1
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
2
|
Hinrichs GR, Hovind P, Asmar A. The GLP-1-mediated gut-kidney cross talk in humans: mechanistic insight. Am J Physiol Cell Physiol 2024; 326:C567-C572. [PMID: 38105752 PMCID: PMC11193450 DOI: 10.1152/ajpcell.00476.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Incretin-based therapy is an antidiabetic and antiobesity approach mimicking glucagon-like peptide-1 (GLP-1) with additional end-organ protection. This review solely focuses on randomized, controlled mechanistic human studies, investigating the renal effects of GLP-1. There is no consensus about the localization of GLP-1 receptors (GLP-1Rs) in human kidneys. Rodent and primate data suggest GLP-1R distribution in smooth muscle cells in the preglomerular vasculature. Native GLP-1 and GLP-1R agonists elicit renal effects. Independently of renal plasma flow and glomerular filtration rate, GLP-1 has a natriuretic effect but only during volume expansion. This is associated with high renal extraction of GLP-1, suppression of angiotensin II, and increased medullary as well as cortical perfusion. These observations may potentially indicate that impaired GLP-1 sensing could establish a connection between salt sensitivity and insulin resistance. It is concluded that a functional GLP-1 kidney axis exists in humans, which may play a role in renoprotection.
Collapse
Affiliation(s)
- Gitte R Hinrichs
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Peter Hovind
- Department of Clinical Physiology & Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Asmar
- Department of Clinical Physiology & Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Physiology & Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
4
|
Nwia SM, Leite APO, Li XC, Zhuo JL. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front Cardiovasc Med 2023; 10:1198090. [PMID: 37404743 PMCID: PMC10315499 DOI: 10.3389/fcvm.2023.1198090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula O. Leite
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
5
|
Smith D, Layton A. The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling. J Math Biol 2023; 86:58. [PMID: 36952058 DOI: 10.1007/s00285-023-01891-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the maintenance of volume homeostasis and blood pressure. In addition to the well-studied systemic RAS, local RAS have been documented in various tissues, including the kidney. Given the role of the intrarenal RAS in the pathogenesis of hypertension, a role established via various pharmacologic and genetic studies, substantial efforts have been made to unravel the processes that govern intrarenal RAS activity. In particular, several mechanisms have been proposed to explain the rise in intrarenal angiotensin II (Ang II) that accompanies Ang II infusion, including increased angiotensin type 1 receptor (AT1R)-mediated uptake of Ang II and enhanced intrarenal Ang II production. However, experimentally isolating their contribution to the intrarenal accumulation of Ang II in Ang II-induced hypertension is challenging, given that they are fundamentally connected. Computational modelling is advantageous because the feedback underlying each mechanism can be removed and the effect on intrarenal Ang II can be studied. In this work, the mechanisms governing the intrarenal accumulation of Ang II during Ang II infusion experiments are delineated and the role of the intrarenal RAS in Ang II-induced hypertension is studied. To accomplish this, a compartmental ODE model of the systemic and intrarenal RAS is developed and Ang II infusion experiments are simulated. Simulations indicate that AT1R-mediated uptake of Ang II is the primary mechanism by which Ang II accumulates in the kidney during Ang II infusion. Enhanced local Ang II production is unnecessary. The results demonstrate the role of the intrarenal RAS in the pathogenesis of Ang II-induced hypertension and consequently, clinical hypertension associated with an overactive RAS.
Collapse
Affiliation(s)
- Delaney Smith
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- School of Pharmacy, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
6
|
Wu F, Zuo HJ, Ren XQ, Wang PX, Li F, Li JJ. Gastrodin Regulates the Notch-1 Signal Pathway via Renin-Angiotensin System in Activated Microglia. Neuromolecular Med 2023; 25:40-52. [PMID: 35749056 DOI: 10.1007/s12017-022-08714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
Notch-1 and renin angiotensin system (RAS) are involved in microglia activation. It has been reported that gastrodin inhibited inflammatory responses mediated by activated microglia. This study explored the possible interaction between this two pathways, and to determine whether gastrodin would exert its effects on both of them. Expression of RAS, Notch-1 signaling and proinflammatory mediators in lipopolysaccharide (LPS) activated BV-2 microglia subjected to various treatments was determined by Western blot and immunofluorescence. The protein expression of RAS, Notch-1 pathway and TNF-α and IL-1β was significantly increased in activated microglia. Exogenous Ang II markedly enhanced the expression of these biomarkers. Meanwhile, Azilsartan [a specific inhibitor of AT1 (AT1I)] inhibited the expression of Notch-1 pathway and proinflammatory cytokines. When Notch-1 signaling was inhibited with DAPT, ACE and AT1 expression remained unaffected, indicating that RAS can regulate the Notch-1 pathway in activated microglia but not reciprocally. Additionally, we showed here that gastrodin inhibited the RAS, Notch-1 pathway and inflammatory response. Remarkably, gastrodin did not exert any effect on expression of Notch-1 signaling when RAS was blocked by AT1I, suggesting that gastrodin acts on the RAS directly, not through the Notch-1 pathway. Furthermore, TNF-α and IL-1β expression was significantly increased in activated microglia treated with exogenous Ang II; the expression, however, was suppressed by gastrodin. Of note, expression of proinflammatory cytokines was further decreased in gastrodin and AT1I combination treatment. The results suggest that gastrodin acts via the RAS which regulates the Notch-1 signaling and inflammation in LPS-induced microglia.
Collapse
Affiliation(s)
- Fang Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
7
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2022; 23:151-170. [PMID: 34195965 PMCID: PMC8245275 DOI: 10.1007/s11154-021-09663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Joshua R Cook
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA
| | - John Ausiello
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
11
|
Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, Moro C, Hartmann B, Jensen BL, Holst JJ, Bülow J. Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J Clin Endocrinol Metab 2019; 104:2509-2519. [PMID: 30835273 DOI: 10.1210/jc.2019-00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE We have previously demonstrated that glucagon-like peptide-1 (GLP-1) does not affect renal hemodynamics or function under baseline conditions in healthy participants and in patients with type 2 diabetes mellitus. However, it is possible that GLP-1 promotes natriuresis under conditions with addition of salt and water to the extracellular fluid. The current study was designed to investigate a possible GLP-1-renal axis, inducing natriuresis in healthy, volume-loaded participants. METHODS Under fixed sodium intake, eight healthy men were examined twice in random order during a 3-hour infusion of either GLP-1 (1.5 pmol/kg/min) or vehicle together with an intravenous infusion of 0.9% NaCl. Timed urine collections were conducted throughout the experiments. Renal plasma flow (RPF), glomerular filtration rate (GFR), and uptake and release of hormones and ions were measured via Fick's principle. RESULTS During GLP-1 infusion, urinary sodium and osmolar excretions increased significantly compared with vehicle. Plasma renin levels decreased similarly on both days, whereas angiotensin II (ANG II) levels decreased significantly only during GLP-1 infusion. RPF and GFR remained unchanged on both days. CONCLUSIONS In volume-loaded participants, GLP-1 induces natriuresis, probably brought about via a tubular mechanism secondary to suppression of ANG II, independent of renal hemodynamics, supporting the existence of a GLP-1-renal axis.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Per K Cramon
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University Hospital of Copenhagen, Hvidovre, Denmark
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale UMR 1048, Institute of Metabolic and Cardiovascular Diseases, and Paul Sabatier University, Toulouse, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Dolomatov S, Zukow W, Novikov N, Markaryan A, Eremeeva E. EXPRESSION OF THE RENIN-ANGIOTENSIN SYSTEM COMPONENTS IN ONCOLOGIC DISEASES. Acta Clin Croat 2019; 58:354-364. [PMID: 31819334 PMCID: PMC6884393 DOI: 10.20471/acc.2019.58.02.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The literature devoted to changes in the expression of the renin-angiotensin system (RAS) proteins of cancer cells was analyzed. The dynamics of RAS protein expression in malignant tumors and the possible role of epigenetic mechanisms in these processes are briefly reviewed. Through research of the epigenetic mechanisms in cancer, principally new techniques for their correction based on the use of selective regulatory systems of covalent modification of histone proteins (for example, deacetylase inhibitor) and microRNA synthesis technologies have been developed. Literature data show promising pharmacological correction of epigenetic modification of chromatin in the treatment of cancer.
Collapse
Affiliation(s)
| | - Walery Zukow
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Nikolay Novikov
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Alexandra Markaryan
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Elena Eremeeva
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| |
Collapse
|
13
|
|
14
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
15
|
Micakovic T, Papagiannarou S, Clark E, Kuzay Y, Abramovic K, Peters J, Sticht C, Volk N, Fleming T, Nawroth P, Hammes HP, Alenina N, Gröne HJ, Hoffmann SC. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney Int 2018; 94:937-950. [PMID: 30190172 DOI: 10.1016/j.kint.2018.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Tamara Micakovic
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stamatia Papagiannarou
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Euan Clark
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yalcin Kuzay
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katarina Abramovic
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Volk
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Peter Hammes
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Cardiovascular Hormones - Berlin-Buch, Berlin, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sigrid Christa Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
16
|
Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 2018; 132:1383-1401. [PMID: 29986878 DOI: 10.1042/cs20180121] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system (RAS) is widely recognized as one of the most important vasoactive hormonal systems in the physiological regulation of blood pressure and the development of hypertension. This recognition is derived from, and supported by, extensive molecular, cellular, genetic, and pharmacological studies on the circulating (tissue-to-tissue), paracrine (cell-to-cell), and intracrine (intracellular, mitochondrial, nuclear) RAS during last several decades. Now, it is widely accepted that circulating and local RAS may act independently or interactively, to regulate sympathetic activity, systemic and renal hemodynamics, body salt and fluid balance, and blood pressure homeostasis. However, there remains continuous debate with respect to the specific sources of intratubular and intracellular RAS in the kidney and other tissues, the relative contributions of the circulating RAS to intratubular and intracellular RAS, and the roles of intratubular compared with intracellular RAS to the normal control of blood pressure or the development of angiotensin II (ANG II)-dependent hypertension. Based on a lecture given at the recent XI International Symposium on Vasoactive Peptides held in Horizonte, Brazil, this article reviews recent studies using mouse models with global, kidney- or proximal tubule-specific overexpression (knockin) or deletion (knockout) of components of the RAS or its receptors. Although much knowledge has been gained from cell- and tissue-specific transgenic or knockout models, a unifying and integrative approach is now required to better understand how the circulating and local intratubular/intracellular RAS act independently, or with other vasoactive systems, to regulate blood pressure, cardiovascular and kidney function.
Collapse
|
17
|
Intracrine action of angiotensin II in mesangial cells: subcellular distribution of angiotensin II receptor subtypes AT 1 and AT 2. Mol Cell Biochem 2018; 448:265-274. [PMID: 29455433 DOI: 10.1007/s11010-018-3331-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT1 and AT2), defined as intracrine response. The aim of this study was to examine the presence of AT1 and AT2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT1 through an intracrine mechanism. Subcellular distribution of AT1 and AT2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.
Collapse
|
18
|
Chappell MC. Therapeutic Approaches to the Alternative Angiotensin-(1-7) Axis of the Renin-Angiotensin System. ANNALS OF PHARMACOLOGY AND PHARMACEUTICS 2017; 2:1116. [PMID: 36643780 PMCID: PMC9836034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women in the United States despite the recent advances in drug development, changes in lifestyle and screening protocols. A key target in the treatment of cardiovascular disease and hypertension is the renin-angiotensinsystem (RAS), a circulating and tissue system involved in the regulation of blood pressure, fluid balance and cellular injury. Pharmacologic approaches have traditionally focused on the Ang II-AT1receptor axis of the RAS to prevent the generation of Ang II with angiotensin converting enzyme inhibitors (ACEI) or to block the binding of Ang II to the AT1 receptor (AT1R) with selective antagonists (ARBs).
Collapse
Affiliation(s)
- Mark C Chappell
- Correspondence: Mark C Chappell, Department of Surgery, Hypertensin and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, USA, Tel: (336) 716-9236; Fax: (336) 716-2456;
| |
Collapse
|
19
|
Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, Collawn JF, Dell Italia LJ. Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 2016; 311:H404-14. [PMID: 27233763 PMCID: PMC5008653 DOI: 10.1152/ajpheart.00219.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina;
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Che Ping Cheng
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Hao Wang
- Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and
| | - Louis J Dell Italia
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
20
|
Lin M, Gao P, Zhao T, He L, Li M, Li Y, Shui H, Wu X. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. Mol Biol Rep 2016; 43:397-406. [PMID: 26968558 DOI: 10.1007/s11033-016-3971-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
To investigate the effects of calcitriol on angiotensin-converting enzyme (ACE) and ACE2 in diabetic nephropathy. Streptozotocin (STZ) induced diabetic rats were treated with calcitriol for 16 weeks. ACE/ACE2 and mitogen activated protein kinase (MAPK) enzymes were measured in the kidneys of diabetic rats and rat renal tubular epithelial cells exposed to high glucose. Calcitriol reduced proteinuria in diabetic rats without affecting calcium-phosphorus metabolism. ACE and ACE2 levels were significantly elevated in diabetic rats compared to those in control rats. The increase in ACE levels was greater than that of ACE2, leading to an elevated ACE/ACE2 ratio. Calcitriol reduced ACE levels and ACE/ACE2 ratio and increased ACE2 levels in diabetic rats. Similarly, high glucose up-regulated ACE expression in NRK-52E cells, which was blocked by the p38 MAPK inhibitor SB203580, but not the extracellular signal-regulated kinase (ERK) inhibitor FR180204 or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. High glucose down-regulated ACE2 expression, which was blocked by FR180204, but not SB203580 or SP600125. Incubation of cells with calcitriol significantly inhibited p38 MAPK and ERK phosphorylation, but not JNK phosphorylation, and effectively attenuated ACE up-regulation and ACE2 down-regulation in high glucose conditions. The renoprotective effects of calcitriol in diabetic nephropathy were related to the regulation of tubular levels of ACE and ACE2, possibly by p38 MAPK or ERK, but not JNK pathways.
Collapse
Affiliation(s)
- Mei Lin
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Tianya Zhao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei He
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Mengshi Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yaoyao Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
21
|
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles and represent a significant target for drug development. However, historically, drugs were developed with the understanding that GPCRs as a therapeutic target exist solely on cell surface membranes. More recently, GPCRs have been detected on intracellular membranes, including the nuclear membrane, and the concept that intracellular GPCRs are functional is become more widely accepted. Nuclear GPCRs couple to effectors and regulate signaling pathways, analogous to their counterparts at the cell surface, but may serve distinct biological roles. Hence, the physiological responses mediated by GPCR ligands, or pharmacological agents, result from the integration of their actions at extracellular and intracellular receptors. The net effect depends on the ability of a given ligand or drug to access intracellular receptors, as dictated by its structure, lipophilic properties, and affinity for nuclear receptors. This review will discuss angiotensin II, endothelin, and β-adrenergic receptors located on the nuclear envelope in cardiac cells in terms of their origin, activation, and role in cardiovascular function and pathology.
Collapse
|
22
|
Eriguchi M, Yotsueda R, Torisu K, Kawai Y, Hasegawa S, Tanaka S, Noguchi H, Masutani K, Kitazono T, Tsuruya K. Assessment of urinary angiotensinogen as a marker of podocyte injury in proteinuric nephropathies. Am J Physiol Renal Physiol 2015; 310:F322-33. [PMID: 26632605 DOI: 10.1152/ajprenal.00260.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023] Open
Abstract
Urinary protein (UP) is widely used as a clinical marker for podocyte injury; however, not all proteinuric nephropathies fit this model. We previously described the elevation of urinary angiotensinogen (AGT) accompanied by AGT expression by injured podocytes in a nitric oxide inhibition rat model (Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, Noguchi H, Masutani K, Torisu K, Kitazono T. Kidney Int 87: 116-127, 2015). In this report, we performed the human and animal studies to examine the significance and origin of urinary AGT. In the human study, focal segmental glomerulosclerosis (FSGS) patients presented with higher levels of urinary AGT, corrected by UP, than minimal-change disease (MCD) patients. Furthermore, AGT was evident in podocin-negative glomerular segmental lesions. We also tested two different nephrotic models induced by puromycin aminonucleoside in Wistar rats. The urinary AGT/UP ratio and AGT protein and mRNA expression in sieved glomeruli from FSGS rats were significantly higher than in MCD rats. The presence of AGT at injured podocytes in FSGS rats was detected by immunohistochemistry and immunoelectron microscopy. Finally, we observed the renal tissue and urinary metabolism of exogenous injected human recombinant AGT (which is not cleaved by rodent renin) in FSGS and control rats. Significant amounts of human AGT were detected in the urine of FSGS rats, but not of control rats. Immunostaining for rat and human AGT identified that only rat AGT was detected in injured podocytes, and filtered human AGT was seen in superficial proximal tubules, but not in injured podocytes, suggesting AGT generation by injured podocytes. In conclusion, the urinary AGT/UP ratio represents a novel specific marker of podocyte injury.
Collapse
Affiliation(s)
- Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Ryusuke Yotsueda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Yasuhiro Kawai
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Shoko Hasegawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
25
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
26
|
Tadevosyan A, Villeneuve LR, Fournier A, Chatenet D, Nattel S, Allen BG. Caged ligands to study the role of intracellular GPCRs. Methods 2015. [PMID: 26196333 DOI: 10.1016/j.ymeth.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to cell surface membranes, numerous G protein-coupled receptors (GPCRs) are located on intracellular membranes including the nuclear envelope. Although the role of numerous GPCRs at the cell surface has been well characterized, the physiological function of these same receptors located on intracellular membranes remains to be determined. Here, we employ a novel caged Ang-II analog, cAng-II, to compare the effects of the activation of cell surface versus intracellular angiotensin receptors in intact cardiomyocytes. When added extracellularly to HEK 293 cells, Ang-II and photolysed cAng-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R). In contrast unphotolysed cAng-II did not. Cellular uptake of cAng-II was 6-fold greater than that of Ang-II and comparable to the HIV TAT(48-60) peptide. Intracellular photolysis of cAng-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was greater than that induced by extracellular application of Ang-II. We conclude that cell-permeable ligands that can access intracellular GPCRs may evoke responses distinct from those with access restricted to the same receptor located on the cell surface.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada
| | | | - Alain Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - Stanley Nattel
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| | - Bruce G Allen
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Canada.
| |
Collapse
|
27
|
Intracellular angiotensin (1–7) increases the inward calcium current in cardiomyocytes. On the role of PKA activation. Mol Cell Biochem 2015; 407:9-16. [DOI: 10.1007/s11010-015-2449-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
|
28
|
Herak-Kramberger CM, Breljak D, Ljubojević M, Matokanović M, Lovrić M, Rogić D, Brzica H, Vrhovac I, Karaica D, Micek V, Dupor JI, Brown D, Sabolić I. Sex-dependent expression of water channel AQP1 along the rat nephron. Am J Physiol Renal Physiol 2015; 308:F809-21. [PMID: 25656365 DOI: 10.1152/ajprenal.00368.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022] Open
Abstract
In the mammalian kidney, nonglycosylated and glycosylated forms of aquaporin protein 1 (AQP1) coexist in the luminal and basolateral plasma membranes of proximal tubule and descending thin limb. Factors that influence AQP1 expression in (patho)physiological conditions are poorly known. Thus far, only angiotensin II and hypertonicity were found to upregulate AQP1 expression in rat proximal tubule in vivo and in vitro (Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF. Am J Physiol Renal Physiol 297: F1575-F1586, 2009), a phenomenon that may be relevant for higher blood pressure observed in men and male experimental animals. Here we investigated the sex-dependent AQP1 protein and mRNA expression in the rat kidney by immunochemical methods and qRT-PCR in tissue samples from prepubertal and intact gonadectomized animals and sex hormone-treated gonadectomized adult male and female animals. In adult rats, the overall renal AQP1 protein and mRNA expression was ∼80% and ∼40% higher, respectively, in males than in females, downregulated by gonadectomy in both sexes and upregulated strongly by testosterone and moderately by progesterone treatment; estradiol treatment had no effect. In prepubertal rats, the AQP1 protein expression was low compared with adults and slightly higher in females, whereas the AQP1 mRNA expression was low and similar in both sexes. The observed differences in AQP1 protein expression in various experiments mainly reflect changes in the glycosylated form. The male-dominant expression of renal AQP1 in rats, which develops after puberty largely in the glycosylated form of the protein, may contribute to enhanced fluid reabsorption following the androgen- or progesterone-stimulated activities of sodium-reabsorptive mechanisms in proximal tubules.
Collapse
Affiliation(s)
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marija Ljubojević
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirela Matokanović
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mila Lovrić
- Clinical Institute of Laboratory Diagnosis, University Hospital Center, Zagreb, Croatia
| | - Dunja Rogić
- Clinical Institute of Laboratory Diagnosis, University Hospital Center, Zagreb, Croatia
| | - Hrvoje Brzica
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ivan Sabolić
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia;
| |
Collapse
|
29
|
Wilson BA, Cruz-Diaz N, Marshall AC, Pirro NT, Su Y, Gwathmey TM, Rose JC, Chappell MC. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme. Am J Physiol Renal Physiol 2015; 308:F594-601. [PMID: 25568136 DOI: 10.1152/ajprenal.00609.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| | - Nildris Cruz-Diaz
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| | - Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| | - Nancy T Pirro
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| | - Yixin Su
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Cartolina
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Cartolina
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Cartolina; and
| |
Collapse
|
30
|
Yin Y, Huang SW, Zheng YJ, Dong YR. Angiotensin II type 1 receptor blockade suppresses H2O2-induced retinal degeneration in photoreceptor cells. Cutan Ocul Toxicol 2014; 34:307-12. [DOI: 10.3109/15569527.2014.979427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014; 5:439. [PMID: 25505418 PMCID: PMC4241834 DOI: 10.3389/fphys.2014.00439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals.
Collapse
Affiliation(s)
- Ramya Vajapey
- School of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - David Rini
- Division of Cellular and Molecular Medicine, Art as Applied to Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Jeremy Walston
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Peter Abadir
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
32
|
Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol 2014; 3:64-76. [PMID: 25332897 PMCID: PMC4202493 DOI: 10.5527/wjn.v3.i3.64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases.
Collapse
|
33
|
Alzayadneh EM, Chappell MC. Nuclear expression of renin-angiotensin system components in NRK-52E renal epithelial cells. J Renin Angiotensin Aldosterone Syst 2014; 16:1135-48. [PMID: 24961503 DOI: 10.1177/1470320313515039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Isolated nuclei of sheep proximal tubules express angiotensin (Ang) receptors as well as angiotensinogen (AGT) and renin. The present study characterized the NRK-52E tubular epithelial cell line for the intracellular expression of renin-angiotensin system (RAS) components. METHODS RAS components were visualized by immunofluorescent staining in intact cells and protein expression in isolated nuclei. RESULTS An antibody to the angiotensin I (Ang I) sequence of AGT (AI-AGT) revealed only cytosolic staining, while an antibody to an internal sequence of AGT (Int-AGT) revealed primarily nuclear staining. Immunoblots of nuclear and cytosolic fractions confirmed the differential cell staining of AGT. Immunostaining for renin was present on nuclei of intact cells. Nuclear renin activity averaged 0.77±0.05 nmol/mg protein/h that was reduced by aliskiren (0.13±0.01 nmol/mg/h, n=3, p<0.01); trypsin activation increased activity three-fold. Peptide staining localized angiotensin II (Ang II) and Ang-(1-7) to the nucleus and peptide content averaged 59±2 and 57±22 fmol/mg (n=4), respectively. Peptide metabolism in isolated nuclei revealed the processing of Ang I to Ang-(1-7) by thimet oligopeptidase. CONCLUSION We conclude that the NRK-52E cells express an intracellular RAS localized to the nucleus and may be an appropriate cell model to elucidate the functional relevance of this system.
Collapse
Affiliation(s)
- Ebaa M Alzayadneh
- The Hypertension & Vascular Research Center, Wake Forest University Health Sciences, USA
| | - Mark C Chappell
- The Hypertension & Vascular Research Center, Wake Forest University Health Sciences, USA
| |
Collapse
|
34
|
Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, Noguchi H, Masutani K, Torisu K, Kitazono T. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int 2014; 87:116-27. [PMID: 24940798 DOI: 10.1038/ki.2014.220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
We elucidate the underlying mechanisms of bidirectional cardiorenal interaction, focusing on the sympathetic nerve driving disruption of the local renin-angiotensin system (RAS). A rat model of N(ω)-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) administration was used to induce damage in the heart and kidney, similar to cardiorenal syndrome. L-NAME induced sympathetic nerve-RAS overactivity and cardiorenal injury accompanied by local RAS elevations. These were suppressed by bilateral renal denervation, but not by hydralazine treatment, despite the blood pressure being kept the same between the two groups. Although L-NAME induced angiotensinogen (AGT) protein augmentation in both organs, AGT mRNA decreased in the kidney and increased in the heart in a contradictory manner. Immunostaining for AGT suggested that renal denervation suppressed AGT onsite generation from activated resident macrophages of the heart and circulating AGT excretion from glomeruli of the kidney. We also examined rats treated with L-NAME plus unilateral denervation to confirm direct sympathetic regulation of intrarenal RAS. The levels of urinary AGT and renal angiotensin II content and the degrees of renal injury from denervated kidneys were less than those from contralateral innervated kidneys within the same rats. Thus, renal denervation has blood pressure-independent beneficial effects associated with local RAS inhibition.
Collapse
Affiliation(s)
- Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- 1] Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haruyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaichi Suehiro
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Wilson BA, Marshall AC, Alzayadneh EM, Chappell MC. The ins and outs of angiotensin processing within the kidney. Am J Physiol Regul Integr Comp Physiol 2014; 307:R487-9. [PMID: 24944244 DOI: 10.1152/ajpregu.00177.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kidney is a key target organ for bioactive components of the renin-angiotensin system (RAS); however, various renal cells such as the tubular epithelium contain an intrinsic RAS. The renal RAS can be functionally divided into ANG II-AT1 receptor and ANG-(1-7)-AT7/Mas receptor arms that functionally oppose one another. The current review considers both extracellular and intracellular pathways that potentially govern the formation and metabolism of angiotensin peptides within the renal proximal tubules.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ebaa M Alzayadneh
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
36
|
Narimatsu T, Ozawa Y, Miyake S, Nagai N, Tsubota K. Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina. Free Radic Biol Med 2014; 71:176-185. [PMID: 24662196 DOI: 10.1016/j.freeradbiomed.2014.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/16/2014] [Indexed: 12/26/2022]
Abstract
Exposure to light contributes to the development and progression of retinal degenerative diseases. However, the mechanisms underlying light-induced tissue damage are not fully understood. Here, we examined the role of angiotensin II type 1 receptor (AT1R) signaling, which is part of the renin-angiotensin system, in light-induced retinal damage. Light-exposed Balb/c mice that were treated with the AT1R blockers (angiotensin II receptor blockers; ARBs) valsartan, losartan, and candesartan before and after the light exposure exhibited attenuated visual function impairment, compared to vehicle-treated mice. This effect was dose-dependent and observed across the ARB class of inhibitors. Further evaluation of valsartan showed that it suppressed a number of light-induced retinal effects, including thinning of the photoreceptor cell layer caused by apoptosis, shortening of the photoreceptor cell outer segment, and increased levels of reactive oxygen species (ROS). The role of ROS in retinal pathogenesis was investigated further using the antioxidant N-acetyl-l-cysteine (NAC). Treatment of light-exposed mice with NAC before the light exposure suppressed the visual function impairment and photoreceptor cell histological changes due to apoptosis. Moreover, treatment with valsartan or NAC suppressed the induction of c-fos (a component of the AP-1 transcription factor) and the upregulation of fasl (a proapoptotic molecule whose transcript is regulated downstream of AP-1). Our results suggest that AT1R signaling mediates light-induced apoptosis, by increasing the levels of ROS and proapoptotic molecules in the retina. Thus, AT1R blockade may represent a new therapeutic approach for preventing light-induced retinal neural tissue damage.
Collapse
Affiliation(s)
- Toshio Narimatsu
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Seiji Miyake
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
37
|
Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. Evidence for an angiotensin-(1-7) neuropeptidase expressed in the brain medulla and CSF of sheep. J Neurochem 2014; 130:313-23. [PMID: 24661079 DOI: 10.1111/jnc.12720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an alternative product of the brain renin-angiotensin system that exhibits central actions to lower blood pressure and improve baroreflex sensitivity. We previously identified a peptidase that metabolizes Ang-(1-7) to the inactive metabolite product Ang-(1-4) in CSF of adult sheep. This study purified the peptidase 1445-fold from sheep brain medulla and characterized this activity. The peptidase was sensitive to the chelating agents o-phenanthroline and EDTA, as well as the mercury compound p-chloromercuribenzoic acid (PCMB). Selective inhibitors to angiotensin-converting enzyme, neprilysin, neurolysin, and thimet oligopeptidase did not attenuate activity; however, the metallopeptidase agent JMV-390 was a potent inhibitor of Ang-(1-7) hydrolysis (Ki = 0.8 nM). Kinetic studies using (125) I-labeled Ang-(1-7), Ang II, and Ang I revealed comparable apparent Km values (2.6, 2.8, and 4.3 μM, respectively), but a higher apparent Vmax for Ang-(1-7) (72 vs. 30 and 6 nmol/min/mg, respectively; p < 0.01). HPLC analysis of the activity confirmed the processing of unlabeled Ang-(1-7) to Ang-(1-4) by the peptidase, but revealed < 5% hydrolysis of Ang II or Ang I, and no hydrolysis of neurotensin, bradykinin or apelin-13. The unique characteristics of the purified neuropeptidase may portend a novel pathway to influence actions of Ang-(1-7) within the brain. Angiotensin-(1-7) actions are mediated by the AT7 /Mas receptor and include reduced blood pressure, decreased oxidative stress, enhanced baroreflex sensitivity, and increased nitric oxide (NO). Ang-(1-7) is directly formed from Ang I by neprilysin (NEP). We identify a new pathway for Ang-(1-7) metabolism in the brain distinct from angiotensin-converting enzyme-dependent hydrolysis. The Ang-(1-7) endopeptidase (A7-EP) degrades the peptide to Ang-(1-4) and may influence central Ang-(1-7) tone.
Collapse
Affiliation(s)
- Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
38
|
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4:201. [PMID: 24409169 PMCID: PMC3886117 DOI: 10.3389/fendo.2013.00201] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1-7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1-7)-Mas receptor axis regarding the precursor for Ang-(1-7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1-7) pathway in fetal programing events and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Mark C. Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson C. Marshall
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ebaa M. Alzayadneh
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hossam A. Shaltout
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Debra I. Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- *Correspondence: Debra I. Diz, The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1032, USA e-mail:
| |
Collapse
|
39
|
De Mello WC. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications. Front Endocrinol (Lausanne) 2014; 5:238. [PMID: 25657639 PMCID: PMC4303002 DOI: 10.3389/fendo.2014.00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.
Collapse
Affiliation(s)
- Walmor C. De Mello
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
- *Correspondence: Walmor C. De Mello, School of Medicine, UPR, Medical Sciences Campus, San Juan, PR 00936, USA e-mail:
| |
Collapse
|
40
|
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne) 2014; 5:23. [PMID: 24592256 PMCID: PMC3938116 DOI: 10.3389/fendo.2014.00023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS) are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g., diabetes) and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans. Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations, we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unifies the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- *Correspondence: Jeppe Skov, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, Aarhus DK-8000, Denmark e-mail:
| | | | - Jørgen Frøkiær
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
41
|
Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers in the intrarenal Renin-Angiotensin system: a critical review of classical and new paradigms. Front Endocrinol (Lausanne) 2013; 4:166. [PMID: 24273531 PMCID: PMC3822323 DOI: 10.3389/fendo.2013.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1-7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease.
Collapse
Affiliation(s)
- Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fernanda M. Ferrao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yun Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
42
|
Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca²⁺ in adult cardiac myocytes. J Mol Cell Cardiol 2013; 62:189-202. [PMID: 23756157 DOI: 10.1016/j.yjmcc.2013.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/17/2022]
Abstract
Endothelin receptors are present on the nuclear membranes in adult cardiac ventricular myocytes. The objectives of the present study were to determine 1) which endothelin receptor subtype is in cardiac nuclear membranes, 2) if the receptor and ligand traffic from the cell surface to the nucleus, and 3) the effect of increased intracellular ET-1 on nuclear Ca(2+) signaling. Confocal microscopy using fluorescently-labeled endothelin analogs confirmed the presence of ETB at the nuclear membrane of rat cardiomyocytes in skinned-cells and isolated nuclei. Furthermore, in both cardiac myocytes and aortic endothelial cells, endocytosed ET:ETB complexes translocated to lysosomes and not the nuclear envelope. Although ETA and ETB can form heterodimers, the presence or absence of ETA did not alter ETB trafficking. Treatment of isolated nuclei with peptide: N-glycosidase F did not alter the electrophoretic mobility of ETB. The absence of N-glycosylation further indicates that these receptors did not originate at the cell surface. Intracellular photolysis of a caged ET-1 analog ([Trp-ODMNB(21)]ET-1) evoked an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was attenuated by inositol 1,4,5-trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and prevented by pre-treatment with ryanodine. A caged cell-permeable analog of the ETB-selective antagonist IRL-2500 blocked the ability of intracellular cET-1 to increase [Ca(2+)]n whereas extracellular application of ETA and ETB receptor antagonists did not. These data suggest that 1) the endothelin receptor in the cardiac nuclear membranes is ETB, 2) ETB traffics directly to the nuclear membrane after biosynthesis, 3) exogenous endothelins are not ligands for ETB on nuclear membranes, and 4) ETB associated with the nuclear membranes regulates nuclear Ca(2+) signaling.
Collapse
|
43
|
Outside and inside angiotensin. ACTA ACUST UNITED AC 2013; 7:253-5. [DOI: 10.1016/j.jash.2013.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
|
44
|
Li XC, Zhuo JL. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 2013; 304:R588-98. [PMID: 23427083 PMCID: PMC3627953 DOI: 10.1152/ajpregu.00338.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/18/2013] [Indexed: 02/08/2023]
Abstract
The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.
Collapse
MESH Headings
- Angiotensin II/biosynthesis
- Angiotensin II/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Blotting, Western
- Dependovirus
- Drinking/physiology
- Electrolytes/urine
- Enzyme-Linked Immunosorbent Assay
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Low Density Lipoprotein Receptor-Related Protein-2/biosynthesis
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/biosynthesis
- Sodium-Hydrogen Exchangers/genetics
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Xiao C. Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L. Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Center of Excellence for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi; and
- Division of Nephrology, Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
45
|
Skov J, Dejgaard A, Frøkiær J, Holst JJ, Jonassen T, Rittig S, Christiansen JS. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013; 98:E664-71. [PMID: 23463656 DOI: 10.1210/jc.2012-3855] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Glucagon-like peptide-1 (GLP-1) is an incretin hormone with multiple actions in addition to control of glucose homeostasis. GLP-1 is known to cause natriuresis in humans, but the effects on basic renal physiology are still partly unknown. SUBJECTS AND METHODS Twelve healthy young males were examined in a randomized, controlled, double-blinded, single-day, crossover trial to evaluate the effects of 2 hours GLP-1 infusion on kidney functions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were assessed with (51)Cr-EDTA and (123)I-hippuran, respectively, using a constant infusion renal clearance technique based on timed urine sampling. RESULTS GLP-1 had no significant effect on either GFR [+1.9%, 95% confidence interval (-0.8; 4.6%)] or RPF [+2.4%, 95% confidence interval (-3.6; 8.8%)]. Fractional urine excretion of lithium increased 9% (P = .013) and renal sodium clearance increased 40% (P = .007). Angiotensin II decreased 19% (P = .003), whereas renin, aldosterone, and the urinary excretion of angiotensinogen showed no significant changes. glp-1 did not affect blood pressure but induced a small transient increase in heart rate. CONCLUSION The results indicate that although GLP-1 markedly reduces proximal tubule sodium reabsorption, the acute effects on GFR and RPF are very limited in healthy humans. The finding of GLP-1's ability to reduce angiotensin II concentration is novel and should be further elucidated.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kumar R, Yong QC, Thomas CM. Do multiple nuclear factor kappa B activation mechanisms explain its varied effects in the heart? Ochsner J 2013; 13:157-165. [PMID: 23532211 PMCID: PMC3603179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Multiple studies have demonstrated the important role of the nuclear factor kappa B (NF-κB) in cardiac pathology. However, these studies' conclusions differ regarding whether NF-κB is protective or detrimental for heart function. This disagreement is not surprising considering the complexity of NF-κB signaling that involves multiple components and regulation at several steps. Furthermore, NF-κB is a pleiotropic transcription factor that receives signals from multiple pathways, including the renin-angiotensin system (RAS) and cytokines, 2 important modulators of cardiac remodeling. METHODS In this article, we review studies related to the role and mechanisms of NF-κB activation in the heart, particularly with regard to the RAS, inflammation, and diabetes. The objective of this review is to consolidate multiple, often contradictory, findings to develop a clear understanding of NF-κB signaling in the heart. CONCLUSIONS The studies we review demonstrate that NF-κB effects in the heart are mechanism specific and that NF-κB signaling is cyclical. Consequently, the timing of NF-κB measurement is critical, and studies focused on temporal changes in the NF-κB mechanism would help clarify its multiple roles in cardiac pathophysiology.
Collapse
Affiliation(s)
- Rajesh Kumar
- Division of Molecular Cardiology, College of Medicine, Texas A&M Health Science Center, Scott & White Healthcare, and Central Texas Veterans Health Care System, Temple, TX
| | - Qian Chen Yong
- Division of Molecular Cardiology, College of Medicine, Texas A&M Health Science Center, Scott & White Healthcare, and Central Texas Veterans Health Care System, Temple, TX
| | - Candice M. Thomas
- Division of Molecular Cardiology, College of Medicine, Texas A&M Health Science Center, Scott & White Healthcare, and Central Texas Veterans Health Care System, Temple, TX
| |
Collapse
|
47
|
Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides 2012; 38:437-45. [PMID: 23032352 PMCID: PMC3770295 DOI: 10.1016/j.peptides.2012.09.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems.
Collapse
Affiliation(s)
- Peter M. Abadir
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Corresponding author at: P.O. Box 801414, University of Virginia Health System, Charlottesville, VA 22908-1414, United States. Tel.: +1 434 924 5510; fax: +1 434 982 3626. (R.M. Carey)
| |
Collapse
|
48
|
Li XC, Hopfer U, Zhuo JL. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Renal Physiol 2012; 303:F1617-28. [PMID: 23034941 DOI: 10.1152/ajprenal.00219.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Expression of a cytosolic cyan fluorescent fusion protein of angiotensin II (ECFP/ANG II) in proximal tubules increases blood pressure in rodents. To determine cellular signaling pathways responsible for this response, we expressed ECFP/ANG II in transport-competent mouse proximal convoluted tubule cells (mPCT) from wild-type (WT) and type 1a ANG II receptor-deficient (AT(1a)-KO) mice and measured its effects on intracellular ANG II levels, surrogates of Na/H exchanger 3 (NHE3)-dependent Na(+) absorption, as well as MAP kinases and NF-κB signaling. In WT mPCT cells, ECFP/ANG II expression doubled ANG II levels, increased NHE3 expression and membrane phospho-NHE3 proteins threefold and intracellular Na(+) concentration by 65%. These responses were associated with threefold increases in phospho-ERK 1/2 and phospho-p38 MAPK, fivefold increases in p65 subunit of NF-κB, and threefold increases in phospho-IKKα/β (Ser 176/180) proteins. These signaling responses to ECFP/ANG II were inhibited by losartan (AT(1) blocker), PD123319 (AT(2) blocker), U0126 (MEK1/MEK2 inhibitor), and RO 106-9920 (NF-κB inhibitor). In mPCT cells of AT(1a)-KO mice, ECFP/ANG II also increased the levels of NHE3, p-ERK1/2, and p65 proteins above their controls, but considerably less so than in WT cells. In WT mice, selective expression of ECFP/ANG II in vivo in proximal tubules significantly increased blood pressure and indices of sodium reabsorption, in particular levels of phosphorylated NHE3 protein in the membrane fraction and proton gradient-stimulated (22)Na(+) uptake by proximal tubules. We conclude that intracellular ANG II may induce NHE3 expression and activation in mPCTs via AT(1a)- and AT(2) receptor-mediated activation of MAP kinases ERK 1/2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- X C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | |
Collapse
|
49
|
Abstract
The renin-angiotensin system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and nonrenal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, including kidney injury, and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, water intake, sodium retention, and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the nonclassical RAS composed primarily of the AngII/Ang III-AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension & Vascular Disease Center, Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
50
|
Abstract
The RAS (renin-angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.
Collapse
|