1
|
Jin T, Amini H, Kosheleva A, Danesh Yazdi M, Wei Y, Castro E, Di Q, Shi L, Schwartz J. Associations between long-term exposures to airborne PM 2.5 components and mortality in Massachusetts: mixture analysis exploration. Environ Health 2022; 21:96. [PMID: 36221093 PMCID: PMC9552465 DOI: 10.1186/s12940-022-00907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mahdieh Danesh Yazdi
- Department of Family, Population, & Preventive Medicine, Program in Public Health, Stony Brook University, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Berman R, Rose CS, Downey GP, Day BJ, Chu HW. Role of Particulate Matter from Afghanistan and Iraq in Deployment-Related Lung Disease. Chem Res Toxicol 2021; 34:2408-2423. [PMID: 34808040 DOI: 10.1021/acs.chemrestox.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 3 million United States military personnel and contractors were deployed to Southwest Asia and Afghanistan over the past two decades. After returning to the United States, many developed persistent respiratory symptoms, including those due to asthma, rhinosinusitis, bronchiolitis, and others, which we collectively refer to as deployment-related lung diseases (DRLD). The mechanisms of different DRLD have not been well defined. Limited studies from us and others suggest that multiple factors and biological signaling pathways contribute to the onset of DRLD. These include, but are not limited to, exposures to high levels of particulate matter (PM) from sandstorms, burn pit combustion products, improvised explosive devices, and diesel exhaust particles. Once inhaled, these hazardous substances can activate lung immune and structural cells to initiate numerous cell-signaling pathways such as oxidative stress, Toll-like receptors, and cytokine-driven cell injury (e.g., interleukin-33). These biological events may lead to a pro-inflammatory response and airway hyperresponsiveness. Additionally, exposures to PM and other environmental hazards may predispose military personnel and contractors to more severe disease due to the interactions of those hazardous materials with subsequent exposures to allergens and cigarette smoke. Understanding how airborne exposures during deployment contribute to DRLD may identify effective targets to alleviate respiratory diseases and improve quality of life in veterans and active duty military personnel.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| |
Collapse
|
3
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
4
|
Effects of Vanadyl Complexes with Acetylacetonate Derivatives on Non-Tumor and Tumor Cell Lines. Molecules 2021; 26:molecules26185534. [PMID: 34577005 PMCID: PMC8466412 DOI: 10.3390/molecules26185534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the β-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.
Collapse
|
5
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
6
|
Gianì F, Masto R, Trovato MA, Malandrino P, Russo M, Pellegriti G, Vigneri P, Vigneri R. Heavy Metals in the Environment and Thyroid Cancer. Cancers (Basel) 2021; 13:4052. [PMID: 34439207 PMCID: PMC8393334 DOI: 10.3390/cancers13164052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformation-prone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the "normal" range.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Roberta Masto
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | | | - Pasqualino Malandrino
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Marco Russo
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Gabriella Pellegriti
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Paolo Vigneri
- Medical Oncology and Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico Vittorio Emanuele, 95125 Catania, Italy;
| | - Riccardo Vigneri
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
- Consiglio Nazionale delle Ricerche, Cristallography Institute, Catania Section, via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
7
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
8
|
Gianì F, Masto R, Trovato MA, Franco A, Pandini G, Vigneri R. Thyroid Stem Cells But Not Differentiated Thyrocytes Are Sensitive to Slightly Increased Concentrations of Heavy Metals. Front Endocrinol (Lausanne) 2021; 12:652675. [PMID: 33953698 PMCID: PMC8092438 DOI: 10.3389/fendo.2021.652675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer incidence is markedly increased in volcanic areas where residents are biocontaminated by chronic lifelong exposure to slightly increased metals in the environment. Metals can influence the biology of living cells by a variety of mechanisms, depending not only on the dose and length of exposure but also on the type and stage of differentiation of target cells. We explored the effect of five heavy metals (Cu, Hg, Pd, W and Zn) at nanomolar concentrations (the biocontamination level in residents of the volcanic area in Sicily where thyroid cancer is increased) on stimulating the proliferation of undifferentiated (thyrospheres) and differentiated human thyroid cells. Thyrosphere proliferation was significantly increased after exposure to each individual metal and a greater stimulating effect was observed when a mixture of the examined metals was used. No effect was seen in differentiated thyrocytes. For all metals, the dose-response curve followed a biphasic pattern that is typical of hormesis. Thyrosphere growth concerned the size rather than number, except with the metal mixture. An altered morphology was also observed in metal-treated thyrospheres. Metal-induced proliferation was due to activation of the ERK1/2 pathway, as confirmed by growth inhibition when ERK1/2 signaling was blocked. These studies show that stem/precursor thyroid cells are sensitive to small increases in environmental metal concentrations that are harmless for differentiated thyrocytes.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Roberta Masto
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, Catania, Italy
| | | | - Annarita Franco
- Surgical Oncology, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Giuseppe Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, Catania, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, Catania, Italy
- Crystallography Institute, National Research Council, CNR Catania Section, Catania, Italy
- *Correspondence: Riccardo Vigneri, ;
| |
Collapse
|
9
|
Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD. Hepatotoxic Effect of Oral Zinc Oxide Nanoparticles and the Ameliorating Role of Selenium in Rats: A histological, immunohistochemical and molecular study. Tissue Cell 2020; 67:101441. [PMID: 32949962 DOI: 10.1016/j.tice.2020.101441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Despite the emerging concerns about the hepatotoxic risks associated with Zinc oxide nanoparticles (ZnO NPs), yet, the morphological and molecular alterations associated with these extensively-used nanoparticles remain to be elucidated. Thus, the current study has been designed to analyze the effect of ZnO NPs on the hepatic histopathological and immunohistochemical changes, along with the modulation of the oxidative-stress induced JNK/p38MAPK and the STAT-3 signalling. The study also explored the potential protective role of selenium against those alterations. ZnO NPs disrupted the hepatic architecture, elevated the serum liver enzyme alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) levels and caused dose-dependent decrease in the activity of the antioxidant enzymes glutathione-peroxidase, superoxide dismutase and catalase along with an increase in the lipid peroxidation product malondialdehyde. ZnO NPs also increased the area of immune-reactivity of the apoptotic protein bax and decreased the area of immune-reactivity of the anti-apoptotic protein bcl2 together with augmentation of the hepatic caspase 3 gene expression. The role of selenium in ameliorating the hepatotoxicity, oxidative stress injury, and apoptosis induced by ZnO-NPs, along with its role in modulating the JNK/p38MAPK and the STAT-3 signalling and improving the histopathological hepatic changes, offers selenium as a promising adjunctive therapy in individuals subjected to high concentrations of ZnO NPs especially in cases of extensive occupational, medicinal and industrial exposure.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Adel Abdeltawab
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Laila Ahmed Rashed
- Department of biochemistry and molecular biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathi Abd Alla
- Department of biochemistry and molecular biology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hanan Dawood Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
10
|
Kim C, States JC, Ceresa BP. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol In Vitro 2020; 67:104925. [PMID: 32599262 DOI: 10.1016/j.tiv.2020.104925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
The impacts of acute arsenic exposure (i.e. vomiting, diarrhea, and renal failure) are distinct from those brought about by sustained, low level exposure from environmental sources or drinking of contaminated well water. Chronic arsenic exposure is a risk factor for the development of pulmonary diseases, including lung cancer. How arsenic exposure leads to pulmonary disease is not fully understood. Both acute versus chronic arsenic exposure increase EGFR expression, but do so via distinct molecular mechanisms. BEAS-2B cells were exposed to either acute sodium arsenite (5 μM for 24 h) or chronic sodium arsenite (100 nM for 24 weeks). Cells treated with acute arsenic exhibited a decrease in viability, changes in morphology, and increased mRNA level of BTC. In contrast, during 24 weeks of arsenic exposure, the cells had increased EGFR expression and activity, and increased mRNA and protein levels of TGFα. Further, chronic arsenic treatment caused an increase in cell migration in the absence of exogenous ligand. Elevated TGFα and EGFR expression are features of many non-small cell lung cancers. We propose that lung epithelial cells chronically exposed to low level arsenic increases EGFR signaling via TGFα production to enhance ligand-independent cell migration.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | | | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
11
|
Samet JM, Chen H, Pennington ER, Bromberg PA. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med 2020; 151:26-37. [PMID: 31877355 PMCID: PMC7803379 DOI: 10.1016/j.freeradbiomed.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.
Collapse
Affiliation(s)
- James M Samet
- Environmental Public Health Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Lawson R, Maret W, Hogstrand C. ZnT8 Haploinsufficiency Impacts MIN6 Cell Zinc Content and β-Cell Phenotype via ZIP-ZnT8 Coregulation. Int J Mol Sci 2019; 20:E5485. [PMID: 31690008 PMCID: PMC6861948 DOI: 10.3390/ijms20215485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/17/2023] Open
Abstract
The zinc transporter ZnT8 (SLC30A8) localises to insulin secretory granules of β-cells where it facilitates zinc uptake for insulin crystallisation. ZnT8 abundance has been linked to β-cell survival and functional phenotype. However, the consequences of ZnT8 haploinsufficiency for β-cell zinc trafficking and function remain unclear. Since investigations in human populations have shown SLC30A8 truncating polymorphisms to decrease the risk of developing Type 2 Diabetes, we hypothesised that ZnT8 haploinsufficiency would improve β-cell function and maintain the endocrine phenotype. We used CRISPR/Cas9 technology to generate ZnT8 haploinsufficient mouse MIN6 β-cells and showed that ZnT8 haploinsufficiency is associated with downregulation of mRNAs for Slc39a8 and Slc39a14, which encode for the zinc importers, Znt- and Irt-related proteins 8 (ZIP8) and 14 (ZIP14), and with lowered total cellular zinc content. ZnT8 haploinsufficiency disrupts expression of a distinct array of important β-cell markers, decreases cellular proliferation via mitogen-activated protein (MAP) kinase cascades and downregulates insulin gene expression. Thus, ZnT8 cooperates with zinc importers of the ZIP family to maintain β-cell zinc homeostasis. In contrast to the hypothesis, lowered ZnT8 expression reduces MIN6 cell survival by affecting zinc-dependent transcription factors that control the β-cell phenotype.
Collapse
Affiliation(s)
- Rebecca Lawson
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| | - Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| | - Christer Hogstrand
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| |
Collapse
|
13
|
Oxidative Potential Versus Biological Effects: A Review on the Relevance of Cell-Free/Abiotic Assays as Predictors of Toxicity from Airborne Particulate Matter. Int J Mol Sci 2019; 20:ijms20194772. [PMID: 31561428 PMCID: PMC6801578 DOI: 10.3390/ijms20194772] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives: The oxidative potential (OP) of particulate matter (PM) in cell-free/abiotic systems have been suggested as a possible measure of their biological reactivity and a relevant exposure metric for ambient air PM in epidemiological studies. The present review examined whether the OP of particles correlate with their biological effects, to determine the relevance of these cell-free assays as predictors of particle toxicity. Methods: PubMed, Google Scholar and Web of Science databases were searched to identify relevant studies published up to May 2019. The main inclusion criteria used for the selection of studies were that they should contain (1) multiple PM types or samples, (2) assessment of oxidative potential in cell-free systems and (3) assessment of biological effects in cells, animals or humans. Results: In total, 50 independent studies were identified assessing both OP and biological effects of ambient air PM or combustion particles such as diesel exhaust and wood smoke particles: 32 in vitro or in vivo studies exploring effects in cells or animals, and 18 clinical or epidemiological studies exploring effects in humans. Of these, 29 studies assessed the association between OP and biological effects by statistical analysis: 10 studies reported that at least one OP measure was statistically significantly associated with all endpoints examined, 12 studies reported that at least one OP measure was significantly associated with at least one effect outcome, while seven studies reported no significant correlation/association between any OP measures and any biological effects. The overall assessment revealed considerable variability in reported association between individual OP assays and specific outcomes, but evidence of positive association between intracellular ROS, oxidative damage and antioxidant response in vitro, and between OP assessed by the dithiothreitol (DDT) assay and asthma/wheeze in humans. There was little support for consistent association between OP and any other outcome assessed, either due to repeated lack of statistical association, variability in reported findings or limited numbers of available studies. Conclusions: Current assays for OP in cell-free/abiotic systems appear to have limited value in predicting PM toxicity. Clarifying the underlying causes may be important for further advancement in the field.
Collapse
|
14
|
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. TOXICS 2018; 6:E65. [PMID: 30400192 PMCID: PMC6316100 DOI: 10.3390/toxics6040065] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
Abstract
The drive for development and modernization has come at great cost. Various human activities in developed and developing countries, particularly in sub-Saharan Africa (SSA) have given rise to environmental safety concerns. Increased artisanal mining activities, illegal refining, use of leaded petrol, airborne dust, arbitrary discarding and burning of toxic waste, absorption of production industries in inhabited areas, inadequate environmental legislation, and weak implementation of policies, have given rise to the incomparable contamination and pollution associated with heavy metals in recent decades. This review evaluates the public health effects of heavy metals and their mixtures in SSA. This shows the extent and size of the problem posed by exposure to heavy metal mixtures in regard to public health.
Collapse
Affiliation(s)
- Brilliance Onyinyechi Anyanwu
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Anthonet Ndidiamaka Ezejiofor
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Zelinjo Nkeiruka Igweze
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, Madonna University Elele, PMB, 5001 Elele, Rivers State, Nigeria.
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
15
|
Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y, Peng H. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 2018; 9:1562-1575. [PMID: 29022012 DOI: 10.1039/c7mt00191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vanadium is a metal of high physiological, environmental and industrial importance. However, vanadium-induced oxidative stress can reduce the egg quality of poultry, and be potentially harmful to humans, and the underlying mechanism is not clear. In this study, we investigated the underlying relationship between the oxidant-sensitive mitogen-activated protein kinase (MAPK) signaling pathway and vanadium-induced oxidative stress in oviduct magnum epithelial (OME) cells. Cultured OME cells were treated with 100 μmol L-1 vanadium and/or MAPK inhibitors [P38 MAPK inhibitor, SB203580; extracellular regulated protein kinase 1 and 2 (ERK1/2) inhibitor, U0126; c-JUN N-terminal kinases (JNK) inhibitor, SP600125]. Cell viability, apoptosis, and generation of reactive oxygen species (ROS) were assessed using flow cytometry. The expression of oxidative stress-related genes and their proteins was measured by reverse transcription-polymerase chain reaction and western blotting. Vanadium treatment reduced cell viability, whereas pretreated OME cells with SB203580 and U0126 prevented the reducing effect of vanadium on cell viability (P < 0.05). Likewise, MAPK inhibitors effectively suppressed vanadium-induced apoptosis and ROS generation (P < 0.05). In the OME cells treated with vanadium, SB203580 (P < 0.05) and SP600125 (P = 0.08) increased catalase activity by 89.3% and 55.3%; SB203580 and U0126 increased (P < 0.05) glutathione peroxidase activity by 44.9% and 51.1%, respectively. Incubation of OME cells with MAPK inhibitors also prevents malondialdehyde concentration increase and lactic dehydrogenase activity decrease in response to vanadium (P < 0.05). Vanadium downregulated P38, ERK1/2, JNK, Nrf2, sMaf, GCLC, NQO1 and HO-1 mRNA expression (P < 0.05). In contrast, inhibition of JNK with SP600125 upregulated P38, ERK1/2, JNK, Nrf2, GCLC and HO-1 mRNA expression (P < 0.05); inhibition of P38 with SB203580 upregulated JNK, NQO1 and HO-1 mRNA expression (P < 0.05); and inhibition of ERK1/2 with U0126 upregulated ERK1/2, GCLC and HO-1 mRNA expression (P < 0.05). Moreover, phosphorylation of P38, ERK1/2, JNK, and Nrf2 proteins was enhanced by V incubation; however, SP600125 blocked the phosphorylation of these proteins, whereas SB203580 blocked the phosphorylation of P38 and Nrf2. These results indicate that vanadium inducing oxidative stress in OME cells might be, at least, associated with the phosphorylation of the P38MAPK/JNK-Nrf2 pathway, which reduces the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schwarze PE, Ovrevik J, Låg M, Refsnes M, Nafstad P, Hetland RB, Dybing E. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 2016; 25:559-79. [PMID: 17165623 DOI: 10.1177/096032706072520] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Identifying the ambient particulate matter (PM) fractions or constituents, critically involved in eliciting adverse health effects, is crucial to the implementation of more cost-efficient abatement strategies to improve air quality. This review focuses on the importance of different particle properties for PM-induced effects, and whether there is consistency in the results from epidemiological and experimental studies. An evident problem for such comparisons is that epidemiological and experimental data on the effects of specific components of ambient PM are limited. Despite this, some conclusions can be drawn. With respect to the importance of the PM size-fractions, experimental and epidemiological studies are somewhat conflicting, but there seems to be a certain consistency in that the coarse fraction (PM10-2.5) has an effect that should not be neglected. Better exposure characterization may improve the consistency between the results from experimental and epidemiological studies, in particular for ultrafine particles. Experimental data indicate that surface area is an important metric, but composition may play an even greater role in eliciting effects. The consistency between epidemiological and experimental findings for specific PM-components appears most convincing for metals, which seem to be important for the development of both pulmonary and cardiovascular disease. Metals may also be involved in PM-induced allergic sensitization, but the epidemiological evidence for this is scarce. Soluble organic compounds appear to be implicated in PM-induced allergy and cancer, but the data from epidemiological studies are insufficient for any conclusions. The present review suggests that there may be a need for improvements in research designs. In particular, there is a need for better exposure assessments in epidemiological investigations, whereas experimental data would benefit from an improved comparability of studies. Combined experimental and epidemiological investigations may also help answer some of the unresolved issues.
Collapse
Affiliation(s)
- P E Schwarze
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Sci Rep 2016; 6:26661. [PMID: 27248371 PMCID: PMC4888653 DOI: 10.1038/srep26661] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023] Open
Abstract
Bioabsorbable metal zinc (Zn) is a promising new generation of implantable scaffold for cardiovascular and orthopedic applications. In cardiovascular stent applications, zinc ion (Zn2+) will be gradually released into the surrounding vascular tissues from such Zn-containing scaffolds after implantation. However, the interactions between vascular cells and Zn2+ are still largely unknown. We explored the short-term effects of extracellular Zn2+ on human smooth muscle cells (SMCs) up to 24 h, and an interesting biphasic effect of Zn2+ was observed. Lower concentrations (<80 μM) of Zn2+ had no adverse effects on cell viability but promoted cell adhesion, cell spreading, cell proliferation, cell migration, and enhanced the expression of F-actin and vinculin. Cells treated with such lower concentrations of Zn2+ displayed an elongated shape compared to controls without any treatment. In contrast, cells treated with higher Zn2+ concentrations (80–120 μM) had opposite cellular responses and behaviors. Gene expression profiles revealed that the most affected functional genes were related to angiogenesis, inflammation, cell adhesion, vessel tone, and platelet aggregation. Results indicated that Zn has interesting concentration-dependent biphasic effects on SMCs with low concentrations being beneficial to cellular functions.
Collapse
|
18
|
Analysis of the activation routes induced by different metal oxide nanoparticles on human lung epithelial cells. Future Sci OA 2016; 2:FSO118. [PMID: 28031965 PMCID: PMC5137956 DOI: 10.4155/fso.16.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/08/2016] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles (Nps) can induce toxicity in the lung by accidental or intentional exposure. The main objective of the study reported here was to characterize the effect that four metal oxide Nps (CeO2, TiO2, Al2O3 and ZnO) had at the cellular level on a human lung epithelial cell line. This goal was achieved by studying the capacity of the Nps to activate the main mitogen-activated protein kinases (MAPKs) and the nuclear factor NFκB. Only ZnO Nps were able to activate all of the MAPKs and the release of Zn2+ ions was the main cause of activation. ZnO and Al2O3 Nps activated the NFκB pathway and induced the release of inflammatory cytokines. CeO2 and TiO2 Nps were found to have safer profiles.
The graphical abstract was obtained using Servier Medical Art. Lay abstract: When cells are exposed to a stimulus, they can activate different signaling pathways and these lead to different responses such as proliferation, differentiation, migration or inflammation. The objective of the work described here was to characterize the effects of several metal oxide nanoparticles at the cellular level by studying their capacity to activate the main mitogen-activated protein kinases (MAPKs) and the expression of the transcription factor NFκB on a human lung epithelial cell line. These signaling proteins play a relevant role in the vast majority of the cellular events that are triggered in eukaryotic cells after any stimulus.
Collapse
|
19
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
20
|
Rice KM, Nalabotu SK, Manne NDPK, Kolli MB, Nandyala G, Arvapalli R, Ma JY, Blough ER. Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs. J Prev Med Public Health 2015; 48:132-41. [PMID: 26081650 PMCID: PMC4484279 DOI: 10.3961/jpmph.15.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/22/2015] [Indexed: 12/03/2022] Open
Abstract
Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; School of Kinesiology, College of Health Professions, Marshall University, Huntington, WV, USA ; Biotechnology Department, West Virginia State University, Institute, WV, USA ; Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Siva K Nalabotu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA
| | | | - Madhukar B Kolli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA
| | - Geeta Nandyala
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | | | - Jane Y Ma
- Health Effects Laboratory Division, NIOSH, Morgantown, WV, USA
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; School of Kinesiology, College of Health Professions, Marshall University, Huntington, WV, USA ; Biotechnology Department, West Virginia State University, Institute, WV, USA ; Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA ; Health Effects Laboratory Division, NIOSH, Morgantown, WV, USA ; Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| |
Collapse
|
21
|
Wu W, Muller R, Berhane K, Fruin S, Liu F, Jaspers I, Diaz-Sanchez D, Peden DB, McConnell R. Inflammatory response of monocytes to ambient particles varies by highway proximity. Am J Respir Cell Mol Biol 2015; 51:802-9. [PMID: 24895888 DOI: 10.1165/rcmb.2013-0265oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies have demonstrated associations of chronic respiratory disease with near-roadway pollutant exposure, effects that were independent of those of regional air pollutants. However, there has been limited study of the potential mechanisms for near-roadway effects. Therefore, we examined the in vitro effect of respirable particulate matter (PM) collected adjacent to a major Los Angeles freeway and at an urban background location. PM was collected on filters during two consecutive 15-day periods. Oxidative stress and inflammatory response (intracellular reactive oxygen species [ROS], IL-1β, IL-6, IL-8, and TNF-α) to PM aqueous extract was assessed in THP-1 cells, a model for evaluating monocyte/macrophage lineage cell responses. The near-roadway PM induced statistically significantly higher levels of IL-6, IL-8, and TNF-α (P < 0.01) and a near significant increase in IL-1β (P = 0.06) but did not induce ROS activity (P = 0.17). The contrast between urban background and near-roadway PM-induced inflammatory cytokines was similar in magnitude to that corresponding to temporal differences between the two collection periods. PM-induced proinflammatory protein expression was attenuated by antioxidant pretreatment, and PM stimulation enhanced the activity of protein kinases, including extracellular signal-regulated kinase and c-Jun N-terminal kinase. Pretreatment of THP-1 cells with kinase inhibitors reduced PM-induced proinflammatory mediator expression. The proinflammatory response was also reduced by pretreatment with polymyxin B, suggesting a role for endotoxin. However, the patterns of PM-induced protein kinase response and the attenuation of inflammatory responses by antioxidant or polymyxin B pretreatment did not vary between near-roadway and urban background locations. We conclude that near-roadway PM produced greater inflammatory response than urban background PM, a finding consistent with emerging epidemiologic findings, but these differences were not explained by PM endotoxin content or by MAPK pathways. Nevertheless, THP-1 cells may be a model for the development of biologically relevant metrics of long-term spatial variation in exposure for study of chronic disease.
Collapse
Affiliation(s)
- Weidong Wu
- 1 School of Public Health, Xinxiang Medical University, Henan Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol 2014; 281:230-41. [PMID: 25448439 DOI: 10.1016/j.taap.2014.10.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Exposure to bis(maltolato)oxovanadium(IV) increases levels of hepcidin mRNA and impairs the homeostasis of iron but not that of manganese. Food Chem Toxicol 2014; 73:113-8. [PMID: 25168077 DOI: 10.1016/j.fct.2014.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations in iron homeostasis, caused by exposure to vanadium, are related to changes in the gene expression of hepatic hepcidin. Two groups of rats were examined: control and vanadium-exposed. Vanadium, as bis(maltolato)oxovanadium(IV) was supplied in the drinking water. The experiment had a duration of five weeks. Iron and manganese were measured in excreta, serum and tissues. Leptin, ferritin, IL-1β, IL-6, TNF-α, red blood cells, haemoglobin and haematocrit were determined. Protein carbonyl group levels and hepcidin gene expression were determined in the liver. In the vanadium-exposed rats, iron absorption, serum iron and leptin and all haematological parameters decreased. Levels of IL-6, TNF-α and ferritin in serum and of iron in the liver, spleen and heart increased. In the liver, levels of protein carbonyl groups and hepcidin mRNA were also higher in the vanadium-exposed group. Exposure to vanadium did not modify manganese homeostasis. The results obtained from this study provide the first evidence that bis(maltolato)oxovanadium(IV) produces an increase in the gene expression of the hepcidin, possibly caused by an inflammatory process. Both factors could be the cause of alterations in Fe homeostasis and the appearance of anaemia. However, Mn homeostasis was not affected.
Collapse
|
24
|
Cohen L, Sekler I, Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis 2014; 5:e1307. [PMID: 24967969 PMCID: PMC4611734 DOI: 10.1038/cddis.2014.262] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium is a renewable tissue that requires precise balance between proliferation and differentiation, an essential process for the formation of a tightly sealed barrier. Zinc deficiency impairs the integrity of the intestinal epithelial barrier and is associated with ulcerative and diarrheal pathologies, but the mechanisms underlying the role of Zn2+ are not well understood. Here, we determined a role of the colonocytic Zn2+ sensing receptor, ZnR/GPR39, in mediating Zn2+-dependent signaling and regulating the proliferation and differentiation of colonocytes. Silencing of ZnR/GPR39 expression attenuated Zn2+-dependent activation of ERK1/2 and AKT as well as downstream activation of mTOR/p70S6K, pathways that are linked with proliferation. Consistently, ZnR/GPR39 silencing inhibited HT29 and Caco-2 colonocyte proliferation, while not inducing caspase-3 cleavage. Remarkably, in differentiating HT29 colonocytes, silencing of ZnR/GPR39 expression inhibited alkaline phosphatase activity, a marker of differentiation. Furthermore, Caco-2 colonocytes showed elevated expression of ZnR/GPR39 during differentiation, whereas silencing of ZnR/GPR39 decreased monolayer transepithelial electrical resistance, suggesting compromised barrier formation. Indeed, silencing of ZnR/GPR39 or chelation of Zn2+ by the cell impermeable chelator CaEDTA was followed by impaired expression of the junctional proteins, that is, occludin, zonula-1 (ZO-1) and E-cadherin. Importantly, colon tissues of GPR39 knockout mice also showed a decrease in expression levels of ZO-1 and occludin compared with wildtype mice. Altogether, our results indicate that ZnR/GPR39 has a dual role in promoting proliferation of colonocytes and in controlling their differentiation. The latter is followed by ZnR/GPR39-dependent expression of tight junctional proteins, thereby leading to formation of a sealed intestinal epithelial barrier. Thus, ZnR/GPR39 may be a therapeutic target for promoting epithelial function and tight junction barrier integrity during ulcerative colon diseases.
Collapse
Affiliation(s)
- L Cohen
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - I Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - M Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Hashmi MZ, Shen H, Zhu S, Yu C, Shen C. Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: a review. ENVIRONMENT INTERNATIONAL 2014; 64:28-39. [PMID: 24361513 DOI: 10.1016/j.envint.2013.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
A biphasic dose response, termed hormesis, is characterized by beneficial effects of a chemical at a low dose and harmful effects at a high dose. This biphasic dose response phenomenon has the potential to strongly alter toxicology in a broad range. The present review focuses on the progress of research into hormetic responses in terms of growth (in plants, birds, algae and humans), bioluminescence, and shoal behavior as end points. The paper describes how both inorganic and organic chemicals at a low dose show stimulatory responses while at higher doses are inhibitory. The article highlights how factors such as symbiosis, density-dependent factors, time, and contrasting environmental factors (availability of nutrients, temperature, light, etc.) affect both the range and amplitude of hormetic responses. Furthermore, the possible underlying mechanisms are also discussed and we suggest that, for every end point, different hormetic mechanisms may exist. The occurrences of varying interacting receptor systems or receptor systems affecting the assessment of hormesis for each endpoint are discussed. The present review suggests that a hormetic model should be adopted for toxicological evaluations instead of the older threshold and linear non-threshold models.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hui Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shenhai Zhu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chunna Yu
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
26
|
Phillips MA, Qin Q, Hu Q, Zhao B, Rice RH. Arsenite suppression of BMP signaling in human keratinocytes. Toxicol Appl Pharmacol 2013; 269:290-6. [PMID: 23566955 DOI: 10.1016/j.taap.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | |
Collapse
|
27
|
Matsuoka M, Igisu H. Effects of heavy metals on mitogen-activated protein kinase pathways. Environ Health Prev Med 2012; 6:210-7. [PMID: 21432337 DOI: 10.1007/bf02897972] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Accepted: 10/22/2001] [Indexed: 01/07/2023] Open
Abstract
The signaling pathways leading to cellular protection or cell death following exposure to heavy metals have not been fully clarified. Mitogen-activated protein kinases (MAPKs), i.e., extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK transmit extracellular signals into the nucleus, and have been shown to participate in a diverse array of cellular functions such as cell growth, differentiation and apoptosis. Treatment with cadmium, inorganic mercury or tributyltin can activate ERK, JNK and p38 MAPK, and induces the expression of c-fos and c-jun genes prior to the development of apoptosis. However, the members of the MAPK family appear to be differentially activated depending on the heavy metal and the cell type exposed. Consequently, various cellular responses may be caused by the distinct pattern of MAPKs activation. MAPKs may be one of the important cellular signal transduction pathways affected by various environmental pollutants, including heavy metals.
Collapse
Affiliation(s)
- Masato Matsuoka
- Department of Environmental Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan,
| | | |
Collapse
|
28
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Kwon JT, Minai-Tehrani A, Hwang SK, Kim JE, Shin JY, Yu KN, Chang SH, Kim DS, Kwon YT, Choi IJ, Cheong YH, Kim JS, Cho MH. Acute pulmonary toxicity and body distribution of inhaled metallic silver nanoparticles. Toxicol Res 2012; 28:25-31. [PMID: 24278586 PMCID: PMC3834404 DOI: 10.5487/tr.2012.28.1.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the acute pulmonary toxicity of metallic silver nanoparticles (MSNPs, 20.30 nm in diameter). Acute pulmonary toxicity and body distribution of inhaled MSNPs in mice were evaluated using a nose-only exposure chamber (NOEC) system. Bronchoalveolar lavage (BAL) fluid analysis, Western blotting, histopathological changes, and silver burdens in various organs were determined in mice. Mice were exposed to MSNPs for 6 hrs. The mean concentration, total surface area, volume and mass concentrations in the NOEC were maintained at 1.93 × 10(7) particles/cm(3), 1.09 × 10(10) nm(2)/cm(3), 2.72 × 10(11) nm(3)/cm(3), and 2854.62 μg/m(3), respectively. Inhalation of MSPNs caused mild pulmonary toxicity with distribution of silver in various organs but the silver burdens decreased rapidly at 24-hrs post-exposure in the lung. Furthermore, inhaled MSNPs induced activation of mitogen-activated protein kinase (MAPK) signaling in the lung. In summary, single inhaled MSNPs caused mild pulmonary toxicity, which was associated with activated MAPK signaling. Taken together, our results suggest that the inhalation toxicity of MSNPs should be carefully considered at the molecular level.
Collapse
Affiliation(s)
- Jung-Taek Kwon
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Current address: Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Current address: Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Department of Nanofusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Dae-Seong Kim
- Center for Materials Measurement, Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | | | - In-Ja Choi
- Wonjin Institute of Occupational and Environmental Health, Seoul 131-831, Korea
| | - Yun-Hee Cheong
- Wonjin Institute of Occupational and Environmental Health, Seoul 131-831, Korea
| | - Jun Sung Kim
- R&D Center, Biterials Co., Ltd., Seoul 140-200, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Department of Nanofusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Korea
| |
Collapse
|
30
|
Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol 2011; 2011:431287. [PMID: 22174709 PMCID: PMC3235889 DOI: 10.1155/2011/431287] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Daiana D. Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Lionel Gil
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
31
|
Qu W, Cheng L, Dill AL, Saavedra JE, Hong SY, Keefer LK, Waalkes MP. Nitric oxide donor, V-PROLI/NO, provides protection against arsenical induced toxicity in rat liver cells: requirement for Cyp1a1. Chem Biol Interact 2011; 193:88-96. [PMID: 21621526 PMCID: PMC3155876 DOI: 10.1016/j.cbi.2011.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/11/2011] [Accepted: 05/14/2011] [Indexed: 11/28/2022]
Abstract
Arsenic is a cancer chemotherapeutic but hepatotoxicity can be a limiting side effect. O(2)-vinyl 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) is a nitric oxide (NO) donor prodrug and metabolized by liver cytochromes P450 (CYP450) to release NO. The effects of V-PROLI/NO pretreatment on the toxicity of arsenic (as NaAsO(2)) were studied in a rat liver cell line (TRL 1215). The cells acted upon the prodrug to release NO, as assessed by nitrite levels, in a time-dependent fashion to maximal levels of 8-fold above basal levels. Pretreatment with V-PROLI/NO markedly reduced arsenic cytolethality which was directly related to the level of NO produced by V-PROLI/NO treatment. Cyp1a1 expression was directly related to the level of NO production and to reduced arsenic cytotoxicity. V-PROLI/NO pretreatment markedly reduced arsenic-induced apoptosis and suppressed phosphorylation of JNK1/2. V-PROLI/NO pretreatment facilitated additional increases in arsenic-induced metallothionein, a metal-binding protein important in arsenic tolerance. Thus, V-PROLI/NO protects against arsenic toxicity in rat liver cells, reducing cytolethality, apoptosis and dysregulation of MAPKs, through generation of NO formed after metabolism by liver cell enzymes, possibly including Cyp1a1. CYP450 required for NO production from V-PROLI/NO treatment in the rat and human appears to differ as we have previously studied the ability of V-PROLI/NO to prevent arsenic toxicity in human liver cells where it reduced toxicity apparently through a CYP2E1-mediated metabolic mechanism. None-the-less, it appears that both rat and human liver cells act upon V-PROLI/NO via a CYP450-related mechanism to produce NO and subsequently reduce arsenic toxicity.
Collapse
Affiliation(s)
- Wei Qu
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lida Cheng
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anna L. Dill
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Joseph E. Saavedra
- Basic Research Program, SAIC Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Sam Y. Hong
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Larry K. Keefer
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Michael P. Waalkes
- National Toxicology Program, National Institute of Environmental Health Sciences and Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Li Y, Hao Y, Gao M, Dong W, Hu M, Yuan S, Song L. IKKβ downregulation is critical for triggering JNKs-dependent cell apoptotic response in the human hepatoma cells under arsenite exposure. Mol Cell Biochem 2011; 358:61-6. [PMID: 21688155 DOI: 10.1007/s11010-011-0921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
Arsenite has a long history in treating leukemia, which might be also effective in the therapy of other cancers. Our previous published data have demonstrated that arsenite exposure induces apoptosis in the HepG2 human hepatoma cells via activating JNKs/AP-1 pathway, but the upstream signaling events responsible for JNKs (c-Jun N-terminal kinase) cascade activation have not been fully discovered. Since cross-talk between IKK/NF-κB and JNKs pathways under stress conditions is a hot topic, in this article, we investigate the potential roles of IKKα and IKKβ, the catalytic subunits of IKK complexes, in the arsenite-induced JNKs pathway activation in the HepG2 cells. We found that arsenite exposure induced JNKs and AP-1 activation accompanying with a significant reduction of both IKKα and IKKβ expressions. Overexpression of IKKβ, but not of IKKα, inhibited arsenite-induced MKK7/JNKs/AP-1 pathway activation as well as the apoptotic response. Therefore, we conclude that the downregulation of IKKβ expression is the prerequisite signaling event for mediating JNKs pathway activation and the cellular apoptotic response in the HepG2 cells under arsenite exposure. Targeting IKKβ might be helpful to enhance the tumor therapeutic effect of arsenite.
Collapse
Affiliation(s)
- Yi Li
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Choi HJ, Kang KS, Fukui M, Zhu BT. Critical role of the JNK-p53-GADD45α apoptotic cascade in mediating oxidative cytotoxicity in hippocampal neurons. Br J Pharmacol 2011; 162:175-92. [PMID: 20955365 DOI: 10.1111/j.1476-5381.2010.01041.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Glutamate-induced oxidative stress plays a critical role in the induction of neuronal cell death in a number of disease states. We sought to determine the role of the c-Jun NH(2) -terminal kinase (JNK)-p53-growth arrest and DNA damage-inducible gene (GADD) 45α apoptotic cascade in mediating glutamate-induced oxidative cytotoxicity in hippocampal neuronal cells. EXPERIMENTAL APPROACH HT22 cells, a mouse hippocampal neuronal cell line, were treated with glutamate to induce oxidative stress in vitro. Kainic acid-induced oxidative damage to the hippocampus in rats was used as an in vivo model. The signalling molecules along the JNK-p53-GADD45α cascade were probed with various means to determine their contributions to oxidative neurotoxicity. KEY RESULTS Treatment of HT22 cells with glutamate increased the mRNA and protein levels of GADD45α, and these increases were suppressed by p53 knock-down. Knock-down of either p53 or GADD45α also prevented glutamate-induced cell death. Glutamate-induced p53 activation was preceded by accumulation of reactive oxygen species, and co-treatment with N-acetyl-cysteine prevented glutamate-induced p53 activation and GADD45α expression. Knock-down of MKK4 or JNK, or the presence of SP600125 (a JNK inhibitor), each inhibited glutamate-induced p53 activation and GADD45α expression. In addition, we also confirmed the involvement of GADD45α in mediating kainic acid-induced hippocampal oxidative neurotoxicity in vivo. CONCLUSIONS AND IMPLICATIONS Activation of the JNK-p53-GADD45α cascade played a critical role in mediating oxidative cytotoxicity in hippocampal neurons. Pharmacological inhibition of this signalling cascade may provide an effective strategy for neuroprotection.
Collapse
Affiliation(s)
- Hye Joung Choi
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
34
|
Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK. Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 2011; 506:73-82. [DOI: 10.1016/j.abb.2010.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
35
|
Son YO, Hitron JA, Cheng S, Budhraja A, Zhang Z, Lan Guo N, Lee JC, Shi X. The dual roles of c-Jun NH2-terminal kinase signaling in Cr(VI)-induced apoptosis in JB6 cells. Toxicol Sci 2010; 119:335-45. [PMID: 21047991 DOI: 10.1093/toxsci/kfq335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Occupational exposure to chromium (Cr) compounds has been shown to cause serious toxic and carcinogenic effects. The skin is an important target for the compounds in industrially exposed Cr workers. c-Jun NH(2)-terminal kinase (JNK) regulates cell proliferation, apoptosis, and differentiation. This protein's effects on cellular response depend upon the cell type and stimuli. The mechanisms by which hexavalent chromium (Cr(VI)) leads to apoptosis in the skin are unclear at present. The aim of this study is to examine whether JNK regulates apoptosis in Cr(VI)-exposed mouse JB6 epidermal cells. The present study showed that Cr(VI) induced apoptotic cell death through JNK activation. The blockage of JNK by small interference RNA (si-RNA) transfection suppressed Cr(VI)-induced apoptotic cell death with the concomitant downregulation of antiapoptotic Bcl-2 family proteins, mitochondrial membrane depolarization (Δψm), caspase activation, and poly (ADP-ribose) polymerase cleavage. However, inhibition of c-Jun expression by si-RNA transfection enhanced cytotoxicity, which corresponded to increasing apoptosis and Δψm. This phenomenon is associated with p53 activation caused by increasing reactive oxygen species (ROS) levels because of the downregulation of superoxide dismutase expression in si-c-Jun-transfected cells. Taken together, Cr(VI) induces apoptosis via JNK-mediated signaling, whereas c-Jun activation acts as an inhibitor of apoptotic signaling. Additionally, ROS generated by Cr(VI) is a pivotal regulator of JNK.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. PLANT SIGNALING & BEHAVIOR 2010; 5:1370-8. [PMID: 20980831 PMCID: PMC3115236 DOI: 10.4161/psb.5.11.13020] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intra- and extra-cellular signaling in plants. MAP kinases are the component of kinase modules which transfer information from sensors to responses in eukaryotes including plants. They play a pivotal role in transduction of diverse extracellular stimuli such as biotic and abiotic stresses as well as a range of developmental responses including differentiation, proliferation and death. Several cascades are induced by different biotic and abiotic stress stimuli such as pathogen infections, heavy metal, wounding, high and low temperatures, high salinity, UV radiation, ozone, reactive oxygen species, drought and high or low osmolarity. MAPK signaling has been implicated in biotic stresses and has also been associated with hormonal responses. The cascade is regulated by various mechanisms, including not only transcriptional and translational regulation but through post-transcriptional regulation such as protein-protein interactions. Recent detailed analysis of certain specific MAP kinase pathways have revealed the specificity of the kinases in the cascade, signal transduction patterns, identity of pathway targets and the complexity of the cascade. The latest insights and finding are discussed in this paper in relation to the role of MAPK pathway modules in plant stress signaling.
Collapse
Affiliation(s)
- Gohar Taj
- Molecular Biology and Genetic Engineering, College of Basic Science and Humanities, G.B. Pant University of Agriculture & Technology, Uttrakhand, Uttrangal, India.
| | | | | | | |
Collapse
|
37
|
Gao F, Brant KA, Ward RM, Cattley RT, Barchowsky A, Fabisiak JP. Multiple protein kinase pathways mediate amplified IL-6 release by human lung fibroblasts co-exposed to nickel and TLR-2 agonist, MALP-2. Toxicol Appl Pharmacol 2010; 247:146-57. [PMID: 20600219 DOI: 10.1016/j.taap.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/03/2010] [Accepted: 06/10/2010] [Indexed: 12/16/2022]
Abstract
Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO4 was obvious after 8h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all led to rapid and transient phosphorylations of ERK(1/2) and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1alpha and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK(1/2), p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1alpha protein, however, COX-2 expression and, more markedly PGE(2) production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK(1/2), p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1alpha to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE(2).
Collapse
Affiliation(s)
- Fei Gao
- Department of Environmental & Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | | | | | | | | | | |
Collapse
|
38
|
Rondini EA, Walters DM, Bauer AK. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner. Part Fibre Toxicol 2010; 7:9. [PMID: 20385015 PMCID: PMC2861012 DOI: 10.1186/1743-8977-7-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred strains of mice. Further, we identified a positive relationship between tumor promotion and susceptibility to V2O5-induced pulmonary inflammation. These findings suggest that repeated exposures to V2O5 containing particles may augment lung carcinogenesis in susceptible individuals through oxidative stress mediated pathways.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Department of Pathobiology and Diagnostic Investigation and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
39
|
Kwak YD, Wang B, Pan W, Xu H, Jiang X, Liao FF. Functional interaction of phosphatase and tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc. J Biol Chem 2010; 285:9847-9857. [PMID: 20100827 DOI: 10.1074/jbc.m109.091637] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Young-Don Kwak
- Neurodegenerative Disease Program, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Bin Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Wei Pan
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Huaxi Xu
- Neurodegenerative Disease Program, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
40
|
Cao D, Bromberg PA, Samet JM. Diesel Particle–Induced Transcriptional Expression of p21 Involves Activation of EGFR, Src, and Stat3. Am J Respir Cell Mol Biol 2010; 42:88-95. [DOI: 10.1165/rcmb.2008-0455oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
41
|
Fortoul TI, González-Villalva A, Piñón-Zarate G, Rodríguez-Lara V, Montaño LF, Saldivar-Osorio L. Ultrastructural megakaryocyte modifications after vanadium inhalation in spleen and bone marrow. JOURNAL OF ELECTRON MICROSCOPY 2009; 58:375-380. [PMID: 19567481 DOI: 10.1093/jmicro/dfp031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Previous reports from our laboratory informed in mice an increase in platelets in blood, and megakaryocytes in spleen and bone marrow after vanadium inhalation. This element has become important in recent years because of its increased presence as an air pollutant. With this precedent, we evaluate the ultrastructural modifications in MKs from the spleen and bone marrow in our mouse experimental model. Mice inhaled 0.02 M V(2)O(5) 1 h twice a week for 12 weeks. Tissues were processed for transmission electron microscopy. Results indicate an increase in the size and cytoplasmic granular content, as well as nuclear changes in MKs of exposed mice, changes which correlate with the time of exposure. Modifications in MKs described here suggest that inhaled vanadium induce megakaryocytic maturation, a raise in its granules content and demarcation membrane systems, which may lead to a rise in circulating platelet production and an increased risk for thromboembolic events.
Collapse
Affiliation(s)
- Teresa I Fortoul
- Department of Cellular and Tissular Biology, School of Medicine, National University of Mexico, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
42
|
Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+-induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem 2009; 15:399-407. [PMID: 19946718 DOI: 10.1007/s00775-009-0612-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022]
Abstract
Zn(2+) exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn(2+)-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn(2+)-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn(2+)-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn(2+)-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn(2+)-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn(2+) was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn(2+) and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn(2+)-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR beta-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn(2+)-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.
Collapse
|
43
|
Øvrevik J, Låg M, Holme J, Schwarze P, Refsnes M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. Toxicology 2009; 259:46-53. [DOI: 10.1016/j.tox.2009.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/26/2022]
|
44
|
Kawata K, Shimazaki R, Okabe S. Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:46-59. [PMID: 19031421 DOI: 10.1002/em.20438] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carcinogenesis is an important chronic toxicity of metals and metalloids, although their mechanisms of action are still unclear. Comparison of gene expression patterns induced by carcinogenic metals, metalloids, and model carcinogens would give an insight into understanding of their carcinogenic mechanisms. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2, after exposing to two metals (cadmium and nickel), a metalloid (arsenic), and three model carcinogenic chemicals N-dimethylnitrosoamine (DMN), 12-O-tetradecanoylphorbol-13-acetate (TPA), and tetrachloroethylene (TCE) using DNA microarrays with 8,795 human genes. Of the genes altered by As, Cd, and Ni exposures, 31-55% were overlapped with those altered by three model carcinogenic chemical exposures in our experiments. In particular, the metals and metalloid shared certain characteristics with TPA and TCE in remarkable upregulations of the genes associated with progression of cell cycle, which might play a central role in As, Cd, and Ni carcinogenesis. This characteristic of gene expression alteration was partially counteracted by intracellular accumulation of vitamin C in As-exposed cells, whereas the number of cell-cycle associated genes was increased in Cd- and Ni-exposed cells. In our experimental conditions, ROS might have an accelerative effect on the cell proliferation mechanisms of As, but have an inhibitory effect on those of other two heavy metals. Furthermore, based on the results of Q-PCR, the oncogene PTTG1, which was upregulated by all carcinogenic chemical exposures in the array experiments, might be a useful biomarker for evaluation of the carcinogenesis of inorganic carcinogens.
Collapse
Affiliation(s)
- Koji Kawata
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan
| | | | | |
Collapse
|
45
|
Qu W, Liu J, Dill AL, Saavedra JE, Keefer LK, Waalkes MP. V-PROLI/NO, a nitric oxide donor prodrug, protects liver cells from arsenic-induced toxicity. Cancer Sci 2008; 100:382-8. [PMID: 19154403 PMCID: PMC2678544 DOI: 10.1111/j.1349-7006.2008.01050.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inorganic arsenic shows great promise in human cancer chemotherapy, although hepatotoxicity is a major limiting side-effect. O(2)-Vinyl 1-[2-(Carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) [Correction added after publication 19 December 2008: 1-[2-(Carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) was corrected to O(2)-Vinyl 1-[2-(Carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO)] is a nitric oxide (NO) donor prodrug that is metabolized by liver cytochromes P450 to release NO. Other NO-releasing agents have been shown to mitigate arsenic toxicity. Thus, the effects of V-PROLI/NO pretreatment on the toxicity of inorganic arsenic (as NaAsO(2)) were studied in vitro in a human liver (HepG2) cell line. HepG2 cells acted upon the prodrug to release NO, as assessed by nitrite levels, in a dose- and time-dependent fashion to maximal levels of 57-fold above control levels. In cells pretreated with V-PROLI/NO (200 microM, 24 h) then exposed to arsenic for an additional 24 h, arsenic was much less toxic (LC(50) = 151.9 +/- 5.9 microM) than in control cells (LC(50) = 90.5 +/- 6.5 microM) and the reduced cytolethality was directly related to the level of NO produced. V-PROLI/NO also increased CYP2E1 transcriptional expression in a dose-dependent manner and CYP2E1 expression was directly related to the level of NO produced and the reduction in arsenic cytotoxicity. V-PROLI/NO pretreatment markedly reduced arsenic-induced apoptosis as measured by DNA fragmentation. Pretreatment with V-PROLI/NO suppressed phosphorylation of JNK1/2 after arsenic exposure. Arsenic increased metallothionein, a metal-binding protein important in arsenic tolerance, and V-PROLI/NO pretreatment caused additional increases in metallothionein levels. Thus, the prodrug, V-PROLI/NO, protects against arsenic toxicity in cultured human liver cells, reducing cytolethality, apoptosis and dysregulation of mitogen-activated protein kinases, through generation of NO formed after metabolism by liver cell enzymes, possibly including CYP2E1.
Collapse
Affiliation(s)
- Wei Qu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mechanism of copper-activated transcription: activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways. J Mol Biol 2008; 383:1008-18. [PMID: 18793645 DOI: 10.1016/j.jmb.2008.08.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/18/2008] [Accepted: 08/25/2008] [Indexed: 11/23/2022]
Abstract
Copper is an essential metal that is able to produce reactive oxygen species and to induce intracellular oxidative stress. Several studies have examined the effects of excessive copper and oxidative stress on various organisms and tissues, but few have addressed the molecular mechanisms by which copper affects transcription. Our results demonstrated that, in COS-7 cells, copper treatment caused an increase in the binding of nuclear proteins to activating protein-1 and antioxidant response elements. The level of copper-inducible nuclear protein binding was modulated by increasing or decreasing the level of intracellular oxidative stress. Copper exposure also led to an increase in the steady-state levels of c-fos, c-jun, and c-myc mRNAs. Exposure to copper resulted in an increase in the levels of phosphorylation and activation of the c-Jun N-terminal kinase/stress-activated protein kinase and p38 pathways. The activation of these pathways resulted in a concomitant increase in c-Jun phosphorylation. We investigated the hypothesis that copper-induced oxidative stress leads to the formation of stable lipid peroxidation by-products that activate mitogen-activated protein kinase (MAPK) pathways, ultimately affecting transcription. While exposure did result in the production of 4-hydroxynonenal, the timing of the increased levels of proto-oncogene mRNA, phosphorylation of c-jun, and phosphorylation and activation of MAPKs, as well as the inability of the lipophilic antioxidant vitamin E to abrogate MAPK phosphorylation, suggest that the formation of stable lipid peroxidation by-products may not be the primary mechanism by which copper activates MAPKs. These results further elucidate the effects of copper on signal transduction pathways to alter gene expression.
Collapse
|
47
|
Mongan M, Tan Z, Chen L, Peng Z, Dietsch M, Su B, Leikauf G, Xia Y. Mitogen-activated protein kinase kinase kinase 1 protects against nickel-induced acute lung injury. Toxicol Sci 2008; 104:405-11. [PMID: 18467339 DOI: 10.1093/toxsci/kfn089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury.
Collapse
Affiliation(s)
- Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati, School of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jin YH, Dunlap PE, McBride SJ, Al-Refai H, Bushel PR, Freedman JH. Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 2008; 4:e1000053. [PMID: 18437200 PMCID: PMC2278374 DOI: 10.1371/journal.pgen.1000053] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/17/2008] [Indexed: 11/19/2022] Open
Abstract
A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of ∼4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways. Environmental and human health threats are posed by contamination from transition metals. A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. To defend against metal toxicity, sophisticated defense mechanisms have evolved. Although many of the genes and regulatory pathways have been identified, the consequence of metal exposure on a systematic level has not been examined. To better define the mechanism involved in the metal response, we examined the effects of zinc, cadmium, mercury, copper, silver, chromium, and arsenic on gene expression in the yeast Saccharomyces cerevisiae. In addition, the roles of ∼4,500 non-essential genes in protecting yeast from metal toxicity were determined. Data analyses suggest that the chemical properties of the metal are major determinants in defining its biological effect on cells. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. Several evolutionarily conserved regulatory pathways were identified that link metal exposure, disruption of normal metabolism and gene expression. These results provide a global understanding of the biological responses to metal exposure and the stress response.
Collapse
Affiliation(s)
- Yong Hwan Jin
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, United States of America
| | - Paul E. Dunlap
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Sandra J. McBride
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, United States of America
| | - Hanan Al-Refai
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, United States of America
| | - Pierre R. Bushel
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol Biol Lett 2008; 13:375-90. [PMID: 18311544 PMCID: PMC6276015 DOI: 10.2478/s11658-008-0009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/11/2008] [Indexed: 11/20/2022] Open
Abstract
Malignant prostate tissues have markedly reduced zinc (Zn2+) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn2+ level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn2+ (10 μg/ml) over 5 weeks. The intracellular Zn2+ level increased in the Zn2+-treated cells, and there was a marked increase in the presence of zincosomes, a Zn2+-specific intracellular organelle. The proliferation rate of the Zn2+-treated cells was markedly reduced. There was also a significant increase (36.6% ± 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn2+, reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn2+-treated LNCaP cell proliferation to a rate comparable to that of the non Zn2+-treated cells. These results highlight the importance of a high intracellular Zn2+ content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.
Collapse
|
50
|
Chen PY, Huang TL, Huang HJ. Early events in the signalling pathway for the activation of MAPKs in rice roots exposed to nickel. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:995-1001. [PMID: 32689427 DOI: 10.1071/fp07163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/19/2007] [Indexed: 06/11/2023]
Abstract
It is well known that small quantities of nickel (Ni) are essential for plant species, and higher concentrations of Ni retard plant growth. However, the molecular mechanisms responsible for the regulation of plant growth by Ni are not well understood. The aim of this study is to investigate the early signalling pathways activated by Ni on rice (Oryza sativa L.) root. We showed that Ni elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analyses, it is suggested that Ni-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPKs). Pretreatment of rice roots with the antioxidant, glutathione (GSH), the phospholipase D (PLD) inhibitor, n-butanol, and the calmodulin and CDPK antagonist and W7 inhibited Ni-induced MAPK activation. These results suggest that various signalling components are involved in transduction of the Ni signal in rice roots.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| |
Collapse
|