1
|
Interactive effects of food deprivation state and hypoxia on the respiratory responses of postprandial rock crabs, Cancer irroratus. J Comp Physiol B 2023; 193:37-55. [PMID: 36166090 DOI: 10.1007/s00360-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
Under the background of climate change, increasing attention has focused on the effects of ocean deoxygenation on marine organisms. However, few studies address the effects of different food deprivation states on hypoxia tolerance. We therefore investigated the metabolic responses of the Atlantic rock crab, Cancer irroratus (starved 28-35 days, fasted 3-5 days and recently fed). Starved-crab exhibited the lowest critical oxygen saturation (Scrit), while fed-crab had the highest Scrit. The fed-crab maintained an elevated postprandial oxygen consumption (MO2) even below the Scrit of fasted-crab indicating reserved aerobic scopes for critical activities in severe hypoxia. Following feeding, hypoxia (50% and 20% oxygen saturation, SO2) retarded the specific dynamic action resulting in lower peak MO2 and longer duration. The starved-crab exhibited a lower peak MO2, prolonged duration and higher energy expenditure than fasted-crab after feeding. The decline in arterial PO2 was most pronounced below the Scrit for both fasted- and starved-crab. The higher hemocyanin concentration ([Hc]) of fasted-crab (than starved-crab) suggested they had improved oxygen transport capacity, but hypoxia did not increase [Hc] during the 72-h experiment. Following feeding, the fasted-crab significantly increased L-lactate concentration ([L-lactate]) in 20% SO2, which was not observed in starved-crab. These results suggest starvation may trigger a cross-tolerance to hypoxia. Because crabs can undergo long periods of food deprivation in their natural environment, future studies should consider how this may affect their ability to deal with environmental perturbations.
Collapse
|
2
|
Cook AP, Nusbaum MP. Feeding state-dependent modulation of feeding-related motor patterns. J Neurophysiol 2021; 126:1903-1924. [PMID: 34669505 PMCID: PMC8715047 DOI: 10.1152/jn.00387.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing) and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1 h, or 2 h after feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1-h time-point (i.e., reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested that the fed hemolymph also enhanced the influence of a projection neuron that innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.NEW & NOTEWORTHY Little is known about behavior-linked modulation of microcircuit activity. We show that the VCN-triggered gastric mill (chewing) and pyloric (food filtering) rhythms in the isolated crab Cancer borealis stomatogastric nervous system were changed by applying hemolymph from recently fed but not unfed crabs. This included some distinct parameter changes during each examined post-fed hemolymph time-point. These results suggest the presence of feeding-related changes in circulating hormones that regulate consummatory microcircuit activity.
Collapse
Affiliation(s)
- Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Li X, Han T, Zheng S, Wu G. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:169-198. [PMID: 33770407 DOI: 10.1007/978-3-030-54462-1_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Crustaceans (e.g., shrimp and crabs) are a good source of protein-rich foods for human consumption. They are the second largest aquaculture species worldwide. Understanding the digestion of dietary protein, as well as the absorption, metabolism and functions of amino acids (AAs) and small peptides is essential to produce cost-effective and sustainable aquafeeds. Hepatopancreas (the midgut gland) is the main site for the digestion of dietary protein as well as the absorption of small peptides and AAs into the hemolymph. Besides serving as the building blocks of protein, AAs (particularly aspartate, glutamate, glutamine and alanine) are the primary metabolic fuels for the gut and extra-hepatopancreas tissues (e.g., kidneys and skeletal muscle) of crustaceans. In addition, AAs are precursors for the syntheses of glucose, lipids, H2S, and low-molecular-weight molecules (e.g., nitric oxide, glutathione, polyamines, histamine, and hormones) with enormous biological importance, such as physical barrier, immunological and antioxidant defenses. Therefore, both nutritionally essential and nonessential AAs are needed in diets to improve the growth, development, molt rate, survival, and reproduction of crustaceans. There are technical difficulties and challenges in the use of crystalline AAs for research and practical production due to the loss of free AAs during feed processing, the leaching of in-feed free AAs to the surrounding water environment, and asynchronous absorption with peptide-bounded AAs. At present, much knowledge about AA metabolism and functions in crustaceans is based on studies of mammals and fish species. Basic research in this area is necessary to lay a solid foundation for improving the balances and bioavailability of AAs in the diets for optimum growth, health and wellbeing of crustaceans, while preventing and treating their metabolic diseases. This review highlights recent advances in AA nutrition and metabolism in aquatic crustacean species at their different life stages. The new knowledge is expected to guide the development of the next generation of their improved diets.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Tao Han
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shixuan Zheng
- Guangdong Yuehai Feeds Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Wang S, Fitzgibbon QP, Carter CG, Smith GG. Effect of protein synthesis inhibitor cycloheximide on starvation, fasting and feeding oxygen consumption in juvenile spiny lobster Sagmariasus verreauxi. J Comp Physiol B 2019; 189:351-365. [PMID: 31101978 DOI: 10.1007/s00360-019-01221-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/01/2022]
Abstract
Metabolism in aquatic ectotherms evaluated by oxygen consumption rates reflects energetic costs including those associated with protein synthesis. Metabolism is influenced by nutritional status governed by feeding, nutrient intake and quality, and time without food. However, little is understood about contribution of protein synthesis to crustacean energy metabolism. This study is the first using a protein synthesis inhibitor cycloheximide to research contribution of cycloheximide-sensitive protein synthesis to decapod crustacean metabolism. Juvenile Sagmariasus verreauxi were subject to five treatments: 2-day fasted lobsters sham injected with saline; 2-day fasted lobsters injected with cycloheximide; 10-day starved lobsters injected with cycloheximide; post-prandial lobsters fed with squid Nototodarus sloanii with no further treatment; and post-prandial lobsters injected with cycloheximide. Standard and routine metabolic rates in starved lobsters were reduced by 32% and 41%, respectively, compared to fasted lobsters, demonstrating metabolic downregulation with starvation. Oxygen consumption rates of fasted and starved lobsters following cycloheximide injection were reduced by 29% and 13%, respectively, demonstrating protein synthesis represents only a minor component of energy metabolism in unfed lobsters. Oxygen consumption rate of fed lobsters was reduced by 96% following cycloheximide injection, demonstrating protein synthesis in decapods contributes a major proportion of specific dynamic action (SDA). SDA in decapods is predominantly a post-absorptive process likely related to somatic growth. This work extends previously limited knowledge on contribution of protein synthesis to crustacean metabolism, which is crucial to explore the relationship between nutritional status and diet quality and how this will affect growth potential in aquaculture species.
Collapse
Affiliation(s)
- Shuangyao Wang
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Chris G Carter
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia
| |
Collapse
|
5
|
Glover CN, Weinrauch AM, Bynevelt S, Bucking C. Feeding in Eptatretus cirrhatus: effects on metabolism, gut structure and digestive processes, and the influence of post-prandial dissolved oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:52-59. [DOI: 10.1016/j.cbpa.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
|
6
|
Wang Y, Hu M, Wu F, Storch D, Pörtner HO. Elevated pCO 2 Affects Feeding Behavior and Acute Physiological Response of the Brown Crab Cancer pagurus. Front Physiol 2018; 9:1164. [PMID: 30246790 PMCID: PMC6110915 DOI: 10.3389/fphys.2018.01164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/03/2018] [Indexed: 11/25/2022] Open
Abstract
Anthropogenic climate change exposes marine organisms to CO2 induced ocean acidification (OA). Marine animals may make physiological and behavioral adaptations to cope with OA. Elevated pCO2 may affect metabolism, feeding, and energy partition of marine crabs, and thereby affect their predator-prey dynamics with mussels. Therefore, we examined the effects of simulated future elevated pCO2 on feeding behavior and energy metabolism of the brown crab Cancer pagurus. Following 54 days of pre-acclimation to control CO2 levels (360 μatm) at 11°C, crabs were exposed to consecutively increased oceanic CO2 levels (2 weeks for 1200 and 2300 μatm, respectively) and subsequently returned to control CO2 level (390 μatm) for 2 weeks in order to study their potential to acclimate elevated pCO2 and recovery performance. Standard metabolic rate (SMR), specific dynamic action (SDA) and feeding behavior of the crabs were investigated during each experimental period. Compared to the initial control CO2 conditions, the SMRs of CO2 exposed crabs were not significantly increased, but increased significantly when the crabs were returned to normal CO2 levels. Conversely, SDA was significantly reduced under high CO2 and did not return to control levels during recovery. Under high CO2, crabs fed on smaller sized mussels than under control CO2; food consumption rates were reduced; foraging parameters such as searching time, time to break the prey, eating time, and handling time were all significantly longer than under control CO2, and prey profitability was significantly lower than that under control conditions. Again, a two-week recovery period was not sufficient for feeding behavior to return to control values. PCA results revealed a positive relationship between feeding/SDA and pH, but negative relationships between the length of foraging periods and pH. In conclusion, elevated pCO2 caused crab metabolic rate to increase at the expense of SDA. Elevated pCO2 affected feeding performance negatively and prolonged foraging periods. These results are discussed in the context of how elevated pCO2 may impair the competitiveness of brown crabs in benthic communities.
Collapse
Affiliation(s)
- Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Fangli Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Daniela Storch
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
7
|
McGaw IJ, Van Leeuwen TE. Metabolic costs of the mechanical components of the apparent specific dynamic action in the Dungeness crab, Cancer magister. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:22-27. [PMID: 28552705 DOI: 10.1016/j.cbpa.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
Abstract
The specific dynamic action (SDA) describes the postprandial increase in metabolism. It is a composite of mechanical and chemical digestion, nutrient transport and protein synthesis. How these individual events contribute to the overall SDA has not been worked out fully for any organism. The mechanical events associated with the SDA were investigated in Dungeness crabs, Cancer magister. Following consumption of a meal, oxygen consumption (MO2) remained elevated for several hours. When the crabs were presented with fish scent there was a 2 fold increase in MO2, which rapidly decreased once the stimulus was removed. Crabs were then offered fish in a perforated tube. There was a rapid increase in MO2 associated with handling which returned to pre-treatment levels within an hour of removal of the tube. Finally the crabs were fed a piece of foam that had been soaked in fish water to determine the costs of mechanical digestion. The mechanical breakdown of the meal accounted for 29.9±3.3% of the overall SDA. Since food handling produced a large increase in MO2, it was reinvestigated using crabs that had one or both claws removed. Although there were no statistically significant differences as a function of claw removal there was a consistent trend in the data. The maximum MO2, scope, duration and SDA increased from animals with 0 claws through 1 claw to 2 claws. The results showed that the mechanical portion of the SDA can account for a significant portion of the overall budget in decapod crustaceans.
Collapse
Affiliation(s)
- Iain J McGaw
- Department of Ocean Sciences, 0 Marine Lab Road, Memorial University, St John's, NL A1C 5S7, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | | |
Collapse
|
8
|
Penney CM, Patton RL, Whiteley NM, Driedzic WR, McGaw IJ. Physiological responses to digestion in low salinity in the crabs Carcinus maenas and Cancer irroratus. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:127-139. [DOI: 10.1016/j.cbpa.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022]
|
9
|
Leiva FP, Urbina MA, Cumillaf JP, Gebauer P, Paschke K. Physiological responses of the ghost shrimp Neotrypaea uncinata (Milne Edwards 1837) (Decapoda: Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2015. [PMID: 26212148 DOI: 10.1016/j.cbpa.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypoxia is a common and widespread phenomenon in aquatic ecosystems, imposing a significant challenge for the animals that inhabit such waters. In different habitats, however, the characteristics of these hypoxic events may differ, therefore imposing different challenges. We investigated the tolerance of adult ghost shrimp Neotrypaea uncinata (an intertidal mudflat dweller) to different partial pressures of oxygen (pO2), severe hypoxia (2 kPa) and recovery from hypoxia after different exposure times, mimicking the natural tidal cycle (6 h and 12 h). We calculated critical oxygen tension and categorize the adult ghost shrimps as oxyregulators (R value=75.27%). All physiological measurements (metabolic rate, oxyhemocyanin, hemolymph protein and lactate concentrations) were affected by exposure to low partial pressures of oxygen, but most of them recovered (with exception of metabolic rate) control values (21 kPa) after 6h under normoxic conditions. Low metabolic rate, high release of hemolymphatic proteins and anaerobic metabolism are suggested as response mechanisms to overcome hypoxic events during low tide.
Collapse
Affiliation(s)
- Félix P Leiva
- Instituto de Acuicultura, Universidad Austral de Chile, P.O. Box 1327, Puerto Montt, Chile; Centro de Investigación i~mar, Universidad de Los Lagos, Puerto Montt, Chile.
| | - Mauricio A Urbina
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - Juan Pablo Cumillaf
- Instituto de Acuicultura, Universidad Austral de Chile, P.O. Box 1327, Puerto Montt, Chile.
| | - Paulina Gebauer
- Centro de Investigación i~mar, Universidad de Los Lagos, Puerto Montt, Chile.
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, P.O. Box 1327, Puerto Montt, Chile.
| |
Collapse
|
10
|
Kniffin CD, Burnett LE, Burnett KG. Recovery from hypoxia and hypercapnic hypoxia: impacts on the transcription of key antioxidants in the shrimp Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2014; 170:43-9. [PMID: 24509063 DOI: 10.1016/j.cbpb.2014.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Estuarine waters are prone to regular bouts of low oxygen (hypoxia) and high carbon dioxide (hypercapnia). In vertebrates, tissue hypoxia followed by reoxygenation can generate high levels of reactive oxygen species (ROS) that exceed cellular antioxidant capacity, leading to tissue damage. Here we quantified the expression of several antioxidant genes in the hepatopancreas of Pacific whiteleg shrimp, Litopenaeus vannamei, after exposure to hypoxia or hypercapnic hypoxia for 4h or 24h followed by recovery in air-saturated water (normoxia) for 0, 1, 6 or 24h, as compared to time-matched controls maintained only in normoxia. Transcripts of cytoplasmic Mn-superoxide dismutase (cMnSOD), glutathione peroxidase (GPX) and peptide-methionine (R)-S-oxide reductase (MsrB) increased after 4h exposure to either hypoxia or hypercapnic hypoxia; these elevated transcript levels persisted longer in animals recovering from hypercapnic hypoxia than hypoxia alone. cMnSOD transcripts generally increased, but GPX, MsrB, glutathione-S-transferase (GST), and thioredoxin 1 (TRX-1) decreased or did not change in most long-term (24h) treatment-recovery groups. Thus, the transcriptional responses of several antioxidant genes during recovery from tidally-driven hypoxia and hypercapnic hypoxia decrease or are muted by more persistent exposure to these conditions, leaving L. vannamei potentially vulnerable to ROS damage during recovery.
Collapse
Affiliation(s)
- Casey D Kniffin
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA
| | - Louis E Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA
| | - Karen G Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA.
| |
Collapse
|
11
|
Curtis DL, van Breukelen F, McGaw IJ. Extracellular digestion during hyposaline exposure in the Dungeness crab, Cancer magister, and the blue crab, Callinectes sapidus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:564-70. [DOI: 10.1016/j.cbpa.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
|
12
|
Hardy KM, Burnett KG, Burnett LE. Effect of hypercapnic hypoxia and bacterial infection (Vibrio campbellii) on protein synthesis rates in the Pacific whiteleg shrimp,Litopenaeus vannamei. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1356-66. [DOI: 10.1152/ajpregu.00519.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estuarine species frequently encounter areas of simultaneously low dissolved O2(hypoxia) and high CO2(hypercapnia). Organisms exposed to hypoxia experience a metabolic depression that serves to decrease ATP utilization and O2demand during stress. This downregulation is typically facilitated by a reduction in protein synthesis, a process that can be responsible for up to 60% of basal metabolism. The added effects of hypercapnia, however, are unclear. Certain decapods also exhibit a metabolic depression in response to bacterial challenges, leading us to hypothesize that protein synthesis may also be reduced during infection. In the present study, we examined the effects of hypoxia (H), hypercapnic hypoxia (HH), and bacterial infection ( Vibrio campbellii) on tissue-specific (muscle and hepatopancreas) fractional protein synthesis rates ( ks) in Litopenaeus vannamei. We observed a significant decrease in ksin muscle after 24 h exposure to both H and HH, and in hepatopancreas after 24 h exposure to HH. Thus ksis responsive to changes in O2, and the combined effect of hypercapnic hypoxia on ksis more severe than hypoxia alone. These reductions in ksappear to be driven by changes in RNA translational efficiency ( kRNA), and not RNA capacity ( Cs). Bacterial infection, however, had no significant effect on ksin either tissue. These results suggest that crustaceans reduce metabolic demand during environmental hypoxia by reducing global protein synthesis, and that this effect is magnified when hypercapnia is concomitantly present. Conversely, an immune-mediated metabolic depression is not associated with a decrease in overall protein production.
Collapse
Affiliation(s)
- Kristin M. Hardy
- Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California
- Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina; and
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
| | - Karen G. Burnett
- Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina; and
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
| | - Louis E. Burnett
- Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina; and
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
| |
Collapse
|
13
|
McGaw IJ, Curtis DL. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:414-25. [DOI: 10.1016/j.cbpa.2013.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/17/2022]
|
14
|
Rathburn CK, Sharp NJ, Ryan JC, Neely MG, Cook M, Chapman RW, Burnett LE, Burnett KG. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol Genomics 2013; 45:794-807. [DOI: 10.1152/physiolgenomics.00043.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Estuarine crustaceans are often exposed to low dissolved O2 (hypoxia) accompanied by elevated CO2 (hypercapnia), which lowers water pH. Acclimatory responses to hypoxia have been widely characterized; responses to hypercapnia in combination with hypoxia (hypercapnic hypoxia) are less well known. Here we used oligonucleotide microarrays to characterize changes in global gene expression in the hepatopancreas of Pacific whiteleg shrimp, Litopenaeus vannamei, exposed to hypoxia or hypercapnic hypoxia for 4 or 24 h, compared with time-matched animals held in air-saturated water (normoxia). Unigenes whose expressions were significantly impacted by treatment and/or time were used to build artificial neural networks (ANNs) to identify genes with the greatest sensitivity in pairwise discriminations between treatments at each time point and between times for each treatment. ANN gene sets that discriminated hypoxia or hypercapnic hypoxia from normoxia shared functions of translation, mitochondrial energetics, and cellular defense. GO terms protein modification/phosphorylation/cellular protein metabolism and RNA processing/apoptosis/cell cycling occurred at highest frequency in discriminating hypercapnic hypoxia from hypoxia at 4 and 24 h, respectively. For 75.4% of the annotated ANN genes, exposure to hypercapnic hypoxia for 24 h reduced or reversed the transcriptional response to hypoxia alone. These results suggest that high CO2/low pH may interfere with transcriptionally based acclimation to hypoxia or elicit physiological or biochemical responses that relieve internal hypoxia. Whether these data reflect resilience or sensitivity of L. vannamei in the face of expanding hypoxic zones and rising levels of atmospheric CO2 may be important to understanding the survival of this and other estuarine species.
Collapse
Affiliation(s)
- Charles K. Rathburn
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
| | - Natasha J. Sharp
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
| | - James C. Ryan
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
| | - Marion G. Neely
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
- National Ocean Service, National Oceanic and Atmospheric Administration Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Matthew Cook
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
| | - Robert W. Chapman
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, South Carolina
| | - Louis E. Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
| | - Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, South Carolina
- Center of Excellence in Oceans and Human Health, Hollings Marine Laboratory, Charleston, South Carolina
| |
Collapse
|
15
|
McGaw IJ, Curtis DL. A review of gastric processing in decapod crustaceans. J Comp Physiol B 2012; 183:443-65. [DOI: 10.1007/s00360-012-0730-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
16
|
Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Modulation of network pacemaker neurons by oxygen at the anaerobic threshold. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:511-23. [PMID: 22526113 DOI: 10.1007/s00359-012-0725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Previous in vitro and in vivo studies showed that the frequency of rhythmic pyloric network activity in the lobster is modulated directly by oxygen partial pressure (PO(2)). We have extended these results by (1) increasing the period of exposure to low PO(2) and by (2) testing the sensitivity of the pyloric network to changes in PO(2) that are within the narrow range normally experienced by the lobster (1 to 6 kPa). We found that the pyloric network rhythm was indeed altered by changes in PO(2) within the range typically observed in vivo. Furthermore, a previous study showed that the lateral pyloric constrictor motor neuron (LP) contributes to the O(2) sensitivity of the pyloric network. Here, we expanded on this idea by testing the hypothesis that pyloric pacemaker neurons also contribute to pyloric O(2) sensitivity. A 2-h exposure to 1 kPa PO(2), which was twice the period used previously, decreased the frequency of an isolated group of pacemaker neurons, suggesting that changes in the rhythmogenic properties of these cells contribute to pyloric O(2) sensitivity during long-term near-anaerobic (anaerobic threshold, 0.7-1.2 kPa) conditions.
Collapse
|
18
|
Gorokhova E, Löf M, Halldórsson HP, Tjärnlund U, Lindström M, Elfwing T, Sundelin B. Single and combined effects of hypoxia and contaminated sediments on the amphipod Monoporeia affinis in laboratory toxicity bioassays based on multiple biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:263-274. [PMID: 20617547 DOI: 10.1016/j.aquatox.2010.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In estuaries, hypoxic conditions and pollution are among the major factors responsible for the declines in habitat quality, yet little is known about their combined effects on estuarine organisms. In this study, to investigate single and combined effects of hypoxia and contaminated sediment, the Baltic amphipod Monoporeia affinis was exposed for 5-9 days to four different combinations of oxygen conditions (moderate hypoxia vs. normoxia) and contamination (polluted vs. unpolluted sediments) at environmentally realistic levels. To detect oxidative stress, a suite of biomarkers was used - antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)], acetylcholinesterase (AChE), lipid peroxidation status (TBARS concentration), protein carbonyl content (PCC), and DNA strand breakage (DNA-SB). To assay effects at the organism level, we used RNA:DNA ratio as a proxy for growth and metabolic rate and mortality. There were significant increases in CAT and SOD activities and TBARS levels in response to both moderate hypoxia and contaminated sediment, while GST increased and AChE decreased in response to the contamination only. Significant positive correlations were observed among the antioxidant enzymes and between the enzyme activities and TBARS concentration, suggesting a complex response to the oxidative stress. No significant changes in PCC were recorded in any of the treatments. Furthermore, the negative effect of hypoxia on DNA integrity was significant; with frequency of DNA-SB increasing in animals exposed to hypoxia in contaminated sediment. Despite clear effect at the cellular and biochemical levels, no responses at the organism level were observed. Multivariate analyses of the dataset have allowed us to link exposure factors to individual biomarker responses. Of the potential biomarkers assessed in this study, CAT activity was found to be associated with hypoxia, while SOD, GST and AChE activities appear to predict best the effects of exposure to sediments containing several contaminants (e.g. heavy metals, PCBs and PAHs), and TBARS concentration is particularly indicative of combined effects of hypoxia and contamination. In addition to providing new knowledge on the combined effects of multiple stressors on estuarine organisms, the findings of the present study are also important to understand data from biomonitoring studies in the Baltic Sea and in other regions where multiple stress factors co-occur.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Systems Ecology, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
McGaw IJ, Curtis DL, Ede JD, Ong KJ, van Breukelen F, Goss GG. Physiological responses of postprandial red rock crabs (Cancer productus) during emersion. CAN J ZOOL 2009. [DOI: 10.1139/z09-106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological responses of unfed and postprandial red rock crabs ( Cancer productus J.W. Randal, 1840) were investigated during periods of emersion. During aerial exposure, oxygen uptake quickly fell to very low levels and was no longer detectable in the haemolymph after 12 h. The resulting anaerobic respiration led to a build up in lactic acid and the resulting acidosis was more pronounced in the postprandial crabs. There was also a concomitant rise in PCO2and CCO2, and in both cases these were higher in postprandial animals. Higher ammonia levels in postprandial crabs showed that cellular activities were still proceeding anaerobically, suggesting that although crabs can delay mechanical digestion during emersion, once intracellular digestion occurs they may be committed to these processes. Increased mortality rates of postprandial animals were probably due to a combination of the high lactate and CO2levels coupled with an increased ammonia concentration. For C. productus stranded in the intertidal zone there may be little effect of feeding, as they are only exposed for short periods and recovery occurs during re-immersion. The crabs are more likely to become moribund and death ensue during longer term exposure such as commercial live shipment.
Collapse
Affiliation(s)
- I. J. McGaw
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - D. L. Curtis
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - J. D. Ede
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - K. J. Ong
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - F. van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - G. G. Goss
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
20
|
Jimenez AG, Locke BR, Kinsey ST. The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. ACTA ACUST UNITED AC 2008; 211:3214-25. [PMID: 18840655 DOI: 10.1242/jeb.020677] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the influence of intracellular diffusion of O(2) and high-energy phosphate (HEP) molecules on the scaling with body mass of the post-exercise whole-animal rate of O(2) consumption (V(O(2))) and muscle arginine phosphate (AP) resynthesis rate, as well as muscle citrate synthase (CS) activity, in three groups of tail-flipping crustaceans. Two size classes in each of three taxa (Palaemonetes pugio, Penaeus spp. and Panulirus argus) were examined that together encompassed a 27,000-fold range in mean body mass. In all species, muscle fiber size increased with body mass and ranged in diameter from 70+/-1.5 to 210+/-8.8 microm. Thus, intracellular diffusive path lengths for O(2) and HEP molecules were greater in larger animals. The body mass scaling exponent, b, for post-tail flipping V(O(2)) (b=-0.21) was not similar to that for the initial rate of AP resynthesis (b=-0.12), which in turn was different from that of CS activity (b=0.09). We developed a mathematical reaction-diffusion model that allowed an examination of the influence of O(2) and HEP diffusion on the observed rate of aerobic flux in muscle. These analyses revealed that diffusion limitation was minimal under most conditions, suggesting that diffusion might act on the evolution of fiber design but usually does not directly limit aerobic flux. However, both within and between species, fibers were more diffusion limited as they grew larger, particularly when hemolymph P(O(2)) was low, which might explain some of the divergence in the scaling exponents of muscle aerobic capacity and muscle aerobic flux.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403-5915, USA.
| | | | | |
Collapse
|
21
|
Gastric processing in the Dungeness crab, Cancer magister, during hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:458-63. [DOI: 10.1016/j.cbpa.2008.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022]
|
22
|
Secor SM. Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 2008; 179:1-56. [PMID: 18597096 DOI: 10.1007/s00360-008-0283-7] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
Abstract
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| |
Collapse
|
23
|
McGaw IJ. The interactive effects of exercise and feeding on oxygen uptake, activity levels, and gastric processing in the graceful crab Cancer gracilis. Physiol Biochem Zool 2007; 80:335-43. [PMID: 17390289 DOI: 10.1086/513083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2007] [Indexed: 11/04/2022]
Abstract
Exercise and digestive processes are known to elevate the metabolic rate of organisms independently. In this study, the effects of simultaneous exercise and digestion were examined in the graceful crab Cancer gracilis. This species exhibited resting oxygen uptake levels between 29 and 42 mg O(2) kg(-1) h(-1). In postprandial crabs, oxygen uptake was approximately double that of unfed crabs. During exercise, oxygen uptake increased three- to fourfold, reaching maximal levels of more than 130 mg O(2) kg(-1 ) h(-1). However, there was no difference in oxygen uptake during activity between unfed and postprandial animals. There was also no difference in exercise endurance levels between unfed and postprandial animals; both sets of animals were unable to right themselves after being turned on their backs, reaching exhaustion after 13-15 attempts. To determine whether increased activity affected gastric processes, the passage of a meal through the digestive system was followed using a fluoroscope. Passage of digesta through the gut system was slower in active animals than in resting crabs. Resting crabs cleared the foregut after approximately 18 h, which was significantly faster than the 34.5 h for constantly active animals. Likewise, the midgut region of resting animals was cleared at a faster rate than that of active animals. Because of residual amounts of digesta remaining in the hindgut, no difference in clearance rates of this section of the gut was evident. The slower clearance times of the foregut were due to a significantly slower rate of mastication of food, as evidenced by a lower cardiac stomach contraction rate. Contraction of the pyloric region of the foregut functions to move the digesta along the midgut, and there was a direct correlation between slower contraction rates of this region and the increased time of passage for digesta through the midgut of active animals. Because increased activity levels affected gastric processing, the crabs exhibited a behavioral response. During a 24-h period after feeding, there was a significant reduction in locomotor activity. The findings of this study suggest a prioritization of metabolic responses toward activity at the expense of digestion. This is discussed in relation to the ability of the crabs to balance the demands of competing physiological systems.
Collapse
Affiliation(s)
- Iain J McGaw
- School of Life Sciences, University of Nevada-Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004, USA.
| |
Collapse
|
24
|
Jordan AD, Steffensen JF. Effects of ration size and hypoxia on specific dynamic action in the cod. Physiol Biochem Zool 2007; 80:178-85. [PMID: 17252514 DOI: 10.1086/510565] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2006] [Indexed: 11/04/2022]
Abstract
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities.
Collapse
Affiliation(s)
- Anders D Jordan
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingor, Denmark.
| | | |
Collapse
|
25
|
McGaw IJ. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis. I. Cardiovascular and respiratory responses. ACTA ACUST UNITED AC 2006; 209:3766-76. [PMID: 16985193 DOI: 10.1242/jeb.02441] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The osmoregulatory physiology of decapod crustaceans has received extensive attention. Within this field there is a growing body of literature on cardiovascular and respiratory responses to low salinity. Most species exhibit a tachycardia coupled with an increase in ventilation rate and oxygen uptake. However, these previous experiments were conducted on animals that were starved prior to experimentation in order to avoid increases in metabolism associated with digestive processes. Because organisms are not necessarily starved prior to experiencing environmental perturbations, results from previous experiments may not represent natural physiological responses. The present study investigated how an osmoconforming decapod, the graceful crab Cancer gracilis, balanced the demands of physiological systems (prioritization or additivity of events) during feeding and digestion in a low salinity environment. Cancer gracilis exhibited a typical increase in oxygen uptake and less pronounced increases in cardiovascular variables (heart rate, stroke volume, cardiac output) during feeding in 100% seawater. In 3-day starved crabs, exposure to 65% seawater resulted in a pronounced bradycardia, with a concomitant decrease in cardiac output and haemolymph flow rates and a temporary decrease in oxygen uptake. When crabs were exposed to low salinity, 3 h and 24 h after food ingestion, heart rate increased slightly and cardiac output and ventilation rates remained stable. Although oxygen uptake decreased transiently, feeding levels were quickly regained. During a recovery phase in 100%SW there was an overshoot in parameters, suggesting repayment of an oxygen debt. Thus, it appears that feeding and digestion are prioritized in this species, allowing it to survive acute exposure to hyposaline water. Furthermore, the results show that the nutritional state of an animal is important in modulating its physiological responses to environmental perturbations. This underscores the importance of studying physiological responses at the whole organism level under conditions closely approximating those of the natural environment.
Collapse
Affiliation(s)
- Iain J McGaw
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA.
| |
Collapse
|
26
|
McGaw IJ. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis II. Gastric evacuation and motility. J Exp Biol 2006; 209:3777-85. [PMID: 16985194 DOI: 10.1242/jeb.02442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Gastric evacuation and gut contraction rates were followed in the graceful crab Cancer gracilis during exposure to low salinity. Crabs were fed a radio-opaque meal and then exposed to 100% seawater (SW), 80%SW or 60%SW;passage of digesta was followed using a fluoroscope. Exposure to low salinity increased the time for food passage through the gut system. Times for emptying of the foregut, midgut and hindgut varied in a dose-dependent manner. In the lowest salinity, crabs regurgitated food from the foregut after approximately 6 h. This may act as a protective response, clearing the gut and avoiding subsequent increases in metabolism associated with digestion. Contraction rate of the cardiac stomach and gastric mill was sporadic and there was no significant change with salinity. In contrast, contractions of the pyloric region were more constant and rapid. Pyloric contractions decreased at each salinity within 2-4 h after feeding. Contraction rates of the pyloric chamber were significantly lower in 60%SW compared with 100%SW and 80%SW. During a salinity cycle there was also slowing of gut contractions and food passage through the gut system. Pre-treatment levels were only regained slowly when the animals were returned to 100%SW. Cancer gracilis was able to slow digestion during low salinity exposure, which may spare resources for other systems. However, the crabs could not halt digestion completely and may be committed to protein synthesis once intracellular digestion has begun.
Collapse
Affiliation(s)
- Iain J McGaw
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA.
| |
Collapse
|
27
|
McGaw IJ. Prioritization or Summation of Events? Cardiovascular Physiology of Postprandial Dungeness Crabs in Low Salinity. Physiol Biochem Zool 2006; 79:169-77. [PMID: 16380938 DOI: 10.1086/498353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2005] [Indexed: 11/03/2022]
Abstract
Decapod crustaceans commonly forage in estuarine environments. The osmoregulatory mechanisms that allow them to cope with periodic episodes of low salinity have been well documented. There is less information on how ventilatory and cardiovascular mechanisms aid survival in low salinity. Prior experiments have shown that most species exhibit a tachycardia coupled with an increase in ventilation rate and oxygen uptake. However, these previous experiments were conducted on animals that were starved before experimentation in order to avoid increases in metabolism associated with digestive processes. This study investigated how the Dungeness crab Cancer magister balances the demands of physiological systems during feeding and digestion in low salinity. Cardiac and ventilatory parameters increased during feeding. When the crabs were subjected to low salinity after feeding, heart rate increased in 25% seawater (SW) but decreased in 50% SW. Instead of an expected increase in ventilation rate during low-salinity exposure, there was a decrease. Feeding was associated with an increase in sternal artery flow, with subsequent decreases in flows through the sternal and anterolateral arteries in low salinity. When low salinity was administered first, a tachycardia occurred, coupled with decreased stroke volume and cardiac output. There was also an increase in ventilation rate. When crabs were fed in low salinity, heart rate decreased in 50% SW but was maintained in 25% SW. Ventilation rate decreased when crabs fed in 50% and 25% SW. Flow through the sternal artery and anterolateral arteries decreased in low salinity, and except for transient increases while feeding, there were further decreases during digestion. Cardiac and ventilatory parameters were rapidly regained when control conditions were restored. The results suggest that events during low salinity are prioritized. Nevertheless, these alterations in physiological parameters may not be beneficial; although digestive processes did not affect osmoregulatory ability, postprandial crabs did not survive as long as starved crabs in 25% SW. The results show that the digestive state of an animal is important in modulating its physiological responses to environmental perturbations, underscoring the importance of an integrative approach to studying physiological responses at the organismal level.
Collapse
Affiliation(s)
- Iain J McGaw
- Department of Biological Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4004, USA.
| |
Collapse
|
28
|
McGaw IJ. Does feeding limit cardiovascular modulation in the Dungeness crabCancer magisterduring hypoxia? J Exp Biol 2005; 208:83-91. [PMID: 15601880 DOI: 10.1242/jeb.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDecapod crustaceans inhabit aquatic environments that are frequently subjected to changes in oxygen content. The physiological mechanisms that allow them to cope with periodic episodes of hypoxia have been well documented. Most crustaceans exhibit a bradycardia coupled with diversion of haemolymph from digestive organs towards ventral structures. However, all these experiments were conducted on animals that were starved prior to experimentation in order to avoid increases in metabolism associated with digestive processes. The present study sought to determine how the Dungeness crab Cancer magister balances the demands of physiological systems when they feed and digest in hypoxia. Cardiac parameters and haemolymph flow rates through each arterial system exiting the heart were measured using a pulsed-Doppler flowmeter. Scaphognathite beat frequency (ventilation rate) was calculated by recording changes in pressure in the branchial chamber. There was an increase in both cardiac and ventilatory parameters following feeding. Digestive processes were facilitated by an increase in haemolymph flow rates through the anterior aorta, hepatic arteries and sternal artery. Cancer magister showed a typical bradycardia during hypoxia (3.2 kPa). However,food intake caused a significant reduction in this response. Likewise,ventilation rate also showed effects of addivity, increasing in response to both food intake and hypoxia. Digestion during hypoxia was associated with a decrease in both stroke volume and cardiac output. Blood was diverted away from digestive structures, suggesting that blood flow events are prioritized during hypoxia. The changes in haemolymph flow rates paralleled those in previous reports on reductions in protein synthesis in the hepatopancreas during hypoxia. Haemolymph flow rates through the anterior aorta did not change; thus the blood supply to the supraoesophageal ganglion was maintained during feeding in hypoxia. The results show that the nutritional state of an animal is important in modulating its physiological responses to environmental perturbations. This underscores the importance of an integrative approach,studying physiological responses at the organismal level.
Collapse
Affiliation(s)
- Iain J McGaw
- Department of Biological Sciences, UNLV, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, USA.
| |
Collapse
|