1
|
Lymperopoulos A, Stoicovy RA. RGS Proteins in Sympathetic Nervous System Regulation: Focus on Adrenal RGS4. FRONT BIOSCI-LANDMRK 2024; 29:355. [PMID: 39473413 DOI: 10.31083/j.fbl2910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
The sympathetic nervous system (SNS) consists largely of two different types of components: neurons that release the neurotransmitter norepinephrine (NE, noradrenaline) to modulate homeostasis of the innevrvated effector organ or tissue and adrenal chromaffin cells, which synthesize and secrete the hormone epinephrine (Epi, adrenaline) and some NE into the blood circulation to act at distant organs and tissues that are not directly innervated by the SNS. Like almost every physiological process in the human body, G protein-coupled receptors (GPCRs) tightly modulate both NE release from sympathetic neuronal terminals and catecholamine (CA) secretion from the adrenal medulla. Regulator of G protein Signaling (RGS) proteins, acting as guanosine triphosphatase (GTPase)-activating proteins (GAPs) for the Gα subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins), play a central role in silencing G protein signaling from a plethora of GPCRs. Certain RGS proteins and, in particular, RGS4, have been implicated in regulation of SNS activity and of adrenal chromaffin cell CA secretion. More specifically, recent studies have implicated RGS4 in regulation of NE release from cardiac sympathetic neurons by means of terminating free fatty acid receptor (FFAR)-3 calcium signaling and in regulation of NE and Epi secretion from the adrenal medulla by means of terminating cholinergic calcium signaling in adrenal chromaffin cells. Thus, in this review, we provide an overview of the current literature on the involvement of RGS proteins, with a particular focus on RGS4, in these two processes, i.e., NE release from sympathetic nerve terminals & CA secretion from adrenal chromaffin cells. We also highlight the therapeutic potential of RGS4 pharmacological manipulation for diseases characterized by sympathetic dysfunction or SNS hyperactivity, such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
2
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Deng Y, Dickey JE, Saito K, Deng G, Singh U, Jiang J, Toth BA, Zhu Z, Zingman LV, Resch JM, Grobe JL, Cui H. Elucidating the role of Rgs2 expression in the PVN for metabolic homeostasis in mice. Mol Metab 2022; 66:101622. [PMID: 36307046 PMCID: PMC9638802 DOI: 10.1016/j.molmet.2022.101622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
4
|
Wenker IC, Blizzard EA, Wagley PK, Patel MK. Peri-Ictal Autonomic Control of Cardiac Function and Seizure-Induced Death. Front Neurosci 2022; 15:795145. [PMID: 35126041 PMCID: PMC8813980 DOI: 10.3389/fnins.2021.795145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8–17% of patients with epilepsy. Although the mechanisms of SUDEP are unknown, one proposed mechanism is abnormal control of the heart by the autonomic nervous system (ANS). Our objective was to determine whether the broad changes in ictal heart rate experienced by mouse models of SUDEP are (1) due to the ANS and (2) contribute to seizure-induced death. Seizures were induced by electrical stimulation of the hippocampus of a mouse carrying the human SCN8A encephalopathy mutation p.Asn1768Asp (N1768D; “D/+ mice”). Using standard autonomic pharmacology, the relative roles of the parasympathetic and sympathetic nervous systems on heart rate changes associated with seizures were determined. All induced seizures had pronounced ictal bradycardia and postictal tachycardia. Seizure susceptibility or severity were unchanged by the pharmacological agents. Administration of Atropine, a muscarinic antagonist, eliminated ictal bradycardia, while carbachol, a muscarinic agonist, had no effect on ictal bradycardia, but reduced postictal tachycardia. Sotalol, an adrenergic β-receptor antagonist, had no effect on ictal bradycardia, but did suppress postictal tachycardia. Isoproterenol, a β-receptor agonist, had no effect on either ictal bradycardia or postictal tachycardia. Administration of the α1-receptor antagonist prazosin increases the incidence of seizure-induced death in D/+ mice. Although postictal heart rate was lower for these fatal seizures in the presence of prazosin, rates were not as low as that recorded for carbachol treated mice, which all survived. Both ictal bradycardia and postictal tachycardia are manifestations of the ANS. Bradycardia is mediated by a maximal activation of the parasympathetic arm of the ANS, and tachycardia is mediated by parasympathetic inactivation and sympathetic activation. While the changes in heart rate during seizures are profound, suppression of postictal heart rate did not increase seizure mortality.
Collapse
|
5
|
Mouat MA, Jackson KL, Coleman JLJ, Paterson MR, Graham RM, Head GA, Smith NJ. Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner. Front Pharmacol 2021; 11:600266. [PMID: 33633567 PMCID: PMC7901490 DOI: 10.3389/fphar.2020.600266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
GPR37L1 is a family A orphan G protein-coupled receptor (GPCR) with a putative role in blood pressure regulation and cardioprotection. In mice, genetic ablation of Gpr37l1 causes sex-dependent effects; female mice lacking Gpr37l1 (GPR37L1-/-) have a modest but significant elevation in blood pressure, while male GPR37L1-/- mice are more susceptible to cardiovascular dysfunction following angiotensin II-induced hypertension. Given that this receptor is highly expressed in the brain, we hypothesize that the cardiovascular phenotype of GPR37L1-/- mice is due to changes in autonomic regulation of blood pressure and heart rate. To investigate this, radiotelemetry was employed to characterize baseline cardiovascular variables in GPR37L1-/- mice of both sexes compared to wildtype controls, followed by power spectral analysis to quantify short-term fluctuations in blood pressure and heart rate attributable to alterations in autonomic homeostatic mechanisms. Additionally, pharmacological ganglionic blockade was performed to determine vasomotor tone, and environmental stress tests were used to assess whether cardiovascular reactivity was altered in GPR37L1-/- mice. We observed that mean arterial pressure was significantly lower in female GPR37L1-/- mice compared to wildtype counterparts, but was unchanged in male GPR37L1-/- mice. GPR37L1-/- genotype had a statistically significant positive chronotropic effect on heart rate across both sexes when analyzed by two-way ANOVA. Power spectral analysis of these data revealed a reduction in power in the heart rate spectrum between 0.5 and 3 Hz in female GPR37L1-/- mice during the diurnal active period, which indicates that GPR37L1-/- mice may have impaired cardiac vagal drive. GPR37L1-/- mice of both sexes also exhibited attenuated depressor responses to ganglionic blockade with pentolinium, indicating that GPR37L1 is involved in maintaining sympathetic vasomotor tone. Interestingly, when these mice were subjected to aversive and appetitive behavioral stressors, the female GPR37L1-/- mice exhibited an attenuation of cardiovascular reactivity to aversive, but not appetitive, environmental stimuli. Together, these results suggest that loss of GPR37L1 affects autonomic maintenance of blood pressure, giving rise to sex-specific cardiovascular changes in GPR37L1-/- mice.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Madeleine R Paterson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
6
|
Beladiya JV, Chaudagar K, Mehta AA. Gαq-RGS2 loop activator modulates the activity of vario us agonists on isolated heart and aorta of normal rats. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Järve A, Todiras M, Kny M, Fischer FI, Kraemer JF, Wessel N, Plehm R, Fielitz J, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study. Front Physiol 2019; 9:1930. [PMID: 30687131 PMCID: PMC6336833 DOI: 10.3389/fphys.2018.01930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk I Fischer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan F Kraemer
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels Wessel
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Partner Site Greifswald, German Centre for Cardiovascular Research, Greifswald, Germany.,Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute of Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Lo Martire V, Silvani A, Alvente S, Bastianini S, Berteotti C, Valli A, Zoccoli G. Modulation of sympathetic vasoconstriction is critical for the effects of sleep on arterial pressure in mice. J Physiol 2018; 596:591-608. [PMID: 29266348 DOI: 10.1113/jp275353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While values of arterial pressure during sleep are predictive of cardiovascular risk, the autonomic mechanisms underlying the cardiovascular effects of sleep remain poorly understood. Here, we assess the autonomic mechanisms of the cardiovascular effects of sleep in C57Bl/6J mice, taking advantage of a novel technique for continuous intraperitoneal infusion of autonomic blockers. Our results indicate that non-REM sleep decreases arterial pressure by decreasing sympathetic vasoconstriction, decreases heart rate by balancing parasympathetic activation and sympathetic withdrawal, and increases cardiac baroreflex sensitivity mainly by increasing fluctuations in parasympathetic activity. Our results also indicate that REM sleep increases arterial pressure by increasing sympathetic activity to the heart and blood vessels, and increases heart rate, at least in part, by increasing cardiac sympathetic activity. These results provide a framework for generating and testing hypotheses on cardiovascular derangements during sleep in mouse models and human patients. ABSTRACT The values of arterial pressure (AP) during sleep predict cardiovascular risk. Sleep exerts similar effects on cardiovascular control in human subjects and mice. We aimed to determine the underlying autonomic mechanisms in 12 C57Bl/6J mice with a novel technique of intraperitoneal infusion of autonomic blockers, while monitoring the electroencephalogram, electromyogram, AP and heart period (HP, i.e. 1/heart rate). In different sessions, we administered atropine methyl nitrate, atenolol and prazosin to block muscarinic cholinergic, β1 -adrenergic and α1 -adrenergic receptors, respectively, and compared each drug infusion with a matched vehicle infusion. The decrease in AP from wakefulness to non-rapid-eye-movement sleep (N) was abolished by prazosin but was not significantly affected by atropine and atenolol, which, however, blunted the accompanying increase in HP to a similar extent. On passing from N to rapid-eye-movement sleep (R), the increase in AP was significantly blunted by prazosin and atenolol, whereas the accompanying decrease in HP was blunted by atropine and abolished by atenolol. Cardiac baroreflex sensitivity (cBRS, sequence technique) was dramatically decreased by atropine and slightly increased by prazosin. These data indicate that in C57Bl/6J mice, N decreases mean AP by decreasing sympathetic vasoconstriction, increases HP by balancing parasympathetic activation and sympathetic withdrawal, and increases cBRS mainly by increasing fluctuations in parasympathetic activity. R increases mean AP by increasing sympathetic vasoconstriction and cardiac sympathetic activity, which also explains, at least in part, the concomitant decrease in HP. These data represent the first comprehensive assessment of the autonomic mechanisms of cardiovascular control during sleep in mice.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Beladiya JV, Chaudagar KK, Mehta AA. A protective role of Gαq-RGS2 loop activator on streptozotocin induced diabetic complications in rats: An independent on elevated serum glucose level modulation. Eur J Pharmacol 2018; 818:141-147. [DOI: 10.1016/j.ejphar.2017.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
10
|
Phan HTN, Sjögren B, Neubig RR. Human Missense Mutations in Regulator of G Protein Signaling 2 Affect the Protein Function Through Multiple Mechanisms. Mol Pharmacol 2017; 92:451-458. [PMID: 28784619 DOI: 10.1124/mol.117.109215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/02/2017] [Indexed: 01/11/2023] Open
Abstract
Regulator of G protein signaling 2 (RGS2) plays a significant role in alleviating vascular contraction and promoting vascular relaxation due to its GTPase accelerating protein activity toward Gαq. Mice lacking RGS2 display a hypertensive phenotype, and several RGS2 missense mutations have been found predominantly in hypertensive human subjects. However, the mechanisms whereby these mutations could impact blood pressure is unknown. Here, we selected 16 rare, missense mutations in RGS2 identified in various human exome sequencing projects and evaluated their ability to inhibit intracellular calcium release mediated by angiotensin II receptor type 1 (AT1R). Four of them had reduced function and were further investigated to elucidate underlying mechanisms. Low protein expression, protein mislocalization, and reduced G protein binding were identified as likely mechanisms of the malfunctioning mutants. The Q2L mutant had 50% lower RGS2 than wild-type (WT) protein detected by Western blot. Confocal microscopy demonstrated that R44H and D40Y had impaired plasma membrane targeting; only 46% and 35% of those proteins translocated to the plasma membrane when coexpressed with Gαq Q209L compared with 67% for WT RGS2. The R188H mutant had a significant reduction in Gαq binding affinity (10-fold increase in Ki compared with WT RGS2 in a flow cytometry competition binding assay). This study provides functional data for 16 human RGS2 missense variants on their effects on AT1R-mediated calcium mobilization and provides molecular understanding of those variants with functional loss in vitro. These molecular behaviors can provide insight to inform antihypertensive therapeutics in individuals with variants having reduced function.
Collapse
Affiliation(s)
- Hoa T N Phan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Benita Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats. Neural Plast 2017; 2017:8696402. [PMID: 28270938 PMCID: PMC5320368 DOI: 10.1155/2017/8696402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
Abstract
The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs.
Collapse
|
12
|
Karppanen T, Kaartokallio T, Klemetti MM, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Staff AC, Laivuori H. An RGS2 3'UTR polymorphism is associated with preeclampsia in overweight women. BMC Genet 2016; 17:121. [PMID: 27558088 PMCID: PMC4997762 DOI: 10.1186/s12863-016-0428-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preeclampsia is a common and heterogeneous vascular syndrome of pregnancy. Its genetic risk profile is yet unknown and may vary between individuals and populations. The rs4606 3' UTR polymorphism of the Regulator of G-protein signaling 2 gene (RGS2) in the mother has been implicated in preeclampsia as well as in the development of chronic hypertension after preeclampsia. The RGS2 protein acts as an inhibitor of physiological vasoconstrictive pathways, and a low RGS2 level is associated with hypertension and obesity, two conditions that predispose to preeclampsia. We genotyped the rs4606 polymorphism in 1339 preeclamptic patients and in 697 controls from the Finnish Genetics of Preeclampsia Consortium (FINNPEC) cohort to study the association of the variant with preeclampsia. RESULTS No association between rs4606 and preeclampsia was detected in the analysis including all women. However, the polymorphism was associated with preeclampsia in a subgroup of overweight women (body mass index ≥ 25 kg/m(2), and < 30 kg/m(2)) (dominant model; odds ratio, 1.64; 95 % confidence interval, 1.10-2.42). CONCLUSIONS Our results suggest that RGS2 might be involved in the pathogenesis of preeclampsia particularly in overweight women and contribute to their increased risk for hypertension and other types of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Tiina Karppanen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Tea Kaartokallio
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miira M Klemetti
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, South-Karelia Central Hospital, Lappeenranta, Finland
| | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Kere
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Anneli Pouta
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Government services, National Institute for Health and Welfare, Helsinki, Finland
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Suita K, Fujita T, Hasegawa N, Cai W, Jin H, Hidaka Y, Prajapati R, Umemura M, Yokoyama U, Sato M, Okumura S, Ishikawa Y. Norepinephrine-Induced Adrenergic Activation Strikingly Increased the Atrial Fibrillation Duration through β1- and α1-Adrenergic Receptor-Mediated Signaling in Mice. PLoS One 2015. [PMID: 26203906 PMCID: PMC4512675 DOI: 10.1371/journal.pone.0133664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered by the lack of suitable AF models in experimental animals. OBJECTIVES Our aim was to establish a long-lasting AF model in mice. We also investigated the role of adrenergic receptor (AR) subtypes, which may be involved in the onset and duration of AF. METHODS AND RESULTS Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but with only a short duration (29.0 ± 8.1 sec). We found that adrenergic activation by intraperitoneal norepinephrine (NE) injection strikingly increased the AF duration. It increased the duration to more than 10 minutes, i.e., by more than 20-fold (656.2 ± 104.8 sec; P<0.001). In this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker prazosin both significantly attenuated NE-induced elongation of AF. To further explore the mechanisms underlying these receptors' effects on AF, we assessed the SR Ca(2+) leak, a major trigger of AF, and consequent spontaneous SR Ca(2+) release (SCR) in atrial myocytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin significantly inhibited the NE-induced SR Ca(2+) leak and SCR. These findings suggest that both β1-AR and α1-AR may play important roles in the development of AF. CONCLUSIONS We have established a long-lasting AF model in mice induced by adrenergic activation, which will be valuable in future AF study using experimental animals, such as transgenic mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the development of AF through in-vivo and in-vitro experiments.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Atrial Fibrillation/chemically induced
- Atrial Fibrillation/physiopathology
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heart Conduction System/drug effects
- Heart Conduction System/physiopathology
- Injections, Intraperitoneal
- Male
- Metoprolol/pharmacology
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Norepinephrine/administration & dosage
- Norepinephrine/toxicity
- Prazosin/pharmacology
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/physiology
- Sarcoplasmic Reticulum/drug effects
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/physiopathology
Collapse
Affiliation(s)
- Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- * E-mail: (TF); (YI)
| | - Nozomi Hasegawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rajesh Prajapati
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- * E-mail: (TF); (YI)
| |
Collapse
|
14
|
Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 2015; 70:867-80. [PMID: 24777815 DOI: 10.1007/s12013-014-9992-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In gastrointestinal smooth muscle, agonists that bind to Gi-coupled receptors activate preferentially PLC-β3 via Gβγ to stimulate phosphoinositide (PI) hydrolysis and generate inositol 1,4,5-trisphosphate (IP3) leading to IP3-dependent Ca(2+) release and muscle contraction. In the present study, we identified the mechanism of inhibition of PLC-β3-dependent PI hydrolysis by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). Cyclopentyl adenosine (CPA), an adenosine A1 receptor agonist, caused an increase in PI hydrolysis in a concentration-dependent fashion; stimulation was blocked by expression of the carboxyl-terminal sequence of GRK2(495-689), a Gβγ-scavenging peptide, or Gαi minigene but not Gαq minigene. Isoproterenol and S-nitrosoglutathione (GSNO) induced phosphorylation of PLC-β3 and inhibited CPA-induced PI hydrolysis, Ca(2+) release, and muscle contraction. The effect of isoproterenol on all three responses was inhibited by PKA inhibitor, myristoylated PKI, or AKAP inhibitor, Ht-31, whereas the effect of GSNO was selectively inhibited by PKG inhibitor, Rp-cGMPS. GSNO, but not isoproterenol, also phosphorylated Gαi-GTPase-activating protein, RGS2, and enhanced association of Gαi3-GTP and RGS2. The effect of GSNO on PI hydrolysis was partly reversed in cells (i) expressing constitutively active GTPase-resistant Gαi mutant (Q204L), (ii) phosphorylation-site-deficient RGS2 mutant (S46A/S64A), or (iii) siRNA for RGS2. We conclude that PKA and PKG inhibit Gβγi-dependent PLC-β3 activity by direct phosphorylation of PLC-β3. PKG, but not PKA, also inhibits PI hydrolysis indirectly by a mechanism involving phosphorylation of RGS2 and its association with Gαi-GTP. This allows RGS2 to accelerate Gαi-GTPase activity, enhance Gαβγi trimer formation, and inhibit Gβγi-dependent PLC-β3 activity.
Collapse
|
15
|
Arnold C, Feldner A, Pfisterer L, Hödebeck M, Troidl K, Genové G, Wieland T, Hecker M, Korff T. RGS5 promotes arterial growth during arteriogenesis. EMBO Mol Med 2015; 6:1075-89. [PMID: 24972930 PMCID: PMC4154134 DOI: 10.15252/emmm.201403864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arteriogenesis—the growth of collateral arterioles—partially compensates for the progressive occlusion of large conductance arteries as it may occur as a consequence of coronary, cerebral or peripheral artery disease. Despite being clinically highly relevant, mechanisms driving this process remain elusive. In this context, our study revealed that abundance of regulator of G-protein signalling 5 (RGS5) is increased in vascular smooth muscle cells (SMCs) of remodelling collateral arterioles. RGS5 terminates G-protein-coupled signalling cascades which control contractile responses of SMCs. Consequently, overexpression of RGS5 blunted Gαq/11-mediated mobilization of intracellular calcium, thereby facilitating Gα12/13-mediated RhoA signalling which is crucial for arteriogenesis. Knockdown of RGS5 evoked opposite effects and thus strongly impaired collateral growth as evidenced by a blockade of RhoA activation, SMC proliferation and the inability of these cells to acquire an activated phenotype in RGS5-deficient mice after the onset of arteriogenesis. Collectively, these findings establish RGS5 as a novel determinant of arteriogenesis which shifts G-protein signalling from Gαq/11-mediated calcium-dependent contraction towards Gα12/13-mediated Rho kinase-dependent SMC activation. Subject Categories Vascular Biology & Angiogenesis
Collapse
Affiliation(s)
- Caroline Arnold
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Anja Feldner
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Larissa Pfisterer
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Maren Hödebeck
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Troidl
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Heidelberg, Mannheim, Germany
| | - Markus Hecker
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
17
|
Ganss R. Keeping the Balance Right. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:93-121. [DOI: 10.1016/bs.pmbts.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Silvani A, Berteotti C, Bastianini S, Cohen G, Lo Martire V, Mazza R, Pagotto U, Quarta C, Zoccoli G. Cardiorespiratory anomalies in mice lacking CB1 cannabinoid receptors. PLoS One 2014; 9:e100536. [PMID: 24950219 PMCID: PMC4065065 DOI: 10.1371/journal.pone.0100536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022] Open
Abstract
Cannabinoid type 1 (CB1) receptors are expressed in the nervous and cardiovascular systems. In mice, CB1 receptor deficiency protects from metabolic consequences of a high-fat diet (HFD), increases sympathetic activity to brown fat, and entails sleep anomalies. We investigated whether sleep-wake and diet-dependent cardiorespiratory control is altered in mice lacking CB1 receptors. CB1 receptor knock-out (KO) and intact wild-type (WT) mice were fed standard diet or a HFD for 3 months, and implanted with a telemetric arterial pressure transducer and electrodes for sleep scoring. Sleep state was assessed together with arterial pressure and heart rate (home cage), or breathing (whole-body plethysmograph). Increases in arterial pressure and heart rate on passing from the light (rest) to the dark (activity) period in the KO were significantly enhanced compared with the WT. These increases were unaffected by cardiac (β1) or vascular (α1) adrenergic blockade. The breathing rhythm of the KO during sleep was also more irregular than that of the WT. A HFD increased heart rate, impaired cardiac vagal modulation, and blunted the central autonomic cardiac control during sleep. A HFD also decreased cardiac baroreflex sensitivity in the KO but not in the WT. In conclusion, we performed the first systematic study of cardiovascular function in CB1 receptor deficient mice during spontaneous wake-sleep behavior, and demonstrated that CB1 receptor KO alters cardiorespiratory control particularly in the presence of a HFD. The CB1 receptor signaling may thus play a role in physiological cardiorespiratory regulation and protect from some adverse cardiovascular consequences of a HFD.
Collapse
Affiliation(s)
- Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Gary Cohen
- Department of Women & Child Health, Karolinska Institutet, Stockholm, Sweden
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Roberta Mazza
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, S. Orsola University Hospital, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, S. Orsola University Hospital, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carmelo Quarta
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, S. Orsola University Hospital, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice. J Hypertens 2014; 32:575-86. [DOI: 10.1097/hjh.0000000000000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ying Z, Xu X, Bai Y, Zhong J, Chen M, Liang Y, Zhao J, Liu D, Morishita M, Sun Q, Spino C, Brook RD, Harkema JR, Rajagopalan S. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:79-86. [PMID: 24240275 PMCID: PMC3888575 DOI: 10.1289/ehp.1307151] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/13/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to particulate matter≤2.5 μm in diameter (PM2.5) increases blood pressure (BP) in humans and animal models. Abnormal activation of the sympathetic nervous system may have a role in the acute BP response to PM2.5 exposure. The mechanisms responsible for sympathetic nervous system activation and its role in chronic sustenance of hypertension in response to PM2.5 exposure are currently unknown. OBJECTIVES We investigated whether central nervous system inflammation may be implicated in chronic PM2.5 exposure-induced increases in BP and sympathetic nervous system activation. METHODS C57BL/6J mice were exposed to concentrated ambient PM2.5 (CAPs) for 6 months, and we analyzed BP using radioactive telemetric transmitters. We assessed sympathetic tone by measuring low-frequency BP variability (LF-BPV) and urinary norepinephrine excretion. We also tested the effects of acute pharmacologic inhibitors of the sympathetic nervous system and parasympathetic nervous system. RESULTS Long-term CAPs exposure significantly increased basal BP, paralleled by increases in LF-BPV and urinary norepinephrine excretion. The increased basal BP was attenuated by the centrally acting α2a agonist guanfacine, suggesting a role of increased sympathetic tone in CAPs exposure-induced hypertension. The increase in sympathetic tone was accompanied by an inflammatory response in the arcuate nucleus of the hypothalamus, evidenced by increased expression of pro-inflammatory genes and inhibitor kappaB kinase (IKK)/nuclear factor-kappaB (NF-κB) pathway activation. CONCLUSION Long-term CAPs exposure increases BP through sympathetic nervous system activation, which may involve hypothalamic inflammation.
Collapse
Affiliation(s)
- Zhekang Ying
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Siddharthan V, Hall JO, Morrey JD. Autonomic deficit not the cause of death in West Nile virus neurological disease. Clin Auton Res 2013; 24:15-23. [PMID: 24158383 PMCID: PMC3918122 DOI: 10.1007/s10286-013-0213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Introduction Some West Nile virus (WNV)-infected patients have been reported to manifest disease signs consistent with autonomic dysfunction. Moreover, WNV infection in hamsters causes reduced electromyography amplitudes of the gastrointestinal tract and diaphragm, and they have reduced heart rate variability (HRV), a read-out for the parasympathetic autonomic function. Methods HRV was measured in both hamsters and mice using radiotelemetry to identify autonomic deficits. To identify areas of WNV infection within the medulla oblongata mapping to the dorsal motor nucleus of vagus (DMNV) and the nucleus ambiguus (NA), fluorogold dye was injected into the cervical trunk of the vagus nerve of hamsters. As a measurement of the loss of parasympathetic function, tachycardia was monitored contiguously over the time course of the disease. Results Decrease of HRV did not occur in all animals that died, which is not consistent with autonomic function being the mechanism of death. Fluorogold-stained cells in the DMNV were not stained for WNV envelope protein. Fourteen percent of WNV-stained cells were co-localized with fluorogold-stained cells in the NA. These data, however, did not suggest a fatal loss of autonomic functions because tachycardia was not observed in WNV-infected hamsters. Conclusion Parasympathetic autonomic function deficit was not a likely mechanism of death in WNV-infected rodents and possibly in human patients with fatal WN neurological disease.
Collapse
Affiliation(s)
- Hong Wang
- Department of Animal, Dairy, and Veterinary Sciences, School of Veterinary Medicine, Institute for Antiviral Research, Utah State University, 4700 Old Main Hill, Logan, UT, 84322-4700, USA
| | | | | | | |
Collapse
|
22
|
Ota A, Sawai M, Sakurai H. Stress-induced transcription of regulator of G protein signaling 2 (RGS2) by heat shock transcription factor HSF1. Biochimie 2013; 95:1432-6. [PMID: 23587726 DOI: 10.1016/j.biochi.2013.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
Expression of the RGS2 gene modulates RGS2 activity toward G protein-coupled signaling in diverse cellular processes. In this study, RGS2 transcription was induced in HeLa and rat aorta smooth muscle cells by exposure to febrile temperatures or proteotoxic stress. The promoter region of RGS2 contained a binding sequence of HSF1, which is an activator of the heat shock protein gene, and was inducibly bound by stress-activated HSF1. A single nucleotide change identified in the RGS2 promoter of hypertensive patients abolished HSF1-regulated expression of RGS2, suggesting that activated HSF1 is involved in blood pressure regulation via modulation of RGS2 expression.
Collapse
Affiliation(s)
- Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | | | | |
Collapse
|
23
|
Rinne P, Harjunpää J, Mäkelä S, Savontaus E. Genetic and pharmacological mouse models of chronic melanocortin activation show enhanced baroreflex control of heart rate. ACTA ACUST UNITED AC 2013; 182:19-27. [DOI: 10.1016/j.regpep.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/05/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
24
|
Jones DL, Tuomi JM, Chidiac P. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia. Front Physiol 2012; 3:239. [PMID: 22754542 PMCID: PMC3386567 DOI: 10.3389/fphys.2012.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/12/2012] [Indexed: 01/25/2023] Open
Abstract
The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF.
Collapse
Affiliation(s)
- Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
25
|
Ang R, Opel A, Tinker A. The Role of Inhibitory G Proteins and Regulators of G Protein Signaling in the in vivo Control of Heart Rate and Predisposition to Cardiac Arrhythmias. Front Physiol 2012; 3:96. [PMID: 22783193 PMCID: PMC3390690 DOI: 10.3389/fphys.2012.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibitory heterotrimeric G proteins and the control of heart rate. The activation of cell signaling pathways involving inhibitory heterotrimeric G proteins acts to slow the heart rate via modulation of ion channels. A large number of Regulators of G protein signalings (RGSs) can act as GTPase accelerating proteins to inhibitory G proteins and thus it is important to understand the network of RGS\G-protein interaction. We will review our recent findings on in vivo heart rate control in mice with global genetic deletion of various inhibitory G protein alpha subunits. We will discuss potential central and peripheral contributions to the phenotype and the controversies in the literature.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Aaisha Opel
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and DentistryLondon, UK
| |
Collapse
|
26
|
Osei-Owusu P, Sabharwal R, Kaltenbronn KM, Rhee MH, Chapleau MW, Dietrich HH, Blumer KJ. Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem 2012; 287:12541-9. [PMID: 22354966 DOI: 10.1074/jbc.m111.332130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med 2012; 18:286-90. [PMID: 22245782 PMCID: PMC3276848 DOI: 10.1038/nm.2603] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022]
Abstract
Blood pressure regulation is crucial for the maintenance of health, and hypertension is a risk factor for myocardial infarction, heart failure, stroke and renal disease. Nitric oxide (NO) and prostacyclin trigger well-defined vasodilator pathways; however, substantial vasorelaxation in response to agents such as acetylcholine persists when the synthesis of these molecules is prevented. This remaining vasorelaxation activity, termed endothelium-derived hyperpolarizing factor (EDHF), is more prevalent in resistance than in conduit blood vessels and is considered a major mechanism for blood pressure control. Hydrogen peroxide (H2O2) has been shown to be a major component of EDHF in several vascular beds in multiple species, including in humans. H2O2 causes the formation of a disulfide bond between the two α subunits of protein kinase G I-α (PKGI-α), which activates the kinase independently of the NO-cyclic guanosine monophosphate (cGMP) pathway and is coupled to vasodilation. To test the importance of PKGI-α oxidation in the EDHF mechanism and blood pressure control in vivo, we generated a knock-in mouse expressing only a C42S 'redox-dead' version of PKGI-α. This amino acid substitution, a single-atom change (an oxygen atom replacing a sulfur atom), blocked the vasodilatory action of H2O2 on resistance vessels and resulted in hypertension in vivo.
Collapse
|
28
|
Xie Z, Liu D, Liu S, Calderon L, Zhao G, Turk J, Guo Z. Identification of a cAMP-response element in the regulator of G-protein signaling-2 (RGS2) promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles. J Biol Chem 2011; 286:44646-58. [PMID: 22057271 DOI: 10.1074/jbc.m111.265462] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)β) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)β activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)β activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)β pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
30
|
da Costa Goncalves AC, Fontes MAP, Klussmann E, Qadri F, Janke J, Gollasch M, Schleifenbaum J, Müller D, Jordan J, Tank J, Luft FC, Gross V. Spinophilin regulates central angiotensin II-mediated effect on blood pressure. J Mol Med (Berl) 2011; 89:1219-29. [PMID: 21818582 DOI: 10.1007/s00109-011-0793-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 07/18/2011] [Accepted: 07/22/2011] [Indexed: 02/02/2023]
Abstract
Central angiotensin II (AngII) plays an important role in the regulation of the sympathetic nervous system. The underlining molecular mechanisms are largely unknown. Spinophilin (SPL) is a regulator of G protein-coupled receptor signaling. Deletion of SPL induces sympathetically mediated arterial hypertension in mice. We tested the hypothesis that SPL restrains blood pressure (BP) by regulating AngII activity. We equipped SPL(-/-) and SPL(+/+) mice with telemetric devices and applied AngII (1.0 mg kg(-1) day(-1), minipumps) or the AngII subtype 1 receptor (AT1-R) blocker valsartan (50 mg kg(-1) day(-1), gavage). We assessed autonomic nervous system activity through intraperitoneal application of trimethaphan, metoprolol, and atropine. We also tested the effect of intracerebroventricular (icv) AngII on blood pressure in SPL(-/-) and in SPL(+/+) mice. Chronic infusion of AngII upregulates SPL expression in the hypothalamus of SPL(+/+) mice. Compared with SPL(+/+) mice, SPL(-/-) mice showed a greater increase in daytime BP with AngII (19.2 ± 0.8 vs. 13.5 ± 1.6 mmHg, p < 0.05). SPL(-/-) showed a greater depressor response to valsartan. BP and heart rate decreased more with trimethaphan and metoprolol in AngII-treated SPL(-/-) than in AngII-treated SPL(+/+) mice. SPL(-/-) mice responded more to icv AngII. Furthermore, brainstem AT1-R and AngII type 2 receptor (AT2-R) expression was reduced in SPL(-/-) mice. AngII treatment normalized AT1-R and AT2-R expression levels. In summary, our findings suggest that SPL restrains AngII-mediated sympathetic nervous system activation. SPL is a hitherto unrecognized molecule with regard to central blood pressure control and may pave the way to novel strategies for the treatment of hypertension.
Collapse
|
31
|
Intracellular regulation of heterotrimeric G-protein signaling modulates vascular smooth muscle cell contraction. Arch Biochem Biophys 2011; 510:182-9. [DOI: 10.1016/j.abb.2011.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/05/2011] [Accepted: 05/14/2011] [Indexed: 12/28/2022]
|
32
|
Gunaje JJ, Bahrami AJ, Schwartz SM, Daum G, Mahoney WM. PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am J Physiol Cell Physiol 2011; 301:C478-89. [PMID: 21593453 DOI: 10.1152/ajpcell.00348.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulator of G protein signaling (RGS) proteins, and notably members of the RGS-R4 subfamily, control vasocontractility by accelerating the inactivation of Gα-dependent signaling. RGS5 is the most highly and differently expressed RGS-R4 subfamily member in arterial smooth muscle. Expression of RGS5 first appears in pericytes during development of the afferent vascular tree, suggesting that RGS5 is a good candidate for a regulator of arterial contractility and, perhaps, for determining the mass of the smooth muscle coats required to regulate blood flow in the branches of the arterial tree. Consistent with this hypothesis, using cultured vascular smooth muscle cells (VSMCs), we demonstrate RGS5 overexpression inhibits G protein-coupled receptor (GPCR)-mediated hypertrophic responses. The next objective was to determine which physiological agonists directly control RGS5 expression in VSMCs. GPCR agonists failed to directly regulate RGS5 mRNA expression; however, platelet-derived growth factor (PDGF) acutely represses expression. Downregulation of RGS5 results in the induction of migration and the activation of the GPCR-mediated signaling pathways. This stimulation leads to the activation of mitogen-activated protein kinases directly downstream of receptor stimulation, and ultimately VSMC hypertrophy. These results demonstrate that RGS5 expression is a critical mediator of both VSMC contraction and potentially, arterial remodeling.
Collapse
Affiliation(s)
- Jagadambika J Gunaje
- Department of Pathology and Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Zhang P, Su J, King ME, Maldonado AE, Park C, Mende U. Regulator of G protein signaling 2 is a functionally important negative regulator of angiotensin II-induced cardiac fibroblast responses. Am J Physiol Heart Circ Physiol 2011; 301:H147-56. [PMID: 21498776 DOI: 10.1152/ajpheart.00026.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown Univ., 1 Hoppin St., Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Nunn C, Zhao P, Zou MX, Summers K, Guglielmo CG, Chidiac P. Resistance to age-related, normal body weight gain in RGS2 deficient mice. Cell Signal 2011; 23:1375-86. [PMID: 21447383 DOI: 10.1016/j.cellsig.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
RGS2 (regulator of G protein signaling 2) is known to limit signals mediated via Gq- and Gs-coupled GPCRs (G protein coupled receptors), and it has been implicated in the differentiation of several cells types. The physiology of RGS2 knockout mice (rgs2(-/-)) has been studied in some detail, however, a metabolic phenotype has not previously been reported. We observed that old (21-24month) rgs2(-/-) mice weigh much less than wild-type C57BL/6 controls, and exhibit greatly reduced fat deposits, decreased serum lipids, and low leptin levels. Lower weight was evident as early as four weeks and continued throughout life. Younger adult male rgs2(-/-) mice (4-8months) were found to show similar strain-related differences as the aged animals, as well improved glucose clearance and insulin sensitivity, and enhanced beta-adrenergic and glucagon signaling in isolated hepatocytes. In addition, rgs2(-/-) pre-adipocytes had reduced levels of differentiation markers (Peroxisome proliferator-activated receptor γ (PPARγ); lipoprotein lipase (Lpl); CCAAT/enhancer binding protein α (CEBPα)) and also rgs2(-/-) white adipocytes were small relative to controls, suggesting altered adipogenesis. In wild-type animals, RGS2 mRNA was decreased in brown adipose tissue after cold exposure (7 h at 4 °C) but increased in white adipose tissue in response to a high fat diet, also suggesting a role in lipid storage. No differences between strains were detected with respect to food intake, energy expenditure, GPCR-stimulated lipolysis, or adaptive thermogenesis. In conclusion this study points to RGS2 as being an important regulatory factor in controlling body weight and adipose function.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Gürgen D, Hegner B, Kusch A, Catar R, Chaykovska L, Hoff U, Gross V, Slowinski T, da Costa Goncalves AC, Kintscher U, Gustafsson JÅ, Luft FC, Dragun D. Estrogen receptor-beta signals left ventricular hypertrophy sex differences in normotensive deoxycorticosterone acetate-salt mice. Hypertension 2011; 57:648-54. [PMID: 21300662 DOI: 10.1161/hypertensionaha.110.166157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We found earlier that deoxycorticosterone acetate-salt treatment causes blood pressure-independent left ventricular hypertrophy, but only in male mice. To test the hypothesis that the estrogen receptor-β (ERβ) protects the females from left ventricular hypertrophy, we treated male and female ERβ-deficient (ERβ(-/-)) mice and their male and female littermates (wild-type [WT]) with deoxycorticosterone acetate-salt and made them telemetrically normotensive with hydralazine. WT males had increased (+16%) heart weight/tibia length ratios compared with WT females (+7%) at 6 weeks. In ERβ(-/-) mice, this situation was reversed. Female WT mice had the greatest heart weight/tibia length ratio increases of all of the groups (+23%), even greater than ERβ(-/-) males (+10%). Echocardiography revealed concentric left ventricular hypertrophy in male WT mice, whereas ERβ(-/-) females developed dilative left ventricular hypertrophy. The hypertrophic response in female ERβ(-/-) mice was accompanied by the highest degree of collagen deposition, indicating maladaptive remodeling. ERβ(+/+) females showed robust protective p38 and extracellular signal-regulated kinase 1/2 signaling relationships compared with other groups. Calcineurin Aβ expression and its positive regulator myocyte-enriched calcineurin-interacting protein 1 were increased in deoxycorticosterone acetate-salt female ERβ(-/-) mice, yet lower than in WT males. Endothelin increased murine cardiomyocyte hypertrophy in vitro, which could be blocked by estradiol and an ERβ agonist. We conclude that a functional ERβ is essential for inducing adaptive p38 and extracellular signal-regulated kinase signaling, while reducing maladaptive calcineurin signaling in normotensive deoxycorticosterone acetate female mice. Our findings address the possibility of sex-specific cardiovascular therapies.
Collapse
Affiliation(s)
- Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine Campus Virchow-Klinikum, Center forCardiovascular Research Medical Faculty, Charite´ Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kaur K, Kehrl JM, Charbeneau RA, Neubig RR. RGS-insensitive Gα subunits: probes of Gα subtype-selective signaling and physiological functions of RGS proteins. Methods Mol Biol 2011; 756:75-98. [PMID: 21870221 DOI: 10.1007/978-1-61779-160-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Regulator of G protein Signaling (RGS) proteins were identified as a family in 1996 and humans have more than 30 such proteins. Their best known function is to suppress G Protein-Coupled Receptors (GPCR) signaling by increasing the rate of Gα turnoff through stimulation of GTPase activity (i.e., GTPase acceleration protein or GAP activity). The GAP activity of RGS proteins on the Gαi and Gαq family of G proteins can terminate signals initiated by both α and βγ subunits. RGS proteins also serve as scaffolds, assembling signal-regulating modules. Understanding the physiological roles of RGS proteins is of great importance, as GPCRs are major targets for drug development. The traditional method of using RGS knockout mice has provided some information about the role of RGS proteins but in many cases effects are modest, perhaps because of redundancy in RGS protein function. As an alternative approach, we have utilized a glycine-to-serine mutation in the switch 1 region of Gα subunits that prevents RGS binding. The mutation has no known effects on Gα binding to receptor, Gβγ, or effectors. Alterations in function resulting from the G>S mutation imply a role for both the specific mutated Gα subunit and its regulation by RGS protein activity. Mutant rodents expressing these G>S mutant Gα subunits have strong phenotypes and provide important information about specific physiological functions of Gαi2 and Gαo and their control by RGS. The conceptual framework behind this approach and a summary of recent results is presented in this chapter.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
37
|
Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. PLoS One 2010; 5:e14319. [PMID: 21179467 PMCID: PMC3001864 DOI: 10.1371/journal.pone.0014319] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/03/2010] [Indexed: 12/21/2022] Open
Abstract
To identify the genes and pathways that underlie cardiovascular and metabolic phenotypes we performed an integrated analysis of a mouse C57BL/6JxA/J F2 (B6AF2) cross by relating genome-wide gene expression data from adipose, kidney, and liver tissues to physiological endpoints measured in the population. We have identified a large number of trait QTLs including loci driving variation in cardiac function on chromosomes 2 and 6 and a hotspot for adiposity, energy metabolism, and glucose traits on chromosome 8. Integration of adipose gene expression data identified a core set of genes that drive the chromosome 8 adiposity QTL. This chromosome 8 trans eQTL signature contains genes associated with mitochondrial function and oxidative phosphorylation and maps to a subnetwork with conserved function in humans that was previously implicated in human obesity. In addition, human eSNPs corresponding to orthologous genes from the signature show enrichment for association to type II diabetes in the DIAGRAM cohort, supporting the idea that the chromosome 8 locus perturbs a molecular network that in humans senses variations in DNA and in turn affects metabolic disease risk. We functionally validate predictions from this approach by demonstrating metabolic phenotypes in knockout mice for three genes from the trans eQTL signature, Akr1b8, Emr1, and Rgs2. In addition we show that the transcriptional signatures for knockout of two of these genes, Akr1b8 and Rgs2, map to the F2 network modules associated with the chromosome 8 trans eQTL signature and that these modules are in turn very significantly correlated with adiposity in the F2 population. Overall this study demonstrates how integrating gene expression data with QTL analysis in a network-based framework can aid in the elucidation of the molecular drivers of disease that can be translated from mice to humans.
Collapse
|
38
|
Wainford RD, Kapusta DR. Hypothalamic paraventricular nucleus G alpha q subunit protein pathways mediate vasopressin dysregulation and fluid retention in salt-sensitive rats. Endocrinology 2010; 151:5403-14. [PMID: 20861238 PMCID: PMC2954710 DOI: 10.1210/en.2010-0345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022]
Abstract
Central Gαz and Gαq protein-gated pathways play a pivotal role in modulating (inhibiting vs. stimulating, respectively) vasopressin release and urine output; these studies examined the role of brain Gαz/Gαq proteins in the regulation of vasopressin secretion during high-salt challenge. We examined the effects of 21-d normal or high salt intake on plasma vasopressin levels, daily sodium and water balance, and brain Gαz and Gαq protein levels in male Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. Additionally, the effect of central Gαq protein down-regulation on these parameters and the diuretic response evoked by pharmacological [nociceptin/orphanin FQ; 5.5 nmol intracerebroventricularly (icv)] and physiological stimuli (isotonic-saline volume expansion, 5% bodyweight, iv) was examined. After 21 d of high salt intake, DSS, but not SD or DSR rats, exhibited vasopressin dysregulation, as evidenced by elevated plasma vasopressin levels (P < 0.05), marked positive water (and sodium) balance (P < 0.05), and an impaired diuretic response to pharmacological and physiological stimuli (P < 0.05). Chronic high salt intake (21 d) evoked down-regulation of Gαq (P < 0.05), but not Gαz, proteins in the hypothalamic paraventricular nucleus of SD and DSR, but not DSS rats. In salt-challenged (21 d) DSS rats, acute oligodeoxynucleotide-mediated down-regulation of central Gαq proteins returned plasma vasopressin to control levels (P < 0.05), decreased salt-induced water retention (P < 0.05), and restored the profound diuretic responses to pharmacological and physiological stimuli (P < 0.05). Therefore, the down-regulation of PVN Gαq proteins plays a critical counter-regulatory role in preventing vasopressin hypersecretion in salt-resistant phenotypes and may represent a new therapeutic target in pathophysiological states featuring vasopressin dysregulation.
Collapse
Affiliation(s)
- Richard D Wainford
- Department of Pharmacology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
39
|
Hilzendeger AM, Morais RL, Todiras M, Plehm R, da Costa Goncalves A, Qadri F, Araujo RC, Gross V, Nakaie CR, Casarini DE, Carmona AK, Bader M, Pesquero JB. Leptin regulates ACE activity in mice. J Mol Med (Berl) 2010; 88:899-907. [PMID: 20614101 DOI: 10.1007/s00109-010-0649-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023]
Abstract
Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1-7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin-angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin-angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Aline Mourao Hilzendeger
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bergmann A, Ahmad S, Cudmore M, Gruber AD, Wittschen P, Lindenmaier W, Christofori G, Gross V, Gonzalves ACDC, Gröne HJ, Ahmed A, Weich HA. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J Cell Mol Med 2010; 14:1857-67. [PMID: 19538465 PMCID: PMC3829045 DOI: 10.1111/j.1582-4934.2009.00820.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/05/2009] [Indexed: 01/23/2023] Open
Abstract
Preeclampsia (PE) is characterized by widespread endothelial damage with hypertension, proteinuria, glomeruloendotheliosis and elevated soluble Flt-1 (sFlt-1), a natural occurring antagonist of vascular endothelial growth factor (VEGF). Cancer patients receiving anti-VEGF therapy exhibit similar symptoms. We suggested that a decrease in circulating sFlt-1 would alleviate the symptoms associated with PE. Adenoviral (Adv) overexpression of sFlt-1 induced proteinuria, caused glomerular damage and increase in blood pressure in female Balb/c mice. Circulating level of sFlt-1 above 50 ng/ml plasma induced severe vascular damage and glomerular endotheliosis. Albumin concentration in urine was elevated up to 30-fold, compared to control AdvGFP-treated animals. The threshold of kidney damage was in the range of 20-30 ng/ml sFlt-1 in plasma (8-15 ng/ml in urine). Co-administration of AdvsFlt-1 with AdvVEGF to neutralize circulating sFlt-1 resulted in more than a 70% reduction in free sFlt-1 in plasma, more than 80% reduction in urine and rescued the damaging effect of sFlt-1 on the kidneys. This demonstrates that below a critical threshold sFlt-1 fails to elicit damage to the fenestrated endothelium and that co-expression of VEGF is able to rescue effects mediated by sFlt-1 overexpression.
Collapse
Affiliation(s)
- Astrid Bergmann
- Departments of Gene Regulation and Differentiation, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Shakil Ahmad
- Department of Reproductive and Vascular Biology University of BirminghamBirmingham, United Kingdom
| | - Melissa Cudmore
- Department of Reproductive and Vascular Biology University of BirminghamBirmingham, United Kingdom
| | - Achim D Gruber
- Department of Veterinary PathologyFreie Universitaet Berlin, Germany
| | - Petra Wittschen
- Department of Veterinary PathologyFreie Universitaet Berlin, Germany
| | - Werner Lindenmaier
- Departments of Gene Regulation and Differentiation, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | | | - Volkmar Gross
- Max Delbruck Centre for Molecular MedicineBerlin, Germany
| | | | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research CenterHeidelberg, Germany
| | - Asif Ahmed
- Department of Reproductive and Vascular Biology University of BirminghamBirmingham, United Kingdom
| | - Herbert A Weich
- Departments of Gene Regulation and Differentiation, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| |
Collapse
|
41
|
Reiche J, Theilig F, Rafiqi FH, Carlo AS, Militz D, Mutig K, Todiras M, Christensen EI, Ellison DH, Bader M, Nykjaer A, Bachmann S, Alessi D, Willnow TE. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2. Mol Cell Biol 2010; 30:3027-37. [PMID: 20385770 PMCID: PMC2876682 DOI: 10.1128/mcb.01560-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/22/2010] [Accepted: 04/01/2010] [Indexed: 11/20/2022] Open
Abstract
Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance.
Collapse
Affiliation(s)
- Juliane Reiche
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Franziska Theilig
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Fatema H. Rafiqi
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Anne-Sophie Carlo
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Daniel Militz
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Kerim Mutig
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Erik Ilsø Christensen
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - David H. Ellison
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Anders Nykjaer
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Sebastian Bachmann
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Dario Alessi
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas E. Willnow
- Max Delbrück Center for Molecular Medicine, Institute for Anatomy, Charité, Universitätsmedizin, 13125 Berlin, Germany, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, Department of Anatomy, Lundbeck Foundation Research Center MIND, University of Aarhus, 8000 Aarhus, Denmark, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
42
|
Hilzendeger AM, Goncalves ACDC, Plehm R, Diedrich A, Gross V, Pesquero JB, Bader M. Autonomic dysregulation in ob/ob mice is improved by inhibition of angiotensin-converting enzyme. J Mol Med (Berl) 2009; 88:383-90. [PMID: 20012594 DOI: 10.1007/s00109-009-0569-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 01/29/2023]
Abstract
The leptin-deficient ob/ob mice are insulin resistant and obese. However, the control of blood pressure in this model is not well defined. The goal of this study was to evaluate the role of leptin and of the renin-angiotensin system in the cardiovascular abnormalities observed in obesity using a model lacking leptin. To this purpose, we measured blood pressure in ob/ob and control animals by radiotelemetry combined with fast Fourier transformation before and after both leptin and enalapril treatment. Autonomic function was assessed pharmacologically. Blood pressure during daytime was slightly higher in the ob/ob compared to control mice, while no difference in heart rate was observed. Blood pressure response to trimetaphane and heart rate response to metoprolol were greater in ob/ob mice than in control littermates indicating an activated sympathetic nervous system. Heart rate response to atropine was attenuated. Baroreflex sensitivity and heart rate variability were blunted in ob/ob mice, while low frequency of systolic blood pressure variability was found increased. Chronic leptin replacement reduced blood pressure and reversed the impaired autonomic function observed in ob/ob mice. Inhibition of angiotensin-converting enzyme by enalapril treatment had similar effects, prior to the loss of weight. These findings suggest that the renin-angiotensin system is involved in the autonomic dysfunction caused by the lack of leptin in ob/ob mice and support a role of this interplay in the pathogenesis of obesity, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Aline M Hilzendeger
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Tuomi JM, Chidiac P, Jones DL. Evidence for enhanced M3 muscarinic receptor function and sensitivity to atrial arrhythmia in the RGS2-deficient mouse. Am J Physiol Heart Circ Physiol 2009; 298:H554-61. [PMID: 19966055 DOI: 10.1152/ajpheart.00779.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia seen in general practice. Muscarinic ACh receptors (M2R, M3R) are involved in vagally induced AF. M2R and M3R activate the heterotrimeric G proteins, G(i) and G(q), respectively, by promoting GTP binding, and these in turn activate distinct K(+) channels. Signaling is terminated by GTP hydrolysis, a process accelerated by regulator of G protein signaling (RGS) proteins. RGS2 is selective for G(q) and thus may regulate atrial M3R signaling. We hypothesized that knockout of RGS2 (RGS2(-/-)) would render the atria more susceptible to electrically induced AF. One-month-old male RGS2(-/-) and C57BL/6 wild-type (WT) mice were instrumented for intracardiac electrophysiology. Atrial effective refractory periods (AERPs) were also determined in the absence and presence of carbachol, atropine, and/or the selective M3R antagonist darifenacin. Susceptibility to electrically induced AF used burst pacing and programmed electrical stimulation with one extrastimulus. Real-time RT-PCR measured atrial and ventricular content of RGS2, RGS4, M2R, M3R, and M4R mRNA. AERP was lower in RGS2(-/-) compared with WT mice in both the high right atrium (HRA) (30 +/- 1 vs. 34 +/- 1 ms, P < 0.05) and mid right atrium (MRA) (21 +/- 1 vs. 24 +/- 1 ms, P < 0.05). Darifenacin eliminated this difference (HRA: 37 +/- 2 vs. 39 +/- 2 ms, and MRA: 30 +/- 2 vs. 30 +/- 1, P > 0.4). RGS2(-/-) were more susceptible than WT mice to atrial tachycardia/fibrillation (AT/F) induction (11/22 vs. 1/25, respectively, P < 0.05). Muscarinic receptor expression did not differ between strains, whereas M2R expression was 70-fold higher than M3R (P < 0.01). These results suggest that RGS2 is an important cholinergic regulator in the atrium and that RGS2(-/-) mice have enhanced susceptibility to AT/F via enhanced M3 muscarinic receptor activity.
Collapse
Affiliation(s)
- Jari M Tuomi
- Department of Physiology and Pharmacology, University of Western Ontario, London Health Science Center, London, Ontario, Canada
| | | | | |
Collapse
|
44
|
Abstract
Regulators of G protein signaling (RGS) proteins are important modulators of G protein-coupled receptors and, therefore, critical for cardiovascular functions. One family member, RGS5, has recently been identified as a key regulator of vascular remodeling and pericyte maturation in tumors. Here, we discuss a potential role for RGS5 and its relatives, RGS2 and 4, within the cardiovascular system. Insights into RGS5 signaling are likely to be highly significant for vascular pathologies such as hypertension, atherosclerosis, and angiogenesis.
Collapse
Affiliation(s)
- Mitali Manzur
- Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, Western Australia 6000, Australia
| | | |
Collapse
|
45
|
Park JK, Theuer S, Kirsch T, Lindschau C, Klinge U, Heuser A, Plehm R, Todiras M, Carmeliet P, Haller H, Luft FC, Muller DN, Fiebeler A. Growth arrest specific protein 6 participates in DOCA-induced target-organ damage. Hypertension 2009; 54:359-64. [PMID: 19564549 DOI: 10.1161/hypertensionaha.109.129460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Growth arrest-specific protein 6 (Gas 6) is involved in inflammatory kidney diseases, vascular remodeling, cell adhesion, and thrombus formation. We explored a role for Gas 6 in aldosterone-induced target organ damage. We observed that Gas 6 was upregulated in rats with high aldosterone levels. Mineralocorticoid receptor blockade prevented target organ damage and decreased the elevated Gas 6 expression. Vascular smooth muscle cells given aldosterone increased their Gas 6 expression in vitro. To test the pathophysiological relevance, we investigated the effects of deoxycorticosterone acetate (DOCA) on Gas 6 gene-deleted ((-/-)) mice. After 6 weeks DOCA, Gas 6(-/-) mice developed similar telemetric blood pressure elevations compared to wild-type mice but were protected from cardiac hypertrophy. Cardiac expression of interleukin 6 and collagen IV was blunted in Gas 6(-/-) mice, indicating reduced inflammation and fibrosis. Gas 6(-/-) mice also had an improved renal function with reduced albuminuria, compared to wild-type mice. Renal fibrosis and fibronectin deposition in the kidney were also reduced. Gas 6 deficiency reduces the detrimental effects of aldosterone on cardiac and renal remodeling independent of blood pressure reduction. Gas 6 appears to play a role in mineralocorticoid receptor-mediated target organ damage. Furthermore, because warfarin interferes with Gas 6 protein expression, the findings could be of clinical relevance for anticoagulant choices.
Collapse
|
46
|
Polymorphism C1114G of gene encoding the cardiac regulator of G-protein signaling 2 may be associated with number of episodes of neurally mediated syncope. Arch Med Res 2009; 40:191-5. [PMID: 19427970 DOI: 10.1016/j.arcmed.2009.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS The cardiac regulator of G-protein signaling 2 (RGS2) negatively regulates G-protein-coupled receptor signaling. The C1114G polymorphism reduces RGS2 gene expression. This molecular disorder may be one of the important factors influencing progress of neurally mediated syncope. The aim of the study was to evaluate the association between C1114G RGS2 polymorphism and tilting results and number of syncope episodes in patients with no other diseases. METHODS Of 214 tilted patients (39% males, 39.7 +/- 17.1 years of age), genomic DNA was extracted from cellular blood components. C1114G RGS2 polymorphism was diagnosed by designed primers. Clinical variables and genetic traits were introduced into multivariate stepwise regression. Analysis was performed as follows: positive tilting n = 145 vs. negative n = 69, positive passive n = 49 vs. nitroglycerin (NTG)-positive n = 96, dominant vasodepressive n = 111 vs. cardioinhibition n = 34; and in number of syncope groups with cut-off >or=10 vs. <10. RESULTS No relationship was found between the studied polymorphism and outcome of tilting (p >0.05). In multivariate regression model, homozygosity G/G 1114 RGS2 was the only variable associated with a reduced number of episodes of syncope (95% CI 2.3-10.9; p = 0.04). CONCLUSIONS Our preliminary results suggest the association of G/G 1114 RGS2 genotype with the number of episodes of neurally mediated syncope. Detailed molecular mechanism of the influence of the studied polymorphism on syncopal number is probably associated with the reduced expression of RGS2 gene.
Collapse
|
47
|
RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci (Lond) 2009; 116:391-9. [PMID: 19175357 DOI: 10.1042/cs20080272] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the mechanisms that underlie BP (blood pressure) variation in humans and animal models may provide important clues for reducing the burden of uncontrolled hypertension in industrialized societies. High BP is often associated with increased signalling via G-protein-coupled receptors. Three members of the RGS (regulator of G-protein signalling) superfamily RGS2, RGS4 and RGS5 have been implicated in the attenuation of G-protein signalling pathways in vascular and cardiac myocytes, as well as cells of the kidney and autonomic nervous system. In the present review, we discuss the current state of knowledge regarding their differential expression and function in cardiovascular tissues, and the likelihood that one or more of these alleles are candidate hypertension genes. Together, findings from the studies described herein suggest that development of methods to modulate the expression and function of RGS proteins may be a possible strategy for the treatment and prevention of hypertension and cardiovascular disease.
Collapse
|
48
|
da Costa Goncalves AC, Tank J, Diedrich A, Hilzendeger A, Plehm R, Bader M, Luft FC, Jordan J, Gross V. Diabetic Hypertensive Leptin Receptor–Deficient db/db Mice Develop Cardioregulatory Autonomic Dysfunction. Hypertension 2009; 53:387-92. [DOI: 10.1161/hypertensionaha.108.124776] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leptin receptor–deficient db/db mice develop human type 2 diabetes mellitus, hypertension, and obesity with disrupted circadian blood pressure (BP) rhythm. Whether leptin is the sole mechanism mediating autonomic imbalance and hypertension is unclear. To explore this notion further, we measured BP by radiotelemetry combined with fast Fourier transformation and assessed autonomic function pharmacologically before and after renin-angiotensin system blockade with enalapril. The resting period BP (117±3 versus 108±1.0 mm Hg) and heart rate (HR; 488±12 versus 436±8 bpm) were higher in db/db mice compared with db/+ mice. BP and HR amplitudes were lower in db/db mice compared with db/+ mice. BP response to trimetaphan (−43±5 versus −27±3 mm Hg) and HR response to metoprolol (−59±12 versus −5±4 bpm) were greater in db/db mice than in db/+ mice. The HR response to atropine was blunted in db/db mice (59±17 versus 144±24 bpm), as were baroreflex sensitivity and HR variability. Enalapril improved autonomic regulation in db/db mice. Stimulation of central α-2 adrenoreceptors enhanced both parasympathetic HR control and baroreflex sensitivity in db/db mice. We suggest that functional, rather than structural, α-2 adrenoceptor changes and the renin-angiotensin system are involved in the increased sympathetic and decreased parasympathetic tones in db/db mice. Our data suggest that db/db mice exhibit features found in humans with type 2 diabetic autonomic neuropathy and could serve as a model for this complication.
Collapse
Affiliation(s)
- Andrey C. da Costa Goncalves
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Jens Tank
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - André Diedrich
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Aline Hilzendeger
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Ralph Plehm
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Michael Bader
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Friedrich C. Luft
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Jens Jordan
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| | - Volkmar Gross
- From the Max Delbrück Center for Molecular Medicine (A.C.d.C.G., A.H., R.P., M.B., F.C.L., V.G.), Berlin, Germany; Institute of Clinical Pharmacology (J.T., J.J.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Biophysics (A.H.), Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; and the Medical Faculty
| |
Collapse
|
49
|
Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M, Nagayama T, Bedja D, Gabrielson KL, Blanton R, Siderovski DP, Mendelsohn ME, Kass DA. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest 2009; 119:408-20. [PMID: 19127022 DOI: 10.1172/jci35620] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/12/2008] [Indexed: 01/19/2023] Open
Abstract
The heart initially compensates for hypertension-mediated pressure overload by enhancing its contractile force and developing hypertrophy without dilation. Gq protein-coupled receptor pathways become activated and can depress function, leading to cardiac failure. Initial adaptation mechanisms to reduce cardiac damage during such stimulation remain largely unknown. Here we have shown that this initial adaptation requires regulator of G protein signaling 2 (RGS2). Mice lacking RGS2 had a normal basal cardiac phenotype, yet responded rapidly to pressure overload, with increased myocardial Gq signaling, marked cardiac hypertrophy and failure, and early mortality. Swimming exercise, which is not accompanied by Gq activation, induced a normal cardiac response, while Rgs2 deletion in Galphaq-overexpressing hearts exacerbated hypertrophy and dilation. In vascular smooth muscle, RGS2 is activated by cGMP-dependent protein kinase (PKG), suppressing Gq-stimulated vascular contraction. In normal mice, but not Rgs2-/- mice, PKG activation by the chronic inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppressed maladaptive cardiac hypertrophy, inhibiting Gq-coupled stimuli. Importantly, PKG was similarly activated by PDE5 inhibition in myocardium from both genotypes, but PKG plasma membrane translocation was more transient in Rgs2-/- myocytes than in controls and was unaffected by PDE5 inhibition. Thus, RGS2 is required for early myocardial compensation to pressure overload and mediates the initial antihypertrophic and cardioprotective effects of PDE5 inhibitors.
Collapse
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, da Costa Goncalves AC, Huang Y, Luft FC, Gollasch M. Interaction Between P450 Eicosanoids and Nitric Oxide in the Control of Arterial Tone in Mice. Arterioscler Thromb Vasc Biol 2009; 29:54-60. [DOI: 10.1161/atvbaha.108.171298] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hantz C. Hercule
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Wolf-Hagen Schunck
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Volkmar Gross
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Jasmin Seringer
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Fung Ping Leung
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Steven M. Weldon
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Andrey Ch. da Costa Goncalves
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Yu Huang
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Friedrich C. Luft
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| | - Maik Gollasch
- From the Charité Campus Buch, Franz Volhard Clinic/ECRC and HELIOS Klinikum-Berlin, Nephrology/Intensive Care Section, Charité Campus Virchow (H.C.A., J.S., M.G.), and Max Delbrück Center for Molecular Medicine, Berlin, Germany (W.-H.S., V.G., A.Ch.daC.G.); the Department of Physiology, the Chinese University of Hong Kong, China (P.L., Y.H.); and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Conn (S.M.W.)
| |
Collapse
|