1
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
2
|
do Carmo JM, Hall JE, Furukawa LNS, Woronik V, Dai X, Ladnier E, Wang Z, Omoto ACM, Mouton A, Li X, Luna-Suarez EM, da Silva AA. Chronic central nervous system leptin administration attenuates kidney dysfunction and injury in a model of ischemia/reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F957-F966. [PMID: 39361725 PMCID: PMC11687842 DOI: 10.1152/ajprenal.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
In the present study, we examined whether chronic intracerebroventricular (ICV) leptin administration protects against ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Twelve-week-old male rats were implanted with an ICV cannula into the right lateral ventricle, and 8-10 days after surgery, leptin (0.021 µg/h, n = 8) or saline vehicle (0.5 µL/h, n = 8) was infused via osmotic minipump connected to the ICV cannula for 12 days. On day 8 of leptin or vehicle infusion, rats were submitted to unilateral ischemia/reperfusion (UIR) by clamping the left pedicle for 30 min. To control for leptin-induced reductions in food intake, the vehicle-treated group was pair-fed (UIR-PF) to match the same amount of food consumed by leptin-treated (UIR-Leptin) rats. On the 12th day of leptin or vehicle infusion (fourth day after AKI), single-left kidney glomerular filtration rate (GFR) was measured, blood samples were collected to quantify white blood cells, and kidneys were collected for histological assessment of injury. UIR-Leptin-treated rats showed reduced right and left kidney weights (right: 1,040 ± 24 vs. 1,281 ± 36 mg; left: 1,127 ± 71 vs. 1,707 ± 45 mg, for UIR-Leptin and UIR-PF, respectively). ICV leptin infusion improved GFR (0.50 ± 0.06 vs. 0.13 ± 0.03 mL/min/g kidney wt) and reduced kidney injury scores. ICV leptin treatment also attenuated the reduction in circulating adiponectin levels that was observed in UIR-PF rats and increased the circulating white blood cells count compared with UIR-PF rats (16.3 ± 1.3 vs. 9.8 ± 0.6 k/µL). Therefore, we show that leptin, via its actions on the central nervous system, confers significant protection against major kidney dysfunction and injury in a model of ischemia/reperfusion-induced AKI.NEW & NOTEWORTHY A major new finding of this study is that chronic activation of leptin receptors in the CNS markedly attenuates acute kidney injury and protects against severe renal dysfunction after ischemia/reperfusion, independently of leptin's anorexic effects.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - John E Hall
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Luzia N S Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Viktoria Woronik
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Xuemei Dai
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Ladnier
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ana C M Omoto
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alan Mouton
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Xuan Li
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emilio M Luna-Suarez
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is a major risk factor for many cardiovascular diseases, notably hypertension. Obesity increases the risk of endothelial dysfunction in association with increasing production of the adipokine leptin. Preclinical studies have begun to unravel the mechanisms whereby leptin leads to the development of endothelial dysfunction, which are sex-specific. This review will summarize recent findings of mechanisms of leptin-induced endothelial impairment in both male and females and in pregnancy. RECENT FINDINGS Leptin receptors are found in high concentrations in the central nervous system (CNS), via which leptin promotes appetite suppression and upregulates sympathetic nervous system activation. However, leptin receptors are expressed in many other tissues, including the vascular endothelial cells and smooth muscle cells. Recent studies in mice with vascular endothelial or smooth muscle-specific knockdown demonstrate that endothelial leptin receptor activation plays a protective role against endothelial dysfunction in male animals, but not necessarily in females. Clinical studies indicate that women may be more sensitive to obesity-associated vascular endothelial dysfunction. Emerging preclinical data indicates that leptin and progesterone increase aldosterone production and endothelial mineralocorticoid receptor activation, respectively. Furthermore, decades of clinical studies indicate that leptin levels increase in the hypertensive pregnancy disorder preeclampsia, which is characterized by systemic endothelial dysfunction. Leptin infusion in mice induces the clinical characteristics of preeclampsia, including endothelial dysfunction. SUMMARY Novel preclinical data indicate that the mechanisms whereby leptin promotes endothelial dysfunction are sex-specific. Leptin-induced endothelial dysfunction may also play a role in hypertensive pregnancy as well.
Collapse
Affiliation(s)
- Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
- Department of OBGYN, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
4
|
Omoto ACM, do Carmo JM, Nelson B, Aitken N, Dai X, Moak S, Flynn E, Wang Z, Mouton AJ, Li X, Hall JE, da Silva AA. Central Nervous System Actions of Leptin Improve Cardiac Function After Ischemia–Reperfusion: Roles of Sympathetic Innervation and Sex Differences. J Am Heart Assoc 2022; 11:e027081. [DOI: 10.1161/jaha.122.027081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion.
Methods and Results
Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post‐I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (−4.2±7.9 versus −68.2±3.8 Δ%) compared with vehicle‐treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad‐lib fed or pair‐fed saline‐treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD
+
/NADH content (≈10‐fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury.
Conclusions
These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.
Collapse
Affiliation(s)
- Ana C. M. Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Benjamin Nelson
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Nikaela Aitken
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuemei Dai
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Sydney Moak
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Elizabeth Flynn
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alan J. Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - John E. Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| |
Collapse
|
5
|
da Silva AA, Hall JE, Dai X, Wang Z, Salgado MC, do Carmo JM. Chronic Antidiabetic Actions of Leptin: Evidence From Parabiosis Studies for a CNS-Derived Circulating Antidiabetic Factor. Diabetes 2021; 70:2264-2274. [PMID: 34344788 PMCID: PMC8576509 DOI: 10.2337/db21-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
We used parabiosis to determine whether the central nervous system (CNS)-mediated antidiabetic effects of leptin are mediated by release of brain-derived circulating factors. Parabiosis was surgically induced at 4 weeks of age, and an intracerebroventricular (ICV) cannula was placed in the lateral cerebral ventricle at 12 weeks of age for ICV infusion of leptin or saline vehicle. Ten days after surgery, food intake, body weight, and blood glucose were measured for 5 consecutive days, and insulin-deficiency diabetes was induced in all rats by a single streptozotocin (STZ) injection (40 mg/kg). Five days after STZ injection, leptin or vehicle was infused ICV for 7 days, followed by 5-day recovery period. STZ increased blood glucose and food intake. Chronic ICV leptin infusion restored normoglycemia in leptin-infused rats while reducing blood glucose by ∼27% in conjoined vehicle-infused rats. This glucose reduction was caused mainly by decreased hepatic gluconeogenesis. Chronic ICV leptin infusion also reduced net cumulative food intake and increased GLUT4 expression in skeletal muscle in leptin/vehicle compared with vehicle/vehicle conjoined rats. These results indicate that leptin's CNS-mediated antidiabetic effects are mediated, in part, by release into the systemic circulation of leptin-stimulated factors that enhance glucose utilization and reduce liver gluconeogenesis.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Xuemei Dai
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Zhen Wang
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Mateus C Salgado
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
- Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
6
|
Palei AC, Martin HL, Wilson BA, Anderson CD, Granger JP, Spradley FT. Impact of hyperleptinemia during placental ischemia-induced hypertension in pregnant rats. Am J Physiol Heart Circ Physiol 2021; 320:H1949-H1958. [PMID: 33710923 DOI: 10.1152/ajpheart.00724.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of preeclampsia and obesity have increased. Although obesity is a major risk factor for preeclampsia, the mechanisms linking these morbidities are poorly understood. Circulating leptin levels increase in proportion to fat mass. Infusion of this adipokine elicits hypertension in nonpregnant rats, but less is known about how hyperleptinemia impacts blood pressure during placental ischemia, an initiating event in the pathophysiology of hypertension in preeclampsia. We tested the hypothesis that hyperleptinemia during reduced uterine perfusion pressure (RUPP) exaggerates placental ischemia-induced hypertension. On gestational day (GD) 14, Sprague-Dawley rats were implanted with osmotic mini-pumps delivering recombinant rat leptin (1 µg/kg/min iv) or vehicle concurrently with the RUPP procedure to induce placental ischemia or Sham. On GD 19, plasma leptin was elevated in Sham + Leptin and RUPP + Leptin. Leptin infusion did not significantly impact mean arterial pressure (MAP) in Sham. MAP was increased in RUPP + Vehicle vs. Sham + Vehicle. In contrast to our hypothesis, placental ischemia-induced hypertension was attenuated by leptin infusion. To examine potential mechanisms for attenuation of RUPP-induced hypertension during hyperleptinemia, endothelial-dependent vasorelaxation to acetylcholine was similar between Sham and RUPP; however, endothelial-independent vasorelaxation to the nitric oxide (NO)-donor, sodium nitroprusside, was increased in Sham and RUPP. These findings suggest that NO/cyclic guanosine monophosphate (cGMP) signaling was increased in the presence of hyperleptinemia. Plasma cGMP was elevated in Sham and RUPP hyperleptinemic groups compared with vehicle groups but plasma and vascular NO metabolites were reduced. These data suggest that hyperleptinemia during placental ischemia attenuates hypertension by compensatory increases in NO/cGMP signaling.NEW & NOTEWORTHY Ours is the first study to examine the impact of hyperleptinemia on the development of placental ischemia-induced hypertension using an experimental animal model.
Collapse
Affiliation(s)
- Ana C Palei
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Hunter L Martin
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi.,Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara A Wilson
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Frank T Spradley
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi.,Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|