1
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Jana B, Całka J, Bulc M, Kawka D. The regulatory action of acetylcholine and its receptors on B4 and C4 leukotriene formation in the porcine endometrium after experimental inflammogenic Escherichia coli infection. J Vet Res 2024; 68:571-581. [PMID: 39776692 PMCID: PMC11702257 DOI: 10.2478/jvetres-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Endometritis is a very common pathology in animals which changes endometrial leukotriene (LT) formation and muscarinic 2 and 3 receptor subtypes (M2R/M3R) and α-7 nicotinic acetylcholine (ACh) receptor (α-7 nAChR) expression patterns. With the relationship between ACh, its receptors and LT production remaining unclear, the role of M2R, M3R and α-7 nAChR in action of ACh on the 5-lipoxygenase (5-LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) protein abundances in the inflamed porcine endometrium and on the tissue secretion of LTB4 and LTC4 were studied. Material and Methods On day three of the oestrous cycle in gilts aged 7-8 months, 50 mL of either saline solution (control group, n = 5) or an E. coli suspension at 109 colony-forming units/mL (E. coli group, n = 5), was injected into each uterine horn. Endometrial explants obtained eight days later, were incubated with ACh alone, antagonists of M2R, M3R and α-7 nAChR alone, or with ACh together with particular antagonists for 16 h. Enzyme abundances in endometrial tissue were estimated by Western blotting, and LT concentrations in medium by ELISA. Results Severe acute endometritis developed in the E. coli group. In the endometrial explants from both groups, ACh elevated 5-LO, LTAH and LTCS protein abundances and LTB4 and LTC4 release. In the E. coli group, ACh-induced 5-LO and LTCS abundances and LTB4 release were increased versus the control group. In both groups, the M3R antagonist with ACh reduced all ACh-stimulated enzyme abundances and LT release in comparison to the abundances and release mediated by ACh alone. This effect on LTCS protein abundance and LTB4 release was also produced by the M2R antagonist with ACh in the E. coli group. Compared to the effect of ACh alone, exposure of the E. coli group endometrium to the α-7 nAChR antagonist with ACh led to a rise in LTAH and LTCS protein abundances and LTB4 and LTC4 secretion. Conclusion In the inflamed pig endometrium, ACh increased 5-LO, LTAH and LTCS protein abundances and LTB4 and LTC4 release by M3R, and LTCS protein abundance and LTB4 release also by M2R. By interaction with α-7 nAChR, ACh reduced LTAH and LTCS protein abundances and the release of these LTs. Thus, in an indirect manner, ACh can affect LT-controlled processes.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718Olsztyn, Poland
| | - Dominika Kawka
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748Olsztyn, Poland
| |
Collapse
|
3
|
Zivkovic AR, Paul GM, Hofer S, Schmidt K, Brenner T, Weigand MA, Decker SO. Increased Enzymatic Activity of Acetylcholinesterase Indicates the Severity of the Sterile Inflammation and Predicts Patient Outcome following Traumatic Injury. Biomolecules 2023; 13:biom13020267. [PMID: 36830636 PMCID: PMC9952955 DOI: 10.3390/biom13020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury induces sterile inflammation, an immune response often associated with severe organ dysfunction. The cholinergic system acts as an anti-inflammatory in injured patients. Acetylcholinesterase (AChE), an enzyme responsible for the hydrolysis of acetylcholine, plays an essential role in controlling cholinergic activity. We hypothesized that a change in the AChE activity might indicate the severity of the traumatic injury. This study included 82 injured patients with an Injury Severity Score (ISS) of 4 or above and 40 individuals without injuries. Bedside-measured AChE was obtained on hospital arrival, followed by a second measurement 4-12 h later. C-reactive protein (CRP), white blood cell count (WBCC), and Sequential Organ Failure Assessment (SOFA) score were simultaneously collected. Injured patients showed an early and sustained increase in AChE activity. CRP remained unaffected at hospital admission and increased subsequently. Initially elevated WBCC recovered 4-12 h later. AChE activity directly correlated with the ISS and SOFA scores and predicted the length of ICU stay when measured at hospital admission. An early and sustained increase in AChE activity correlated with the injury severity and could predict the length of ICU stay in injured patients, rendering this assay a complementary diagnostic and prognostic tool at the hand of the attending clinician in the emergency unit.
Collapse
Affiliation(s)
- Aleksandar R. Zivkovic
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| | - Georgina M. Paul
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine I and Pain Therapy, Westpfalz Hospital, 67661 Kaiserslautern, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sebastian O. Decker
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| |
Collapse
|
4
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
5
|
Cremin M, Schreiber S, Murray K, Tay EXY, Reardon C. The diversity of neuroimmune circuits controlling lung inflammation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L53-L63. [PMID: 36410021 PMCID: PMC9829467 DOI: 10.1152/ajplung.00179.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
It is becoming increasingly appreciated that the nervous and immune systems communicate bidirectionally to regulate immunological outcomes in a variety of organs including the lung. Activation of neuronal signaling can be induced by inflammation, tissue damage, or pathogens to evoke or reduce immune cell activation in what has been termed a neuroimmune reflex. In the periphery, these reflexes include the cholinergic anti-inflammatory pathway, sympathetic reflex, and sensory nociceptor-immune cell pathways. Continual advances in neuroimmunology in peripheral organ systems have fueled small-scale clinical trials that have yielded encouraging results for a range of immunopathologies such as rheumatoid arthritis. Despite these successes, several limitations should give clinical investigators pause in the application of neural stimulation as a therapeutic for lung inflammation, especially if inflammation arises from a novel pathogen. In this review, the general mechanisms of each reflex, the evidence for these circuits in the control of lung inflammation, and the key knowledge gaps in our understanding of these neuroimmune circuits will be discussed. These limitations can be overcome not only through a better understanding of neuroanatomy but also through a systematic evaluation of stimulation parameters using immune activation in lung tissues as primary readouts. Our rapidly evolving understanding of the nervous and immune systems highlights the importance of communication between these cells in health and disease. This integrative approach has tremendous potential in the development of targeted therapeutics if specific challenges can be overcome.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Sierra Schreiber
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| |
Collapse
|
6
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
7
|
Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021; 15:667036. [PMID: 33927594 PMCID: PMC8076564 DOI: 10.3389/fnins.2021.667036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response. Vagus nerve stimulation (VNS) can limit cytokine production in the spleen and thereby dampen any systemic inflammation and inflammation-induced tissue damage in the lungs and other organs. However, the effects of increased parasympathetic outflow to the lungs when non-selective VNS is applied may result in bronchoconstriction, increased mucus secretion and enhance local pulmonary inflammatory activity; this may outweigh the beneficial systemic anti-inflammatory action of VNS. Organ/function-specific therapy can be achieved by imaging of localized fascicle activity within the vagus nerve and selective stimulation of identified organ-specific fascicles. This may be able to provide selective neuromodulation of different pathways within the vagus nerve and offer a novel means to improve outcome in ARDS. This has motivated this review in which we discuss the mechanisms of anti-inflammatory effects of VNS, progress in selective VNS techniques, and a possible application for ARDS.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | |
Collapse
|
8
|
Acetylcholine-treated murine dendritic cells promote inflammatory lung injury. PLoS One 2019; 14:e0212911. [PMID: 30822345 PMCID: PMC6396899 DOI: 10.1371/journal.pone.0212911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.
Collapse
|
9
|
Yamada M, Ichinose M. The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD. Front Pharmacol 2018; 9:1426. [PMID: 30559673 PMCID: PMC6287026 DOI: 10.3389/fphar.2018.01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
In COPD, the activity of the cholinergic system is increased, which is one of the reasons for the airflow limitation caused by the contraction of airway smooth muscles. Therefore, blocking the contractive actions with anticholinergics is a useful therapeutic intervention to reduce the airflow limitation. In addition to the effects of bronchoconstriction and mucus secretion, accumulating evidence from animal models of COPD suggest acetylcholine has a role in inflammation. Experiments using muscarinic M3-receptor deficient mice or M3 selective antagonists revealed that M3-receptors on parenchymal cells, but not on hematopoietic cells, are involved in the pro-inflammatory effect of acetylcholine. Recently, combinations of long-acting β2 adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) have become available for COPD treatment. These dual long-acting bronchodilators may have synergistic anti-inflammatory effects because stimulation of β2 adrenergic receptors induces inhibitory effects in inflammatory cells via a different signaling pathway from that by antagonizing M3-receptor, though these anti-inflammatory effects have not been clearly demonstrated in COPD patients. In contrast to the pro-inflammatory effects by ACh via muscarinic receptors, it has been demonstrated that the cholinergic anti-inflammatory pathway, which involves the parasympathetic nervous systems, regulates excessive inflammatory responses to protect organs during tissue injury and infection. Stimulation of acetylcholine via the α7 nicotinic acetylcholine receptor (α7nAChR) exerts inhibitory effects on leukocytes including macrophages and type 2 innate lymphoid cells. Although it remains unclear whether the inhibitory effects of acetylcholine via α7nAChR in inflammatory cells can regulate inflammation in COPD, neuroimmune interactions including the cholinergic anti-inflammatory pathway might serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Jurberg AD, Cotta-de-Almeida V, Temerozo JR, Savino W, Bou-Habib DC, Riederer I. Neuroendocrine Control of Macrophage Development and Function. Front Immunol 2018; 9:1440. [PMID: 29988513 PMCID: PMC6026652 DOI: 10.3389/fimmu.2018.01440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Macrophages carry out numerous physiological activities that are essential for both systemic and local homeostasis, as well as innate and adaptive immune responses. Their biology is intricately regulated by hormones, neuropeptides, and neurotransmitters, establishing distinct neuroendocrine axes. The control is pleiotropic, including maturation of bone marrow-derived myeloid precursors, cell differentiation into functional subpopulations, cytotoxic activity, phagocytosis, production of inflammatory mediators, antigen presentation, and activation of effector lymphocytes. Additionally, neuroendocrine components modulate macrophage ability to influence tumor growth and to prevent the spreading of infective agents. Interestingly, macrophage-derived factors enhance glucocorticoid production through the stimulation of the hypothalamic–pituitary–adrenal axis. These bidirectional effects highlight a tightly controlled balance between neuroendocrine stimuli and macrophage function in the development of innate and adaptive immune responses. Herein, we discuss how components of neuroendocrine axes impact on macrophage development and function and may ultimately influence inflammation, tissue repair, infection, or cancer progression. The knowledge of the crosstalk between macrophages and endocrine or brain-derived components may contribute to improve and create new approaches with clinical relevance in homeostatic or pathological conditions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Jairo Ramos Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
12
|
Nakib I, Martin-Eauclaire MF, Laraba-Djebari F. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom. Inflammation 2016; 39:1670-80. [PMID: 27395044 DOI: 10.1007/s10753-016-0401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.
Collapse
Affiliation(s)
- Imene Nakib
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria
| | - Marie-France Martin-Eauclaire
- Aix-Marseille University, CNRS UMR7290 CRN2M, IFR Jean-Roche, Université de la Méditerranée, Faculté de Médecine Nord, Bd Pierre Dramard, 13916, Marseille, Cedex 20, France
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| |
Collapse
|
13
|
Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells. Mediators Inflamm 2016; 2016:9063842. [PMID: 27298519 PMCID: PMC4889862 DOI: 10.1155/2016/9063842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.
Collapse
|
14
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
15
|
Kistemaker LEM, van Os RP, Dethmers-Ausema A, Bos IST, Hylkema MN, van den Berge M, Hiemstra PS, Wess J, Meurs H, Kerstjens HAM, Gosens R. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2014; 308:L96-103. [PMID: 25381025 DOI: 10.1152/ajplung.00259.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M(3) receptor-deficient mice (M(3)R(-/-)) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M(3) receptors are present on almost all cell types, and in this study we investigated the relative contribution of M(3) receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M(3)R(-/-) bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R(-/-) animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M(3)R(-/-) animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6-2.5 fold). These findings indicate that the M(3) receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M(3) receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald P van Os
- Section of Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Albertina Dethmers-Ausema
- Section of Stem Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Overexpression of muscarinic receptor 3 promotes metastasis and predicts poor prognosis in non-small-cell lung cancer. J Thorac Oncol 2014; 9:170-8. [PMID: 24419413 PMCID: PMC4132044 DOI: 10.1097/jto.0000000000000066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) is an independent risk factor for lung cancer development, but the mechanism is not fully understood. Muscarinic receptor 3 (M3R) has been found to be involved in the progression of small-cell lung cancer and the pathological process of COPD. We hypothesized that M3R may contribute to lung cancer development, especially in patients with COPD. Methods: The correlation between M3R expression and clinical features of non–small-cell lung cancer (NSCLC) was evaluated in 148 paraffin-embedded archived NSCLC specimens with the use of immunohistochemistry. M3R agonist and siRNA treatments were used to study the role of M3R in NSCLC cell lines. Western blotting and zymography were used to examine the impact of M3R on the PI3K/Akt/matrix metalloproteinase 9 signaling pathway. Results: The expression of M3R in NSCLC was significantly increased and correlated with tumor metastasis and poor survival of NSCLC patients. NSCLC patients with COPD showed higher expression of M3R than those without COPD (p = 0.0014). Moreover, M3R expression was inversely related to percent forced expiratory volume in 1 second (r = 0.7017, p < 0.0001) and forced expiratory volume in 1 second /forced vital capacity (r = 0.5057, p < 0.0001), but positively related to smoking history. Down-regulation of M3R resulted in the inhibition of migration and invasion ability of NSCLC cell lines A549 and L78. Furthermore, M3R enhanced the expression and activity of matrix metalloproteinase 9 through PI3K/Akt, which promoted the migration and invasion of NSCLC cell lines. Conclusion: Our results suggest that overexpression of M3R in NSCLC promotes the progression of NSCLC, which could contribute to lung cancer development in COPD patients. M3R could be another pharmacological target in lung cancer, especially in COPD patients.
Collapse
|
17
|
Pera T, Penn RB. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway. Curr Opin Pharmacol 2014; 16:72-81. [PMID: 24747364 DOI: 10.1016/j.coph.2014.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 01/12/2023]
Abstract
The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases.
Collapse
Affiliation(s)
- Tonio Pera
- Center for Translational Medicine, Jefferson-Jane and Leonard Korman Lung Center, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Raymond B Penn
- Center for Translational Medicine, Jefferson-Jane and Leonard Korman Lung Center, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Alagha K, Palot A, Sofalvi T, Pahus L, Gouitaa M, Tummino C, Martinez S, Charpin D, Bourdin A, Chanez P. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases. Ther Adv Chronic Dis 2014; 5:85-98. [PMID: 24587893 PMCID: PMC3926345 DOI: 10.1177/2040622313518227] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acetylcholine (neuronal and non-neuronal origin) regulates bronchoconstriction, and mucus secretion. It has an inflammatory effect by inducing attraction, survival and cytokine release from inflammatory cells. Muscarinic receptors throughout the bronchial tree are mainly restricted to muscarinic M1, M2 and M3 receptors. Three long-acting muscarinic receptor antagonists (LAMAs) were approved for the treatment of chronic obstructive pulmonary disease (COPD) in Europe: once-daily tiotropium bromide; once-daily glycopyrronium bromide; and twice-daily aclidinium bromide. All have higher selectivity for M3 receptors than for M2 receptors, and dissociate more slowly from the M3 receptors than they do from the M2 receptors. Some LAMAs showed anti-inflammatory effects [inhibition of neutrophil chemotactic activity and migration of alveolar neutrophils, decrease of several cytokines in the bronchoalveolar lavage (BAL) including interleukin (IL)-6, tumor necrosis factor (TNF)-α and leukotriene (LT)B4] and antiremodeling effects (inhibition of mucus gland hypertrophy and decrease in MUC5AC-positive goblet cell number, decrease in MUC5AC overexpression). In the clinic, LAMAs showed a significant improvement of forced expiratory volume in 1 second (FEV1), quality of life, dyspnea and reduced the number of exacerbations in COPD and more recently in asthma. This review will focus on the three LAMAs approved in Europe in the treatment of chronic airway diseases.
Collapse
Affiliation(s)
- Khuder Alagha
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Alain Palot
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Tunde Sofalvi
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Laurie Pahus
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Marion Gouitaa
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Celine Tummino
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Stephanie Martinez
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Denis Charpin
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| | - Arnaud Bourdin
- Respiratory Department, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Pascal Chanez
- Respiratory Department, AP-HM, Inserm CNRS U 1067, UMR7333, Aix Marseille Université, Marseille, France
| |
Collapse
|
19
|
Nichols JL, Gladwell W, Verhein KC, Cho HY, Wess J, Suzuki O, Wiltshire T, Kleeberger SR. Genome-wide association mapping of acute lung injury in neonatal inbred mice. FASEB J 2014; 28:2538-50. [PMID: 24571919 DOI: 10.1096/fj.13-247221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) contribute to the pathogenesis of many acute and chronic pulmonary disorders, including bronchopulmonary dysplasia (BPD), a respiratory condition that affects preterm infants. However, the mechanisms of susceptibility to oxidant stress in neonatal lungs are not completely understood. We evaluated the role of genetic background in response to oxidant stress in the neonatal lung by exposing mice from 36 inbred strains to hyperoxia (95% O2) for 72 h after birth. Hyperoxia-induced lung injury was evaluated by using bronchoalveolar lavage fluid (BALF) analysis and pathology. Statistically significant interstrain variation was found for BALF inflammatory cells and protein (heritability estimates range: 33.6-55.7%). Genome-wide association mapping using injury phenotypes identified quantitative trait loci (QTLs) on chromosomes 1, 2, 4, 6, and 7. Comparative mapping of the chromosome 6 QTLs identified Chrm2 (cholinergic receptor, muscarinic 2, cardiac) as a candidate susceptibility gene, and mouse strains with a nonsynonymous coding single-nucleotide polymorphism (SNP) in Chrm2 that causes an amino acid substitution (P265L) had significantly reduced hyperoxia-induced inflammation compared to strains without the SNP. Further, hyperoxia-induced lung injury was significantly reduced in neonatal mice with targeted deletion of Chrm2, relative to wild-type controls. This study has important implications for understanding the mechanisms of oxidative lung injury in neonates.
Collapse
Affiliation(s)
- Jennifer L Nichols
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA; Curriculum in Toxicology, Center for Environmental Medicine, Asthma, and Lung Biology, and
| | - Wesley Gladwell
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kirsten C Verhein
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hye-Youn Cho
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA; and
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA; and
| | - Steven R Kleeberger
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
20
|
Xu ZP, Song Y, Yang K, Zhou W, Hou LN, Zhu L, Chen HZ, Cui YY. M3 mAChR-mediated IL-8 expression through PKC/NF-κB signaling pathways. Inflamm Res 2014; 63:463-73. [PMID: 24522860 DOI: 10.1007/s00011-014-0718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE M3 muscarinic acetylcholine receptor (mAChR) plays an important role in the regulation of cytokine production in inflammatory diseases. In this study, we explored the precise role of M3 mAChR under stimulation with agonist in IL-8 expression and of the signaling pathway involved in this process. MATERIALS AND METHODS Recombinant U2OS cells stably expressing M3 mAChR as a model system were stimulated by carbachol to evaluate the role of M3 mAChR in the expression of IL-8. RESULTS Activation of M3 mAChR with carbachol increased both IL-8 mRNA and protein expression in a concentration-dependent manner. Elevated IL-8 expression was completely antagonized by atropine, 4-DAMP and tiotropium. M3 mAChR-mediated IL-8 expression was almost completely inhibited by the NF-κB inhibitor BAY11-7082 and, to a lesser extent, by U0126, SB203580, and SP600125, which are inhibitors for ERK1/2, p38, and JNK, respectively. Furthermore, M3 mAChR-mediated NF-κB activation and IL-8 expression were simultaneously attenuated by the PKC inhibitor calphostin C, whereas PMA, a PKC activator, mimicked the effects of carbachol, inducing IL-8 expression. CONCLUSIONS Our findings offer insights into the specific and critical role of M3 mAChR in regulating inflammatory response and indicate M3 mAChR/PKC/NF-κB signaling axis driven by endogenous acetylcholine as a potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Zu-Peng Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor? ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/486545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.
Collapse
|
22
|
Baroody FM, Detineo M, Naclerio RM. Unilateral nasal allergic reactions increase bilateral sinus eosinophil infiltration. J Appl Physiol (1985) 2013; 115:1262-7. [PMID: 23970539 DOI: 10.1152/japplphysiol.00547.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that unilateral nasal challenge with antigen causes an increase in the number of eosinophils in the ipsilateral maxillary sinus. Here we aimed to determine whether there was an eosinophil response in the contralateral maxillary sinus after unilateral nasal challenge with antigen. Twenty subjects with a history of seasonal allergic rhinitis and a positive nasal challenge to ragweed or grass allergens were studied outside of their allergy season. Catheters were placed in both maxillary sinuses and the subjects were challenged with antigen via the left nostril. The subjects recorded nasal symptoms before and after each allergen challenge and hourly for 8 h afterward. We performed nasal lavages of the nose and sinuses at the same time as symptoms were recorded. The lavages were analyzed for the number of eosinophils and levels of albumin. Subjects showed a symptomatic response to challenge accompanied by an influx of eosinophils into the nose and increased vascular permeability. The number of eosinophils increased in both maxillary sinuses. The total change from diluent in eosinophils during the late phase response was higher in the ipsilateral maxillary sinus (median = 8,505; range = 0-100,360) compared with the contralateral sinus (median = 1,596; range = -13,527-93,373; P = 0.03). We conclude that eosinophils increase in both maxillary sinuses after unilateral nasal challenge. We speculate that a central neurologic reflex initiated in the nose by the nasal challenge contributes to the bilateral eosinophil response in the maxillary sinuses. We further speculate that, since there are more eosinophils in the ipsilateral compared with the contralateral maxillary sinus, there is also an axonal reflex into the ipsilateral maxillary sinus that contributed to the eosinophil response.
Collapse
Affiliation(s)
- Fuad M Baroody
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medical Center and The Pritzker School of Medicine, The University of Chicago, Illinois
| | | | | |
Collapse
|
23
|
Xiao HT, Liao Z, Tong RS. Penehyclidine hydrochloride: a potential drug for treating COPD by attenuating Toll-like receptors. DRUG DESIGN DEVELOPMENT AND THERAPY 2012; 6:317-22. [PMID: 23139625 PMCID: PMC3490683 DOI: 10.2147/dddt.s36555] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The aim of this review was to evaluate and summarize the available scientific information on penehyclidine hydrochloride (PHC) for the treatment of chronic obstructive pulmonary disease (COPD) as a result of its ability to attenuate Toll-like receptors. Penehyclidine hydrochloride is an anticholinergic drug manufactured in China, with both antimuscarinic and antinicotinic activity. PHC is used widely in the clinic as a reversal agent in cases of organic phosphorus poisoning and soman poisoning, but also may also have an important role as a bronchodilator in the treatment of obstructive airway disease, including asthma and, in particular, COPD. Methods Our bibliographic sources included the CAPLUS, MEDLINE, REGISTRY, CASREACT, CHEMLIST, CHEMCATS, and CNKI databases, updated to September 2012. In order to assess the data in detail, we used the search terms “penehyclidine hydrochloride,” “COPD,” “muscarinic receptor,” and “toll-like receptors.” Papers were restricted to those published in the English and Chinese languages, and to “paper” and “review” as the document type. Patents were also reviewed. Results Our survey mainly yielded the results of research on PHC and the mechanisms of COPD. COPD is a preventable and treatable disease with some significant extrapulmonary manifestations that may contribute to its severity in some patients. Recently, it has been shown that muscarinic receptors may interact with Toll-like receptors. Basic and clinical studies of the relationship between the mechanism of action and the effects of PHC in the respiratory tract have been studied by a number of laboratories and institutions. The main advantages of PHC are that it has few M2 receptor-associated cardiovascular side effects and attenuates Toll-like receptors. Conclusion PHC may be a promising candidate agent in the treatment of COPD in the future because of its ability to attenuate Toll-like receptors. This review should be of help to those intending to research this topic further.
Collapse
Affiliation(s)
- Hong-Tao Xiao
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| | | | | |
Collapse
|
24
|
Buels KS, Jacoby DB, Fryer AD. Non-bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guinea-pig model of allergic asthma. Br J Pharmacol 2012; 165:1501-14. [PMID: 21871018 DOI: 10.1111/j.1476-5381.2011.01632.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Asthma is characterized by reversible bronchoconstriction and airway hyperreactivity. Although M(3) muscarinic receptors mediate bronchoconstriction, non-selective muscarinic receptor antagonists are not currently recommended for chronic control of asthma. We tested whether selective blockade of M(3) receptors, at the time of antigen challenge, blocks subsequent development of airway hyperreactivity in antigen-challenged guinea-pigs. EXPERIMENTAL APPROACH Ovalbumin-sensitized guinea-pigs were pretreated with 1 µg·kg(-1) of a kinetically selective M(3) receptor antagonist, tiotropium, or 1 mg·kg(-1) of a non-selective muscarinic receptor antagonist, atropine, and challenged with inhaled ovalbumin. Animals were anaesthetized, paralyzed, ventilated and vagotomized 24 h later. We measured vagally mediated bronchoconstriction and i.v. ACh-induced bronchoconstriction. KEY RESULTS Electrical stimulation of both vagus nerves induced frequency-dependent bronchoconstriction in sensitized animals that was significantly increased after antigen challenge. Antigen-induced hyperreactivity was completely blocked by tiotropium pretreatment but only partially blocked by atropine pretreatment. Surprisingly, although tiotropium blocked bronchoconstriction induced by i.v. ACh, it did not inhibit vagally-induced bronchoconstriction in sensitized controls, suggesting that tiotropium does not block hyperreactivity by blocking receptors for vagally released ACh. Rather, tiotropium may have worked through an anti-inflammatory mechanism, since it inhibited eosinophil accumulation in the lungs and around nerves. CONCLUSIONS AND IMPLICATIONS These data confirm that testing M(3) receptor blockade with exogenous ACh does not predict vagal blockade. Our data also suggest that selective blockade of M(3) receptors may be effective in asthma via mechanisms that are separate from inhibition of bronchoconstriction.
Collapse
Affiliation(s)
- K S Buels
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
25
|
Cholinergic regulation of airway inflammation and remodelling. J Allergy (Cairo) 2012; 2012:681258. [PMID: 22291719 PMCID: PMC3265096 DOI: 10.1155/2012/681258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.
Collapse
|
26
|
Vacca G, Randerath WJ, Gillissen A. Inhibition of granulocyte migration by tiotropium bromide. Respir Res 2011; 12:24. [PMID: 21352583 PMCID: PMC3051905 DOI: 10.1186/1465-9921-12-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/27/2011] [Indexed: 11/10/2022] Open
Abstract
STUDY OBJECTIVES Neutrophil influx into the airways is an important mechanism in the pathophysiology of the inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD). Previously it was shown that anticholinergic drugs reduce the release of non-neuronal paracrine mediators, which modulate inflammation in the airways. On this basis, we investigated the ability of the long-acting anticholinergic tiotropium bromide to inhibit a) alveolar macrophage (AM)-mediated chemotaxis of neutrophils, and b) cellular release of reactive oxygen species (ROS). METHOD AM and neutrophils were collected from 71 COPD patients. Nanomolar concentrations of tiotropium bromide were tested in AM cultured up to 20 h with LPS (1 μg/ml). AM supernatant was tested for TNFα, IL8, IL6, LTB4, GM-CSF, MIPα/β and ROS. It was further used in a 96-well chemotaxis chamber to stimulate the migration of fluorescence labelled neutrophils. Control stimulants consisted of acetylcholine (ACh), carbachol, muscarine or oxotremorine and in part PMA (phorbol myristate acetate, 0.1 μg/ml). Potential contribution of M1-3-receptors was ascertained by a) analysis of mRNA transcription by RT-PCR, and b) co-incubation with selective M-receptor inhibitors. RESULTS Supernatant from AM stimulated with LPS induced neutrophilic migration which could be reduced by tiotropium in a dose dependent manner: 22.1 ± 10.2 (3 nM), 26.5 ± 18,4 (30 nM), and 37.8 ± 24.0 (300 nM, p < 0.001 compared to non-LPS activated AM). Concomitantly TNFα release of stimulated AM dropped by 19.2 ± 7.2% of control (p = 0.001). Tiotropium bromide did not affect cellular IL8, IL6, LTB4, GM-CSF and MIPα/β release in this setting. Tiotropium (30 nM) reduced ROS release of LPS stimulated AM by 36.1 ± 15.2% (p = 0.002) and in carbachol stimulated AM by 46.2 ± 30.2 (p < 0.001). M3R gene expression dominated over M2R and M1R. Chemotaxis inhibitory effect of tiotropium bromide was mainly driven by M3R inhibition. CONCLUSION Our data confirm that inhibiting muscarinic cholinergic receptors with tiotropium bromide reduces TNFα mediated chemotactic properties and ROS release of human AM, and thus may contribute to lessen cellular inflammation.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Cholinergic Agonists/pharmacology
- Cholinergic Antagonists/pharmacology
- Culture Media, Conditioned/metabolism
- Dose-Response Relationship, Drug
- Female
- Humans
- Inflammation Mediators/metabolism
- Macrophage Activation/drug effects
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Neutrophils/drug effects
- Neutrophils/immunology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Scopolamine Derivatives/pharmacology
- Tiotropium Bromide
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Gabriela Vacca
- Robert-Koch-Hospital, St. George Medical Center, Leipzig, Germany
| | - Winfried J Randerath
- Department for Pulmonary Medicine, Allergology, Sleep Medicine and Intensive Care, Hospital Bethanien, Universitaet Witten/Herdecke, Solingen, Germany
| | - Adrian Gillissen
- Department of Pulmonary Medicine, General Hospital, Kassel, Germany
| |
Collapse
|
27
|
Oenema TA, Kolahian S, Nanninga JE, Rieks D, Hiemstra PS, Zuyderduyn S, Halayko AJ, Meurs H, Gosens R. Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respir Res 2010; 11:130. [PMID: 20875145 PMCID: PMC2955662 DOI: 10.1186/1465-9921-11-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/28/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still unknown. METHODS The present study was aimed at characterizing the effect of muscarinic receptor stimulation on cytokine secretion by human airway smooth muscle cells (hASMc) and to dissect the intracellular signalling mechanisms involved. hASMc expressing functional muscarinic M2 and M3 receptors were stimulated with the muscarinic receptor agonist methacholine, alone, and in combination with cigarette smoke extract (CSE), TNF-α, PDGF-AB or IL-1β. RESULTS Muscarinic receptor stimulation induced modest IL-8 secretion by itself, yet augmented IL-8 secretion in combination with CSE, TNF-α or PDGF-AB, but not with IL-1β. Pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely normalized the effect of methacholine on CSE-induced IL-8 secretion, whereas PMA, a PKC activator, mimicked the effects of methacholine, inducing IL-8 secretion and augmenting the effects of CSE. Similar inhibition was observed using inhibitors of IκB-kinase-2 (SC514) and MEK1/2 (U0126), both downstream effectors of PKC. Accordingly, western blot analysis revealed that methacholine augmented the degradation of IκBα and the phosphorylation of ERK1/2 in combination with CSE, but not with IL-1β in hASMc. CONCLUSIONS We conclude that muscarinic receptors facilitate CSE-induced IL-8 secretion by hASMc via PKC dependent activation of IκBα and ERK1/2. This mechanism could be of importance for COPD patients using anticholinergics.
Collapse
Affiliation(s)
- Tjitske A Oenema
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Saeed Kolahian
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
- Department of Basic Sciences, University of Tabriz, Iran
| | - Janke E Nanninga
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Daniëlle Rieks
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, The Netherlands
| | - Suzanne Zuyderduyn
- Department of Pulmonology, Leiden University Medical Center, The Netherlands
| | - Andrew J Halayko
- Department of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| |
Collapse
|
28
|
Abstract
Abnormal neural function contributes to the pathogenesis of airway disease. In addition to affecting airway physiology, the nerves produce and release inflammatory mediators, contributing to the recruitment and activation of leukocytes. Activated inflammatory cells in turn affect the function of airway nerves, changing the production and release of neurotransmitters. Cross-talk between airway nerves and leukocytes helps to maintain chronic inflammation and accentuates neural control of the airways.
Collapse
|
29
|
Chernyavsky AI, Arredondo J, Skok M, Grando SA. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. Int Immunopharmacol 2009; 10:308-15. [PMID: 20004742 DOI: 10.1016/j.intimp.2009.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/20/2009] [Accepted: 12/01/2009] [Indexed: 01/16/2023]
Abstract
Although acetylcholine (ACh) is well known for its neurotransmitter function, recent studies have indicated that it also functions as an immune cytokine that prevents macrophage activation through a 'cholinergic (nicotinic) anti-inflammatory pathway'. In this study, we used the macrophage-like U937 cells to elucidate the mechanisms of the physiologic control of cytokine production by auto/paracrine ACh through the nicotinic class of ACh receptors (nAChRs) expressed in these cells. Stimulation of cells with lipopolysaccharide up-regulated expression of alpha1, alpha4, alpha5, alpha7, alpha10, beta1 and beta3 subunits, down-regulated alpha6 and beta2 subunits, and did not alter the relative quantity of alpha9 and beta4 mRNAs. Distinct nAChR subtypes showed differential regulation of the production of pro- and anti-inflammatory cytokines. While inhibition of the expression of the TNF-alpha gene was mediated predominantly by the alpha-bungarotoxin sensitive nAChRs, that of the IL-6 and IL-18 genes-by the mecamylamine-sensitive nAChRs. Both the Mec- and alphaBtx-sensitive nAChRs regulated expression of the IL-1beta gene equally efficiently. Upregulation of IL-10 production by auto/paracrine ACh was mediated predominantly through alpha7 nAChR. These findings offer a new insight on how nicotinic agonists control inflammation, thus laying a groundwork for the development of novel immunomodulatory therapies based on the nAChR subtype selectivity of nicotinic agonists.
Collapse
|
30
|
Effects of decreased calmodulin protein on the survival mechanisms of alveolar macrophages during Pneumocystis pneumonia. Infect Immun 2009; 77:3344-54. [PMID: 19487471 DOI: 10.1128/iai.00299-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pneumocystis infection causes increased intracellular levels of reactive oxygen species (ROS) and the subsequent apoptosis of alveolar macrophages (Amø). Assessments of key prosurvival molecules in Amø and bronchoalveolar lavage fluids from infected rats and mice showed low levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and reduced activation of phosphoinositide-3 kinase (PI-3K). Ubiquitous calcium-sensing protein calmodulin protein and mRNA levels were also reduced in Amø during Pneumocystis pneumonia (Pcp). Calmodulin has been implicated in control of GM-CSF production and PI-3K activation in other immune cell types. Experiments to determine the control of GM-CSF and PI-3K by calmodulin in Amø showed that GM-CSF expression and PI-3K activation could not be induced when calmodulin was inhibited. Calmodulin inhibition also led to increased levels of ROS and apoptosis in cells exposed to bronchoalveolar lavage fluids from infected animals. Supplementation of Amø with exogenous calmodulin increased survival signaling via GM-CSF and PI-3K and reduced ROS and apoptosis. These data support the hypotheses that calmodulin levels at least partially control survival signaling in Amø and that restoration of GM-CSF or PI-3K signaling will improve host response to the organism.
Collapse
|
31
|
Abstract
Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types--ciliated, basal and secretory--are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, 35385, Giessen, Germany.
| | | | | |
Collapse
|
32
|
Verbout NG, Lorton JK, Jacoby DB, Fryer AD. Atropine pretreatment enhances airway hyperreactivity in antigen-challenged guinea pigs through an eosinophil-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1126-35. [PMID: 17220376 DOI: 10.1152/ajplung.00455.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, but are less effective in chronic asthma. We tested whether atropine, given before antigen challenge, affected hyperreactivity, M(2) receptor function, eosinophil accumulation, and activation. Sensitized guinea pigs received atropine (1 mg/kg ip) 1 h before challenge and 6 h later. Twenty-four hours after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Airway reactivity to electrical stimulation of the vagi and to intravenous acetylcholine was not altered by atropine pretreatment in nonsensitized animals, indicating that atropine was no longer blocking postjunctional muscarinic receptors. Antigen challenge induced airway hyperreactivity to vagal stimulation that was significantly potentiated by atropine pretreatment. Bronchoconstriction induced by acetylcholine was not changed by antigen challenge or by atropine pretreatment. M(2) receptor function was lost in challenged animals but protected by atropine pretreatment. Eosinophils in bronchoalveolar lavage and within airway tissues were significantly increased by challenge but significantly reduced by atropine pretreatment. However, extracellular MBP in challenged airways was significantly increased by atropine pretreatment, which may account for reduced eosinophils. Depleting eosinophils with antibody to IL-5 before challenge prevented hyperreactivity and significantly reduced MBP in airways of atropine-pretreated animals. Thus atropine pretreatment potentiated airway hyperreactivity by increasing eosinophil activation and degranulation. These data suggest that anticholinergics enhance eosinophil interactions with airway nerves.
Collapse
Affiliation(s)
- Norah G Verbout
- 1Department of Physiology, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
33
|
Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 2006; 7:73. [PMID: 16684353 PMCID: PMC1479816 DOI: 10.1186/1465-9921-7-73] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/09/2006] [Indexed: 12/14/2022] Open
Abstract
Anticholinergics are widely used for the treatment of COPD, and to a lesser extent for asthma. Primarily used as bronchodilators, they reverse the action of vagally derived acetylcholine on airway smooth muscle contraction. Recent novel studies suggest that the effects of anticholinergics likely extend far beyond inducing bronchodilation, as the novel anticholinergic drug tiotropium bromide can effectively inhibit accelerated decline of lung function in COPD patients. Vagal tone is increased in airway inflammation associated with asthma and COPD; this results from exaggerated acetylcholine release and enhanced expression of downstream signaling components in airway smooth muscle. Vagally derived acetylcholine also regulates mucus production in the airways. A number of recent research papers also indicate that acetylcholine, acting through muscarinic receptors, may in part regulate pathological changes associated with airway remodeling. Muscarinic receptor signalling regulates airway smooth muscle thickening and differentiation, both in vitro and in vivo. Furthermore, acetylcholine and its synthesizing enzyme, choline acetyl transferase (ChAT), are ubiquitously expressed throughout the airways. Most notably epithelial cells and inflammatory cells generate acetylcholine, and express functional muscarinic receptors. Interestingly, recent work indicates the expression and function of muscarinic receptors on neutrophils is increased in COPD. Considering the potential broad role for endogenous acetylcholine in airway biology, this review summarizes established and novel aspects of muscarinic receptor signaling in relation to the pathophysiology and treatment of asthma and COPD.
Collapse
Affiliation(s)
- Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, Al-Abed Y, Tracey KJ. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A 2006; 103:5219-23. [PMID: 16549778 PMCID: PMC1405626 DOI: 10.1073/pnas.0600506103] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Indexed: 01/04/2023] Open
Abstract
TNF has a critical mediator role in inflammation and is an important therapeutic target. We recently discovered that TNF production is regulated by neural signals through the vagus nerve. Activation of this "cholinergic antiinflammatory pathway" inhibits the production of TNF and other cytokines and protects animals from the inflammatory damage caused by endotoxemia and severe sepsis. Here, we describe a role for central muscarinic acetylcholine receptors in the activation of the cholinergic antiinflammatory pathway. Central muscarinic cholinergic activation by muscarine, the M1 receptor agonist McN-A-343, and the M2 receptor antagonist methoctramine inhibited serum TNF levels significantly during endotoxemia. Centrally administered methoctramine stimulated vagus-nerve activity measured by changes in instantaneous heart-rate variability. Blockade of peripheral muscarinic receptors did not abolish antiinflammatory signaling through the vagus nerve, indicating that peripheral muscarinic receptors on immune cells are not required for the cytokine-regulating activities of the cholinergic antiinflammatory pathway. The role of central muscarinic receptors in activating the cholinergic antiinflammatory pathway is of interest for the use of centrally acting muscarinic cholinergic enhancers as antiinflammatory agents.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Billington CK, Penn RB. m3 muscarinic acetylcholine receptor regulation in the airway. Am J Respir Cell Mol Biol 2002; 26:269-72. [PMID: 11867333 DOI: 10.1165/ajrcmb.26.3.f232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Charlotte K Billington
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|