Chiriboga L, Mittal K. Expression profile of the tumorigenic factors associated with tumor size and sex steroid hormone status in uterine leiomyomata. Fertil Steril 2005; 84:474-84. [PMID: 16084893 DOI: 10.1016/j.fertnstert.2005.01.142] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 01/03/2005] [Accepted: 01/03/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To use tissue microarray in combination with dendrogram cluster analysis to characterize some potential tumorigenic factors in association with tumor size and sex steroid hormone status in uterine leiomyomata. DESIGN Expression analysis of 21 selected potential tumorigenic factors in 60 patients with uterine leiomyomata. SETTING University clinical research laboratory. PATIENT(S) Hysterectomy specimens from 60 patients with uterine leiomyomata of different ages and tumor sizes. INTERVENTION(S) Tissue cores from normal myometrium and leiomyomata were examined by immunohistochemistry. MAIN OUTCOME MEASURE(S) Semiquantitative immunointensity was scored and analyzed by net gain and loss between normal myometrium and leiomyomata and integrated into dendrogram cluster tree view. RESULT(S) We found that upregulation of estrogen and progesterone receptors was reverse associated with tumor size. Upregulation of some factors (HMGA2, sex steroid receptor cofactors, proteins in insulin pathway, and CD24) were identified in a group of patients in their later forties, were associated with large fibroids, and were weakly affected by the SSH status (illustrated by endometrial phases and menopause). Downregulation of tuberin and glucocorticoid receptor was mostly isolated in a second group of women at their late reproductive age. CONCLUSION(S) Analyses of the sex steroid hormone receptors and the nonsex steroid hormone factors in leiomyomata and the matched myometrium showed different expression patterns in different tumor sizes and patients' ages. A group of patients in their late forties with the larger leiomyomata contributes largely by upregulation of nonsex steroid hormone factors. Adenomyosis is a protective factor preventing large leiomyomata.
Collapse
Affiliation(s)
- Jian-Jun Wei
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
19
|
Pullamsetti S, Krick S, Yilmaz H, Ghofrani HA, Schudt C, Weissmann N, Fuchs B, Seeger W, Grimminger F, Schermuly RT. Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration. Respir Res 2005; 6:128. [PMID: 16262900 PMCID: PMC1291406 DOI: 10.1186/1465-9921-6-128] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 11/01/2005] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats. METHODS CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. RESULTS Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 +/- 4.0 to 68.9 +/- 3.2 after 4 weeks and 74.9 +/- 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response. CONCLUSION In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics.
Collapse
Affiliation(s)
- Soni Pullamsetti
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | - Stefanie Krick
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | - Hüseyin Yilmaz
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | | | | | - Norbert Weissmann
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | - Beate Fuchs
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | - Werner Seeger
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
| | | | | |
Collapse
|
20
|
Goncharova E, Goncharov D, Noonan D, Krymskaya VP. TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase. ACTA ACUST UNITED AC 2005; 167:1171-82. [PMID: 15611338 PMCID: PMC2172598 DOI: 10.1083/jcb.200405130] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this function of TSC2. Expression of TSC2 or TSC2-HBD in TSC2−/− cells promoted Rac1 activation, inhibition of Rho, stress fiber disassembly, and focal adhesion remodeling. The down-regulation of TSC1 with TSC1 siRNA in TSC2−/− cells activated Rac1 and induced loss of stress fibers. Our data indicate that TSC1 inhibits Rac1 and TSC2 blocks this activity of TSC1. Because TSC1 and TSC2 regulate Rho and Rac1, whose activities are interconnected in a reciprocal fashion, loss of either TSC1 or TSC2 function may result in the deregulation of cell motility and adhesion, which are associated with the pathobiology of TSC and LAM.
Collapse
Affiliation(s)
- Elena Goncharova
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
21
|
Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TTB, Peng Q, Ramos-Barbón D, Stewart AG. Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol 2004; 114:S2-17. [PMID: 15309015 DOI: 10.1016/j.jaci.2004.04.039] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased airway smooth muscle (ASM) mass is perhaps the most important component of the airway wall remodeling process in asthma. Known mediators of ASM proliferation in cell culture models fall into 2 categories: those that activate receptors with intrinsic receptor tyrosine kinase activity and those that have their effects through receptors linked to heterotrimeric guanosine triphosphate-binding proteins. The major candidate signaling pathways activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. Increases in ASM mass may also involve ASM migration, and in culture, the key signaling mechanisms have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. New evidence from an in vivo rat model indicates that primed CD4(+) T cells are sufficient to trigger ASM and epithelial remodeling after allergen challenge. Hyperplasia has been observed in an equine model of asthma and may account for the increase in ASM mass. Reduction in the rate of apoptosis may also play a role. beta(2)-Adrenergic receptor agonists and glucocorticoids have antiproliferative activity against a broad spectrum of mitogens, although it has become apparent that mitogens are differentially sensitive. Culture of ASM on collagen type I has been shown to enhance proliferative activity and prevent the inhibitory effect of glucocorticoids, whereas beta(2)-agonists are minimally affected. There is no evidence that long-acting beta(2)-agonists are more effective than short-acting agonists, but persistent stimulation of the beta(2)-adrenergic receptor probably helps suppress growth responses. The maximum response of fluticasone propionate against thrombin-induced proliferation is increased when it is combined with salmeterol.
Collapse
Affiliation(s)
- Stuart J Hirst
- Department of Asthma, Allergy and Respiratory Science, Guy's, King's and St. Thomas' School of Medicine, Guy's Hospital Campus, King's College London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu B, Itoh H, Louie O, Kubota K, Kent KC. The role of phospholipase C and phosphatidylinositol 3-kinase in vascular smooth muscle cell migration and proliferation. J Surg Res 2004; 120:256-65. [PMID: 15234221 DOI: 10.1016/j.jss.2003.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 11/20/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (SMC) proliferation and migration both contribute to the formation of intimal hyperplasia. Phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3-K) are ubiquitous signaling proteins that mediate multiple cellular events. In this study, we investigate the role of PLC and PI3-K in platelet-derived growth factor (PDGF) and extracellular matrix protein (ECM) induced SMC proliferation and migration. MATERIAL AND METHODS Proliferation of human saphenous vein SMC was assessed by (3)H-thymidine incorporation. SMC migration was evaluated using a microchemotaxis chamber. U-73122 was used as a general inhibitor for PLC, and D609 and ET-18-OCH3, respectively, were used to block the isotypes of PLC, phosphatidylcholine- (PC-), and phosphatidylinositol- (PI-) specific PLC. PI3-K activity was inhibited using two selective inhibitors, LY-294002 and wortmannin. RESULTS PDGF and Type 1 collagen (CN-I) stimulated SMC proliferation, whereas PDGF and four distinct extracellular matrix proteins CN-I, Type 4 collagen (CN-IV), fibronectin (FN), and laminin (LN) stimulated SMC migration. Both isotypes of PLC as well as PI3-K were necessary for PDGF- and CN-I-induced proliferation. Signaling for migration, however, was more specific. Of the various signaling proteins studied, only PI-PLC was necessary for PDGF-induced SMC migration. Conversely, PI3-K was the only signaling protein necessary for SMC migration in response to ECM proteins. CONCLUSION The signaling pathways necessary for PDGF- and CN-I-induced SMC proliferation involve both isotypes of PLC as well as PI3-K. The signaling pathways used by growth factors and ECM to stimulate SMC migration are more selective. Understanding the intracellular signaling pathways required for SMC proliferation and migration may allow the development of tools to selectively block intimal hyperplasia.
Collapse
Affiliation(s)
- Bo Liu
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, 525 East 68th Street, Payson 707, New York, NY 1002, USA.
| | | | | | | | | |
Collapse
|
23
|
Leung WCY, Lawrie A, Demaries S, Massaeli H, Burry A, Yablonsky S, Sarjeant JM, Fera E, Rassart E, Pickering JG, Rabinovitch M. Apolipoprotein D and Platelet-Derived Growth Factor-BB Synergism Mediates Vascular Smooth Muscle Cell Migration. Circ Res 2004; 95:179-86. [PMID: 15192024 DOI: 10.1161/01.res.0000135482.74178.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We identified apolipoprotein (apo)D in a search for proteins upregulated in a posttranscriptional manner similar to fibronectin in motile smooth muscle cells (SMCs). To address the function of apoD in SMCs, we cloned a partial apoD cDNA from ovine aortic (Ao) SMCs using RT-PCR. We documented a 2.5-fold increase in apoD protein but no increase in apoD mRNA in Ao SMCs 48 hours after a multiwound migration assay (
P
<0.01). Confocal microscopy revealed prominent perinuclear and trailing edge expression of apoD in migrating SMCs but not in the confluent monolayer. Stimulation of Ao SMCs with 10 ng/mL platelet-derived growth factor (PDGF)-BB increased apoD protein expression (
P
<0.05). Moreover, PDGF-BB–stimulated migration of human pulmonary artery SMCs was suppressed by knock-down of apoD using RNAi. Stable overexpression of apoD in Ao SMCs cultured in 10% fetal bovine serum promoted random migration by 62% compared with vector-transfected cells (
P
<0.01). Overexpression of apoD or addition of exogenous apoD to a rat aortic SMC line (A10) stimulated their migration in response to a subthreshold dose of PDGF-BB (
P
<0.05). This was unrelated to increased phosphorylation of ERK1/2 or of phospholipase C-γ1, but correlated with enhanced Rac1 activation. This study shows that apoD can be expressed or taken up by SMCs and can regulate their motility in response to growth factors.
Collapse
Affiliation(s)
- Wesley C Y Leung
- Cardiovascular Research Program, Research Institute, The Hospital for Sick Children, and the Department of Pediatrics, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, Flynn DC, Jiang BH. PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol 2004; 286:C153-63. [PMID: 12967912 DOI: 10.1152/ajpcell.00142.2003] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was designed to identify the molecular mechanisms of phosphatidylinositol 3-kinase (PI3K)-induced actin filament remodeling and cell migration. Expression of active forms of PI3K, v-P3k or Myr-P3k, was sufficient to induce actin filament remodeling to lead to an increase in cell migration, as well as the activation of Akt in chicken embryo fibroblast (CEF) cells. Either the inhibition of PI3K activity using a PI3K-specific inhibitor, LY-294002, or the disruption of Akt activity restored the integrity of actin filaments in CEF cells and inhibited PI3K-induced cell migration. We also found that expression of an activated form of Akt (Myr-Akt) was sufficient to remodel actin filaments to lead to an increase in cell migration, which was unable to be inhibited by the presence of LY-294002. Furthermore, we found that p70S6K1 kinase was a downstream molecule that can mediate the effects of both PI3K and Akt on actin filaments and cell migration. Overexpression of an active form of p70S6K1 was sufficient to induce actin filament remodeling and cell migration in CEF cells, which requires Rac activity. These results demonstrate that activation of PI3K activity alone is sufficient to remodel actin filaments to increase cell migration through the activation of Akt and p70S6K1 in CEF cells.
Collapse
Affiliation(s)
- Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health/NIH, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kazi AS, Lotfi S, Goncharova EA, Tliba O, Amrani Y, Krymskaya VP, Lazaar AL. Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent. Am J Physiol Lung Cell Mol Physiol 2003; 286:L539-45. [PMID: 14633511 DOI: 10.1152/ajplung.00130.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells. In addition, stimulation of ASM with VEGF activates ERK, but not p38MAPK, and fibronectin secretion is ERK dependent. Both ERK activation and fibronectin secretion appear to be mediated through the VEGF receptor flt-1, as evidenced by the effects of the flt-1-specific ligand placenta growth factor. Finally, we demonstrate that ASM cells constitutively secrete VEGF, which is increased in response to PDGF, transforming growth factor-beta, IL-1beta, and PGE(2). We conclude that ASM-derived VEGF, through modulation of the extracellular matrix, may play an important role in airway remodeling seen in asthma.
Collapse
Affiliation(s)
- Altaf S Kazi
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhou D, Zheng X, Wang L, Stelmack G, Halayko AJ, Dorscheid D, Bai TR. Expression and effects of cardiotrophin-1 (CT-1) in human airway smooth muscle cells. Br J Pharmacol 2003; 140:1237-44. [PMID: 14597603 PMCID: PMC1574147 DOI: 10.1038/sj.bjp.0705562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Cellular hypertrophy and/or a reduced rate of apoptosis could increase airway smooth muscle mass. As cardiotrophin-1 (CT-1) induces hypertrophy and inhibits apoptosis in cardiomyocytes, we tested for the expression and effects of CT-1 in human bronchial smooth muscle cells (HBSMC). 2. CT-1 was detected in abundance in normal adult human lung and was expressed in both fetal and adult HBSMC. 3. Following serum deprivation, CT-1 was released by reintroduction of serum and by TGF-beta 2/IL-4 in fetal but not adult cells. TGF-beta 2/IL-4 triggered the release of CT-1 in serum-fed adult cells. Hypoxia and strain had no effect on the release of CT-1. 4. CT-1 reduced the apoptosis induced both by serum deprivation and by Fas antibody/TNF-alpha treatment in adult cells, with greater efficacy than other members of the IL-6 superfamily. The MAPK/ERK kinase inhibitor PD98059 (1-10 microM) reduced the effect of CT-1. Fetal cells were more resistant to apoptosis. 5. CT-1 (10 ng ml-1) induced a significant increase in cell size as judged by protein/DNA ratios and flow cytometry. No effects on smooth muscle alpha-actin or vimentin proteins were noted, although CT-1 qualitatively alters the cytostructural distribution of SM22, an actin filament-associated protein, and increased SM22 protein abundance. No effect on proliferation or migration was evident. 6. These data suggest CT-1 expression primarily in fetal and synthetic HBSMC phenotypes. By reducing the rates of apoptosis and inducing hypertrophy, CT-1 may contribute to increased smooth muscle mass in airway disease.
Collapse
Affiliation(s)
- Danyi Zhou
- University of British Columbia Pulmonary Research Laboratory, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | - Xueyan Zheng
- University of British Columbia Pulmonary Research Laboratory, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | - Lu Wang
- University of Manitoba, Department of Physiology, Winnipeg, MB, Canada R3A 1R8
| | - Gerald Stelmack
- University of Manitoba, Department of Physiology, Winnipeg, MB, Canada R3A 1R8
| | - Andrew J Halayko
- University of Manitoba, Department of Physiology, Winnipeg, MB, Canada R3A 1R8
| | - Delbert Dorscheid
- University of British Columbia Pulmonary Research Laboratory, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | - Tony R Bai
- University of British Columbia Pulmonary Research Laboratory, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
- Author for correspondence:
| |
Collapse
|
27
|
Affiliation(s)
- J Mark Madison
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA.
| |
Collapse
|
28
|
Carlin SM, Roth M, Black JL. Urokinase potentiates PDGF-induced chemotaxis of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1020-6. [PMID: 12576295 DOI: 10.1152/ajplung.00092.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the chemotactic action of PDGF and urokinase on human airway smooth muscle (HASM) cells in culture. Cells were put in collagen-coated transwells with 8-micro m perforations, incubated for 4 h with test compounds, then fixed, stained, and counted as migrated nuclei by microscopy. Cells from all culture conditions showed some basal migration (migration in the absence of stimuli during the assay), but cells preincubated for 24 h in 10% FBS or 20 ng/ml PDGF showed higher basal migration than cells quiesced in 1% FBS. PDGF(BB), PDGF(AA), and PDGF(AB) were all chemotactic when added during the assay. PDGF chemotaxis was blocked by the phosphatidyl 3'-kinase inhibitor LY-294002, the MEK inhibitor U-0126, PGE(2), formoterol, pertussis toxin, and the Rho kinase inhibitor Y-27632. Urokinase alone had no stimulatory effect on migration of quiescent cells but caused a dose-dependent potentiation of chemotaxis toward PDGF. Urokinase also potentiated the elevated basal migration of cells pretreated in 10% FBS or PDGF. This potentiating effect of urokinase appears to be novel. We conclude that PDGF and similar cytokines may be important factors in airway remodeling by redistribution of smooth muscle cells during inflammation and that urokinase may be important in potentiating the response.
Collapse
Affiliation(s)
- Stephen M Carlin
- Department of Pharmacology, University of Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
29
|
Mason HR, Nowak RA, Morton CC, Castellot JJ. Heparin inhibits the motility and proliferation of human myometrial and leiomyoma smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1895-904. [PMID: 12759246 PMCID: PMC1868134 DOI: 10.1016/s0002-9440(10)64323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2003] [Indexed: 11/19/2022]
Abstract
Uterine fibroids (leiomyomas) are a major women's health problem. Currently, the standard for treatment remains hysterectomy, because no other treatment modalities can reduce both symptoms and recurrence. As leiomyomas are a hyperproliferation of smooth muscle cells, we sought to understand the regulation of uterine smooth muscle cell mitogenesis by the glycosaminoglycan heparin, which has been extensively studied as an anti-proliferative molecule in vascular smooth muscle cells. Using matched pairs of human myometrial and leiomyoma smooth muscle cells from the same uterus, we demonstrate that the proliferation and motility of both cell types are inhibited by heparin. We report that the decrease in cell number seen in the presence of heparin is not because of cell death. Interestingly, there is significant patient-to-patient variability in the proliferation response but not in the motility response to heparin. Furthermore, nonanticoagulant and anticoagulant heparin were equally effective at inhibiting leiomyoma and myometrial smooth muscle cell proliferation. These results warrant further investigation into the possibility that heparin might be useful in the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Holly R Mason
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
30
|
Astrinidis A, Cash TP, Hunter DS, Walker CL, Chernoff J, Henske EP. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene 2002; 21:8470-6. [PMID: 12466966 DOI: 10.1038/sj.onc.1205962] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Revised: 08/05/2002] [Accepted: 08/12/2002] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors of the brain, kidney, heart, retina, and skin. TSC is caused by mutations in either TSC1 or TSC2, both of which are tumor suppressor genes. Hamartin, the protein product of TSC1, was found to interact with the ezrin-radixin-moesin family of cytoskeletal proteins and to activate the small GTPase Rho. To determine whether tuberin, the TSC2 product, can also activate Rho, we stably expressed full-length human tuberin in two cell types: MDCK cells and ELT3 cells. ELT3 cells lack endogenous tuberin expression. We found that expression of human tuberin in both MDCK and ELT3 cells was associated with an increase in the amount of Rho-GTP, but not in Rac1-GTP or cdc42-GTP. Tuberin expression increased cell adhesion in both cell types, and decreased chemotactic cell migration in ELT3 cells. In MDCK cells, there was a decrease in the amount of total Focal Adhesion Kinase (FAK) and an increase in the fraction of phosphorylated FAK. These findings demonstrate for the first time that tuberin activates Rho and regulates cell adhesion and migration. Pathways involving Rho activation may have relevance to the clinical manifestations of TSC, including pulmonary lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
31
|
Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'Byrne PM. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 2002; 166:738-42. [PMID: 12204874 DOI: 10.1164/rccm.200204-291oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cysteinyl leukotrienes promote airway smooth muscle (ASM) contraction and proliferation. Little is known about their role in ASM migration. We investigated this using cultured human ASMs (between the second and fifth passages) obtained from the large airways of resected nonasthmatic lung. Platelet-derived growth factor-BB (1 ng/ml) promoted significant (3.5-fold) ASM migration of myocytes across collagen-coated 8- micro m polycarbonate membranes in Transwell culture plates. Leukotriene E(4) (10(-7), 10(-8), 10(-9) M) did not demonstrate a chemotactic effect; it did promote chemokinesis. Priming by leukotriene E(4) (10(-7) M) significantly augmented the directional migratory response to platelet-derived growth factor (1.5-fold, p < 0.05). This was blocked by montelukast (10(-6) M), demonstrating the effect to be mediated by the cysteinyl leukotriene receptor. The "priming effect" was also partially attenuated by prostaglandin E(2) (10(-7) M). Whereas both the chemokinetic and the chemotactic "primed" responses were equally attenuated by a p38 mitogen-activated protein kinase inhibitor (SB203580, 25 micro M) and by a Rho-kinase inhibitor (Y27632, 10 micro M), the chemotactic response showed greater inhibition than chemokinesis by a phosphatidylinositol-3 kinase inhibitor (LY294002, 50 micro M). These experiments suggest that cysteinyl leukotrienes play an augmentary role in human ASM migration. The phosphatidylinositol-3 kinase pathway is a key signaling mechanism in the chemotactic migration of ASM cells in response to cysteinyl leukotrienes.
Collapse
Affiliation(s)
- Krishnan Parameswaran
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Healthcare, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Goncharova EA, Ammit AJ, Irani C, Carroll RG, Eszterhas AJ, Panettieri RA, Krymskaya VP. PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2002; 283:L354-63. [PMID: 12114197 DOI: 10.1152/ajplung.00010.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human vascular smooth muscle cell proliferation and migration contribute to vascular remodeling in pulmonary hypertension and atherosclerosis. The precise mechanisms that regulate structural remodeling of the vessel wall remain unknown. This study tests the hypothesis that phosphatidylinositol 3-kinase (PI3K) activation is both necessary and sufficient to mediate human pulmonary vascular smooth muscle (PVSM) cell proliferation and migration. Microinjection of human PVSM cells with a dominant-negative class IA PI3K inhibited platelet-derived growth factor (PDGF)-induced DNA synthesis by 65% (P < 0.001; chi(2) analysis) compared with cells microinjected with control plasmid, whereas microinjection of cells with a constitutively active class IA PI3K (p110*-CA) was sufficient to induce DNA synthesis (mitotic index of p110*-CA-microinjected cells was 15% vs. 3% in control cells; P < 0.01). Transfection of PVSM cells with p110*-CA was also sufficient to promote human PVSM cell migration. In parallel experiments, stimulation of human PVSM cells with PDGF induced PI3K-dependent activation of Akt, p70 S6 kinase, and ribosomal protein S6 but not mitogen-activated protein kinase. PDGF-induced proliferation and migration was inhibited by LY-294002. These results demonstrate that PI3K signaling is both necessary and sufficient to mediate human PVSM cell proliferation and migration and suggest that the activation of PI3K may play an important role in vascular remodeling.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|