1
|
Raff H, Hainsworth KR, Woyach VL, Weihrauch D, Wang X, Dean C. Probiotic and high-fat diet: effects on pain assessment, body composition, and cytokines in male and female adolescent and adult rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R123-R132. [PMID: 38780441 PMCID: PMC11444502 DOI: 10.1152/ajpregu.00082.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.
Collapse
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Victoria L Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Xuemeng Wang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Dwinell MR, Lehmler HJ, Raff H, Grobe JL, Kwitek AE. Genetic background in the rat affects endocrine and metabolic outcomes of bisphenol F exposure. Toxicol Sci 2023; 194:84-100. [PMID: 37191987 PMCID: PMC10306406 DOI: 10.1093/toxsci/kfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin 53233, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
3
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Maroofi A, Bagheri Rouch A, Naderi N, Damirchi A. Effects of two different exercise paradigms on cardiac function, BDNF-TrkB expression, and myocardial protection in the presence and absence of Western diet. IJC HEART & VASCULATURE 2022; 40:101022. [PMID: 35399608 PMCID: PMC8991101 DOI: 10.1016/j.ijcha.2022.101022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Background Brain-derived neurotrophic factor (BDNF) -tropomyosin-related kinase receptor B (TrkB) signaling is a vital regulator of myocardial performance. Here, we tested the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart function, metabolic parameters, and serum/cardiac BDNF (with its TrkB receptor) in animals fed a Western (WD) or regular diet (ND). Further, myocardial expression of pro-inflammatory cytokine interleukin-18 (IL-18) and cardioprotective molecule heme oxygens-1 (HO-1) were monitored. Methods Wistar rats were divided into HIIT, MICT, and sedentary (SED), all fed a WD or ND, for 12 weeks. Heart function, protein expression, and serum factors were assessed via echocardiography, western blotting, and ELISA, respectively. Results WD plus SED caused insulin resistance, dyslipidemia, visceral fat deposition, serum BDNF depletion as well as cardiac upregulation of IL-18 and downregulation of HO-1, without affecting, heart function and BDNF-TrkB expression. The cardiometabolic risk factors, serum BDNF losses, and IL-18 overexpression were similarly obviated by HIIT and MICT, although HO-1 expression was boosted by HIIT exclusively (even in ND). HIIT enhanced heart function, regardless of the diet. HIIT augmented cardiac BDNF expression, with a significant difference between ND and WD. Likewise, HIIT instigated TrkB expression only in ND. Conclusions HIIT and MICT can cope with myocardial inflammation and cardiometabolic risk factors in WD consumers and, exclusively, HIIT may grant further protection by increasing heart function, BDNF-TrkB expression, and HO-1 expression. Thus, the HIIT paradigm should be considered as a preference for subjects who require heart function to be preserved or enhanced.
Collapse
Affiliation(s)
- Abdulbaset Maroofi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Ahmadreza Bagheri Rouch
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
5
|
Braga Tibaes JR, Azarcoya-Barrera J, Wollin B, Veida-Silva H, Makarowski A, Vine D, Tsai S, Jacobs R, Richard C. Sex Differences Distinctly Impact High-Fat Diet-Induced Immune Dysfunction in Wistar Rats. J Nutr 2022; 152:1347-1357. [PMID: 35102397 DOI: 10.1093/jn/nxac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Immune function is altered during obesity. Moreover, males and females across different species demonstrate distinct susceptibility to several diseases. However, less is known regarding the interplay between high-fat diet (HFD) and sex in the context of immune function. OBJECTIVES The objective was to determine sex differences on immune function in response to an HFD compared with a control low-fat diet (LFD) in Wistar rats. METHODS At 5 wk of age, male and female Wistar rats were randomly assigned to 1 of 2 diets for 9 wk: ad libitum control LFD (20 kcal% fat, 53 kcal% carbohydrate, and 27 kcal% protein) or HFD (50 kcal% fat, 23 kcal% carbohydrate, and 27 kcal% protein). At 13 wk of age, rats were killed and splenocytes were isolated. Immune cell subsets were determined by flow cytometry. Immune cell function was determined by measuring the ex vivo cytokine production following stimulation with mitogens. Two-factor ANOVA was used to assess the main effect of sex, diet, and their interaction. RESULTS Males gained more weight than females (410 ± 46 vs. 219 ± 45 g), independently of diet (P-sex < 0.01). The HFD led to a lower production of IL-2 while increasing the production of IL-10 (both P-diet ≤ 0.05), independently of sex. HFD-fed females had increased production of cytokines (IL-2 and IL-6) after stimulation with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I), as well as a higher T-helper (Th) 1:Th2 balance compared with HFD-fed males (all P < 0.05). Males fed the HFD had significantly lower production of IL-2 upon stimulation compared with all other groups. CONCLUSIONS Female Wistar rats developed a milder obesity phenotype and maintained enhanced cytokine production compared with males fed the HFD. Sex differences modulate immune function in the context of high-fat feeding and it should be considered in research design to establish personalized health-related recommendations.
Collapse
Affiliation(s)
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bethany Wollin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hellen Veida-Silva
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - René Jacobs
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Raff H, Phillips J, Simpson P, Weisman SJ, Hainsworth KR. Interaction of chronic pain, obesity and time of day on cortisol in female human adolescents. Stress 2022; 25:331-336. [PMID: 36330600 DOI: 10.1080/10253890.2022.2142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adolescent obesity augments and impedes the treatment of chronic pain. This is associated with increased systemic inflammation and is more prominent in females. In addition, pain and obesity each independently affect the hypothalamic-pituitary-adrenal (HPA) axis. However, the interaction of pain and obesity on the HPA axis and the potential for sexual dimorphism in this phenomenon is not established. We hypothesized that dysregulation of the HPA axis occurs in female human adolescents with chronic pain, obesity, or the combination of the two and is associated with gonadal steroids. We measured serum cortisol, estradiol, and testosterone in 13-17-year-old adolescent females (N = 79) from venous blood drawn during the daytime (0830-1730 h) and analyzed the data in toto and partitioned by morning vs. afternoon sampling time. Subjects were categorized as healthy weight/no pain (controls; BMI = 56th percentile [37-71]), healthy weight with chronic pain, obese without pain (BMI = 97th percentile [95-99]), or the combination of obesity and chronic pain. Serum cortisol was lower with chronic pain and/or obesity compared to healthy controls and was lower with chronic pain and obesity compared to chronic pain alone (healthy weight). The lower serum cortisol in the pain alone group was more prominent in the morning compared to the afternoon. There was no relationship between serum estradiol and testosterone and study group. The decrease in the anti-inflammatory and other pain-ameliorating effects of cortisol may contribute to chronic pain and its resistance to treatment with concurrent obesity in female adolescents.
Collapse
Affiliation(s)
- Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Pippa Simpson
- Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biostatistics Core, Children's Wisconsin, Milwaukee, WI, USA
| | - Steven J Weisman
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, WI, USA
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Yaribeygi H, Maleki M, Atkin SL, Jamialahmadi T, Sahebkar A. Impact of Incretin-Based Therapies on Adipokines and Adiponectin. J Diabetes Res 2021; 2021:3331865. [PMID: 34660808 PMCID: PMC8516550 DOI: 10.1155/2021/3331865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Adipokines are a family of hormones and cytokines with both pro- and anti-inflammatory effects released into the circulation to exert their hormonal effects. Adipokines are closely involved in most metabolic pathways and play an important modulatory role in lipid and carbohydrate homeostasis as they are involved in the pathophysiology of most metabolic disorders. Incretin-based therapy is a newly introduced class of antidiabetic drugs that restores euglycemia through several cellular processes; however, its effect on adipokines expression/secretion is not fully understood. In this review, we propose that incretin-based therapy may function through adipokine modulation that may result in pharmacologic properties beyond their direct antidiabetic effects, resulting in better management of diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Li Z, Wang S, Gong C, Hu Y, Liu J, Wang W, Chen Y, Liao Q, He B, Huang Y, Luo Q, Zhao Y, Xiao Y. Effects of Environmental and Pathological Hypoxia on Male Fertility. Front Cell Dev Biol 2021; 9:725933. [PMID: 34589489 PMCID: PMC8473802 DOI: 10.3389/fcell.2021.725933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Male infertility is a widespread health problem affecting approximately 6%-8% of the male population, and hypoxia may be a causative factor. In mammals, two types of hypoxia are known, including environmental and pathological hypoxia. Studies looking at the effects of hypoxia on male infertility have linked both types of hypoxia to poor sperm quality and pregnancy outcomes. Hypoxia damages testicular seminiferous tubule directly, leading to the disorder of seminiferous epithelium and shedding of spermatogenic cells. Hypoxia can also disrupt the balance between oxidative phosphorylation and glycolysis of spermatogenic cells, resulting in impaired self-renewal and differentiation of spermatogonia, and failure of meiosis. In addition, hypoxia disrupts the secretion of reproductive hormones, causing spermatogenic arrest and erectile dysfunction. The possible mechanisms involved in hypoxia on male reproductive toxicity mainly include excessive ROS mediated oxidative stress, HIF-1α mediated germ cell apoptosis and proliferation inhibition, systematic inflammation and epigenetic changes. In this review, we discuss the correlations between hypoxia and male infertility based on epidemiological, clinical and animal studies and enumerate the hypoxic factors causing male infertility in detail. Demonstration of the causal association between hypoxia and male infertility will provide more options for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, Liaoning, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongbing Zhao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
10
|
Rolon S, Huynh C, Guenther M, Gardezi M, Phillips J, Gehrand AL, Raff H. Insulin and glucose responses to hypoxia in male and female neonatal rats: Effects of the androgen receptor antagonist flutamide. Physiol Rep 2021; 9:e14663. [PMID: 33393733 PMCID: PMC7780235 DOI: 10.14814/phy2.14663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
Hypoxia is common with preterm birth and may lead to long-term effects on adult pancreatic endocrine function and insulin sensitivity. This phenomenon may be sexually dimorphic due to the hypoxia-induced augmentation of the neonatal androgen surge in male newborns. We evaluated this phenomenon by pretreating neonatal rats on postnatal days (PD) 1, 6, 13, or 20 with flutamide (a nonsteroidal androgen receptor antagonist) at a standard or a high dose (10 or 50 mg/kg) compared to vehicle control. One day later, neonatal rats were exposed to either acute normoxic or hypoxic separation (fasting) for 90 min, and blood was sampled for the measurement of insulin and glucose and the calculation of HOMA-IR as an index of insulin resistance. During normoxic and hypoxic separation (fasting), flutamide increased insulin secretion in PD2, PD7, and PD14 pups, high dose flutamide attenuated insulin secretion, and high dose flutamide attenuated the increase in HOMA-IR due to hypoxia. Our studies suggest a unique role of the androgen receptor in the control of neonatal pancreatic function, possibly by blocking a direct effect of neonatal testosterone or in response to indirect regulatory effects of androgens on insulin sensitivity.
Collapse
Affiliation(s)
- Santiago Rolon
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
| | - Christine Huynh
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Maya Guenther
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Minhal Gardezi
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Jonathan Phillips
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Ashley L. Gehrand
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Hershel Raff
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
- Department of SurgeryMedical College of WisconsinMilwaukeeWIUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
11
|
Xu X, Niu L, Liu Y, Pang M, Lu W, Xia C, Zhu Y, Yang B, Wang Q. Study on the mechanism of Gegen Qinlian Decoction for treating type II diabetes mellitus by integrating network pharmacology and pharmacological evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113129. [PMID: 32730886 DOI: 10.1016/j.jep.2020.113129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/13/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gegen Qinlian Decoction (GQD) is a classic traditional Chinese medicine prescription that is widely used to clinically treat diabetes mellitus. It is composed of Pueraria lobata (Willd.) Ohwi (ge gen), Scutellaria baicalensis Georgi (huang qin), Coptidis chinensis Franch. (huang lian), and Glycyrrhiza uralensis Fisch. (gan cao). However, the active ingredients in GQD and their mechanism of action are unclear. AIM OF THE STUDY In this study, we aimed to verify the efficacy of GQD in improving insulin resistance (IR) in diabetic mice and used network pharmacology to identify potential targets and pathways underlying its mechanism of action. MATERIALS AND METHODS A mouse model of diabetes was created by feeding mice a high-fat diet followed by an intraperitoneal injection of streptozotocin. These type II diabetic mice were administered either a clinical dose or a high dose of GQD, after which blood glucose and serum insulin levels were measured to assess its effects on IR. Network pharmacology was used to construct a 'component-pathway-target' network to elucidate the likely targets and pathways modulated in common by GQD components. Furthermore, mRNA transcript levels and protein expression levels of oestrogen receptor alpha (ESR1) were determined. RESULTS The in vivo experiment showed that GQD markedly decreased blood glucose and increased serum insulin levels in type II diabetic mice. Network pharmacology and bioinformatics analysis indicated that GQD regulated 82 corresponding proteins and 59 relevant biological pathways associated with diabetes. One such target was ESR1, which was significantly decreased at both the mRNA and protein levels in diabetic mice, but whose levels were significantly increased by GQD treatment. CONCLUSIONS This project provides a scientific basis for understanding the effectiveness of multi-component, multi-target compound formulas, as well as a new strategy for investigating therapeutic drugs for type II diabetes and other diseases.
Collapse
Affiliation(s)
- Xinyi Xu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lulu Niu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Meilu Pang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Wanying Lu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Cong Xia
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yuxuan Zhu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
12
|
Wrzosek M, Woźniak J, Włodarek D. The causes of adverse changes of testosterone levels in men. Expert Rev Endocrinol Metab 2020; 15:355-362. [PMID: 33076711 DOI: 10.1080/17446651.2020.1813020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION As men age, progressive testosterone deficiency syndrome becomes an increasingly common problem. However, the decreased testosterone levels are not only the result of advanced age. AREAS COVERED PubMed search of published data on testosterone, nutritional deficiency, stress, sleep, and obesity. Many factors impact the male HPG axis (the hypothalamic-pituitary-adrenal), including body weight, calorific and nutritional value of a diet, the amount and quality of sleep, as well as the level of stress. In the case of persons of healthy weight, a below-average calorific value of a diet may decrease the levels of testosterone in men. On the other hand, the same caloric deficiency in obese persons may result in a neutral or positive impact on testosterone levels. EXPERT OPINION Many factors, including external, environmental and internal factors, influence testosterone levels. Undoubtedly, nutritional deficiency, and particularly of such nutrients as zinc, magnesium, vitamin D, together with low polyphenols intake, affects the HPG axis. The levels of mental and oxidative stress can also adversely impact the axis. Hence, a diagnosis of the cause of disturbance in testosterone levels depends on many factors and requires a broad range of research, as well as a change of patients' lifestyle.
Collapse
Affiliation(s)
- Michał Wrzosek
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS - SGGW) , Warsaw, Poland
| | - Jakub Woźniak
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS - SGGW) , Warsaw, Poland
| | - Dariusz Włodarek
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS - SGGW) , Warsaw, Poland
| |
Collapse
|
13
|
Gehrand AL, Phillips J, Malott K, Raff H. Corticosterone, Adrenal, and the Pituitary-Gonadal Axis in Neonatal Rats: Effect of Maternal Separation and Hypoxia. Endocrinology 2020; 161:5847844. [PMID: 32459830 PMCID: PMC7310600 DOI: 10.1210/endocr/bqaa085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
Abstract
Hypoxia, a common stressor in prematurity, leads to sexually dimorphic, short- and long-term effects on the adult hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. We hypothesized that these effects are due to stress-induced increases in testosterone during early postnatal life. We evaluated this phenomenon by systematically assessing the short-term effects of normoxic or hypoxic separation on male and female pups at birth, postnatal hours (H) 2, 4, and 8, and postnatal days (PD) 2 to 7. Our findings were (a) hypoxic separation led to a large increase in plasma corticosterone from 4H-PD4, (b) neither normoxic nor hypoxic separation affected critical adrenal steroidogenic pathway genes; however, a significant decrease in baseline Cyp11a1, Mc2r, Mrap, and Star adrenal expression during the first week of neonatal life confirmed the start of the adrenal stress hyporesponsive period, (c) a luteinizing hormone/follicle-stimulating hormone-independent increase in plasma testosterone occurred in normoxic and hypoxic separated male pups at birth, (d) testicular Cyp11a1, Lhcgr, and Star expression was high at birth and decreased thereafter suggesting a hyporesponsive period in the testes, and (e) elevated estrogen in the early neonatal period occurred independently of gonadotropin stimulation. We conclude that a large corticosterone response to hypoxia during the first 5 days of life occurs as an adaptation to neonatal stress, that the testosterone surge during the first hours after birth occurs independently of gonadotropins but is associated with upregulation of the steroidogenic pathway genes in the testes, and that high postnatal estrogen production also occurs independently of gonadotropins.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Kevin Malott
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Correspondence: Hershel Raff, PhD, Endocrinology Research Laboratory, Aurora St. Luke’s Medical Center, 2801 West KK River Parkway, Suite 245, Milwaukee, WI 53215. E-mail:
| |
Collapse
|
14
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Rolon S, Huynh C, Guenther M, Gardezi M, Phillips J, Gehrand AL, Raff H. The effects of flutamide on the neonatal rat hypothalamic-pituitary-adrenal and gonadal axes in response to hypoxia. Physiol Rep 2019; 7:e14318. [PMID: 31876126 PMCID: PMC6930936 DOI: 10.14814/phy2.14318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is common with preterm birth and may lead to long-term effects on the adult hypothalamic-pituitary-adrenal (HPA) axis that are sexually dimorphic due to neonatal androgens. Although the adult rat adrenal does not express appreciable CYP17 activity, the neonatal rat adrenal may synthesize androgens that could be a critical local factor in the development of adrenal function. We evaluated these phenomena by pretreating the neonatal rats on postnatal days (PD) 1, 6, 13, 20 with flutamide (a nonsteroidal androgen receptor antagonist) at a standard or a high dose (10 mg/kg or 50 mg/kg) compared to vehicle control. One day later, neonatal rats were exposed to acute hypoxia and blood was sampled. We found that (a) in PD2 pups, flutamide augmented corticosterone responses in a sexually dimorphic pattern and without an increase in ACTH, (b) PD7 and PD14 pups had the smallest corticosterone response to hypoxia (c) PD21 pups had an adult-like corticosterone response to hypoxia that was sexually dimorphic, (d) flutamide attenuated ACTH responses in PD7 hypoxic pups, and (e) high-dose flutamide suppressed the HPA axis, FSH, and estradiol. Flutamide demonstrated mixed antagonist and agonist effects that changed during the first three weeks of neonatal life. We conclude that the use of flutamide in neonatal rats to evaluate androgen-induced programming of subsequent adult behavior is not optimal. However, our studies suggest neonatal androgens play a role in regulation of adrenal function that is sexually dimorphic and changes during early development.
Collapse
Affiliation(s)
- Santiago Rolon
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
- Department of MedicineMedical College of WisconsinMilwaukeeWisconsin
| | - Christine Huynh
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Maya Guenther
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Minhal Gardezi
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Jonathan Phillips
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Ashley L. Gehrand
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Hershel Raff
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
- Department of MedicineMedical College of WisconsinMilwaukeeWisconsin
- Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
16
|
Gehrand AL, Phillips J, Malott K, Raff H. A Long-Acting Neutralizing Monoclonal ACTH Antibody Blocks Corticosterone and Adrenal Gene Responses in Neonatal Rats. Endocrinology 2019; 160:1719-1730. [PMID: 31166572 DOI: 10.1210/en.2019-00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
The control of steroidogenesis in the neonatal adrenal gland is of great clinical interest. We have previously demonstrated that the postnatal day (PD) 2 rat exhibits a large plasma corticosterone response to hypoxia in the absence of an increase in plasma ACTH measured by RIA, whereas the corticosterone response to exogenous ACTH is intact. By PD8, the corticosterone response to hypoxia is clearly ACTH-dependent. We hypothesized that this apparently ACTH-independent response to hypoxia in the newborn rat is due to an increase in a bioactive, nonimmunoassayable form of ACTH. To evaluate this phenomenon, we pretreated neonatal rats with a novel, specific, neutralizing anti-ACTH antibody (ALD1611) (20 mg/kg or 1 mg/kg IP) on the morning of PD1, PD7, and PD14. Twenty-four hours later, we measured hypoxia- or ACTH-stimulated plasma ACTH and corticosterone. For long-term effects, ALD1611 was given on PD1 and pups were studied on PD8 and PD15. Pretreatment with ALD1611 significantly decreased baseline corticosterone and completely blocked the corticosterone response to hypoxia and exogenous ACTH stimulation at all ages. The effect of 1 mg/kg ALD1611 on PD1 had dissipated by PD15. The decrease in corticosterone in ALD1611-treated pups was associated with decreases in baseline and hypoxia- and ACTH-stimulated adrenal Ldlr, Mrap, and Star mRNA expression at all ages. The adrenal response to hypoxia in the newborn rat is ACTH-dependent, suggesting the release of nonimmunoassayable, biologically active forms of ACTH. ALD1611 is useful as a tool to attenuate stress-induced, ACTH-dependent adrenal steroidogenesis in vivo.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Kevin Malott
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Raff H, Phillips JM. Bedtime Salivary Cortisol and Cortisone by LC-MS/MS in Healthy Adult Subjects: Evaluation of Sampling Time. J Endocr Soc 2019; 3:1631-1640. [PMID: 31403090 PMCID: PMC6682408 DOI: 10.1210/js.2019-00186] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
The measurement of late-night salivary cortisol is a mainstay in the diagnosis of Cushing syndrome. Furthermore, the measurement of salivary cortisol is useful in assessing the cortisol awakening response. Because the salivary glands express 11-β-hydroxysteroid dehydrogenase, the measurement of salivary cortisone may improve the performance of salivary corticosteroid measurements. We measured salivary cortisol by enzyme immunoassay (EIA) and salivary cortisol and cortisone by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in only 50 µL of saliva sampled from 54 healthy subjects (aged 20 to 64 years). We allowed patients to sample at their normal bedtime (2025 to 2400 hours) to answer a common question as to whether sampling at the normal bedtime is equivalent to the standard required sampling at 2300 to 2400 hours. We found that the salivary cortisol and cortisone results by LC-MS/MS correlated well with salivary cortisol measured with the US Food and Drug Administration-cleared EIA. Furthermore, the upper limit of normal of salivary cortisol by EIA for bedtime samples was lower than the previously published upper limit of normal with sampling required at 2300 to 2400 hours. There were no significant effects of age or sex on any of the salivary steroid measurements. We conclude that (i) salivary cortisol and cortisone can be reliably measured by LC-MS/MS in small volumes of saliva and (ii) that patients can be evaluated using saliva sampled at their normal bedtime, rather than being required to stay awake until 2300 to 2400 hours.
Collapse
Affiliation(s)
- Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin.,Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jonathan M Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Jaimes-Hoy L, Romero F, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Maternal Separation and Palatable Diet. Front Endocrinol (Lausanne) 2019; 10:445. [PMID: 31354623 PMCID: PMC6637657 DOI: 10.3389/fendo.2019.00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal stress contributes to the development of obesity and has long-lasting effects on elements of the hypothalamus-pituitary-thyroid (HPT) axis. Given the importance of thyroid hormones in metabolic regulation, we studied the effects of maternal separation and a high-fat/high-carbohydrate diet (HFC), offered from puberty or adulthood, on HPT axis activity of adult male and female Wistar rats. Pups were non-handled (NH) or maternally separated (MS) 3 h/day at postnatal days (Pd) 2-21. In a first experiment, at Pd60, rats had access to chow or an HFC diet (cookies, peanuts, chow) for 1 month. Male and female NH and MS rats that consumed the HFC diet increased their caloric intake, body weight, and serum insulin levels; fat weight increased in all groups except in MS males, and serum leptin concentration increased only in females. Mediobasal hypothalamus (MBH) Pomc expression increased in NH-HFC females and Npy decreased in NH-HFC males. MS males showed insulinemia and hypercortisolemia that was attenuated by the HFC diet. The HPT axis activity response to an HFC diet was sex-specific; expression of MBH thyrotropin-releasing hormone-degrading ectoenzyme (Trhde) increased in NH and MS males; serum TSH concentration decreased in NH males, and T4 increased in NH females. In a second experiment, rats were fed chow or an HFC diet from Pd30 or 60 until Pd160 and exposed to 1 h restraint before sacrifice. Regardless of neonatal stress, age of diet exposition, or sex, the HFC diet increased body and fat weight and serum leptin concentration; it induced insulinemia in males, but in females only in Pd30 rats. The HFC diet's capacity to curtail the hypothalamus-pituitary-adrenal axis response to restraint was impaired in MS males. In restrained rats, expression of Trh in the paraventricular nucleus of the hypothalamus, Dio2 and Trhde in MBH, and serum thyroid hormone concentration were altered differently depending on sex, age of diet exposition, and neonatal stress. In conclusion, metabolic alterations associated to an HFC-diet-induced obesity are affected by sex or time of exposition, while various parameters of the HPT axis activity are additionally altered by MS, pointing to the complex interplay that these developmental influences exert on HPT axis activity in adult rats.
Collapse
|
19
|
Ruiz R, Roque A, Pineda E, Licona-Limón P, José Valdéz-Alarcón J, Lajud N. Early life stress accelerates age-induced effects on neurogenesis, depression, and metabolic risk. Psychoneuroendocrinology 2018; 96:203-211. [PMID: 30048914 DOI: 10.1016/j.psyneuen.2018.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 07/07/2018] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) affects hippocampal neurogenesis, increases depressive-like behavior, and causes mild metabolic imbalance in early adulthood (2 months). However, whether these effects worsen in mid life remains unclear. To test whether age-dependent effects of ELS on hippocampal neurogenesis are related to deficient hypothalamic-pituitary-adrenal (HPA) axis feedback that causes increased comorbidity of depression and metabolic risk, we evaluated the effects of periodic maternal separation (MS180) in young (4-months-old) and middle-aged (10-months-old) adult rats. MS180 caused more severe depressive-like behavior in middle-aged adults than in young animals. There were no behavioral phenotypic differences between young MS180 and control middle-aged groups. MS180 similarly affected glucose tolerance, increased fasting corticosterone, insulin, and the quantitative insulin sensitivity check index (QUICKI) at both ages. However, middle-aged adult MS180 rats showed more severe age-induced obesity (>40% BW) than controls (>22% BW). MS180 differentially affected dorsal and ventral neurogenesis. In young adults, MS180 animals only showed a decrease in dorsal hippocampal neurogenesis as compared to their age-matched counterparts. In contrast, at 10 months of age, MS180 caused a similar decrease in both dorsal and ventral hippocampal neurogenesis as compared to age-matched controls, and a more severe decrease as compared to young animals. Taken together, our data indicate that MS180 animals show an early onset of age-induced alterations on depression and metabolic risk, and these effects relate to alterations in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Roberto Ruiz
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Edel Pineda
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Paula Licona-Limón
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Juan José Valdéz-Alarcón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán-Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico.
| |
Collapse
|
20
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Cullinan WE, Raff H. Programming of the Adult HPA Axis After Neonatal Separation and Environmental Stress in Male and Female Rats. Endocrinology 2018; 159:2777-2789. [PMID: 29878093 DOI: 10.1210/en.2018-00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Maternal separation, hypoxia, and hypothermia are common stressors in the premature neonate. Using our rat model of human prematurity, we evaluated sexual dimorphisms in the long-term effects of these neonatal stressors on behavior of the hypothalamic-pituitary-adrenal (HPA) axis in adult rats. Neonatal rats were exposed daily on postnatal days 2 to 6 to maternal separation with normoxia, with hypoxia allowing spontaneous hypothermia, with hypothermia per se, and with hypoxia while maintaining isothermia with external heat. The major findings were that (a) prior maternal-neonatal separation during the first week of postnatal life attenuated the plasma ACTH and corticosterone response to restraint stress in adult male but not female rats, (b) prior neonatal hypothermia augmented the plasma ACTH and corticosterone response to restraint stress in adult male rats, but not female rats, and (c) changes in hypothalamic, pituitary, and adrenal mRNA expression did not account for most of these HPA axis effects. Most of the programming effects on adult HPA axis was attributed to prior maternal-neonatal separation alone (with normoxia) because the addition of hypoxia with spontaneous hypothermia, hypothermia per se, and hypoxia while preventing hypothermia during maternal-neonatal separation had minimal effects on the HPA axis. These results may inform strategies to prevent sexually dimorphic sequelae of neonatal stress including those due to medical interventions.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - William E Cullinan
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Goldenberg AJ, Gehrand AL, Waples E, Jablonski M, Hoeynck B, Raff H. Effect of a melanocortin type 2 receptor (MC2R) antagonist on the corticosterone response to hypoxia and ACTH stimulation in the neonatal rat. Am J Physiol Regul Integr Comp Physiol 2018; 315:R128-R133. [PMID: 29718699 DOI: 10.1152/ajpregu.00009.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adrenal stress response in the neonatal rat shifts from ACTH-independent to ACTH-dependent between postnatal days 2 (PD2) and 8 (PD8). This may be due to an increase in an endogenous, bioactive, nonimmunoreactive ligand to the melanocortin type 2 receptor (MC2R). GPS1574 is a newly described MC2R antagonist that we have shown to be effective in vitro. Further experimentation with GPS1574 would allow better insight into this seemingly ACTH-independent steroidogenic response in neonates. We evaluated the acute corticosterone response to hypoxia or ACTH injection following pretreatment with GPS1574 (32 mg/kg) or vehicle for GPS1574 in PD2, PD8, and PD15 rat pups. Pretreatment with GPS1574 decreased baseline corticosterone in PD2 pups but increased baseline corticosterone in PD8 and PD15 pups. GPS1574 did not attenuate the corticosterone response to hypoxia in PD2 pups and augmented the corticosterone response in PD8 and PD15 pups. GPS1574 augmented the corticosterone response to ACTH in PD2 and PD15 pups but had no significant impact on the response in PD8 pups. Baseline adrenal Mrap and Star mRNA increased from PD2 to PD15, whereas Mrap2 mRNA expression was low and did not change with age. The data suggest that GPS1574 is not a pure MC2R antagonist, but rather acts as a biasing agonist/antagonist. Its ability to attenuate or augment the adrenal response may depend on the ambient plasma ACTH concentration and/or developmental changes in early transduction steroidogenic pathway genes.
Collapse
Affiliation(s)
- Adam J Goldenberg
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Emily Waples
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
22
|
Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2468105. [PMID: 29785188 PMCID: PMC5896274 DOI: 10.1155/2018/2468105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/02/2022]
Abstract
Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA) treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS). Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA) group, and MS with Sham-EA treatment (MS + Sham-EA) group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP) at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20) and Yintang (GV 29) during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.
Collapse
|