1
|
Sun Q, Zhang HL, Wang Y, Xiu H, Lu Y, He N, Yin L. Identification of Hub Genes and Key Pathways Associated with Sepsis Progression Using Weighted Gene Co-Expression Network Analysis and Machine Learning. Int J Mol Sci 2025; 26:4433. [PMID: 40362669 PMCID: PMC12072417 DOI: 10.3390/ijms26094433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis is a life-threatening condition driven by dysregulated immune responses, resulting in organ dysfunction and high mortality rates. Identifying key genes and pathways involved in sepsis progression is crucial for improving diagnostic and therapeutic strategies. This study analyzed transcriptomic data from 49 samples (37 septic patients across days 0, 1, and 8, and 12 healthy controls) using weighted gene co-expression network analysis (WGCNA) and multi-algorithm feature selection approaches. Differential expression analysis, pathway enrichment, and network analyses were employed to uncover potential biomarkers and molecular mechanisms. WGCNA identified modules such as MEbrown4 and MEblack, which strongly correlated with sepsis progression (r > 0.7, p < 0.01). Differential expression analysis highlighted up-regulated genes like CD177 and down-regulated genes like LOC440311. KEGG analysis revealed significant pathways including neuroactive ligand-receptor interaction, PI3K-Akt signaling, and MAPK signaling. Gene ontology analysis showed involvement in immune-related processes such as complement activation and antigen binding. Protein-protein interaction network analysis identified hub genes such as TNFSF10, IGLL5, BCL2L1, and SNCA. Feature selection methods (random forest, LASSO regression, SVM-RFE) consistently identified top predictors like TMCC2, TNFSF10, and PLVAP. Receiver operating characteristic (ROC) analysis demonstrated high predictive accuracy for sepsis progression, with AUC values of 0.973 (TMCC2), 0.969 (TNFSF10), and 0.897 (PLVAP). Correlation analysis linked key genes such as TNFSF10, GUCD1, and PLVAP to pathways involved in immune response, cell death, and inflammation. This integrative transcriptomic analysis identifies critical gene modules, pathways, and biomarkers associated with sepsis progression. Key genes like TNFSF10, TMCC2, and PLVAP genes show strong diagnostic potential, providing novel insights into sepsis pathogenesis and offering promising targets for future therapeutic interventions. Among these, TNFSF10 and PLVAP are known to encode secreted proteins, suggesting their potential as circulating biomarkers. This enhances their translational relevance in clinical diagnostics.
Collapse
Affiliation(s)
- Qinghui Sun
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Q.S.); (H.X.); (Y.L.); (N.H.)
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Hai-Li Zhang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China; (H.-L.Z.); (Y.W.)
| | - Yichao Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China; (H.-L.Z.); (Y.W.)
| | - Hao Xiu
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Q.S.); (H.X.); (Y.L.); (N.H.)
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Yufei Lu
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Q.S.); (H.X.); (Y.L.); (N.H.)
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Na He
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Q.S.); (H.X.); (Y.L.); (N.H.)
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Li Yin
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Q.S.); (H.X.); (Y.L.); (N.H.)
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
2
|
Xin Y, Tian M, Pei X, Deng S, Wang Y, Zhao F, Behnisch T, Gao Y, Gong Y. Optimized Mouse Model of Sepsis-Associated Encephalopathy: A Rational Standard Based on Modified SHIRPA Score and Neurobehaviors in Mice. CNS Neurosci Ther 2025; 31:e70365. [PMID: 40202114 PMCID: PMC11979712 DOI: 10.1111/cns.70365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE), a severe neurological disorder, is marked by widespread brain dysfunction. At present, there is no universally accepted criterion for diagnosing SAE in animal models. This study proposes a standardized evaluation method for SAE in mice, addressing inconsistencies in current research. METHOD Using a cecal ligation and puncture (CLP) model to induce sepsis, we assessed the physiological status of mice with a modified SHIRPA score to differentiate SAE from non-SAE, validating our findings through various behavioral tests and evaluations of neuroinflammation and neuronal damage. RESULTS Our findings revealed that the conventional mild-moderate-severe categorization of SHIRPA was insufficient for distinguishing between SAE and non-SAE. To enhance differentiation, we classified mice based on the median modified SHIRPA score, validating this approach through behavioral tests including the Y-maze, three-chamber social test, and open field test. This method effectively identified neurological impairments in septic mice. Further validation involved assessing neuronal damage, neuroinflammation, the Morris water maze, and long-term potentiation (LTP) in the hippocampal CA1 region. Results indicated that mice in the up-Median group exhibited greater neuroinflammation, neuronal injury, and cognitive deficits compared to the down-Median group. CONCLUSIONS This study establishes a reliable evaluation method for SAE in murine models, facilitating improved differentiation between SAE and non-SAE. Such advancements will enhance our understanding of the pathogenesis of SAE and guide more effective treatment strategies.
Collapse
Affiliation(s)
- Yuewen Xin
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Mi Tian
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xu Pei
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shuixiang Deng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yao Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Feng Zhao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Thomas Behnisch
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghaiChina
- Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Liu L, Wang R, Pu X, Zha Y, Yang X, Fang X, Liu Y, Shao M, Zhu L, Ren X, Deng G, Yang K. D 4 -CHIP REVEALS IMPAIRED T-CELL FUNCTION IN SEPSIS: INSIGHTS FROM PLASMA MICROENVIRONMENT ANALYSIS AND MITOCHONDRIAL-TARGETED THERAPY. Shock 2025; 63:417-427. [PMID: 39178197 DOI: 10.1097/shk.0000000000002434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background: Sepsis, a systemic inflammation syndrome initiated by infection, poses significant challenges due to its intricate pathophysiology. T cells play a crucial role in combating infections during sepsis. Despite previous observations indicating T-cell dysfunction in sepsis, reliable in vitro detection methods were lacking, and the factors influencing these impairments remained unclear. Methods: We developed a novel method using the D 4 -Chip to assess sepsis T-cell migration function. This microfluidic platform enabled precise analysis of migration function under controlled conditions. Additionally, We explored the impact of the plasma microenvironment on T-cell behavior, along with the redox environment in sepsis, and assessed the potential efficacy of Mitoquinone mesylate (MitoQ), a mitochondrial-targeted drug. Results: Our findings revealed impaired migration function in sepsis T cells compared to healthy controls. Interestingly, sepsis plasma enhanced the migration of healthy T cells, yet incubation with healthy plasma did not fully restore migration impairments in sepsis T cells. Subsequent investigations uncovered a significant increase in NADH/NAD+ levels in sepsis T cells, with healthy T cells exposed to various sepsis plasma conditions also showing elevated NADH/NAD+ levels. Importantly, MitoQ normalized abnormal intracellular NADH/NAD+ levels and enhanced the migration ability of T cells. Conclusions: Short-term incubation with sepsis plasma does not directly inhibit T-cell migration but instead affects T-cell function by disrupting the intracellular redox environment. Improving the intracellular redox environment of sepsis patients contributes to restoring impaired migration and proliferation, with MitoQ demonstrating therapeutic potential.
Collapse
Affiliation(s)
| | - Ruoyu Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuexue Pu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yutao Zha
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Xiao Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Min Shao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiaoou Ren
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, China
| | - Guoqing Deng
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
4
|
Khan M, Farooqi S, Mitchell KL, Chowdhury SKR, Cabrera-Ayala M, Huang J, Wallace DC, Weiss SL. Effect of sodium butyrate on kidney and liver mitochondrial dysfunction in a lipopolysaccharide mouse model. FASEB J 2024; 38:e70228. [PMID: 39641547 DOI: 10.1096/fj.202401379rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Sodium butyrate can reduce inflammation, but it is not known if butyrate can improve mitochondrial dysfunction during sepsis. We tested butyrate to prevent or reverse lipopolysaccharide (LPS)-induced mitochondrial dysfunction in murine kidney and liver. C57BL/6 mice were grouped as control (n = 9), intraperitoneal (IP) LPS (n = 8), pretreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 8) followed 2 h later by LPS, posttreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 7) 1 h after LPS, or butyrate 1200 mg/kg only (n = 8). Kidney and liver tissue were collected at 24 h to measure mitochondrial respiration, electron transport system (ETS) complex activity and subunit expression, and content (citrate synthase [CS] activity and mtDNA/nDNA). Kidney mitochondrial respiration was decreased after LPS compared to controls. Pretreatment with butyrate 1200 mg/kg increased kidney OXPHOSCI+II, ETSCI+II, ETSCII, and CIV respiration compared to LPS; posttreatment did not achieve significant increases except for OXPHOSCI. Liver mitochondrial respiration exhibited a similar pattern as in kidney, but differences were not significant. ETS complex and CS activity did not differ between groups, but CI and CII subunit expression trended higher with butyrate in kidney. Changes in mtDNA/nDNA followed a similar pattern as respiration in kidney and liver with a decrease after LPS that was not present with butyrate pretreatment. These data show that butyrate can prevent-but not significantly reverse-the LPS-induced decrease in kidney mitochondrial respiration without a clear effect in liver. Mitochondrial protection was not attributable to changes in ETS complex activity but may reflect maintenance of ETS subunit expression.
Collapse
Affiliation(s)
- Muznah Khan
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Sumera Farooqi
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Katherine L Mitchell
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Subir Kumar Roy Chowdhury
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Marian Cabrera-Ayala
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Jessica Huang
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott L Weiss
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Gaviraghi A, Barletta ABF, Silva TLAE, Oliveira MP, Sorgine MHF, Oliveira MF. Activation of innate immunity selectively compromises mitochondrial complex I, proline oxidation, and flight activity in the major arbovirus vector Aedes aegypti. Mol Microbiol 2024; 122:683-703. [PMID: 38720451 DOI: 10.1111/mmi.15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 11/26/2024]
Abstract
Aedes aegypti females are natural vectors of important arboviruses such as dengue, zika, and yellow fever. Mosquitoes activate innate immune response signaling pathways upon infection, as a resistance mechanism to fight pathogens and limit their propagation. Despite the beneficial effects of immune activation for insect vectors, phenotypic costs ultimately affect their fitness. However, the underlying mechanisms that mediate these fitness costs remain poorly understood. Given the high energy required to mount a proper immune response, we hypothesized that systemic activation of innate immunity would impair flight muscle mitochondrial function, compromising tissue energy demand and flight activity. Here, we investigated the dynamic effects of activation of innate immunity by intra-thoracic zymosan injection on A. aegypti flight muscle mitochondrial metabolism. Zymosan injection significantly increased defensin A expression in fat bodies in a time-dependent manner that compromised flight activity. Although oxidant levels in flight muscle were hardly altered, ATP-linked respiratory rates driven by mitochondrial pyruvate+proline oxidation were significantly reduced at 24 h upon zymosan injection. Oxidative phosphorylation coupling was preserved regardless of innate immune response activation along 24 h. Importantly, rotenone-sensitive respiration and complex I-III activity were specifically reduced 24 h upon zymosan injection. Also, loss of complex I activity compromised ATP-linked and maximal respiratory rates mediated by mitochondrial proline oxidation. Finally, the magnitude of innate immune response activation negatively correlated with respiratory rates, regardless of the metabolic states. Collectively, we demonstrate that activation of innate immunity is strongly associated with reduced flight muscle complex I activity with direct consequences to mitochondrial proline oxidation and flight activity. Remarkably, our results indicate a trade-off between dispersal and immunity exists in an insect vector, underscoring the potential consequences of disrupted flight muscle mitochondrial energy metabolism to arbovirus transmission.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Ana Beatriz F Barletta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Luiz Alves E Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos H F Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
7
|
Silva AAB, Barbeiro DF, Ariga SKK, Barbeiro HV, Coelho AMM, Chaib E, Passarelli M, Soriano FG. SEPTIC SHOCK: LPS TOLERANCE PROTECTS MITOCHONDRIAL BIOGENESIS AND RESPIRATION. Shock 2024; 62:410-415. [PMID: 38888558 DOI: 10.1097/shk.0000000000002399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Mitochondrial dysfunction is a recognized feature of sepsis, characterized by ultrastructural damage, diminished oxidative phosphorylation, and depletion of mitochondrial antioxidant capacity observed in deceased septic patients. LPS tolerance induces a controlled response to sepsis. This study aimed to evaluate the function of tolerant mitochondria after cecal ligation and puncture (CLP)-induced sepsis. Mytochondrial oxygen consumption was determined using polarography. Extraction and quantification of RNA for the expression of Tfam, Nrf-1, and Ppargc-1α, and respiratory complex activity were measured. CLP-tolerant animals presented preserved respiratory rates of S3 and S4 and a ratio of respiratory control (RCR) compared to CLP-nontolerant animals with reduced oxidative phosphorylation and increased uncoupled respiration. Complex I Vmax was reduced in septic animals; however, CLP animals sustained normal Vmax. Mitochondrial biogenesis was preserved in CLP-tolerant animals compared to the CLP-nontolerant group, likely due to increased TFAM expression. LPS tolerance protected septic animals from mitochondrial dysfunction, favoring mitochondrial biogenesis and preserving mitochondrial respiration and respiratory complex I activity.
Collapse
Affiliation(s)
- Andre Augusto Botêga Silva
- Laboratório de Emergências Clínicas (LIM 51) do Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM 51) do Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Suely Kunimi Kubo Ariga
- Laboratório de Emergências Clínicas (LIM 51) do Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas (LIM 51) do Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Mendonça Coelho
- Laboratório de Gastrocirúrgia do Departamento de Gastroenterologia e Cirurgia Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eleazar Chaib
- Laboratório de Gastrocirúrgia do Departamento de Gastroenterologia e Cirurgia Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM 51) do Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Shu L, Huo B, Yin N, Xie H, Erbu A, Ai M, Jia Y, Song L. Clinical drug interactions between linezolid and other antibiotics: For adverse drug event monitoring. Pharmacol Res Perspect 2024; 12:e1236. [PMID: 39049495 PMCID: PMC11269369 DOI: 10.1002/prp2.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 07/27/2024] Open
Abstract
Detailed data on safety associated with drug-drug interactions (DDIs) between Linezolid (LZD) and other antibiotics are limited. The aim of this study was to investigate the safety signals related to these DDIs and to provide a reference for clinically related adverse drug event monitoring. Adverse event (AE) information from 1 January 2004 to 16 June 2022 of the target antibiotics including LZD using alone or in combination with LZD was extracted from the OpenVigil FDA data platform for safety signal analysis. The combined risk ratio model, reporting ratio method, Ω shrinkage measure model, and chi-square statistics model were used to analyze the safety signals related to DDIs. Meanwhile, we evaluated the correlation and the influence of sex and age between the drug(s) and the target AE detected. There were 18991 AEs related to LZD. There were 2293, 1726, 4449, 821, 2431, 1053, and 463 AE reports when LZD was combined with amikacin, voriconazole, meropenem, clarithromycin, levofloxacin, piperacillin-tazobactam, and azithromycin, respectively. Except for azithromycin, there were positive safety signals related to DDIs between LZD and these antibiotics. These DDIs might influence the incidence of 13, 16, 7, 7, 6, and 15 types of AEs, respectively, and is associated with higher reporting rates of AEs compared with use alone. Moreover, sex and age might influence the occurrence of AEs. We found that the combinations of LZD and other antibiotics are related to multiple AEs, such as hepatotoxicity, drug resistance and electrocardiogram QT prolonged, but further research is still required to investigate their underlying mechanisms. This study can provide a new reference for the safety monitoring of LZD combined with other antibiotics in clinical practice.
Collapse
Affiliation(s)
- Ling Shu
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| | - Ben‐nian Huo
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| | - Nan‐ge Yin
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| | | | - Aga Erbu
- Medicine College of Tibet UniversityLhasaChina
| | - Mao‐lin Ai
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| | - Yun‐tao Jia
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| | - Lin Song
- Department of PharmacyChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing Key Laboratory of PediatricsChongqingChina
| |
Collapse
|
9
|
Wang Z, Xu J, Mo L, Zhan R, Zhang J, Liu L, Jiang J, Zhang Y, Bai Y. The Application Potential of the Regulation of Tregs Function by Irisin in the Prevention and Treatment of Immune-Related Diseases. Drug Des Devel Ther 2024; 18:3005-3023. [PMID: 39050796 PMCID: PMC11268596 DOI: 10.2147/dddt.s465713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiaqi Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Liqun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Renshu Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yingying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| |
Collapse
|
10
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
11
|
Saraiva IE, Hamahata N, Huang DT, Kane-Gill SL, Rivosecchi RM, Shiva S, Nolin TD, Chen X, Minturn J, Chang CCH, Li X, Kellum J, Gómez H. Metformin for sepsis-associated AKI: a protocol for the Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI). BMJ Open 2024; 14:e081120. [PMID: 38688665 PMCID: PMC11086423 DOI: 10.1136/bmjopen-2023-081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication of sepsis associated with increased risk of death. Preclinical data and observational human studies suggest that activation of AMP-activated protein kinase, an ubiquitous master regulator of energy that can limit mitochondrial injury, with metformin may protect against sepsis-associated AKI (SA-AKI) and mortality. The Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI) aims to evaluate the safety and feasibility of enteral metformin in patients with sepsis at risk of developing SA-AKI. METHODS AND ANALYSIS Blind, randomised, placebo-controlled clinical trial in a single-centre, quaternary teaching hospital in the USA. We will enrol adult patients (18 years of age or older) within 48 hours of meeting Sepsis-3 criteria, admitted to intensive care unit, with oral or enteral access. Patients will be randomised 1:1:1 to low-dose metformin (500 mg two times per day), high-dose metformin (1000 mg two times per day) or placebo for 5 days. Primary safety outcome will be the proportion of metformin-associated serious adverse events. Feasibility assessment will be based on acceptability by patients and clinicians, and by enrolment rate. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board. All patients or surrogates will provide written consent prior to enrolment and any study intervention. Metformin is a widely available, inexpensive medication with a long track record for safety, which if effective would be accessible and easy to deploy. We describe the study methods using the Standard Protocol Items for Randomized Trials framework and discuss key design features and methodological decisions. LiMiT AKI will investigate the feasibility and safety of metformin in critically ill patients with sepsis at risk of SA-AKI, in preparation for a future large-scale efficacy study. Main results will be published as soon as available after final analysis. TRIAL REGISTRATION NUMBER NCT05900284.
Collapse
Affiliation(s)
- Ivan E Saraiva
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natsumi Hamahata
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David T Huang
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandra L Kane-Gill
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Ryan M Rivosecchi
- Department of Pharmacy, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas D Nolin
- Department of Pharmacy & Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinlei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Minturn
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chung-Chou H Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaotong Li
- Department of Pharmacy & Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - John Kellum
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Fejes R, Rutai A, Juhász L, Poles MZ, Szabó A, Kaszaki J, Boros M, Tallósy SP. Microcirculation-driven mitochondrion dysfunction during the progression of experimental sepsis. Sci Rep 2024; 14:7153. [PMID: 38531957 DOI: 10.1038/s41598-024-57855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Sepsis is accompanied by a less-known mismatch between hemodynamics and mitochondrial respiration. We aimed to characterize the relationship and time dependency of microcirculatory and mitochondrial functions in a rodent model of intraabdominal sepsis. Fecal peritonitis was induced in rats, and multi-organ failure (MOF) was evaluated 12, 16, 20, 24 or 28 h later (n = 8/group, each) using rat-specific organ failure assessment (ROFA) scores. Ileal microcirculation (proportion of perfused microvessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI)) was monitored by intravital video microscopy, and mitochondrial respiration (OxPhos) and outer membrane (mtOM) damage were measured with high-resolution respirometry. MOF progression was evidenced by increased ROFA scores; microcirculatory parameters followed a parallel time course from the 16th to 28th h. Mitochondrial dysfunction commenced with a 4-h time lag with signs of mtOM damage, which correlated significantly with PPV, while no correlation was found between HI and OxPhos. High diagnostic value was demonstrated for PPV, mtOM damage and lactate levels for predicting MOF. Our findings indicate insufficient splanchnic microcirculation to be a possible predictor for MOF that develops before the start of mitochondrial dysfunction. The adequate subcellular compensatory capacity suggests the presence of mitochondrial subpopulations with differing sensitivity to septic insults.
Collapse
Affiliation(s)
- Roland Fejes
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Attila Rutai
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - László Juhász
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Marietta Zita Poles
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
13
|
Kanmani P, Hu G. Quantification of intracellular and mitochondrial ATP content in macrophages during lipopolysaccharide-induced inflammatory response. Methods Cell Biol 2024; 194:77-92. [PMID: 40058963 DOI: 10.1016/bs.mcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Sepsis, a condition characterized by systemic infection that becomes aggravated and dysregulated, is a significant cause of mortality in critically ill patients. Emerging evidence suggests that severe sepsis is often accompanied by alterations in cell metabolism, particularly mitochondrial dysfunction, resulting in multiorgan failure. Normally, metabolically active cells or tissues exhibit higher levels of mitochondrial turnover, respiration, and adenosine triphosphate (ATP) synthesis. However, during sepsis, these processes become overwhelmed or dysregulated, leading to impaired ATP production in mitochondria. Here, we present two straightforward protocols for quantifying ATP production from mitochondria in bone marrow-derived macrophages (BMDMs). Our workflow facilitates the easy isolation of BMDMs and mitochondria from BMDMs treated with lipopolysaccharide (LPS), the major cell wall component of Gram-negative bacteria. We quantified intracellular and mitochondrial ATP production in macrophages in vitro using this protocol. The results indicated a decrease in mitochondrial ATP content in BMDMs in response to LPS. With minimal adjustments, this method can be adapted for use with various human and mouse primary cells and cell lines.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL, United States; Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, United States.
| |
Collapse
|
14
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
15
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
16
|
Slingerland-Boot R, Kummerow M, Arbous SM, van Zanten ARH. Association between first-week propofol administration and long-term outcomes of critically ill mechanically ventilated patients: A retrospective cohort study. Clin Nutr 2024; 43:42-51. [PMID: 38000194 DOI: 10.1016/j.clnu.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND & AIM Propofol is commonly used in ICUs, but its long-term effects have not been thoroughly studied. In vitro studies suggest it may harm mitochondrial function, potentially affecting clinical outcomes. This study aimed to investigate the association between substantial propofol sedation and clinical outcomes in critically ill patients. METHODS We conducted a single-centre cohort study of critically ill, mechanically ventilated (≥7 days) adults to compare patients who received a substantial dose of propofol (cumulative >500 mg) during the first week of ICU admission with those who did not. The primary outcome was the association between substantial propofol administration and 6-month mortality, adjusted for relevant covariates. Subanalyses were performed for administration in the early (day 1-3) and late (day 4-7) acute phases of critical illness due to the metabolic changes in this period. Secondary outcomes included tracheostomy need and duration, length of ICU and hospital stay (LOS), discharge destinations, ICU, hospital, and 3-month mortality. RESULTS A total of 839 patients were enrolled, with 73.7 % receiving substantial propofol administration (substantial propofol dose group). Six-month all-cause mortality was 32.4 %. After adjusting for relevant variables, we found no statistically significant difference in 6-month mortality between both groups. There were also no significant differences in secondary outcomes. CONCLUSION Our study suggests that substantial propofol administration during the first week of ICU stay in the least sick critically ill, mechanically ventilated adult patients is safe, with no significant associations found with 6-month mortality, ICU or hospital LOS, differences in discharge destinations or need for tracheostomy.
Collapse
Affiliation(s)
- Rianne Slingerland-Boot
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, the Netherlands
| | - Maren Kummerow
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands
| | - Sesmu M Arbous
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, the Netherlands.
| |
Collapse
|
17
|
Zarbock A, Koyner JL, Gomez H, Pickkers P, Forni L. Sepsis-associated acute kidney injury-treatment standard. Nephrol Dial Transplant 2023; 39:26-35. [PMID: 37401137 DOI: 10.1093/ndt/gfad142] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/05/2023] Open
Abstract
Sepsis is a host's deleterious response to infection, which could lead to life-threatening organ dysfunction. Sepsis-associated acute kidney injury (SA-AKI) is the most frequent organ dysfunction and is associated with increased morbidity and mortality. Sepsis contributes to ≈50% of all AKI in critically ill adult patients. A growing body of evidence has unveiled key aspects of the clinical risk factors, pathobiology, response to treatment and elements of renal recovery that have advanced our ability to detect, prevent and treat SA-AKI. Despite these advancements, SA-AKI remains a critical clinical condition and a major health burden, and further studies are needed to diminish the short and long-term consequences of SA-AKI. We review the current treatment standards and discuss novel developments in the pathophysiology, diagnosis, outcome prediction and management of SA-AKI.
Collapse
Affiliation(s)
- Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany and Outcomes Research Consortium, Cleveland, OH, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hernando Gomez
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Pickkers
- Department Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lui Forni
- Department of Critical Care, Royal Surrey Hospital Foundation Trust, Guildford, UK
- Faculty of Health Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
18
|
Cao T, Ni R, Ding W, Ji X, Fan GC, Zhang Z, Peng T. Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis. J Transl Med 2023; 21:883. [PMID: 38057866 PMCID: PMC10699070 DOI: 10.1186/s12967-023-04767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Sepsis-caused multi-organ failure remains the major cause of morbidity and mortality in intensive care units with limited therapeutics. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has been recently reported to be protective in sepsis; however, its therapeutic effects remain to be determined. This study sought to investigate the therapeutic effects of NMN in septic organ failure and its underlying mechanisms. METHODS Sepsis was induced by feces-injection-in-peritoneum in mice. NMN was given after an hour of sepsis onset. Cultured neutrophils, macrophages and endothelial cells were incubated with various agents. RESULTS We demonstrate that administration of NMN elevated NAD+ levels and reduced serum lactate levels, oxidative stress, inflammation, and caspase-3 activity in multiple organs of septic mice, which correlated with the attenuation of heart dysfunction, pulmonary microvascular permeability, liver injury, and kidney dysfunction, leading to lower mortality. The therapeutic effects of NMN were associated with lower bacterial burden in blood, and less ROS production in septic mice. NMN improved bacterial phagocytosis and bactericidal activity of macrophages and neutrophils while reducing the lipopolysaccharides-induced inflammatory response of macrophages. In cultured endothelial cells, NMN mitigated mitochondrial dysfunction, inflammation, apoptosis, and barrier dysfunction induced by septic conditions, all of which were offset by SIRT3 inhibition. CONCLUSION NAD+ repletion with NMN prevents mitochondrial dysfunction and restrains bacterial dissemination while limiting inflammatory damage through SIRT3 signaling in sepsis. Thus, NMN may represent a therapeutic option for sepsis.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China.
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Weimin Ding
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyun Ji
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
19
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
20
|
Pei XB, Liu B. Research Progress on the Mechanism and Management of Septic Cardiomyopathy: A Comprehensive Review. Emerg Med Int 2023; 2023:8107336. [PMID: 38029224 PMCID: PMC10681771 DOI: 10.1155/2023/8107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy, is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although efforts have been made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. This article sought to review available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and treatments for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xue-Bin Pei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
23
|
Liu Y, Yang H, Luo N, Fu Y, Qiu F, Pan Z, Li X, Jian W, Yang X, Xue Q, Luo Y, Yu B, Liu Z. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J Transl Med 2023; 21:486. [PMID: 37475042 PMCID: PMC10360347 DOI: 10.1186/s12967-023-04345-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by diffuse brain dysfunction, long-term cognitive impairment, and increased morbidity and mortality. The current treatment for SAE is mainly symptomatic; the lack of specific treatment options and a poor understanding of the underlying mechanism of disease are responsible for poor patient outcomes. Fgr is a member of the Src family of tyrosine kinases and is involved in the innate immune response, hematologic cancer, diet-induced obesity, and hemorrhage-induced thalamic pain. This study investigated the protection provided by an Fgr kinase inhibitor in SAE and the underlying mechanism(s) of action. METHODS A cecal ligation and puncture (CLP)-induced mouse sepsis model was established. Mice were treated with or without an Fgr inhibitor and a PGC-1α inhibitor/activator. An open field test, a novel object recognition test, and an elevated plus maze were used to assess neurobehavioral changes in the mice. Western blotting and immunofluorescence were used to measure protein expression, and mRNA levels were measured using quantitative PCR (qPCR). An enzyme-linked immunosorbent assay was performed to quantify inflammatory cytokines. Mitochondrial membrane potential and morphology were measured by JC-1, electron microscopy, and the MitoTracker Deep Red probe. Oxidative stress and mitochondrial dysfunction were analyzed. In addition, the regulatory effect of Fgr on sirtuin 1 (SIRT1) was assessed. RESULTS CLP-induced sepsis increased the expression of Fgr in the hippocampal neurons. Pharmacological inhibition of Fgr attenuated CLP-induced neuroinflammation, the survival rate, cognitive and emotional dysfunction, oxidative stress, and mitochondrial dysfunction. Moreover, Fgr interacted with SIRT1 and reduced its activity and expression. In addition, activation of SIRT1/PGC-1α promoted the protective effects of the Fgr inhibitor on CLP-induced brain dysfunction, while inactivation of SIRT1/PGC-1α counteracted the benefits of the Fgr inhibitor. CONCLUSIONS To our knowledge, this is the first report of Fgr kinase inhibition markedly ameliorating SAE through activation of the SIRT1/PGC-1α pathway, and this may be a promising therapeutic target for SAE.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Nanbo Luo
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
24
|
Mihaljevic O, Zivancevic-Simonovic S, Jovanovic D, Drakulic SM, Vukajlovic JT, Markovic A, Pirkovic MS, Srejovic I, Jakovljevic V, Milosevic-Djordjevic O. Oxidative stress and DNA damage in critically ill patients with sepsis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503655. [PMID: 37491118 DOI: 10.1016/j.mrgentox.2023.503655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The aim of our study was to assess the oxidative stress and inflammatory status in critically ill patients with sepsis as well as their relationship with the level of DNA damage. The study also evaluated the influence of all analyzed parameters on the outcome of the patients. The study included 27 critically ill patients with sepsis and 20 healthy subjects. Comet Assay was used for the measurement of the level of DNA damage, expressed as genetic damage index (GDI). Both oxidative stress parameters and the antioxidant parameters were obtained spectrophotometrically. The standard laboratory methods and the appropriate autoanalyzers were performed for determination the parameters of inflammation. A higher level of oxidative stress and more pronounced inflammation were found in the patients with sepsis compared to healthy subjects. The activity of the antioxidant enzymes was statistically declined in patients with sepsis, so that the most notable differences between two groups of participants were found for the activity of superoxide dismutase (SOD) (p = 0.004). Comet assay indicated that patients with sepsis had significantly higher GDI compared to healthy subjects (p < 0.001), which positively correlated with the concentration of superoxide anion radical (О2-) (r = 0.497, p = 0.010), and nitrites (NО2-) (r = 0.473, p = 0.015), as well with the concentration of C reactive protein (CRP) (r = 0.460, p = 0.041). Regression analysis confirmed that patients' age (p = 0.033), the level of О2- (p = 0.007), CRP concentration (p = 0.029) and GDI (p = 0.001) increased the risk of lethal outcome in critically ill patients with sepsis. In conclusion, critically ill patients with sepsis have a higher degree of oxidative stress and inflammation which contribute to a higher level of DNA damage. Consequently, above mentioned parameters, including patients' age, adversely affect the outcome of critically ill patients with sepsis.
Collapse
Affiliation(s)
- Olgica Mihaljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pathophysiology, Serbia.
| | | | - Danijela Jovanovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Serbia; University Clinical Center Kragujevac, Serbia
| | - Svetlana Miletic Drakulic
- University Clinical Center Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Neurology, Serbia
| | | | - Aleksandra Markovic
- University of Kragujevac, Faculty of Sciences, Department of Biology, Serbia
| | - Marijana Stanojevic Pirkovic
- University Clinical Center Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Serbia
| | - Ivan Srejovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Serbia
| | - Olivera Milosevic-Djordjevic
- University of Kragujevac, Faculty of Sciences, Department of Biology, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Serbia
| |
Collapse
|
25
|
Luther T, Bülow-Anderberg S, Persson P, Franzén S, Skorup P, Wernerson A, Hultenby K, Palm F, Schiffer TA, Frithiof R. Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F571-F580. [PMID: 37102685 DOI: 10.1152/ajprenal.00294.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V̇o2) and renal Na+ transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V̇o2 and Na+ transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na+ transport and renal V̇o2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 ± 1.5 vs. 8.2 ± 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 ± 0.2 vs. 1.3 ± 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V̇o2 and renal Na+ transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.
Collapse
Affiliation(s)
- Tomas Luther
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Sara Bülow-Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Palm
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
27
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
28
|
Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X, Hoeft A, Chen Q, Li X, Fang X. TREM2 hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab 2023; 5:129-146. [PMID: 36635449 PMCID: PMC9886554 DOI: 10.1038/s42255-022-00715-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/22/2022] [Indexed: 01/14/2023]
Abstract
Sepsis-induced cardiomyopathy (SICM) is common in septic patients with a high mortality and is characterized by an abnormal immune response. Owing to cellular heterogeneity, understanding the roles of immune cell subsets in SICM has been challenging. Here we identify a unique subpopulation of cardiac-resident macrophages termed CD163+RETNLA+ (Mac1), which undergoes self-renewal during sepsis and can be targeted to prevent SICM. By combining single-cell RNA sequencing with fate mapping in a mouse model of sepsis, we demonstrate that the Mac1 subpopulation has distinct transcriptomic signatures enriched in endocytosis and displays high expression of TREM2 (TREM2hi). TREM2hi Mac1 cells actively scavenge cardiomyocyte-ejected dysfunctional mitochondria. Trem2 deficiency in macrophages impairs the self-renewal capability of the Mac1 subpopulation and consequently results in defective elimination of damaged mitochondria, excessive inflammatory response in cardiac tissue, exacerbated cardiac dysfunction and decreased survival. Notably, intrapericardial administration of TREM2hi Mac1 cells prevents SICM. Our findings suggest that the modulation of TREM2hi Mac1 cells could serve as a therapeutic strategy for SICM.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Chen
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Mao
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwang Liu
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenchen Gong
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Bonn, Germany
| | - Qixing Chen
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Butyrate Supplementation Exacerbates Myocardial and Immune Cell Mitochondrial Dysfunction in a Rat Model of Faecal Peritonitis. Life (Basel) 2022; 12:life12122034. [PMID: 36556399 PMCID: PMC9785094 DOI: 10.3390/life12122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction and immune cell dysfunction are commonplace in sepsis and are associated with increased mortality risk. The short chain fatty acid, butyrate, is known to have anti-inflammatory effects and promote mitochondrial biogenesis. We therefore explored the immunometabolic effects of butyrate in an animal model of sepsis. Isolated healthy human volunteer peripheral mononuclear cells were stimulated with LPS in the presence of absence of butyrate, and released cytokines measured. Male Wistar rats housed in metabolic cages received either intravenous butyrate infusion or placebo commencing 6 h following faecal peritonitis induction. At 24 h, splenocytes were isolated for high-resolution respirometry, and measurement of mitochondrial membrane potential (MMP), reactive oxygen species (mtROS), and intracellular cytokines (TNF alpha, IL-10) using flow cytometry. Isolated splenocytes from septic and septic butyrate treated rats were stimulated with LPS for 18 h and the effects of butyrate on cytokine release assessed. Ex vivo, butyrate (1.8 mM) reduced LPS-induced TNF alpha (p = 0.019) and IL-10 (p = 0.001) release by human PBMCs. In septic animals butyrate infusion reduced the respiratory exchange ratio (p < 0.001), consistent with increased fat metabolism. This was associated with a reduction in cardiac output (p = 0.001), and increased lactate (p = 0.031) compared to placebo-treated septic animals (p < 0.05). Butyrate treatment was associated with a reduction in splenocyte basal respiration (p = 0.077), proton leak (p = 0.022), and non-mitochondrial respiration (p = 0.055), and an increase in MMP (p = 0.007) and mtROS (p = 0.027) compared to untreated septic animals. Splenocyte intracellular cytokines were unaffected by butyrate, although LPS-induced IL-10 release was impaired (p = 0.039). In summary, butyrate supplementation exacerbates myocardial and immune cell mitochondrial dysfunction in a rat model of faecal peritonitis.
Collapse
|
30
|
Sokolović D, Lazarević M, Milić D, Stanojković Z, Mitić K, Sokolović DT. Melatonin arrests excessive inflammatory response and apoptosis in lipopolysaccharide-damaged rat liver: A deeper insight into its mechanism of action. Tissue Cell 2022; 79:101904. [DOI: 10.1016/j.tice.2022.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
31
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Multimodal assessment of intensive care unit-acquired weakness in severe stroke patients. Acta Neurol Belg 2022; 122:1313-1321. [PMID: 35790678 DOI: 10.1007/s13760-022-02009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Intensive care unit-acquired weakness (ICUAW) defines generalized muscle weakness seen in critically ill patients in the absence of other causative factors. Herein, we aimed to evaluate ICUAW in stroke patients by electrodiagnostic testing, histopathology, and assessment of respiratory complex activities (RCA), to define the frequency of ICUAW in this patient group, and to reach new parameters for early prediction and diagnosis. METHODS We prospectively recruited twenty-four severe acute stroke patients during a sixteen-month period. In addition to serial nerve conduction studies (NCS), we performed muscle biopsy and RCA analysis on the non-paretic side when ICUAW developed. Patients undergoing orthopedic surgery without metabolic and neuromuscular diseases constituted the control group for RCA. Survival and longitudinal data were analyzed by joint modeling to determine the relationship between electrophysiological parameters and ICUAW diagnosis. RESULTS Eight patients (33%) developed ICUAW, and six of them within the first two weeks. Extensor digitorum brevis, abductor digiti minimi (ADM), rectus femoris and vastus medialis (VM) compound muscle action potential (CMAP) amplitudes showed a significant decrease in the ICUAW group. VM CMAP amplitude (BIC = 358.1574) and ADM CMAP duration (BIC = 361.1028) were the best-correlated parameters with ICUAW diagnosis. The most informative electrophysiological findings during the entire study were obtained within the first 11 days. Muscle biopsies revealed varying degrees of type 2 fiber atrophy. Complex I (p = 0.003) and IV (p = 0.018) activities decreased in patients with ICUAW compared to controls. CONCLUSION VM CMAP amplitude and ADM CMAP duration correlate well with ICUAW diagnosis, and may aid in the early diagnosis.
Collapse
|
33
|
Carbone F, Liberale L, Preda A, Schindler TH, Montecucco F. Septic Cardiomyopathy: From Pathophysiology to the Clinical Setting. Cells 2022; 11:2833. [PMID: 36139408 PMCID: PMC9496713 DOI: 10.3390/cells11182833] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The onset of cardiomyopathy is a common feature in sepsis, with relevant effects on its pathophysiology and clinical care. Septic cardiomyopathy is characterized by reduced left ventricular (LV) contractility eventually associated with LV dilatation with or without right ventricle failure. Unfortunately, such a wide range of ultrasonographic findings does not reflect a deep comprehension of sepsis-induced cardiomyopathy, but rather a lack of consensus about its definition. Several echocardiographic parameters intrinsically depend on loading conditions (both preload and afterload) so that it may be challenging to discriminate which is primitive and which is induced by hemodynamic perturbances. Here, we explore the state of the art in sepsis-related cardiomyopathy. We focus on the shortcomings in its definition and point out how cardiac performance dynamically changes in response to different hemodynamic clusters. A special attention is also given to update the knowledge about molecular mechanisms leading to myocardial dysfunction and that recall those of myocardial hibernation. Ultimately, the aim of this review is to highlight the unsolved issue in the field of sepsis-induced cardiomyopathy as their implementation would lead to improve risk stratification and clinical care.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Alberto Preda
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Thomas Hellmut Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| |
Collapse
|
34
|
Xue W, Pang J, Liu J, Wang H, Guo H, Chen Y. Septic cardiomyopathy: characteristics, evaluation, and mechanism. EMERGENCY AND CRITICAL CARE MEDICINE 2022; 2:135-147. [DOI: 10.1097/ec9.0000000000000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Sepsis is a common clinical disease; if there is no early active treatment, it is likely to develop into multiple organ dysfunction syndrome and even cause death. Septic cardiomyopathy is a complication of sepsis-related cardiovascular failure, characterized by reversible left ventricular dilatation and decreased ventricular systolic and/or diastolic function. At present, echocardiography and biomarkers are often used to screen septic cardiomyopathy in clinics. Although there is still a lack of clear diagnostic criteria for septic cardiomyopathy, according to existing studies, the pathogenesis of several septic cardiomyopathy has been clarified, such as immune response caused by infection and mitochondrial dysfunction. This review summarizes the characteristics, pathophysiology, and diagnosis of septic cardiomyopathy and focuses on the mechanisms of infection immunity and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
35
|
Role of succinic acid in the regulation of sepsis. Int Immunopharmacol 2022; 110:109065. [PMID: 35853278 DOI: 10.1016/j.intimp.2022.109065] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Sepsis is a life-threatening disease characterized by a defensive response to damage. The immune response in patients with sepsis is overenhanced in the early stages and suppressed in the later stages, leading to poor prognosis. Metabolic reprogramming and epigenetic changes play a role in sepsis. Metabolic intermediates such as elevated succinic acid levels are significantly altered in patients with sepsis. Succinic acid, a metabolic intermediate of the tricarboxylic acid cycle, participates in energy supply and plays a role in metabolic reprogramming. Simultaneously, as an epigenetic regulator, it participates in gene transcription, translation, and post-translational modifications. It also participates in the inflammatory response, hypoxia, and the production of reactive oxygen species via endocrine and paracrine pathways. In this review, we have discussed the effects of succinic acid on sepsis and its therapeutic potential.
Collapse
|
36
|
Lewis A, Forti RM, Alomaja O, Mesaros C, Piel S, Greenwood JC, Talebi FM, Mavroudis CD, Kelly M, Kao SH, Shofer FS, Ehinger JK, Kilbaugh TJ, Baker WB, Jang DH. Preliminary Research: Application of Non-Invasive Measure of Cytochrome c Oxidase Redox States and Mitochondrial Function in a Porcine Model of Carbon Monoxide Poisoning. J Med Toxicol 2022; 18:214-222. [PMID: 35482181 PMCID: PMC9198167 DOI: 10.1007/s13181-022-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology. METHODS Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting. RESULTS While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio. CONCLUSIONS There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.
Collapse
Affiliation(s)
- Alistair Lewis
- Department of Chemistry, University of Pennsylvania, PA 19104 Philadelphia, USA
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Rodrigo M. Forti
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Oladunni Alomaja
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics (SPATT), University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah Piel
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Fatima M. Talebi
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Constantine D. Mavroudis
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Matthew Kelly
- Department of Emergency Medicine, The University of Alabama at Birmingham, 701 20th Street South, Birmingham, AB 35233 UK
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Johannes K. Ehinger
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Todd J. Kilbaugh
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - Wesley B. Baker
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| |
Collapse
|
37
|
Chen Z, Wang H, Hu B, Chen X, Zheng M, Liang L, Lyu J, Zeng Q. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) ameliorates sepsis-associated acute kidney injury by maintaining mitochondrial homeostasis and improving the mitochondrial function. Eur J Histochem 2022; 66:3412. [PMID: 35726572 PMCID: PMC9251609 DOI: 10.4081/ejh.2022.3412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has a role in sepsis-associated acute kidney injury (S-AKI), so the restoration of normal mitochondrial homeostasis may be an effective treatment strategy. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) is a main regulator of cell-redox homeostasis, and recent studies reported that NRF2 activation helped to preserve mitochondrial morphology and function under conditions of stress. However, the role of NRF2 in the process of S-AKI is still not well understood. The present study investigated whether NRF2 regulates mitochondrial homeostasis and influences mitochondrial function in S-AKI. We demonstrated activation of NRF2 in an in vitro model: lipopolysaccharide (LPS) challenge of ductal epithelial cells of rat renal tubules (NRK-52e cells), and an in vivo model: cecal ligation and puncture (CLP) of rats. Over-expression of NRF2 attenuated oxidative stress, apoptosis, and the inflammatory response; enhanced mitophagy and mitochondrial biogenesis; and mitigated mitochondrial damage in the in vitro model. In vivo experiments showed that rats treated with an NRF2 agonist had higher adenosine triphosphate (ATP) levels, lower blood urea nitrogen and creatinine levels, fewer renal histopathological changes, and higher expression of mitophagy-related proteins [PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), microtubule-associated protein 1 light chain 3 II (LC3 II)] and mitochondrial biogenesis-related proteins [peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) and mitochondrial transcription factor A (TFAM)]. Electron microscopy of kidney tissues showed that mitochondrial damage was alleviated by treatment with an NRF2 agonist, and the opposite response occurred upon treatment with an NRF2 antagonist. Overall, our findings suggest that mitochondria have an important role in the pathogenesis of S-AKI, and that NRF2 activation restored mitochondrial homeostasis and function in the presence of this disease. This mitochondrial pathway has the potential to be a novel therapeutic target for the treatment of S-AKI.
Collapse
Affiliation(s)
- Zhijiang Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Huili Wang
- Department of Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong.
| | - Bin Hu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Xinxin Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Meiyu Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Lili Liang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Juanjuan Lyu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan.
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| |
Collapse
|
38
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
39
|
Lu J, Liu J, Li A. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J Zhejiang Univ Sci B 2022; 23:437-450. [PMID: 35686524 DOI: 10.1631/jzus.b2101075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sepsis is a condition of severe organ failure caused by the maladaptive response of the host to an infection. It is a severe complication affecting critically ill patients, which can progress to severe sepsis, septic shock, and ultimately death. As a vital part of the human innate immune system, neutrophils are essential in resisting pathogen invasion, infection, and immune surveillance. Neutrophil-produced reactive oxygen species (ROS) play a pivotal role in organ dysfunction related to sepsis. In recent years, ROS have received a lot of attention as a major cause of sepsis, which can progress to severe sepsis and septic shock. This paper reviews the existing knowledge on the production mechanism of neutrophil ROS in human organ function impairment because of sepsis.
Collapse
Affiliation(s)
- Jiaqi Lu
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jingyuan Liu
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ang Li
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|
40
|
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3277274. [PMID: 35706715 PMCID: PMC9192296 DOI: 10.1155/2022/3277274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Yavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Intensive Care Unit, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Regulation of Oxidative Phosphorylation of Liver Mitochondria in Sepsis. Cells 2022; 11:cells11101598. [PMID: 35626633 PMCID: PMC9139457 DOI: 10.3390/cells11101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
The link between liver dysfunction and decreased mitochondrial oxidative phosphorylation in sepsis has been clearly established in experimental models. Energy transduction is plastic: the efficiency of mitochondrial coupling collapses in the early stage of sepsis but is expected to increase during the recovery phases of sepsis. Among the mechanisms regulating the coupling efficiency of hepatic mitochondria, the slipping reactions at the cytochrome oxidase and ATP synthase seem to be a determining element, whereas other regulatory mechanisms such as those involving proton leakage across the mitochondrial membrane have not yet been formally proven in the context of sepsis. If the dysfunction of hepatic mitochondria is related to impaired cytochrome c oxidase and ATP synthase functions, we need to consider therapeutic avenues to restore their activities for recovery from sepsis. In this review, we discussed previous findings regarding the regulatory mechanism involved in changes in the oxidative phosphorylation of liver mitochondria in sepsis, and propose therapeutic avenues to improve the functions of cytochrome c oxidase and ATP synthase in sepsis.
Collapse
|
42
|
Li Z, Ludwig N, Thomas K, Mersmann S, Lehmann M, Vestweber D, Pittet JF, Gomez H, Kellum JA, Rossaint J, Zarbock A. The Pathogenesis of Ischemia-Reperfusion Induced Acute Kidney Injury Depends on Renal Neutrophil Recruitment Whereas Sepsis-Induced AKI Does Not. Front Immunol 2022; 13:843782. [PMID: 35529856 PMCID: PMC9069608 DOI: 10.3389/fimmu.2022.843782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.
Collapse
Affiliation(s)
- Zhenhan Li
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Martin Lehmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hernando Gomez
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Alexander Zarbock,
| |
Collapse
|
43
|
Kuo YS, Hu MH, Chan WH, Huang TY, Chou YC, Huang GS. Evaluation of the Preventive Effects of Fish Oil and Sunflower Seed Oil on the Pathophysiology of Sepsis in Endotoxemic Rats. Front Nutr 2022; 9:857255. [PMID: 35464001 PMCID: PMC9026188 DOI: 10.3389/fnut.2022.857255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis causes platelet activation, systemic inflammation, organ dysfunction, and mortality. Endotoxins play an important role in the manifestation of the symptoms of septic shock. As fish oil exert well known anti-inflammatory effects and sunflower seed oil exert less anti-inflammatory properties than fish oil, both oils are widely used. We aimed to test the hypothesis that dietary supplementation of these two oils before endotoxemia modulates the consequences of illness. Nine- to ten-week-old male Wistar rats (N = 55) were divided into four groups: group A (N = 6), control; group B (N = 17), saline + lipopolysaccharide (endotoxin); group C (N = 17), fish oil + lipopolysaccharide; and group D (N = 15), sunflower seed oil + lipopolysaccharide. After 28 days of feeding the designated diet, the rats in all groups were intraperitoneally injected with lipopolysaccharide. After 24 h, survival rate, endotoxemia severity, levels of platelet activation markers, organ function and biochemical variables were evaluated. Platelet-leukocyte aggregation was significantly high in group C (p = 0.005), and platelet-monocyte aggregation was significantly high in groups C (p = 0.003) and D (p = 0.016) than in group B. The survival rate, endotoxemia severity, expression of platelet P-selectin, CD40L, and TLR4, pulmonary function, renal function, liver function, or biochemical variables did not significantly differ among groups B, C, and D. Instead of an anti-inflammatory effect, the dietary supplementation of fish and sunflower seed oils exerted a pro-inflammatory effect, especially via platelet-monocyte aggregation, suggesting a rebound effect of the dietary supplementation of the oils. The oils did not affect other inflammatory platelet markers or improve the outcome of endotoxemic rats. However, further studies are required to understand the underlying mechanisms of such effects and to elaborate the clinical significance of these findings.
Collapse
Affiliation(s)
- Yen-Shou Kuo
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Hua Hu
- Division of Pediatric General Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Go-Shine Huang
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Go-Shine Huang,
| |
Collapse
|
44
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
45
|
Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, Wiersinga WJ, van Vugt M, Weijs PJM, Murray AJ, Wüst RCI. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022; 13:11-22. [PMID: 34997689 PMCID: PMC8818659 DOI: 10.1002/jcsm.12896] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
Collapse
Affiliation(s)
- Madu N Soares
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Moritz Eggelbusch
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Karin H L Gerrits
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Merem Medical Rehabilitation, Hilversum, The Netherlands
| | - Marike van der Schaaf
- Department of Rehabilitation, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Health, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Bram van den Borst
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michele van Vugt
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J M Weijs
- Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Ramirez-Zuniga I, Rubin JE, Swigon D, Redl H, Clermont G. A data-driven model of the role of energy in sepsis. J Theor Biol 2022; 533:110948. [PMID: 34757193 DOI: 10.1016/j.jtbi.2021.110948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Exposure to pathogens elicits a complex immune response involving multiple interdependent pathways. This response may mitigate detrimental effects and restore health but, if imbalanced, can lead to negative outcomes including sepsis. This complexity and need for balance pose a challenge for clinicians and have attracted attention from modelers seeking to apply computational tools to guide therapeutic approaches. In this work, we address a shortcoming of such past efforts by incorporating the dynamics of energy production and consumption into a computational model of the acute immune response. With this addition, we performed fits of model dynamics to data obtained from non-human primates exposed to Escherichia coli. Our analysis identifies parameters that may be crucial in determining survival outcomes and also highlights energy-related factors that modulate the immune response across baseline and altered glucose conditions.
Collapse
Affiliation(s)
- Ivan Ramirez-Zuniga
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
| | - Jonathan E Rubin
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
| | - David Swigon
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Trauma Research Center, Vienna, Austria; Technical University Vienna, Vienna, Austria
| | - Gilles Clermont
- University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States; University of Pittsburgh, Department of Critical Care Medicine, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Behl T, Rana T, Alotaibi GH, Shamsuzzaman M, Naqvi M, Sehgal A, Singh S, Sharma N, Almoshari Y, Abdellatif AAH, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2021; 146:112545. [PMID: 34922112 DOI: 10.1016/j.biopha.2021.112545] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Depression is one of the most debilitating psychiatric disorders affecting people of all ages worldwide. Despite significant heterogeneity between studies, increased inflammation and oxidative stress have been found in depression. Oxidative stress and inflammation are involved in the pathogenesis of depression. In the current review, we discussed the markers of oxidative stress and inflammation in depressive disorder and the association between these markers and the antidepressant treatment. The role of natural polyphenols in regulating various cell signaling pathways related to oxidative stress and inflammation has also been reviewed. The inhibitory effect of polyphenols on several cell signaling pathways reveals the vital role of polyphenols in the prevention and treatment of depressive disorder. Understanding the mechanism of polyphenols implicated in the regulation of cell signaling pathways is essential for the identification of lead compounds and the development of novel effective compounds for the prevention and treatment of depressive disorder.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Ghallab H Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia
| | - Maaz Naqvi
- Central Research Laboratory, Department of Pharmacology, HIMSR, Jamia Hamdard, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
48
|
Sada H, Egi H, Ide K, Sawada H, Sumi Y, Hattori M, Sentani K, Oue N, Yasui W, Ohdan H. Peritoneal lavage with hydrogen-rich saline can be an effective and practical procedure for acute peritonitis. Surg Today 2021; 51:1860-1871. [PMID: 33787966 DOI: 10.1007/s00595-021-02271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/28/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Acute peritonitis has remained a fatal disease despite of recent advances in care and treatment, including antibiotic and anticoagulant treatments. The cause of death is mostly sepsis-induced multiple organ failure. Oxidative stress can play an important role in this situation, but antioxidant therapy to capture any excessive reactive oxygen species has not yet been fully established. METHODS Two experiments were performed. In the first experiment, we confirmed the effects of peritoneal lavage with hydrogen-rich saline (HRS) after a cecal ligation and puncture (CLP) operation in rats. In the second experiment, the changes in the hemodynamic state following this procedure were observed in a porcine model of abdominal sepsis to evaluate its safety and utility. RESULTS Peritoneal lavage with HRS significantly improved the survival after CLP in rats, and it ameliorated the levels of sepsis-induced organ failure. Moreover, it showed anti-inflammatory and anti-apoptosis as well as antioxidant effects. The second experiment demonstrated the potential safety and feasibility of this procedure in a large animal model. CONCLUSION This procedure can improve survival after sepsis through mitigating the sepsis-induced organ failure by inhibiting oxidative stress, apoptosis, and inflammatory pathways. Peritoneal lavage with HRS may therefore be an effective, safe, and practical therapy for patients with acute peritonitis.
Collapse
Affiliation(s)
- Haruki Sada
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Hiroshima, Japan
| | - Hiroyuki Egi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, 454 Shizukawa, Toon, Ehime, 791-0295, Japan.
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Sawada
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Sumi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Minoru Hattori
- Center for Medical Education, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
49
|
Merz T, McCook O, Denoix N, Radermacher P, Waller C, Kapapa T. Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. Int J Mol Sci 2021; 22:9192. [PMID: 34502097 PMCID: PMC8430789 DOI: 10.3390/ijms22179192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Medical Center, Ulm University, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Thomas Kapapa
- Clinic for Neurosurgery, Medical Center, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
50
|
Abstract
BACKGROUND To investigate the potential utility of serum uncoupling protein-2 (UCP2) level as a biomarker in septic patients. METHODS Critically ill patients with diagnoses of sepsis-sepsis non-shock group (n = 20) and septic shock group (n = 53), and a control group (n = 15) were enrolled within 24 h of entry into the ICU. Serum levels of UCP2 were measured by enzyme-linked immunosorbent assay (ELISA) at ICU admission for all the groups and at ICU discharge for septic shock group. Clinical parameters and laboratorial tests (APACHE II, SOFA, lactate, etc.) were also collected. RESULTS Serum UCP2 concentrations on ICU admission were significantly increased in septic shock group and sepsis non-shock group, compared with control subjects (263.21 ± 29.99 vs. 115.96 ± 32.99 vs. 60.56 ± 10.05 pg/mL, P < 0.001). Concentrations of UCP2 performed better than other parameters (APACHE II score, SOFA score, procalcitonin, and WBC) in predicting the incidence of sepsis or septic shock on the day of ICU admission, as reflected by AUC. On the day of ICU admission, the AUC for UCP2 level associated with 28-day mortality was 0.704, higher than the AUC for SOFA and APACHE II scores. Patients with higher admission levels of UCP2 (>246.52 pg/mL) had significantly increased 28-day mortality compared with those with lower UCP2 levels (<246.52 pg/mL). CONCLUSION Serum UCP2 levels at admission were markedly increased in patients with sepsis, which is useful for early diagnose and prognostic prediction. UCP2 is a potential biomarker for sepsis, or even a subtype of sepsis.
Collapse
|