1
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
2
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
3
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
The Role of Irisin in Cancer Disease. Cells 2021; 10:cells10061479. [PMID: 34204674 PMCID: PMC8231117 DOI: 10.3390/cells10061479] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023] Open
Abstract
Irisin (Ir) is an adipomyokine that is involved in the regulation of metabolic processes. It also influences processes related to inflammation, including cancer. Initially, Ir was considered a hormone secreted by skeletal muscles in response to physical exercise. Further studies showed that Ir is also present in other healthy tissues, organs, and plasma. It influences the change in phenotype of white adipose tissue (WAT) into brown adipose tissue (BAT). It increases mitochondrial biogenesis and affects the expression of thermogenin (UCP1). This adipomyokine has also been found in many tumor tissues and in the serum of cancer patients. Studies are underway to determine the association between Ir and carcinogenesis. It has been confirmed that Ir inhibits in vitro proliferation, migration, and invasion. It is involved in the inhibition of epithelial–mesenchymal transition (EMT). Additionally, Ir affects the expression of the transcription factor Snail, which is involved in EMT, and inhibits transcription of the gene encoding E-cadherin, which is characteristic of epithelial-derived cells. Many studies have been performed to determine the role of Ir in physiological and pathological processes. Further detailed studies should determine more precisely the effect of Ir on the body in health and disease.
Collapse
|
5
|
PFKFB4 Overexpression Facilitates Proliferation by Promoting the G1/S Transition and Is Associated with a Poor Prognosis in Triple-Negative Breast Cancer. DISEASE MARKERS 2021; 2021:8824589. [PMID: 34211613 PMCID: PMC8211511 DOI: 10.1155/2021/8824589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
Background 6-Phosphofructo-2-kinase/fructose-2,6-biphosphate-4 (PFKFB4) is a key factor that plays an important role in tumorigenesis. However, its role in triple-negative breast cancer (TNBC) progression needs to be further validated. We investigated whether PFKFB4 is directly involved in the oncogenic signaling networks of TNBC. Methods First, we assessed the expression level of PFKFB4 in tumor tissue specimens by immunohistochemistry and evaluated its prognostic value. Next, the effect of PFKFB4 on TNBC cell growth and associated mechanisms were investigated. Finally, the results were further verified in vivo. Results We found that PFKFB4 overexpression was associated with an unfavorable prognosis in TNBC patients. PFKFB4 was overexpressed in TNBC cell lines in hypoxic environments, and its overexpression promoted tumor progression in vitro and in vivo. Further analyses demonstrated that the possible mechanism might be that PFKFB4 overexpression facilitates TNBC progression by enhancing the G1/S phase transition by increasing the protein level of CDK6 and phosphorylation of Rb. Conclusions These data suggest that PFKFB4 plays significant roles in the tumorigenesis and development of TNBC.
Collapse
|
6
|
Havránková E, Peña-Méndez EM, Csöllei J, Havel J. Prediction of biological activity of compounds containing a 1,3,5-triazinyl sulfonamide scaffold by artificial neural networks using simple molecular descriptors. Bioorg Chem 2020; 107:104565. [PMID: 33418318 DOI: 10.1016/j.bioorg.2020.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
Simple molecular descriptors of extensive series of 1,3,5-triazinyl sulfonamide derivatives, based on the structure of sulfonamides and their physicochemical properties, were designed and calculated. These descriptors were successfully applied as inputs for artificial neural network (ANN) modelling of the relationship between the structure and biological activity. The optimized ANN architecture was applied to the prediction of the inhibition activity of 1,3,5-triazinyl sulfonamides against human carbonic anhydrase (hCA) II, tumour-associated hCA IX, and their selectivity (hCA II/hCA IX).
Collapse
Affiliation(s)
- Eva Havránková
- Masaryk University, Faculty of Pharmacy, Department of Chemical Drugs, Palackého 1-3, CZ-612 42 Brno, Czech Republic
| | - E M Peña-Méndez
- Universidad de La Laguna (ULL), Facultad de Ciencias, Departamento de Química, Unidad Departamental de Química Analítica, 38201 La Laguna, Spain
| | - Jozef Csöllei
- Masaryk University, Faculty of Pharmacy, Department of Chemical Drugs, Palackého 1-3, CZ-612 42 Brno, Czech Republic
| | - Josef Havel
- Masaryk University, Faculty of Science, Department of Chemistry, University Campus, Kamenice 753/5, CZ-625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| |
Collapse
|
7
|
Zhang L, Chen S, Liu Y, Xu X, Zhang Q, Shao S, Wang W, Li X. P-selectin blockade ameliorates lupus nephritis in MRL/lpr mice through improving renal hypoxia and evaluation using BOLD-MRI. J Transl Med 2020; 18:116. [PMID: 32138730 PMCID: PMC7059679 DOI: 10.1186/s12967-020-02284-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lupus nephritis is one of the most common and severe complications of systemic lupus erythematosus, of which poor prognosis is indicated by aggravated renal hypoxia and tubulointerstitial fibrosis. Cell adhesion molecules play a key role in the progression of lupus nephritis tubulointerstitial lesion, including P-selectin, which mediates the rolling of leukocytes and subsequent adhesion and infiltration and then initiates the inflammatory immune response and ischemia and hypoxia injury. However, the effects and mechanisms of P-selectin in lupus nephritis remain to be investigated, and a noninvasive measurement of lupus nephritis tubulointerstitial hypoxia and fibrosis remains to be explored. METHODS Thirty-four MRL/lpr mice were randomly divided into the following three groups: MRL/lpr, saline, and anti-P-selectin, which consisted of no treatment, treatment with normal saline, and treatment with anti-P-selectin monoclonal antibody (mAb) from 12 to 16 weeks of age, respectively. Ten male C57BL/6 mice of the same age served as normal controls. 24-h urinary protein, urinary albumin-creatinine ratio, and periodic acid-Schiff were used to assess kidney damage; Western blot or immunohistochemical staining of the hypoxia probe Hypoxyprobe™-1, hypoxia-inducible factor 1α (HIF-1α), and CD31 were used to evaluate hypoxia in renal tissue; and NADPH oxidase subunit gp91phox and p22phox were used to examine renal oxidative stress. The correlation between kidney injury and blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) was calculated to assess the clinical value of BOLD-MRI. RESULTS P-selectin is upregulated in lupus nephritis. Blocking P-selectin with mAb alleviated renal tubulointerstitial fibrosis, renal hypoxia, and peritubular capillary loss, without alteration of the levels of lupus activity indicators, anti-dsDNA antibody, or complement C3. BOLD-MRI showed that the reduced R2* values in the renal cortex and medulla of lupus mice were increased when treated with anti-P-selectin mAb as compared with those treated with normal saline, which were negatively correlated with Hypoxyprobe™-1 hypoxia probe and the expression of HIF-1α. CONCLUSIONS Early intervention of lupus nephritis with anti-P-selectin mAb can significantly improve the hypoxic state of the kidney and reduce the severity of tubulointerstitial lesions. BOLD-MRI techniques are noninvasive and can dynamically evaluate the changes in renal lesions and intrarenal oxygenation levels before and after treatment in lupus nephritis.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | - Sheng Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | - Xueqin Xu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qianying Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | - Shuxin Shao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | - Xiao Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
8
|
Marwein S, Mishra B, De UC, Acharya PC. Recent Progress of Adenosine Receptor Modulators in the Development of Anticancer Chemotherapeutic Agents. Curr Pharm Des 2019; 25:2842-2858. [DOI: 10.2174/1381612825666190716141851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
Abstract
Increased risks of peripheral toxicity and undesired adverse effects associated with chemotherapeutic
agents are the major medical hurdles in cancer treatment that worsen the quality of life of cancer patients. Although
several novel and target-specific anticancer agents have been discovered in the recent past, none of them
have proved to be effective in the management of metastatic tumor. Therefore, there is a continuous effort for the
discovery of safer and effective cancer chemotherapeutic agent. Adenosine receptors have been identified as an
important target to combat cancer because of their inherent role in the antitumor process. The antitumor property
of the adenosine receptor is primarily attributed to their inherited immune response against the tumors. These
findings have opened a new chapter in the anticancer drug discovery through adenosine receptor-mediated immunomodulation.
This review broadly outlines the biological mechanism of adenosine receptors in mediating the
selective cytotoxicity as well as the discovery of various classes of adenosine receptor modulators in the effective
management of solid tumors.
Collapse
Affiliation(s)
- Sarapynbiang Marwein
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Bijayashree Mishra
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Utpal C. De
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Pratap C. Acharya
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| |
Collapse
|
9
|
Karatas O, Balci Yuce H, Aydemir Turkal H. Dental hypofunction alters subgingival microorganisms: a pilot study. MINERVA STOMATOLOGICA 2019; 68:183-191. [PMID: 31357852 DOI: 10.23736/s0026-4970.19.04245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND The aim of this study was to evaluate dental plaque compositions, vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF) 1-alpha levels in gingival crevicular fluid (GCF) at hypofunctional and normofunctional teeth in healthy individuals and chronic periodontitis patients. METHODS Sixty systemically healthy individuals were enrolled. Study groups were: group 1 hypofunctional healthy group (group 1, N.=15); group 2 hypofunctional periodontitis group (group 2, N.=15); group 3 normofunctional healthy group (group 3, N.=15); and group 4 normofunctional periodontitis group (group 4, N.=15). Clinical periodontal measurements (plaque index, gingival index and clinical attachment level) were recorded. Dental plaque and GCF samples were taken. VEGF and HIF 1-alpha levels in GCF were determined. Subgingival plaque samples were evaluated for 11 different bacterial species as, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Campylobacter rectus, Eubacterium nodatum, Eikenella corrodens and Capnocytophaga species. RESULTS Tannerella forsythia, Peptostreptococcus micros, Eubacterium nodatum levels decreased in hypofunctional healthy and periodontitis groups (P<0.05). Porphyromonas gingivalis levels increased in hypofunctional healthy group and decreased in hypofunctional periodontitis group (P<0.05). There was also a decrease in Eikenella corrodens levels in hypofunctional periodontitis group (P<0.05). There were no difference regarding the Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Prevotella intermedia and Fusobacterium nucleatum levels among the groups (P>0.05). VEGF and HIF-1α levels in both GCF and serum samples were also similar (P>0.05). CONCLUSIONS Within the limits of this study, the authors found that the levels of four significant bacterial strains were decreased in both hypofunctional healthy and hypofunctional periodontitis groups compared to normofunctional equivalents. Though not evaluated in this study, this situation could be due to periodontal ligament atrophy and related physiological alterations.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey -
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Humeyra Aydemir Turkal
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
10
|
Tayman MA, Kurgan Ş, Önder C, Güney Z, Serdar MA, Kantarcı A, Günhan M. A disintegrin-like and metalloproteinase with thrombospondin-1 (ADAMTS-1) levels in gingival crevicular fluid correlate with vascular endothelial growth factor-A, hypoxia-inducible factor-1α, and clinical parameters in patients with advanced periodontitis. J Periodontol 2019; 90:1182-1189. [PMID: 31020669 DOI: 10.1002/jper.18-0195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 12/14/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND ADAMTS (a disintegrin-like and metalloproteinase with thrombospondin) are a family of proteinases that are structurally similar to the family of matrix metalloproteinases with critical roles in damage and repair of the extracellular matrix. Their functions are closely related to inflammation, hypoxia, and vascularization. Our aim was to determine levels of ADAMTS-1 in gingival crevicular fluid (GCF) in patients with advanced periodontal diseases and identify their association with hypoxia-inducible factor-1alpha (HIF-1α), vascular endothelial growth factor (VEGF-A), and clinical parameters of periodontitis. METHODS The study consisted of three groups: healthy individuals (control; n = 20), generalized chronic periodontitis (CP; n = 21), and generalized aggressive periodontitis (GAgP; n = 20). Clinical parameters were measured. Levels of ADAMTS-1, VEGF-A, and HIF-1α in GCF and serum were quantified by enzyme-linked immunosorbent assay (ELISA) and reported as total amounts and concentration. RESULTS ADAMTS-1 total amount in GCF were significantly higher in patients with CP and GAgP compared with healthy individuals (P < 0.05). HIF-1α total amount in GCF were also higher in periodontitis groups compared with the control group (P < 0.05). GCF total VEGF-A content was significantly higher in the GAgP group compared with the CP and the controls (respectively; P = 0.023, P = 0.003). There was a significant correlation between ADAMTS-1, VEGF-A, and HIF-1α levels in the GCF and clinical periodontal parameters (probing depth [PD], bleeding on probing [BOP], and clinical attachment loss (CAL); P < 0.05). CONCLUSION ADAMTS-1 may play a role in advanced periodontal disease pathogenesis in correlation with tissue hypoxia and vascularization.
Collapse
Affiliation(s)
- Mahmure Ayşe Tayman
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Canan Önder
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Ankara, Turkey
| | - Alpdoğan Kantarcı
- Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA, USA
| | - Meral Günhan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Abstract
Gaseous oxygen is essential for all aerobic animals, without which mitochondrial respiration and oxidative phosphorylation cannot take place. It is not, however, regarded as a "nutrient" by nutritionists and does not feature as such within the discipline of nutritional science. This is primarily a consequence of the route by which O2 enters the body, which is via the nose and lungs in terrestrial animals as opposed to the mouth and gastrointestinal tract for what are customarily considered as nutrients. It is argued that the route of entry should not be the critical factor in defining whether a substance is, or is not, a nutrient. Indeed, O2 unambiguously meets the standard dictionary definitions of a nutrient, such as "a substance that provides nourishment for the maintenance of life and for growth" (Oxford English Dictionary). O2 is generally available in abundance, but deficiency occurs at high altitude and during deep sea dives, as well as in lung diseases. These impact on the provision at a whole-body level, but a low pO2 is characteristic of specific tissues includings the retina and brain, while deficiency, or overt hypoxia, is evident in certain conditions such as ischaemic disease and in tumours - and in white adipose tissue in obesity. Hypoxia results in a switch from oxidative metabolism to increased glucose utilisation through anaerobic glycolysis, and there are extensive changes in the expression of multiple genes in O2-deficient cells. These changes are driven by hypoxia-sensitive transcription factors, particularly hypoxia-inducible factor-1 (HIF-1). O2 deficiency at a whole-body level can be treated by therapy or supplementation, but O2 is also toxic through the generation of reactive oxygen species. It is concluded that O2 is a critical, but overlooked, nutrient which should be considered as part of the landscape of nutritional science.
Collapse
Affiliation(s)
- Paul Trayhurn
- Clore Laboratory, University of Buckingham, Buckingham, United Kingdom.,Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
De Simone G. Targeted treatment of anaerobic cancer. Patent evaluation of US2016279084 and US2017056350. Expert Opin Ther Pat 2018; 29:1-6. [PMID: 30556445 DOI: 10.1080/13543776.2019.1558210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Based on the initial studies of J. Folkman in 1970s, which led to the proposal of the antiangiogenic therapy, many drugs targeting VEGF or its receptors have been developed with some of them approved for cancer treatment. However, these molecules so far have shown only a limited effect on survival benefits in patients. Thus, new approaches are needed to treat this disease. Considering that cancer utilizes both aerobic and anaerobic glycolytic pathway, authors of patents US2016279084 and US2017056350 propose a method to eradicate the disease, able to affect both metabolic pathways. Areas covered: Patent US2016279084 describes a method consisting of the utilization of either a pharmaceutical cocktail containing antiglycolytic agents (a lactate transporter inhibitor and a NKCC inhibitor) and an angiogenesis inhibitor or a pharmaceutical cocktail containing a lactate transporter inhibitor and an angiogenesis inhibitor in combination with blood vessel occlusion. Patent US2017056350 is strictly related to US2016279084; indeed, it proposes a method consisting of blood vessel occlusion and treatment with a pharmaceutical cocktail, containing the carbonic anhydrase inhibitor bumetanide in presence or absence of an angiogenesis inhibitor. Expert opinion: Although the proposed methodology is very interesting and promising, further studies are necessary to assess the clinical applicability of the inventions.
Collapse
|
13
|
Calvo-Anguiano G, Lugo-Trampe JJ, Camacho A, Said-Fernández S, Mercado-Hernández R, Zomosa-Signoret V, Rojas-Martínez A, Ortiz-López R. Comparison of specific expression profile in two in vitro hypoxia models. Exp Ther Med 2018; 15:4777-4784. [PMID: 29805495 PMCID: PMC5958671 DOI: 10.3892/etm.2018.6048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
The microenvironment plays a fundamental role in carcinogenesis: Acidity and hypoxia are actively involved in this process. It is important to have in vitro models to study these mechanisms. The models that are most commonly referred to are the hypoxia chamber and the chemical induction [Cobalt (II) chloride]. It is not yet defined if these models are interchangeable if the metabolic effect is the same, and if the results may be compared in these models. In the present study, the response to the effect of stress (hypoxia and acidity) in both models was evaluated. The results indicated that in the chemical model, the effect of hypoxia appeared in an early form at 6 h; whereas in the gas chamber the effect was slow and gradual and at 72 h there was an overexpression of erythropoietin (EPO), vascular endothelial growth factor (VEGF), carbonic anhydrase 9 (CA9) and hypoxia-inducible factor 1α (HIF1α). In addition to the genes analyzed by reverse transcription-quantitative polymerase chain reaction, the global expression analysis between both models revealed the 9 most affected genes in common. The present study additionally identified 3 potential genes (lysyl oxidase, ankyrin repeat domain 37, B-cell lymphoma 2 interacting protein 3 like) previously identified in other studies, which may be considered as universal hypoxia genes along with HIF1α, EPO, VEGF, glucose transporter 1 (GLUT1), CA9, and LDH. To the best of the author's knowledge, this is the first time that both hypoxia models have been compared, and it was demonstrated that the effect of hypoxia induction was time sensitive in each model. These observations must be considered prior to selecting one of these models to identify selective hypoxia genes and their effects in cancer.
Collapse
Affiliation(s)
- Geovana Calvo-Anguiano
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Jose J Lugo-Trampe
- Genetic Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Alberto Camacho
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Salvador Said-Fernández
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Mercado-Hernández
- Science Exact Department, School of Biological Science, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 66451, Mexico
| | - Viviana Zomosa-Signoret
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Augusto Rojas-Martínez
- Center for Research and Development in Health Sciences, Experimental Therapies Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| | - Rocio Ortiz-López
- Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| |
Collapse
|
14
|
Havránková E, Csöllei J, Vullo D, Garaj V, Pazdera P, Supuran CT. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg Chem 2018; 77:25-37. [DOI: 10.1016/j.bioorg.2017.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/16/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
|
15
|
Beck J, Henschel C, Chou J, Lin A, Del Balzo U. Evaluation of the Carcinogenic Potential of Roxadustat (FG-4592), a Small Molecule Inhibitor of Hypoxia-Inducible Factor Prolyl Hydroxylase in CD-1 Mice and Sprague Dawley Rats. Int J Toxicol 2017; 36:427-439. [PMID: 29153032 DOI: 10.1177/1091581817737232] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The carcinogenic potential of roxadustat (FG-4592), a novel orally active, heterocyclic small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH) enzymes in clinical development for treatment of anemia, was evaluated in CD-1 mice and Sprague Dawley rats. Inhibition of HIF-PH by roxadustat leads to a rapid increase in cytoplasmic HIF-α concentrations, followed by translocation of HIF-α to the nucleus and upregulation of HIF-responsive genes, including erythropoietin. Roxadustat was dosed by oral gavage 3 times weekly (TIW) for up to 104 weeks in mice at 0, 15, 30, and 60 mg/kg and in rats at 0, 2.5, 5, and 10 mg/kg. Treatment-associated changes in hematology parameters were consistent with the pharmacologic activity of roxadustat and included elevations in hematocrit in mice at 30 and 60 mg/kg TIW and elevations in erythrocyte count, hemoglobin, hematocrit, and red cell distribution width in rats at 10 mg/kg TIW. No increase in mortality or neoplastic effects compared with vehicle controls was observed after roxadustat treatment in either species. No treatment-related nonneoplastic findings were observed in mice, whereas nonneoplastic microscopic findings in rats were limited to atrial/aortic thromboses at 10 mg/kg TIW males and bone marrow hypercellularity in all treated male and female groups, consistent with the pharmacology of roxadustat. In conclusion, roxadustat administered by oral gavage to mice and rats TIW for up to 104 weeks resulted in dose-dependent exposure and hematologic effects with no effect on survival or development of neoplastic lesions at up to 60 mg/kg in mice and up to 10 mg/kg in rats.
Collapse
Affiliation(s)
| | | | | | - Al Lin
- 1 FibroGen, Inc, San Francisco, CA, USA
| | | |
Collapse
|
16
|
Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Exp Cell Res 2017; 356:209-216. [PMID: 28344053 DOI: 10.1016/j.yexcr.2017.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Residency at high altitude (HA) demands adaptation to challenging environmental conditions with hypobaric hypoxia being the most important one. Epidemiological and experimental data suggest that chronic exposure to HA reduces cancer mortality and lowers prevalence of metabolic disorders like diabetes and obesity implying that adaption to HA modifies a broad spectrum of physiological, metabolic and cellular programs with a generally beneficial outcome for humans. However, the complexity of multiple, potentially tumor-suppressive pathways at HA impedes the understanding of mechanisms leading to reduced cancer mortality. Many adaptive processes at HA are tightly interconnected and thus it cannot be ruled out that the entirety or at least some of the HA-related alterations act in concert to reduce cancer mortality. In this review we discuss tumor formation as a concept of competition between healthy and cancer cells with improved fitness - and therefore higher competitiveness - of healthy cells at high altitude. We discuss HA-related changes in glucose, lipid and iron metabolism that may have an impact on tumorigenesis. Additionally, we discuss two parameters with a strong impact on tumorigenesis, namely drug metabolism and physical activity, to underpin their potential contribution to HA-dependent reduced cancer mortality. Future studies are needed to unravel why cancer mortality is reduced at HA and how this knowledge might be used to prevent and to treat cancer patients.
Collapse
|
17
|
Labrousse-Arias D, Martínez-Alonso E, Corral-Escariz M, Bienes-Martínez R, Berridy J, Serrano-Oviedo L, Conde E, García-Bermejo ML, Giménez-Bachs JM, Salinas-Sánchez AS, Sánchez-Prieto R, Yao M, Lasa M, Calzada MJ. VHL promotes immune response against renal cell carcinoma via NF-κB-dependent regulation of VCAM-1. J Cell Biol 2017; 216:835-847. [PMID: 28235946 PMCID: PMC5350518 DOI: 10.1083/jcb.201608024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
Labrousse-Arias et al. show that VHL expression leads to increased VCAM-1 levels in renal cell carcinoma through an NF-κB–dependent mechanism that seems to contribute to the antitumoral immune response. This study also suggests that VCAM-1 levels might serve as a marker of ccRCC progression in human patients. Vascular cell adhesion molecule 1 (VCAM-1) is an adhesion molecule assigned to the activated endothelium mediating immune cells adhesion and extravasation. However, its expression in renal carcinomas inversely correlates with tumor malignancy. Our experiments in clear cell renal cell carcinoma (ccRCC) cell lines demonstrated that von Hippel Lindau (VHL) loss, hypoxia, or PHD (for prolyl hydroxylase domain–containing proteins) inactivation decreased VCAM-1 levels through a transcriptional mechanism that was independent of the hypoxia-inducible factor and dependent on the nuclear factor κB signaling pathway. Conversely, VHL expression leads to high VCAM-1 levels in ccRCC, which in turn leads to better outcomes, possibly by favoring antitumor immunity through VCAM-1 interaction with the α4β1 integrin expressed in immune cells. Remarkably, in ccRCC human samples with VHL nonmissense mutations, we observed a negative correlation between VCAM-1 levels and ccRCC stage, microvascular invasion, and symptom presentation, pointing out the clinical value of VCAM-1 levels as a marker of ccRCC progression.
Collapse
Affiliation(s)
- David Labrousse-Arias
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emma Martínez-Alonso
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Research Departament, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - María Corral-Escariz
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Raquel Bienes-Martínez
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Berridy
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Leticia Serrano-Oviedo
- Molecular Oncology Lab, Centro Regional de Investigaciones Biomédicas, Biomedicine Unit, Universidad de Castilla la Mancha-Consejo Superior de Investigaciones Científicas, 02071 Albacete, Spain
| | - Elisa Conde
- Biomarckers and Therapeutic Targets, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - María-Laura García-Bermejo
- Biomarckers and Therapeutic Targets, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - José M Giménez-Bachs
- Department of Urology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | | | - Ricardo Sánchez-Prieto
- Molecular Oncology Lab, Centro Regional de Investigaciones Biomédicas, Biomedicine Unit, Universidad de Castilla la Mancha-Consejo Superior de Investigaciones Científicas, 02071 Albacete, Spain
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Marina Lasa
- Department of Biochemistry, Instituto de Investigaciones Biomédicas Alberto Sols, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J Calzada
- Department of Medicine, Instituto de Investigación Sanitaria Princesa, School of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
18
|
Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor. Sci Rep 2017; 7:40524. [PMID: 28091613 PMCID: PMC5238385 DOI: 10.1038/srep40524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Adrenomedullin (ADM) is a multi-functional peptide related to many kinds of tumors. This study was aimed to investigate the role of ADM on angiogenesis in epithelial ovarian cancer (EOC) and its possible mechanism. The expressions of ADM, vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α) and CD34 were examined by immunohistochemistry staining. The relationship among ADM, HIF-1α, VEGF and micro-vessel density (MVD) was assessed in 56 EOC tissues. CAOV3 cells were stably transfected with pcDNA-ADM (plasmid overexpressing ADM gene) or pRNA-shADM (small interfering RNA for ADM gene). Real-time PCR and western blot analysis were performed to detect the expressions of HIF-1α and VEGF. The MTT, transwell migration assay and in vitro tube formation analysis were used to evaluate the proliferation, migration, and tube formation ability of human umbilical vein endothelial cells (HUVECs) which were pretreated with ADM or ADM receptor antagonist ADM22-52. Our findings showed that ADM expression was positively correlated with the expressions of HIF-1α, VEGF or MVD in EOC. ADM upregulated expression of HIF-1α and VEGF in CAOV3 cells. ADM promoted HUVECs proliferation, migration and tube formation. In conclusion, ADM was an upstream molecule of HIF-1α/VEGF and it promoted angiogenesis through upregulating HIF-1α/VEGF in EOC.
Collapse
|
19
|
Yousaf MN, Koppang EO, Zou J, Secombes CJ, Powell MD. Immunolocalization of immune cells and cell cycle proteins in the bulbus arteriosus of Atlantic salmon (Salmo salar L.). FISH & SHELLFISH IMMUNOLOGY 2016; 51:64-69. [PMID: 26873875 DOI: 10.1016/j.fsi.2016.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The bulbus arteriosus is the most anterior chamber of the teleost heart. The present study aimed to establish the presence, and to provide semi-quantitative information on the abundance, of several immune and cell-cycle proteins in the bulbus arteriosus of healthy Atlantic salmon (Salmo salar L.). Using immunohistochemistry, lymphocyte-like cells were identified in the bulbus arteriosus using antibodies to CD3ε and MHC class IIβ. Few PCNA positive cells were identified in post-smolt fish as compared to moderate levels of staining in fresh water fry. Interestingly no staining was evident in adult fish (1-3 kg), thus there was a loss of cells expressing cell-cycle regulatory proteins with ontogeny/progressive life-history stages. Eosinophilic granulocytes (EGCs) were identified in the bulbus arteriosus using TNFα and HIF1α antibodies. Anti-caspase 3 immune-reaction identified a strong endothelial cytoplasmic staining in the bulbus arteriosus. Taken together, the immunolocalization of immune-related molecules (CD3, MHC class II and TNFα), cell-cycle regulatory proteins (PCNA and HIF1α) and apoptosis markers (TUNEL, caspase 3) suggest that the bulbus arteriosus may have an immune component within its functional repertoire.
Collapse
Affiliation(s)
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, NMBU, Oslo, Norway
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | - Mark D Powell
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
20
|
Chen WL, Wang CC, Lin YJ, Wu CP, Hsieh CH. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J Transl Med 2015; 13:389. [PMID: 26711814 PMCID: PMC4693410 DOI: 10.1186/s12967-015-0758-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It contributes to the resistance to cytotoxic therapies through anti-apoptotic effects. However, the mechanism underlying cycling hypoxia-mediated anti-apoptosis remains unclear. METHODS Reactive oxygen species (ROS) production, activation of the hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-κB (NF-κB) signaling pathways, B-cell lymphoma extra-long (Bcl-xL) expression, caspase activation, and apoptosis in in vitro hypoxic stress-treated glioblastoma cells or tumor hypoxic cells derived from human glioblastoma xenografts were determined by in vitro ROS analysis, reporter assay, western blotting analysis, quantitative real-time PCR, caspase-3 activity assay, and annexin V staining assay, respectively. Tempol, a membrane-permeable radical scavenger, Bcl-xL knockdown, and specific inhibitors of HIF-1α and NF-κB were utilized to explore the mechanisms of cycling hypoxia-mediated resistance to temozolomide (TMZ) in vitro and in vivo and to identify potential therapeutic targets. RESULTS Bcl-xL expression and anti-apoptotic effects were upregulated under cycling hypoxia in glioblastoma cells concomitantly with decreased responses to TMZ through ROS-mediated HIF-1α and NF-κB activation. Tempol, YC-1 (HIF-1 inhibitor), and Bay 11-7082 (NF-κB inhibitor) suppressed the cycling hypoxia-mediated Bcl-xL induction in vitro and in vivo. Bcl-xL knockdown and Tempol treatment inhibited cycling hypoxia-induced chemoresistance. Moreover, Tempol treatment of intracerebral glioblastoma-bearing mice combined with TMZ chemotherapy synergistically suppressed tumor growth and increased survival rate. CONCLUSIONS Cycling hypoxia-induced Bcl-xL expression via ROS-mediated HIF-1α and NF-κB activation plays an important role in the tumor microenvironment-promoted anti-apoptosis and chemoresistance in glioblastoma. Thus, ROS blockage may be an attractive therapeutic strategy for tumor microenvironment-induced chemoresistance.
Collapse
Affiliation(s)
- Wei-Ling Chen
- Aging Medicine Program, China Medical University, Taichung, Taiwan. .,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Chi-Chung Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan.
| | - Yu-Jung Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| | - Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan.
| | - Chia-Hung Hsieh
- Aging Medicine Program, China Medical University, Taichung, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
21
|
Kind KL, Tam KKY, Banwell KM, Gauld AD, Russell DL, Macpherson AM, Brown HM, Frank LA, Peet DJ, Thompson JG. Oxygen-regulated gene expression in murine cumulus cells. Reprod Fertil Dev 2015; 27:407-18. [PMID: 24388334 DOI: 10.1071/rd13249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/15/2013] [Indexed: 12/19/2022] Open
Abstract
Oxygen is an important component of the environment of the cumulus-oocyte complex (COC), both in vivo within the ovarian follicle and during in vitro oocyte maturation (IVM). Cumulus cells have a key role in supporting oocyte development, and cumulus cell function and gene expression are known to be altered when the environment of the COC is perturbed. Oxygen-regulated gene expression is mediated through the actions of the transcription factors, the hypoxia-inducible factors (HIFs). In the present study, the effect of oxygen on cumulus cell gene expression was examined following in vitro maturation of the murine COC at 2%, 5% or 20% oxygen. Increased expression of HIF-responsive genes, including glucose transporter-1, lactate dehydrogenase A and BCL2/adenovirus E1B interacting protein 3, was observed in cumulus cells matured at 2% or 5%, compared with 20% oxygen. Stabilisation of HIF1α protein in cumulus cells exposed to low oxygen was confirmed by western blot and HIF-mediated transcriptional activity was demonstrated using a transgenic mouse expressing green fluorescent protein under the control of a promoter containing hypoxia response elements. These results indicate that oxygen concentration influences cumulus cell gene expression and support a role for HIF1α in mediating the cumulus cell response to varying oxygen.
Collapse
Affiliation(s)
- Karen L Kind
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kimberley K Y Tam
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kelly M Banwell
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ashley D Gauld
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Darryl L Russell
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Anne M Macpherson
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hannah M Brown
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Laura A Frank
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel J Peet
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeremy G Thompson
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, Götz W, Frede S. Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases. Mediators Inflamm 2015; 2015:438085. [PMID: 25861162 PMCID: PMC4377543 DOI: 10.1155/2015/438085] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/08/2015] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis), a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS) of P. gingivalis (LPS-PG) and hypoxia in periodontal ligament (PDL) cells. The relevant transcription factors nuclear factor-kappa B (NF-κB) and hypoxia inducible factor-1 (HIF-1) were determined. In addition, we analyzed the expression of interleukin- (IL-) 1β, matrix metalloproteinase-1 (MMP-1), and vascular endothelial growth factor (VEGF) in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes.
Collapse
Affiliation(s)
- L. Gölz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Memmert
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - B. Rath-Deschner
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - A. Jäger
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - T. Appel
- Center of Dento-Maxillo-Facial Medicine, University Hospital of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - G. Baumgarten
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - W. Götz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Frede
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| |
Collapse
|
23
|
Chiu CZ, Wang BW, Shyu KG. Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells. J Biomed Sci 2015; 22:5. [PMID: 25573199 PMCID: PMC4298872 DOI: 10.1186/s12929-014-0109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/20/2014] [Indexed: 11/16/2022] Open
Abstract
Background Leptin, produced mainly by white adipose tissue, is a hormone that promotes vascular smooth muscle cell (VSMC) migration and proliferation, a process involved in the pathophysiology of atherosclerosis. Leptin expression in human coronary artery smooth cell (HCASMC) is induced by hypoxia. However, our understanding of the process of atherosclerosis in HCASMC is only emerging. Since the mechanisms by which hypoxia regulates leptin in HCASMC are as yet unknown, this study aims to investigate the mechanics of molecular regulation of leptin expression in HCASMC under hypoxia. We subjected cultured HCASMCs to hypoxia for varying periods of time. Through use of different signal pathway inhibitors, we were able to sort out and identify the pathway through which hypoxia-induced leptin expression occurs. Results Leptin mRNA and protein levels increased after 2.5% hypoxia for 2-to-4 hours, with earlier expression of angiotensin II (AngII) and reactive oxygen species (ROS). The addition before hypoxia of the c-Jun N-terminal kinase (JNK) pathway inhibitor (SP600125), JNK small interfering RNA (siRNA), AngII receptor blockers (ARBs; losartan), or N-acetyl-L-cysteine (NAC, an ROS scavenger), had the effect of inhibiting JNK phosphorylation and leptin expression. Gel shift assay and luciferase promoter study showed that leptin/activator protein 1 (AP-1) binding and transcriptional activity to the leptin promoter increased after hypoxia, and SP600125, JNK siRNA, losartan, and NAC abolished the binding and transcriptional activity induced by hypoxia. The use of SP600125, JNK siRNA, losartan, and NAC effectively inhibited the binding and transcriptional activity induced by hypoxia. Migration and proliferation, ROS generation, and the presence of leptin in the nuclei of HCASMCs also increased under hypoxia. Conclusion Hypoxia in HCASMCs increases leptin expression through the induction of AngII, ROS, and the JNK pathway to enhance atherosclerosis in HCASMCs. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiung-Zuan Chiu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan. .,Division of Cardiology, Shin-Kong Wu Ho-Su Memorial Hospital, 95 Wen- Chang Road, Taipei, Taiwan.
| | - Bao-Wei Wang
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan.
| | - Kou-Gi Shyu
- Division of Cardiology, Shin-Kong Wu Ho-Su Memorial Hospital, 95 Wen- Chang Road, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical, University, Taipei, Taiwan.
| |
Collapse
|
24
|
Spontaneously hyperactive MEK-Erk pathway mediates paradoxical facilitation of cell proliferation in mild hypoxia. Biochim Biophys Acta Gen Subj 2014; 1850:640-6. [PMID: 25497211 DOI: 10.1016/j.bbagen.2014.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oxygen is important for common eukaryotic cells to generate ATP. Pathophysiological conditions such as ischemic diseases cause tissue hypoxia. In addition, oxygen availability in deep tissues is supposed to be far lower than surrounding atmosphere even in healthy animals, and the oxygen partial pressures in most normal tissues are estimated to be around 40-50mmHg, so-called mild hypoxia. Recent studies have demonstrated that mild hypoxia has distinct effects on living cells from severe hypoxia. For instance, mild hypoxia was reported to promote cell reprogramming. Although severe hypoxia is known to inhibit cell proliferation, mild hypoxia has been paradoxically demonstrated to increase cell proliferation. However, it has not been clarified by which molecular mechanisms mild hypoxia evokes the discontinuous increment of cell proliferation. METHODS We established experimental conditions showing the opposite influences of mild and severe hypoxia on cell proliferation using undifferentiated Caco2 human colon carcinoma cells in order to clarify the underlying molecular mechanism. RESULTS The basal activity of Erk, which is a typical mediator of mitogenic signals, is spontaneously increased specifically in cells exposed to mild hypoxia, and inhibition of MEK, an upstream kinase of the Erk, completely inhibited the mild hypoxia-induced enhancement of cell proliferation. CONCLUSIONS Spontaneous hyperactivation of the MEK-Erk pathway by mild hypoxia should be the plausible molecular mechanism of the paradoxical promotion of cell proliferation. GENERAL SIGNIFICANCE Our findings will provide clues to the molecular basis of mild hypoxia-evoked phenomena such as cell reprogramming.
Collapse
|
25
|
Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, Benedetti Panici P, Tomao S. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther 2014; 7:2237-48. [PMID: 25506227 PMCID: PMC4259513 DOI: 10.2147/ott.s68286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Standard treatment of cervical cancer (CC) consists of surgery in the early stages and of chemoradiation in locally advanced disease. Metastatic CC has a poor prognosis and is usually treated with palliative platinum-based chemotherapy. Current chemotherapeutic regimens are associated with significant adverse effects and only limited activity, making identification of active and tolerable novel targeted agents a high priority. Angiogenesis is a complex process that plays a crucial role in the development of many types of cancer. The dominant role of angiogenesis in CC seems to be directly related to human papillomavirus-related inhibition of p53 and stabilization of hypoxia-inducible factor-1α. Both of these mechanisms are able to increase expression of vascular endothelial growth factor (VEGF). Activation of VEGF promotes endothelial cell proliferation and migration, favoring formation of new blood vessels and increasing permeability of existing blood vessels. Since bevacizumab, a recombinant humanized monoclonal antibody binding to all isoforms of VEGF, has been demonstrated to significantly improve survival in gynecologic cancer, some recent clinical research has explored the possibility of using novel therapies directed toward inhibition of angiogenesis in CC too. Here we review the main results from studies concerning the use of antiangiogenic drugs that are being investigated for the treatment of CC.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Anselmo Papa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Luigi Rossi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Eleonora Zaccarelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Davide Caruso
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Federica Zoratto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silverio Tomao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| |
Collapse
|
26
|
Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A, Esumi H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol 2014; 20:13705-13717. [PMID: 25320508 PMCID: PMC4194554 DOI: 10.3748/wjg.v20.i38.13705] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 02/07/2023] Open
Abstract
Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expression of these mRNAs is increased in malignant tumors and strongly induced in different cancer cell lines by hypoxia inducible factor (HIF) through active HIF binding sites in promoter region of PFKFB-4 and PFKFB-3 genes. Moreover, the expression and hypoxia responsibility of PFKFB-4 and PFKFB-3 was also shown for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well as gastric (MKN45 and NUGC3) cancer cells. At the same time, their basal expression level and hypoxia responsiveness vary in the different cells studied: the highest level of PFKFB-4 protein expression was found in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with a stronger response to hypoxia in the pancreatic cancer cell line. Overexpression of different PFKFB in pancreatic and gastric cancer cells under hypoxic condition is correlated with enhanced expression of vascular endothelial growth factor (VEGF) and Glut1 mRNA as well as with increased level of HIF-1α protein. Increased expression of different PFKFB genes was also demonstrated in gastric, lung, breast, and colon cancers as compared to corresponding non-malignant tissue counterparts from the same patients, being more robust in the breast and lung tumors. Moreover, induction of PFKFB-4 mRNA expression in the breast and lung cancers is stronger than PFKFB-3 mRNA. The levels of both PFKFB-4 and PFKFB-3 proteins in non-malignant gastric and colon tissues were more pronounced than in the non-malignant breast and lung tissues. It is interesting to note that Panc1 and PSN-1 cells transfected with dominant/negative PFKFB-3 (dnPFKFB-3) showed a lower level of endogenous PFKFB-3, PFKFB-4, and VEGF mRNA expressions as well as a decreased proliferation rate of these cells. Moreover, a similar effect had dnPFKFB-4. In conclusion, there is strong evidence that PFKFB-4 and PFKFB-3 isoenzymes are induced under hypoxia in pancreatic and other cancer cell lines, are overexpressed in gastric, colon, lung, and breast malignant tumors and undergo changes in their metabolism that contribute to the proliferation and survival of cancer cells. Thus, targeting these PFKFB may therefore present new therapeutic opportunities.
Collapse
|
27
|
Powell MD, Yousaf MN, Rasmussen KJ, Köllner B, Zou J, Secombes C, Speare DJ. Immunohistochemical localization of inflammatory cells and cell cycle proteins in the gills of Loma salmonae infected rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 40:91-98. [PMID: 24979224 DOI: 10.1016/j.fsi.2014.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Microsporidial gill diseases particularly those caused by Loma salmonae incur significant economic losses to the salmonid aquaculture industry. The gill responses to infection include the formation of xenomas and the acute hyperplastic inflammatory responses once the xenomas rupture releasing infective spores. The aim of this work was to characterize the inflammatory responses of the gill to both the presence of the xenomas as well as the hyperplasia associated with L. salmonae infection in the rainbow trout gill following an experimental infection using immunohistochemistry. Hyperplastic lesions demonstrated numerous cells expressing PCNA as well as an apparent increased expression of caspase-3 and number of apoptotic cells (TUNEL positive cells). There was an expression of TNFα in individual cells within the gill and increased expression of a myeloid cell line antigen indicating the presence of granulocyte infiltration of both the hyperplastic lesions as well as the xenomas. Similar immune-reactivity was seen in gill EGCs. Hyperplastic gill lesions showed a marked infiltration of CD8+ cells and expression of MHC class I antigens. These findings suggest that L. salmonae xenomas may be subject to infiltration by the host immune cells as well as the mounting or a marked cellular cytotoxic immunoreaction in the resultant hyperplasia following xenoma rupture and spore release.
Collapse
Affiliation(s)
- Mark D Powell
- Norwegian Institute for Water Research (NIVA), Thormøhlensgate 53 D, 5006 Bergen, Norway; Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| | - M Naveed Yousaf
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway; Norwegian Veterinary Institute, 9480 Harstad, Norway
| | - Karina Juhl Rasmussen
- Department of Immunology and Microbiology, University of Southern Denmark, Odense C, Denmark
| | - Berndt Köllner
- Freidrich Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Germany
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Chris Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - David J Speare
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown PE C1A 4P3, Canada
| |
Collapse
|
28
|
Iida M, Banno K, Yanokura M, Nakamura K, Adachi M, Nogami Y, Umene K, Masuda K, Kisu I, Iwata T, Tanaka K, Aoki D. Candidate biomarkers for cervical cancer treatment: Potential for clinical practice (Review). Mol Clin Oncol 2014; 2:647-655. [PMID: 25054026 DOI: 10.3892/mco.2014.324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/05/2014] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer ranks high among the causes of female cancer mortalities and is an important disease in developing and developed countries. Current diagnosis of cervical cancer depends on colposcopy, pathological diagnosis and preoperative diagnosis using methods, including magnetic resonance imaging and computed tomography. Advanced cervical cancer has a poor prognosis. The tumor marker squamous cell carcinoma is conventionally used for screening, but recent studies have revealed the mechanisms of carcinogenesis and the factors associated with a poor prognosis in cervical cancer. These include epigenetic biomarkers, with the methylation level of the checkpoint with forkhead and ring finger gene being potentially useful for predicting the malignancy of cervical cancer and sensitivity to treatment with paclitaxel. The extent of methylation of the Werner DNA helicase gene is also useful for determining sensitivity to an anticancer agent, CPT-11. In addition to epigenetic changes, the expression levels of hypoxia-inducible factor 1α subunit, epidermal growth factor receptor and cyclooxygenase-2 have been reported as possible biomarkers in cervical cancer. Novel prognostic factors, including angiogenic factors, fragile histidine triad, thymidylate synthase, glucose-related protein 58 and mucin antigens, have also been described, and hemoglobin and platelets may also be significant prognostic biomarkers. Utilization of these biomarkers may facilitate personalized treatment and improved outcomes in cervical cancer.
Collapse
Affiliation(s)
- Miho Iida
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Iori Kisu
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
29
|
Abstract
Hypoxia develops in white adipose tissue in obese mice, resulting in changes in adipocyte function that may underpin the dysregulation that leads to obesity-associated disorders. Whether hypoxia occurs in adipose tissue in human obesity is unclear, with recent studies contradicting earlier reports that this was the case. Adipocytes, both murine and human, exhibit extensive functional changes in culture in response to hypoxia, which alters the expression of up to 1,300 genes. These include genes encoding key adipokines such as leptin, interleukin (IL)-6, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2), which are upregulated, and adiponectin, which is downregulated. Hypoxia also inhibits the expression of genes linked to oxidative metabolism while stimulating the expression of genes associated with glycolysis. Glucose uptake and lactate release by adipocytes are both stimulated by hypoxia, and insulin sensitivity falls. Preadipocytes and macrophages in adipose tissue also respond to hypoxia. The hypoxia-signaling pathway may provide a new target for the treatment of obesity-associated disorders.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool L69 3GA United Kingdom, and Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, United Kingdom;
| |
Collapse
|
30
|
Willmott LJ, Monk BJ. Cervical cancer therapy: current, future and anti-angiogensis targeted treatment. Expert Rev Anticancer Ther 2014; 9:895-903. [DOI: 10.1586/era.09.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Tanaka K, Nakagawa K, Yabushita Y, Hiroshima Y, Matsuo K, Ota M, Ichikawa Y, Taguri M, Tanabe M, Koda K, Endo I. Reversal of attachment to or invasion of major intrahepatic vessels by colorectal liver metastases according to prehepatectomy chemotherapy regimen. Surgery 2013; 155:936-44. [PMID: 24656858 DOI: 10.1016/j.surg.2013.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/27/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tumor reduction by present-day prehepatectomy chemotherapy can render initially unresectable disease resectable. However, little is known about whether effects on liver metastases with radiologically defined "attachment to or invasion of" major intrahepatic vessels differ between chemotherapy regimens with or without monoclonal antibodies. We compared histologically the relationships between liver tumors and major intrahepatic vessels after chemotherapy according to regimens used to treat colorectal liver metastasis. METHODS In 38 patients who underwent chemotherapy and hepatectomy with pretreatment images showing metastases attached to or invading major intrahepatic vessels, 62 metastases showed attachment to or invasion of 88 vessels. After resection, attachment, invasion, and separation were determined histopathologically in resected specimens. RESULTS Thirteen patients received cytotoxic drug combinations alone, whereas 25 were treated with regimens including a monoclonal antibody (bevacizumab in 15 and cetuximab in 10). By imaging, 16% (5/32) of vessels in patients receiving cytotoxic drugs alone, 23% (8/35) of vessels in those also receiving bevacizumab, and 48% (10/21) of vessels in those also receiving cetuximab showed detachment after chemotherapy (P = .015 for cetuximab versus cytotoxic and P = .039 for cetuximab versus bevacizumab). Excluding 8 vessels not evaluated histologically, 23 of 31 vessels in the cytotoxic group remained attached or invaded, as did 16 of 29 in the bevacizumab group and 8 of 20 vessels in the cetuximab group (P = .05 versus cytotoxic). CONCLUSION Prehepatectomy chemotherapy regimens including monoclonal antibodies, particularly anti-epidermal growth factor receptor antibodies, eradicated attachment or invasion between vessels and metastases more frequently. Individualized strategies for prehepatectomy chemotherapy based on intrahepatic location of metastases may offer advantages according to proximity of the metastases to the major intrahepatic vessels.
Collapse
Affiliation(s)
- Kuniya Tanaka
- Department of Surgery, Teikyo University Chiba Medical Center, Chiba, Japan; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Matsuo
- Department of Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Mitsuyoshi Ota
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ichikawa
- Department of Clinical Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Taguri
- Department of Biostatistics and Epidemiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tanabe
- Division of Diagnostic Pathology, Yokohama City University Medical Center, Yokohama, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
32
|
Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer. J Cell Biochem 2013; 114:967-74. [PMID: 23225225 DOI: 10.1002/jcb.24438] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/23/2012] [Indexed: 12/14/2022]
Abstract
Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia-inducible factor-1 (HIF-1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors. In this article, we review what has been described about HIF-1: its structure, its regulation, and its implication for cancer therapy and we focus on its role in angiogenesis and cancer.
Collapse
Affiliation(s)
- Yongzhi Yang
- Student Teams Research Management Unit, Second Military Medical University, Xiangyin Road, Shanghai 200433, P.R. China
| | | | | | | |
Collapse
|
33
|
Abstract
The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Egg M, Köblitz L, Hirayama J, Schwerte T, Folterbauer C, Kurz A, Fiechtner B, Möst M, Salvenmoser W, Sassone-Corsi P, Pelster B. Linking oxygen to time: the bidirectional interaction between the hypoxic signaling pathway and the circadian clock. Chronobiol Int 2013; 30:510-29. [PMID: 23421720 DOI: 10.3109/07420528.2012.754447] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions. Thus, long-term hypoxic incubation of larvae resulted in a dampening of the diurnal oscillation amplitude of the period1 gene expression starting only several hours after start of the hypoxic incubation. A significant decrease in the amplitude of the period1 circadian oscillation in response to hypoxia and in response to the hypoxic mimic CoCl2 was also observed using a zebrafish luciferase reporter cell line in constant darkness. In addition, activity measurements of zebrafish larvae using an infrared-sensitive camera demonstrated the loss of their usual circadian activity pattern under hypoxic conditions. To explore the functional basis of the observed cross-talk between both signaling pathways ChIP assays were performed. Increasing with the duration of hypoxia, a nearly 4-fold occupancy of hypoxia-inducible factor 1 (Hif-1α) at two specific E-box binding sites located in the period1 gene control region was shown, demonstrating therewith the transcriptional co-regulation of the core clock gene by the major transcription factor of the hypoxic pathway. On the other hand, circadian transgenic zebrafish cells, simulating a repressed or an overstimulated circadian clock, modified gene transcription levels of oxygen-regulated genes such as erythropoietin and vascular endothelial growth factor 165 and altered the hypoxia-induced increase in Hif-1α protein concentration. In addition, the amount of Hif-1α protein accumulated during the hypoxic response was shown to depend on the time of the day, with one maximum during the light phase and a second one during the dark phase. The direct binding of Hif-1α to the period1 gene control region provides a mechanistic explanation for the repeatedly observed interaction between hypoxia and the circadian clock. The cross-talk between both major signaling pathways was shown for the first time to be bidirectional and may provide the advantage of orchestrating a broad range of genes and metabolic pathways to cope with altered oxygen availabilities.
Collapse
Affiliation(s)
- Margit Egg
- Institut für Zoologie, Universität Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yousaf MN, Koppang EO, Skjødt K, Hordvik I, Zou J, Secombes C, Powell MD. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD). Vet Immunol Immunopathol 2012. [PMID: 23200434 DOI: 10.1016/j.vetimm.2012.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal muscle, liver and pancreas. The main findings of these diseases are necrosis and inflammatory cells infiltrates affecting different regions of the heart. In order to better characterize the cardiac pathology, study of the inflammatory cell characteristics and cell cycle protein expression was undertaken by immunohistochemistry. Immunohistochemistry was performed on paraffin embedded hearts from confirmed diseased cases applying specific antibodies. The inflammatory cells were predominantly CD3(+) T lymphocytes. The PD diseased hearts exhibited moderate hypoxia inducible factor-1α (HIF1α) immuno-reaction that suggested tissue hypoxia while recombinant tumor necrosis factor-α (rTNFα) antibody identified putative macrophages and eosinophilic granulocytes (EGCs) in addition to endocardial cells around lesions. There were strong to low levels of major histocompatibility complex (MHC) class II immunostaining in the diseased hearts associated with macrophage-like and lymphocyte-like cells. The diseased hearts expressed strong to low levels of apoptotic cells identified by caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. The strong signals for proliferative cell nuclear antigen (PCNA) and TUNEL, and moderate levels of caspase 3 immuno-reactivity suggested a high cell turnover where DNA damage/repair might be occurring in the diseased hearts. Interestingly, the apparently similar cardiac diseases exhibited differences in the immunopathological responses in Atlantic salmon.
Collapse
|
36
|
Waerzeggers Y, Ullrich RT, Monfared P, Viel T, Weckesser M, Stummer W, Schober O, Winkeler A, Jacobs AH. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: clinical applications. Br J Radiol 2012; 84 Spec No 2:S179-95. [PMID: 22433828 DOI: 10.1259/bjr/76389842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. In particular, the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. This first part of the review focuses on imaging biomarkers of general biochemical and physiological processes related to tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. These imaging biomarkers are an integral part of current clinical practice in the management of primary brain tumours. The second article of the review discusses the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways. Current applications of these biomarkers are mostly confined to experimental small animal research to develop and validate these novel imaging strategies with future extrapolation in the clinical setting as the primary objective.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ogunshola OO, Al-Ahmad A. HIF-1 at the Blood-Brain Barrier: A Mediator of Permeability? High Alt Med Biol 2012; 13:153-61. [DOI: 10.1089/ham.2012.1052] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Omolara O. Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zürich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Abraham Al-Ahmad
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
38
|
Bai H, Ge S, Lu J, Qian G, Xu R. Hypoxia inducible factor-1α-mediated activation of survivin in cervical cancer cells. J Obstet Gynaecol Res 2012; 39:555-63. [DOI: 10.1111/j.1447-0756.2012.01995.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, Carlezon WA, Kvetnansky R. Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cell Mol Neurobiol 2012; 32:737-48. [PMID: 22090159 PMCID: PMC11498570 DOI: 10.1007/s10571-011-9768-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood-brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.
Collapse
Affiliation(s)
- Dona Lee Wong
- Department of Psychiatry, Harvard Medical School, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun D, Wang Y, Liu C, Zhou X, Li X, Xiao A. Effects of nitric oxide on renal interstitial fibrosis in rats with unilateral ureteral obstruction. Life Sci 2012; 90:900-9. [PMID: 22572614 DOI: 10.1016/j.lfs.2012.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 04/04/2012] [Accepted: 04/13/2012] [Indexed: 12/31/2022]
Abstract
AIMS It is well recognized that microvascular injury is a major determinant of renal fibrosis. Mounting evidence shows that nitric oxide (NO) plays an important role in angiogenesis. Therefore, we investigated to the effects of NO on kidney angiogenesis and renal fibrosis. METHODS In the present study, a unilateral ureteral obstruction (UUO) model was established with L-arginine (L-Arg, 1 g/dl) and N-nitro-L-arginine methyl ester (L-NAME, 5 mg/dl) serving as interference factors. We investigated the alteration of NO concentration with spectrophotometry, peritubular capillary (PTC) density with aminopeptidase P (JG12) immunohistochemical staining, and the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) with immunohistochemical staining and Western blotting at weeks 2, 3 and 4. KEY FINDINGS Our findings showed that the expressions of VEGF, eNOS and PTC density were significantly decreased in rats with UUO, which was accompanied by a progressive increase in HIF-1α, TGF-β1 and an area of renal interstitial fibrosis. The administration of L-Arg promoted the synthesis of NO and significantly elevated the expressions of VEGF, eNOS and PTC density with the conspicuous loss of HIF-1α and TGF-β1 expressions and ultimately ameliorated renal fibrosis, which was markedly aggravated by L-NAME administration. SIGNIFICANCE These findings demonstrate that NO appears to play an important role in kidney angiogenesis and in slowing the progression of renal interstitial fibrosis, which suggests that NO may serve as a novel therapeutic strategy for preventing renal fibrosis as well as fibrosis in other organs.
Collapse
Affiliation(s)
- Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80-90% of all human proteins. Six NAT types are present in humans, NatA-NatF, each is composed of specific subunits and each acetylates a set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which was coupled to a number of signaling molecules including hypoxia inducible factor-1α, β-catenin/cyclin D1, TSC2/mammalian target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein.
Collapse
|
42
|
Oze H, Hirao M, Ebina K, Shi K, Kawato Y, Kaneshiro S, Yoshikawa H, Hashimoto J. Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture. In Vitro Cell Dev Biol Anim 2012; 48:123-30. [DOI: 10.1007/s11626-011-9479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022]
|
43
|
Seaborn T, Gonzales M, Villalpando G, Grenacher B, Soria R, Soliz J. Enhanced erythropoietin expression in the brainstem of newborn rats at high altitude. Neurosci Lett 2011; 502:33-6. [DOI: 10.1016/j.neulet.2011.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/28/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
|
44
|
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1400-12. [DOI: 10.1016/j.bbamem.2010.09.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/25/2023]
|
45
|
Slomovitz BM, Worley MJ, Markman M, Coleman RL. Emerging therapeutics for primary peritoneal cancer. Expert Opin Emerg Drugs 2011; 16:71-84. [PMID: 21352070 DOI: 10.1517/14728214.2011.526600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Primary peritoneal cancer describes a malignancy that originates from the peritoneal lining of the abdomen. The diagnosis is clearest when the ovaries are uninvolved; however, this is rarely the case and, as such, the declaration is often made pathologically by extrinsic or secondary involvement of the ovaries. The disease shares nearly all of the clinicopathologic features of primary ovarian cancer, most importantly, a molecular homology, which has made it unfruitful for considering it a different entity. Because of this, both standard of care treatment algorithms and contemporary drug development protocols nearly uniformly consider these cancers as primary ovarian cancers. AREAS COVERED A Medline search was performed as well as a review of trials presented in the National Cancer Institute clinical trials website (http://www.Clinicaltrials.gov). We also reviewed abstracts presented at recent oncology congresses, such as the 2010 Annual meetings of the Society of Gynecologic Oncologists and the American Society of Clinical Oncology. The purpose of this review is to highlight areas of current drug development for patients with primary peritoneal carcinoma. While there are numerous investigational agents being evaluated which follow patients with this disease, our review focuses on the most promising agents that are in mature clinical development. In addition, given the recent positive Phase III data of bevacizumab in the first-line setting for patients with this disease, we consider changes that we can anticipate in this field. EXPERT OPINION Numerous novel agents are being explored in this disease with the majority focusing on direct and indirect perturbations of tumor angiogenesis. Based on ongoing and recently completed investigations, targeted therapies are likely to become part of the armamentarium of first-line and recurrent treatment for patients with peritoneal cancers. Future studies of pathway-specific targeting will probably include pretreatment biomarker selection or eligibility criteria as well as combinatorial strategies.
Collapse
Affiliation(s)
- Brian M Slomovitz
- Morristown Cancer Center, Division of Gynecologic Oncology, Morristown, NJ, USA
| | | | | | | |
Collapse
|
46
|
Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Siddall BJ, Bell RA, Kvetnansky R. Stress and adrenergic function: HIF1α, a potential regulatory switch. Cell Mol Neurobiol 2010; 30:1451-7. [PMID: 21046459 PMCID: PMC11498814 DOI: 10.1007/s10571-010-9567-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Stress elicits adrenal epinephrine and cortisol release into the bloodstream to initiate physiological and behavioral responses to counter and overcome stress, the classic "fight or flight" response (Cannon and De La Paz, Am J Physiol 28:64-70, 1911). Stress and the stress hormone epinephrine also contribute to the pathophysiology of illness, e.g., behavioral disorders, cardiovascular disease, and immune dysfunction. Epinephrine itself is regulated by stress through its biosynthesis by phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28). Single and repeated immobilization (IMMO) stress in rats stimulates adrenal PNMT mRNA and protein expression via the transcription factors, Egr-1 and Sp1. Moderate hypoxic stress increases PNMT promoter-driven gene expression and endogenous PNMT mRNA and protein in PC12 cells. Induction is initiated through cAMP and PLC signaling, with PKA, PKC, PI3K, ERK1/2 MAPK, and p38 MAPK continuing downstream signal transduction, followed by activation of HIF1α, Egr-1, and Sp1. While functional Egr-1 and Sp1 binding sites exist within the proximal PNMT promoter, a putative hypoxia response element is a weak HIF binding site. Yet, HIF1α overexpression increases PNMT promoter-driven luciferase activity and endogenous PNMT. When the Egr-1 or Sp1 sites are mutated, HIF1α does not stimulate the PNMT promoter. siRNA knock down of Egr-1 or Sp1 prevents promoter activation while siRNA knock down of HIF1α inhibits Egr-1 and Sp1 induction. Findings suggest that hypoxia activates the PNMT gene indirectly via HIF1α stimulation of Egr-1 and Sp1. Thus, for stress-induced illnesses where adrenergic dysfunction is implicated, HIF1α may be an "on-off" switch regulating adrenergic responses to stress and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Dona Lee Wong
- Department of Psychiatry, Harvard Medical School, Laboratory of Molecular and Developmental Neurobiology, McLean Hospital, 115 Mill Street, MRC Rm 116, Mail Stop 144, Belmont, MA 02478, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
von der Weid PY, Rainey KJ. Review article: lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Aliment Pharmacol Ther 2010; 32:697-711. [PMID: 20636483 DOI: 10.1111/j.1365-2036.2010.04407.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The lymphatic system plays critical roles in tissue fluid homoeostasis, immune defence and metabolic maintenance. Lymphatic vessels transport lymph, proteins, immune cells and digested lipids, allowing fluid and proteins to be returned to the blood stream, lipids to be stored and metabolized and antigens to be sampled in lymph nodes. Lymphatic drainage is mainly driven by rhythmic constrictions intrinsic to the vessels and critically modulated by fluid pressure and inflammatory mediators. AIM To collect and discuss the compelling available information linking the lymphatic system, adiposity and inflammation. METHODS A literature search was performed through PubMed focusing on lymphatic system, inflammation, immune cells and fat transport and function in the context of IBD. RESULTS Evidence collected allows us to propose the following working model. Compromised lymph drainage, reported in IBD, leads to oedema, lymphangiogenesis, impaired immune cell trafficking and lymph leakage. Lymph factor(s) stimulate adipose tissue to proliferate and produce cytokines, which affect immune cell functions and exacerbate inflammation. CONCLUSIONS Understanding the lymphatic system's role in immune cell trafficking and immune responses, contribution to fat transport, distribution, metabolism and implication in the pathogenesis of chronic intestinal inflammation may provide the basis for new therapeutic strategies and improved quality-of life.
Collapse
Affiliation(s)
- P-Y von der Weid
- Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, AB, Canada.
| | | |
Collapse
|
48
|
Lambert CM, Roy M, Meloche J, Robitaille GA, Agharazii M, Richard DE, Bonnet S. Tumor necrosis factor inhibitors as novel therapeutic tools for vascular remodeling diseases. Am J Physiol Heart Circ Physiol 2010; 299:H995-1001. [PMID: 20709868 DOI: 10.1152/ajpheart.00562.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vascular remodeling diseases (VRDs) are characterized by enhanced inflammation and proliferative and apoptosis-resistant vascular smooth muscle cells (VSMCs). The sustainability of this phenotype has been attributed in part to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). There is evidence that circulating cytokines can act as HIF-1 activators in a variety of tissues, including VSMCs. Increased circulating tumor necrosis factor (TNF) levels have been associated with vascular diseases, but the mechanisms involved remain unknown. We hypothesized that increased circulating levels of TNF promotes VRDs by the activation of HIF-1, resulting in VSMC proliferation and resistance to apoptosis. Circulating TNF levels were significantly increased in patients with vascular diseases (n = 19) compared with healthy donors (n = 15). Using human carotid artery smooth muscle cells (CASMCs), we demonstrated that TNF (100 ng/ml) activates HIF-1 (HIF-1α expression), leading to increased CASMC proliferation (Ki-67 and PCNA staining) and resistance to mitochondrial-dependent apoptosis [tetramethylrhodamine methyl ester perchlorate (TMRM), terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL), annexin-V staining]. In vivo, TNF inhibition using polyethylene glycol coupled with TNF membrane receptor 1 (PEGsTNFR1), a soluble TNF receptor inhibiting circulating TNF, prevented carotid artery postinjury media remodeling and neointima development in rats. This effect was associated with lowered HIF-1 activation and decreased CASMC proliferation. In conclusion, we demonstrate for the first time that the inhibition of the TNF/Akt/HIF-1 axis prevents vascular remodeling. TNF inhibitors may therefore represent new and interesting therapeutic tools against VRDs.
Collapse
Affiliation(s)
- Caroline M Lambert
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Hypoxia and adrenergic function: molecular mechanisms related to Egr-1 and Sp1 activation. Brain Res 2010; 1353:14-27. [PMID: 20654592 DOI: 10.1016/j.brainres.2010.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/12/2010] [Accepted: 07/14/2010] [Indexed: 01/05/2023]
Abstract
Hypoxia is shown to regulate the stress hormone epinephrine through its biosynthesis by phenylethanolamine N-methyltransferase (PNMT) via PNMT gene activation and transcription factors Egr-1 and Sp1 in adrenal medulla-derived PC12 cells. Moderate hypoxia (5% oxygen) markedly stimulates PNMT promoter-driven luciferase activity in the cells. Hypoxia increases Egr-1 and Sp1 mRNA and nuclear protein content and Egr-1 and Sp1 protein-DNA binding complex formation. Subsequent to transcription factor induction, endogenous PNMT mRNA and protein also increase. Egr-1 and Sp1 binding site inactivation or Egr-1 and Sp1 siRNA inhibit PNMT promoter stimulation by hypoxia. Hypoxia elevates protein kinase A (PKA), phospholipase C (PLC), phosphoinositide 3-kinase, protein kinase C, ERK1/2 mitogen-activated protein kinase and p38 mitogen-activated protein kinase expression while selective inhibitors of these signaling enzymes abrogate hypoxic induction of the PNMT promoter and the rise in Egr-1, Sp1 and PNMT mRNA and protein. PC12 cells lacking PKA or PLCgamma-1 show significant reduction in PNMT promoter activation by hypoxia. Signaling inhibitors do not affect these responses or reduce hypoxic induction of the PNMT promoter to a lesser extent. Findings suggest that Egr-1 and Sp1 through synergistic interaction are critical transcriptional activators for hypoxic stress-regulated adrenergic function controlled via cAMP/PKA and PLC signaling. Identification of Sp1 as a mediator of hypoxia-induced transcriptional activation of PNMT has not been previously been shown. The effects of hypoxia on PNMT and thereby epinephrine may have important ramifications for the stress hormone epinephrine, its ability to regulate behavioral and physiological processes associated with stress and stress-elicited illness.
Collapse
|
50
|
Jiang H, Zhu YS, Xu H, Sun Y, Li QF. Inflammatory stimulation and hypoxia cooperatively activate HIF-1α in bronchial epithelial cells: involvement of PI3K and NF-κB. Am J Physiol Lung Cell Mol Physiol 2010; 298:L660-9. [PMID: 20139176 DOI: 10.1152/ajplung.00394.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor hypoxia-inducible factor (HIF)-1 plays a central physiological role in oxygen and energy homeostasis, and is activated during hypoxia by stabilization of the subunit HIF-1α. Recent studies have demonstrated that non-hypoxic stimuli can also activate HIF-1α in a cell-specific manner. Here, we demonstrate that stimulation of BEAS-2B cells and primary human bronchial epithelial cells by proinflammatory cytokines TNFα/IL-4 strongly induced expression and transcriptional activity of HIF-1α under normoxic conditions and amplified hypoxic HIF-1α activation. TNFα/IL-4 stimulated de novo HIF-1α gene transcription and translation rather than affected HIF-1α protein degradation and mRNA decay process. The activation of HIF-1α by TNFα/IL-4 was countered by the phosphoinositol 3-kinase (PI3K) inhibitor LY-294002 and rapamycin, an antagonist of mammalian target of rapamycin (mTOR), but not by inhibition of the MAPK pathway. In line, TNFα/IL-4 also activated NF-κB, whereas blocking of NF-κB by an inhibitor or silencing NF-κB subunit p65 attenuated HIF-1α activation by TNFα/IL-4. We also found the collaborative induction of VEGF, a potent angiogenic factor required for airway remodeling, by TNFα/IL-4 and hypoxia partially via HIF-1α pathway in BEAS-2B cells. This study reports the previously unsuspected collaborative regulation of HIF-1α by TNFα/IL-4 and hypoxia in bronchial epithelial cells partially via PI3K-mTOR and NF-κB pathway, and thereby will lead to the elucidation of the importance of HIF-1 in integrating inflammatory and hypoxic response in the pathogenesis of airway diseases.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Sen Zhu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Fang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|