1
|
Christopher BN, Golick L, Basar A, Reyes L, Robinson RM, Angerstein AO, Krieg C, Hobbs GA, Guttridge DC, O'Bryan JP, Dolloff NG. Modulating the CXCR2 Signaling Axis Using Engineered Chemokine Fusion Proteins to Disrupt Myeloid Cell Infiltration in Pancreatic Cancer. Biomolecules 2025; 15:645. [PMID: 40427538 DOI: 10.3390/biom15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers, and limited treatment options exist. Immunotherapy is effective in some cancer types, but the immunosuppressive tumor microenvironment (TME) of PDAC is a barrier to effective immunotherapy. CXCR2+ myeloid-derived suppressor cells (MDSCs) are abundant in PDAC tumors in humans and in mouse models. MDSCs suppress effector cell function, making them attractive targets for restoring anti-tumor immunity. In this study, we show that the most abundant soluble factors released from a genetically diverse set of human and mouse PDAC cells are CXCR2 ligands, including CXCL8, CXCL5, and CXCL1. Expression of CXCR2 ligands is at least partially dependent on mutant KRAS and NFκB signaling, which are two of the most commonly dysregulated pathways in PDAC. We show that MDSCs are the most prevalent immune cells in PDAC tumors. MDSCs expressed high levels of CXCR2, and we found that myeloid cells readily migrate toward conditioned media (CM) prepared from PDAC cultures. We designed CXCR2 ligand-Fc fusion proteins to modulate the CXCR2 chemotactic signaling axis. Unexpectedly, these fusion proteins were superior to native chemokines in binding and activation of CXCR2 on myeloid cells. These "superkines" were potent inhibitors of PDAC CM-induced myeloid cell migration and were superior to CXCR2 small-molecule inhibitors and neutralizing antibodies. Our findings suggest that CXCR2 superkines may disrupt myeloid cell recruitment to PDAC tumors, ultimately improving immunotherapy outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ashton Basar
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aaron O Angerstein
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Denis C Guttridge
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- MUSC Darby Children's Research Institute, Charleston, SC 29425, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John P O'Bryan
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Lee J, Jin BR, Cho J. Spatiotemporal regulation of neutrophil heterogeneity in health and disease. Hum Mol Genet 2025:ddaf008. [PMID: 40287830 DOI: 10.1093/hmg/ddaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 04/29/2025] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.
Collapse
Affiliation(s)
- Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Wang W, Li Z, Wu X, Suo T, Du H, Zhao ZG, Niu CY, Zhao ZA. Bone Marrow-Derived Mesenchymal Stem Cells Alleviate Posthemorrhagic Shock Mesenteric Lymph-Induced Acute Lung Injury. J Surg Res 2025; 309:212-223. [PMID: 40267819 DOI: 10.1016/j.jss.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/23/2025] [Accepted: 03/22/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Mesenteric lymph is recognized as a conduit in the gut-lung axis. Posthemorrhagic shock mesenteric lymph (PHSML) contains proinflammatory substances and can exacerbate the acute lung injury (ALI) induced by hemorrhagic shock (HS). Mesenchymal stem cells (MSCs) possess anti-inflammatory properties and hold therapeutic potential for ALI. However, the effect and mechanism of MSCs in alleviating PHSML-mediated ALI remains unclear. METHODS Rat hemorrhage shock model and PHSML infusion model were used to induce ALI. MSCs were administrated intravenously to treat ALI. Pulmonary function of rats was assessed by a Buxco pulmonary function analysis system. Hematoxylin and eosin staining was used for histological analysis. Western blot and quantitative real-time polymerase chain reaction were used to detect the expressions of inflammation-related genes. RESULTS Intravenous infusion of bone marrow-derived MSCs (BMSCs) prolonged the survival of HS rats. Both HS and PHSML could cause pulmonary tissue damage, lung edema, and pulmonary dysfunction, which were all alleviated by BMSC treatment. The pulmonary dysfunction indices (inspiratory resistance, functional residual capacity, and mean mid expiratory flow) were significantly improved by BMSC treatment in the two models. C-X-C motif chemokine ligand and inducible nitric oxide synthase, which are important for neutrophil recruitment and infiltration to the injured site, were down-regulated by BMSCs in the lung tissues of rats with HS or PHSML injury. As a neutrophil marker, myeloperoxidase is also decreased by BMSC treatment. These results indicated that BMSCs may reduce neutrophil recruitment and infiltration through inhibiting C-X-C motif chemokine ligand and inducible nitric oxide synthase expressions. CONCLUSIONS The current findings demonstrate that BMSC therapy can alleviate the ALI induced by PHSML. In mechanism, BMSCs can protect lungs from the inflammatory response mediated by neutrophils. Our study provides novel insight to treat ALI in the gut lymphatics-lung axis.
Collapse
Affiliation(s)
- Wendi Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China; Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhonghua Li
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaohui Wu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Tingjiao Suo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Huibo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Chun-Yu Niu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China; Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China.
| |
Collapse
|
4
|
Quan X, Deng Y, Liu Z, Gao Z, Yi H, Li M. LASSO-derived nomogram prediction model for lymph node metastasis in colorectal cancer: a retrospective analysis. PeerJ 2025; 13:e19148. [PMID: 40247833 PMCID: PMC12005177 DOI: 10.7717/peerj.19148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
Objective This study aims to develop a prediction model for lymph node metastasis (LNM) in colorectal cancer (CRC) patients using common clinicopathologic data and a nomogram. The model seeks to uncover correlations between LNM and clinical indicators, providing an effective tool to identify high-risk patients, aiding clinical decision-making, and enhancing patient prognosis. Methods We conducted a retrospective analysis of CRC patients diagnosed between January 2021 and December 2023 at Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University. Risk predictors for LNM were identified through comparative analysis and Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression. Nomograms were then utilized to predict the probability of metastasis, and their performance was assessed using calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis. Results The study comprised 869 CRC patients, with 435 cases allocated to the training set and 434 cases to the validation set. First, 12 potential risk factors for LNM in CRC patients were identified through comparative analysis in the training set. Next, nine independent predictors (T stage, vascular tumor thrombus, PMS2, MSH2, KRAS, BRAF, PIK3CA, leukocyte, and neutrophil) of LNM occurrence were refined using LASSO regression and multivariate logistic regression models. Subsequently, a clinical nomogram was developed based on these independent predictors of LNM. The nomogram exhibited a C-index of 0.751 (95% CI [0.728-0.774]), indicating its robust predictive value, which was further validated in the independent validation set. Conclusion T stage, vascular tumor thrombus, PMS2, MSH2, KRAS, BRAF, and neutrophil emerged as significant risk factors for LNM in CRC, while leukocytes appeared to be protective. These findings emphasize the importance of comprehensive risk assessment and personalized therapeutic strategies in CRC management.
Collapse
Affiliation(s)
- Xiyun Quan
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yi Deng
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhimin Liu
- Neurosurgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhenqin Gao
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Huimei Yi
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Ming Li
- Health Management Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
5
|
Hu D, Chen M, Li X, Daley S, Morin P, Han Y, Hemberg M, Weiner HL, Xia W. ApoE ε4-dependent Alteration of CXCR3 + CD127 + CD4 + T cells associates with elevated plasma neurofilament light chain in Alzheimer's disease. J Alzheimers Dis 2025; 104:792-807. [PMID: 40112322 DOI: 10.1177/13872877251320123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundRecent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD).ObjectiveTo characterize the composition of adaptive immune cells in the peripheral blood of AD patients.MethodsWe utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects.ResultsWe found that the abundance of proinflammatory CXCR3 + CD127+ Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127+ Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3+ CD127+ Th1 cells in the CSF of AD patients was further increased compared to HCs.ConclusionsThese results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127+ Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype.
Collapse
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Mei Chen
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Xuyang Li
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Daley
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Peter Morin
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuyang Han
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
6
|
Saha S, Sano FK, Sharma S, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigné A, Banerjee R, Shihoya W, Nureki O, Shukla AK. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Mol Cell 2025; 85:976-988.e9. [PMID: 39978339 PMCID: PMC7617694 DOI: 10.1016/j.molcel.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Selectivity of natural agonists for their cognate receptors is a hallmark of G-protein-coupled receptors (GPCRs); however, this selectivity often breaks down at the chemokine receptors. Chemokines often display promiscuous binding to chemokine receptors, but the underlying molecular determinants remain mostly elusive. Here, we perform a comprehensive transducer-coupling analysis, testing all known C-X-C chemokines on every C-X-C type chemokine receptor to generate a global fingerprint of the selectivity and promiscuity encoded within this system. Taking lead from this, we determine cryoelectron microscopy (cryo-EM) structures of the most promiscuous receptor, C-X-C chemokine receptor 2 (CXCR2), in complex with several chemokines. These structural snapshots elucidate the details of ligand-receptor interactions, including structural motifs, which are validated using mutagenesis and functional experiments. We also observe that most chemokines position themselves on CXCR2 as a dimer while CXCL6 exhibits a monomeric binding pose. Taken together, our findings provide the molecular basis of chemokine promiscuity at CXCR2 with potential implications for developing therapeutic molecules.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saloni Sharma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manisankar Ganguly
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sudha Mishra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Annu Dalal
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki A Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nashrah Zaidi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilanjana Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Samanwita Mohapatra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
7
|
Zahoor I, Bala R, Wani SN, Chauhan S, Madaan R, Kumar R, Hakeem KR, Malik IA. Potential role of NSAIDs loaded nano-formulations to treat inflammatory diseases. Inflammopharmacology 2025; 33:1189-1207. [PMID: 39953360 DOI: 10.1007/s10787-025-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2024] [Indexed: 02/17/2025]
Abstract
Inflammation is a necessary immunological response that promotes survival and preserves tissue homeostasis, a common characteristic linked to various diseases. However, in some circumstances, the inflammatory response is deleterious and contributes to disease pathogenesis. Anti-inflammatory substances have poor affinity for inflamed tissues, resulting in low concentrations in the target tissue and a higher incidence of severe adverse effects. To address this issue, several potential approaches have been proposed, such as chemical modification of drug molecules and the development of nanocarriers for drug delivery. Since the development of nanotechnology at the beginning of the twenty-first century, researchers have been using the pathophysiological characteristics of inflammation, primarily leaky vasculature, and biomarker overexpression to develop nanomedicines that can deliver therapeutics via passive and active targeting mechanisms to sites of inflammation and produce therapeutic effects. Drug carriers based on nanoparticles can enhance the safety and efficacy of drugs by increasing their capacity, enhancing their solubility, combining several drugs, protecting them from metabolism, and regulating their release. An approach that shows promise in the treatment of various inflammatory diseases is the application of nanomedicines. Nanomedicine involves nanoparticles that have been loaded with a therapeutically active component. Nanomedicines can target inflammation by recognizing molecules highly expressed on endothelial cells or activated macrophage surfaces, enhancing the permeability of vessels, or even by biomimicry. A review of the research findings shows significant potential for the use of nanotechnology to enhance the quality of life for people using NSAIDs for chronic disorders by minimizing drug side effects or the duration of administration. After a brief introduction to inflammation, its various forms- acute and chronic inflammation, and the pathophysiology of inflammation, this review highlights the main innovative nanocarriers utilized for carrying various nonsteroidal anti-inflammatory drugs that have been utilized in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat-Bhara University, Kharar, Punjab, India
| | - Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Aman Pharmacy College, Dholakhera Udaipurwati, Jhunjhunu, Rajasthan, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Adesh College of Pharmacy, NH1 Shahabad Kurukshetra, Haryana, India
| | - Rajesh Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Adualaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Irfan Ahmad Malik
- Department of Pharmacology, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, 423603, Maharashtra, India
| |
Collapse
|
8
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
9
|
Angendohr C, Missing L, Ehlting C, Wolf SD, Lang KS, Vucur M, Luedde T, Bode JG. Interleukin 1 β suppresses bile acid-induced BSEP expression via a CXCR2-dependent feedback mechanism. PLoS One 2024; 19:e0315243. [PMID: 39680527 DOI: 10.1371/journal.pone.0315243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern. Thereby, the IL-1β -induced expression of in particular the CXCR2 ligands CXCL1 and 2 is further enhanced by bile acids, whereas the FXR-mediated upregulation of BSEP induced by bile acids is inhibited by IL-1β. In this context, it is interesting to note that inhibitor studies indicate that IL-1β mediates its inhibitory effects on bile acid-induced expression of BSEP indirectly via CXCR2 ligands. Consistently, inhibition of CXCR2 with the inhibitor SB225002 significantly attenuated of the inhibitory effect of IL-1β on BSEP expression. These data suggest that part of the cholestasis-inducing effect of IL-1β is mediated via a CXCR2-dependent feedback mechanism.
Collapse
Affiliation(s)
- Carolin Angendohr
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Leah Missing
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie D Wolf
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| | - Mihael Vucur
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tom Luedde
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
10
|
Naharro-Rodriguez J, Bacci S, Fernandez-Guarino M. Molecular Biomarkers in Cutaneous Photodynamic Therapy: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2724. [PMID: 39682631 DOI: 10.3390/diagnostics14232724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Photodynamic therapy (PDT) is widely utilized in dermatology for the treatment of various skin conditions. Despite its effectiveness, the exact biomolecular changes underlying therapeutic outcomes remain only partially understood. This review, through a transversal approach, aims to provide an in-depth exploration of molecular biomarkers involved in PDT, evaluate its underlying mechanisms, and examine how these insights can contribute to enhanced treatment protocols and personalized therapy approaches. METHODS A narrative review of the literature was conducted, targeting peer-reviewed articles and clinical trials that focus on PDT and its molecular biomarker effects on dermatological conditions. The databases searched included PubMed, Scopus, and Web of Science, and the inclusion criteria encompassed original research articles, systematic reviews, and meta-analyses in English. RESULTS PDT effectively reduces the expression of critical biomarkers such as p53, Cyclin D1, and Ki-67 in AK and other cancerous lesions, leading to reduced cell proliferation and increased apoptosis. Additionally, PDT promotes extracellular matrix remodeling and stimulates collagen production, which has a rejuvenating effect on the skin and a promising role in the treatment of chronic wounds. CONCLUSIONS PDT represents a powerful and versatile treatment option for various dermatological conditions due to its ability to target cellular pathways involved in proliferation and apoptosis. Further research into optimizing treatment parameters and combining PDT with other targeted therapies may enhance patient outcomes, reduce resistance, and pave the way for more individualized therapeutic approaches in dermatology.
Collapse
Affiliation(s)
- Jorge Naharro-Rodriguez
- Programa de Doctorado en Ciencias de la Salud, Universidad de Alcalá de Henares, 28801 Madrid, Spain
- Dermatology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, 50139 Florence, Italy
| | | |
Collapse
|
11
|
Inverso D, Tacconi C, Ranucci S, De Giovanni M. The power of many: Multilevel targeting of representative chemokine and metabolite GPCRs in personalized cancer therapy. Eur J Immunol 2024; 54:e2350870. [PMID: 39263783 PMCID: PMC11628915 DOI: 10.1002/eji.202350870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
G protein-coupled receptors (GPCRs) are vital cell surface receptors that govern a myriad of physiological functions. Despite their crucial role in regulating antitumor immunity and tumorigenesis, therapeutic applications targeting GPCRs in oncology are currently limited. This review offers a focused examination of selected protumorigenic chemokine and metabolite-sensing GPCRs. Specifically, the review highlights five GPCRs able to orchestrate tumor immunobiology at three main levels: tumor immunity, cancer cell expansion, and blood vessel development. The review culminates by illuminating emerging therapies and discussing innovative strategies to harness the full potential of GPCR-targeted treatments, by applying a multireceptor and patient-specific logic.
Collapse
Affiliation(s)
- Donato Inverso
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Carlotta Tacconi
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Serena Ranucci
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
12
|
Lee H, Takamizu A, Nishizaki Y, Yanagisawa N, Nojiri S, Itakura A, Yin N, Liu Z, Wang L, Ran Y, Chen J, Leimert KB, Makino S, Takeda S, Qi H, Takeda J, Olson DM. Activation of peripheral leukocyte migration before spontaneous labor at term. Am J Obstet Gynecol 2024; 231:539.e1-539.e13. [PMID: 39442996 DOI: 10.1016/j.ajog.2024.02.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Leukocytes are induced to migrate into the uterus at parturition, releasing cytokines and chemokines that activate it for delivery. A specific chemotactic signal is required for these actions, and published evidence suggests that it comes from the human fetal membranes and has a time-dependent component (ie, cells obtained at term in labor migrate more than cells obtained at term not yet in labor). The hypothesis that the fetal membrane chemoattractants activate the leukocytes to become responsive for migration was tested. OBJECTIVE This study aimed to: (1) examine the changes in leukocyte migration-responsiveness longitudinally from the late third trimester, to in labor, to 3 days postpartum; (2) explore the specific week-to-week changes in migration before delivery; (3) define the timing of chemokine receptor expression patterns in leukocytes relative to migration and the changes in cytokine and chemokine concentrations in maternal serum; (4) examine the ability of term fetal membrane-conditioned medium and term maternal serum to increase cell responsiveness; and (5) test the potential of the leukocyte migration assay to predict delivery within 1 week. STUDY DESIGN Leukocyte migration in response to a chemoattractive extract of term human fetal membranes was studied using a modified Boyden chamber. Flow cytometry assessed migrated cell phenotypes. The relationship between the expression of chemokine receptors and migration was tested using quantitative polymerase chain reaction, the bioassay, and regression analyses. Cytokines and chemokines in maternal serum were quantified using multiplex analysis. Conditioned medium from fetal membrane explants and maternal serum were evaluated for their abilities to enhance leukocyte migration using the bioassay. The ability of the bioassay to predict term delivery was assessed using receiver-operating characteristic curve and cost-curve analysis. RESULTS The number of leukocytes that migrated at term delivery was increased relative to the late third trimester, followed by a significant fall in numbers that migrated at 3 days postpartum (P=.002). The largest increase in migrated cells occurred 1 to 2 weeks before delivery. The messenger RNA abundance of several chemokine receptors increased in peripheral leukocytes at term in labor relative to the third trimester, and this correlated with an increase in migrated cells in 5 of 6 cases (R=0.589 to 0.897; P<.03). The concentrations of several chemokines and cytokines in maternal serum increased with labor onset. Fetal membrane explant-conditioned medium and maternal serum obtained at term labor increased the responsiveness of leukocytes to fetal membrane chemoattractive extract. The bioassay was demonstrated to predict delivery within 7 days with excellent performance characteristics using a cohort prevalence of 71.7% (positive predictive value=96.1%; negative predictive value=58.5%; sensitivity=74.2%; specificity=92.3%; positive likelihood ratio=9.25; and negative likelihood ratio=0.28). A single determination was validated to have a high degree of confidence. CONCLUSION Term human fetal membranes release chemoattractants near the end of pregnancy that increase in ability to activate and attract an increasing number of leukocytes as gestation advances.
Collapse
Affiliation(s)
- Han Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ai Takamizu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuji Nishizaki
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naotake Yanagisawa
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nanlin Yin
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Lulu Wang
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jenelle Chen
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | - Shintaro Makino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - David M Olson
- Departments of Obstetrics and Gynecology and Pediatrics and Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
13
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Martínez LE, Comin-Anduix B, Güemes-Aragon M, Ibarrondo J, Detels R, Mimiaga MJ, Epeldegui M. Characterization of unique B-cell populations in the circulation of people living with HIV prior to non-Hodgkin lymphoma diagnosis. Front Immunol 2024; 15:1441994. [PMID: 39324141 PMCID: PMC11422120 DOI: 10.3389/fimmu.2024.1441994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
People living with HIV (PLWH) are at higher risk of developing lymphoma. In this study, we performed cytometry by time-of-flight (CyTOF) on peripheral blood mononuclear cells of cART-naïve HIV+ individuals and cART-naïve HIV+ individuals prior to AIDS-associated non-Hodgkin lymphoma (pre-NHL) diagnosis. Participants were enrolled in the Los Angeles site of the MACS/WIHS Combined Cohort Study (MWCCS). Uniform Manifold Approximation and Projection (UMAP) and unsupervised clustering analysis were performed to identify differences in the expression of B-cell activation markers and/or oncogenic markers associated with lymphomagenesis. CD10+CD27- B cells, CD20+CD27- B cells, and B-cell populations with aberrant features (CD20+CD27+CXCR4+CD71+ B cells and CD20+CXCR4+cMYC+ B cells) were significantly elevated in HIV+ cART-naïve compared to HIV-negative samples. CD20+CD27+CD24+CXCR4+CXCR5+ B cells, CD20+CD27+CD10+CD24+CXCR4+cMYC+ B cells, and a cluster of CD20+CXCR4hiCD27-CD24+CXCR5+CD40+CD4+AICDA+ B cells were significantly elevated in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. A potentially clonal cluster of CD20+CXCR4+CXCR5+cMYC+AICDA+ B cells and a cluster of germinal center B-cell-like cells (CD19-CD20+CXCR4+Bcl-6+PD-L1+cMYC+) were also found in the circulation of HIV+ pre-NHL (cART-naïve) samples. Moreover, significantly elevated clusters of CD19+CD24hiCD38hi cMYC+ AICDA+ B regulatory cells were identified in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. The present study identifies unique B-cell subsets in PLWH with potential pre-malignant features that may contribute to the development of pre-tumor B cells in PLWH and that may play a role in lymphomagenesis.
Collapse
Affiliation(s)
- Laura E. Martínez
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Miriam Güemes-Aragon
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Javier Ibarrondo
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew J. Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marta Epeldegui
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
16
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
17
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
18
|
Hu D, Chen M, Li X, Morin P, Daley S, Han Y, Hemberg M, Weiner HL, Xia W. ApoE ε4-dependent alteration of CXCR3 + CD127 + CD4 + T cells is associated with elevated plasma neurofilament light chain in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596276. [PMID: 38853824 PMCID: PMC11160665 DOI: 10.1101/2024.05.28.596276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Recent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD). To characterize the composition of adaptive immune cells in the peripheral blood of AD patients, we utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects. We found that the abundance of proinflammatory CXCR3 + CD127 + Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain (NfL) protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127 + Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3 + CD127 + Th1 cells in the CSF of AD patients was further increased compared to HCs. These results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127 + Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype. One sentence summary An apolipoprotein E (ApoE) ε4-dependent alteration of CD4 T cell subpopulation in peripheral blood is associated with neuroinflammation in patients with Alzheimer's disease.
Collapse
|
19
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
20
|
Mao Y, Alarfaj AA, Hussein-Al-Ali SH, Ma H. Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models. Appl Biochem Biotechnol 2024; 196:4140-4155. [PMID: 37906408 DOI: 10.1007/s12010-023-04711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Acute lung injury (ALI) is a clinical condition occurs due to severe systemic inflammatory response for clinical stimulus like pneumonia, sepsis, trauma, aspiration, inhalation of toxic gases, and pancreatitis. Disruption of alveolar barriers, activation of macrophages, infiltration of neutrophils, and proinflammatory cytokines are the vital events occurs during ALI. The drugs which inhibit these inflammatory response can protect lungs from inflammatory insults. In this study, we examined the potency of phytochemical coronarin, a diterpene which have been proven to possess anti-inflammatory, antioxidant, antiangiogenic, and antitumor activities. Healthy BALB/c mice were induced to acute lung injury with intra-tracheal administration of LPS and then treated with 5 and 10 mg/kg concentration of coronarin. The wet/dry lung weight of mice were estimated to assess the induction of pulmonary edema. BALF fluid was analyzed for protein concentrations and immune cells count. Myeloperoxidase activity and levels of chemokines MCP-2 and MIP-2, iNOS, COX-2, and PGE-2 were quantified to assess the immunomodulatory effect of coronarin against LPS-induced ALI. The levels of proinflammatory cytokines was measured to examine the anti-inflammatory property of coronarin, and it was confirmed with histopathological analysis of the lung tissue. Murine RAW 264.7 cells were utilized for the in vitro analysis. Cell cytoxicity and cytoprotective property of coronarin was assessed with MTT assay in LPS-treated Murine RAW 264.7. The anti-inflammatory property of coronarin was further confirmed in in vitro condition by estimating the levels of pro-inflammatory cytokines in coronarin-treated and untreated LPS-induced cells. Overall, our in vivo and in vitro results confirm coronarin significantly inhibited the infiltration of neutrophils prevented immunodulatory activity and synthesis of proinflammatory cytokines and alleviated the acute lung injury induced by LPS. Coronarin is a potent anti-inflammatory drug which can be subjected to further research to be prescribed as drug for ALI.
Collapse
Affiliation(s)
- Ya Mao
- Department of Cardiothoracic Surgery, Yantai Mountain Hospital, Yantai, 264001, China
| | - Abdullah A Alarfaj
- Department of Respiratory II, Yantai Mountain Hospital, Yantai, 264001, China
| | - Samer Hasan Hussein-Al-Ali
- Faculty of Pharmacy, PO Box 33 and 22 Isra University Office 11622 by Queen Alia International Airport south of the capital, Amman, Jordan
| | - Hongxia Ma
- Department of thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
| |
Collapse
|
21
|
Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, Bengtsson E, Jaensson Gyllenbäck E, Grönberg C, Rattik S, Liberg D, Schiopu A, Björkbacka H, Kuiper J, Bot I, Slütter B, Engelbertsen D. Interleukin-1 receptor accessory protein blockade limits the development of atherosclerosis and reduces plaque inflammation. Cardiovasc Res 2024; 120:581-595. [PMID: 38563353 PMCID: PMC11074796 DOI: 10.1093/cvr/cvae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Gabriel Jakobsson
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Andrietta Grentzmann
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Fong To
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | | | - Sara Rattik
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
- Cantargia AB, Lund, Sweden
| | | | - Alexandru Schiopu
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Cardiovascular Research—Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Wang L, Cheng M, Wang Y, Chen J, Xie F, Huang LH, Zhan C. Fasting-activated ventrolateral medulla neurons regulate T cell homing and suppress autoimmune disease in mice. Nat Neurosci 2024; 27:462-470. [PMID: 38182836 DOI: 10.1038/s41593-023-01543-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Dietary fasting markedly influences the distribution and function of immune cells and exerts potent immunosuppressive effects. However, the mechanisms through which fasting regulates immunity remain obscure. Here we report that catecholaminergic (CA) neurons in the ventrolateral medulla (VLM) are activated during fasting in mice, and we demonstrate that the activity of these CA neurons impacts the distribution of T cells and the development of autoimmune disease in an experimental autoimmune encephalomyelitis (EAE) model. Ablation of VLM CA neurons largely reversed fasting-mediated T cell redistribution. Activation of these neurons drove T cell homing to bone marrow in a CXCR4/CXCL12 axis-dependent manner, which may be mediated by a neural circuit that stimulates corticosterone secretion. Similar to fasting, the continuous activation of VLM CA neurons suppressed T cell activation, proliferation, differentiation and cytokine production in autoimmune mouse models and substantially alleviated disease symptoms. Collectively, our study demonstrates neuronal control of inflammation and T cell distribution, suggesting a neural mechanism underlying fasting-mediated immune regulation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingxiu Cheng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yuchen Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Famin Xie
- School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Hao Huang
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
23
|
Bhakta SB, Lundgren SM, Sesti BN, Flores BA, Akdogan E, Collins SR, Mercer F. Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLoS One 2024; 19:e0297758. [PMID: 38324578 PMCID: PMC10849234 DOI: 10.1371/journal.pone.0297758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Research on neutrophil biology has been limited by the short life span and limited genetic manipulability of these cells, driving the need for representative and efficient model cell lines. The promyelocytic cell line HL-60 and its subline PLB-985 can be differentiated into neutrophil-like cells (NLCs) and have been used to study neutrophil functions including chemotaxis, phagocytosis, endocytosis, and degranulation. Compared to neutrophils derived from hematopoietic stem cells, NLCs serve as a cost-effective neutrophil model. NLCs derived from both HL-60 and PLB-985 cells have been shown to perform degranulation, an important neutrophil function. However, no study has directly compared the two lines as models for degranulation including their release of different types of mobilizable organelles. Furthermore, Nutridoma, a commercially available supplement, has recently been shown to improve the chemotaxis, phagocytosis, and oxidative burst abilities of NLCs derived from promyelocytic cells, however it is unknown whether this reagent also improves the degranulation ability of NLCs. Here, we show that NLCs derived from both HL-60 and PLB-985 cells are capable of degranulating, with each showing markers for the release of multiple types of secretory organelles, including primary granules. We also show that differentiating HL-60 cells using Nutridoma does not enhance their degranulation activity over NLCs differentiated using Dimethyl Sulfoxide (DMSO) plus Granulocyte-colony stimulating factor (G-CSF). Finally, we show that promyelocytic cells can be genetically engineered and differentiated using these methods, to yield NLCs with a defect in degranulation. Our results indicate that both cell lines serve as effective models for investigating the mechanisms of neutrophil degranulation, which can advance our understanding of the roles of neutrophils in inflammation and immunity.
Collapse
Affiliation(s)
- Suhani B. Bhakta
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Stefan M. Lundgren
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Bethany N. Sesti
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Barbara A. Flores
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Emel Akdogan
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| |
Collapse
|
24
|
Xia C, Zhang Q, Pu Y, Hu Q, Wang Y. Cell fusion between tumor cells and macrophages promotes the metastasis of OSCC patient through the activation of the chemokine signaling pathway. Cancer Med 2024; 13:e6940. [PMID: 38457216 PMCID: PMC10923029 DOI: 10.1002/cam4.6940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.
Collapse
Affiliation(s)
- Chengwan Xia
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Qian Zhang
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yumei Pu
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Qingang Hu
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yuxin Wang
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
25
|
Gouletsou PG, Zacharopoulou T, Skampardonis V, Georgiou SG, Doukas D, Galatos AD, Flouraki E, Dermisiadou E, Margeti C, Barbagianni M, Sideri A, Tsioli V. First-Intention Incisional Wound Healing in Dogs and Cats: A Controlled Trial of Dermapliq and Manuka Honey. Vet Sci 2024; 11:64. [PMID: 38393082 PMCID: PMC10892332 DOI: 10.3390/vetsci11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to compare incisional wound healing in cats and dogs after the topical application of Μanuka honey and a new medical device, Dermapliq. Comparisons were made between each treatment and control, between the two treatments, and between dogs and cats. Twelve cats and twelve dogs were included in this study, and the impact of the two substances was examined through cosmetic, clinical, ultrasonographical, and histological evaluation. The use of Dermapliq in first-intention wound healing achieved a significantly better cosmetic evaluation score and better total clinical score at days 20-41, compared to the control, in both dogs and cats. The ultrasonographically estimated wound area was smaller with Dermapliq compared to the control. Wounds treated with Dermapliq showed histologically less inflammation compared to the control. The use of Manuka honey did not show a significantly better cosmetic score compared to the control. Skin thickening was significantly higher after using Manuka honey compared to the control and so was the total clinical score. However, the median wound area, as was evaluated ultrasonographically, was significantly smaller when wounds were treated with Manuka honey, the difference being more apparent in dogs. Dermapliq was proven to be a better choice in achieving favorable wound healing than Manuka honey in dogs and cats in first-intention healing. In our study, cats had a statistically better cosmetic score and less skin thickening and scar width compared to dogs. Histologically, cats showed significantly less edema, higher inflammation and angiogenesis scores, and lower fibroblast and epidermis thickening scores when compared to dogs.
Collapse
Affiliation(s)
- Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Theodora Zacharopoulou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Stefanos G. Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Apostolos D. Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eugenia Flouraki
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eleftheria Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Chryssoula Margeti
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Mariana Barbagianni
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Aikaterini Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassiliki Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| |
Collapse
|
26
|
Zheng W, Ling S, Cao Y, Shao C, Sun X. Combined use of NK cells and radiotherapy in the treatment of solid tumors. Front Immunol 2024; 14:1306534. [PMID: 38264648 PMCID: PMC10803658 DOI: 10.3389/fimmu.2023.1306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes possessing potent tumor surveillance and elimination activity. Increasing attention is being focused on the role of NK cells in integral antitumor strategies (especially immunotherapy). Of note, therapeutic efficacy is considerable dependent on two parameters: the infiltration and cytotoxicity of NK cells in tumor microenvironment (TME), both of which are impaired by several obstacles (e.g., chemokines, hypoxia). Strategies to overcome such barriers are needed. Radiotherapy is a conventional modality employed to cure solid tumors. Recent studies suggest that radiotherapy not only damages tumor cells directly, but also enhances tumor recognition by immune cells through altering molecular expression of tumor or immune cells via the in situ or abscopal effect. Thus, radiotherapy may rebuild a NK cells-favored TME, and thus provide a cost-effective approach to improve the infiltration of NK cells into solid tumors, as well as elevate immune-activity. Moreover, the radioresistance of tumor always hampers the response to radiotherapy. Noteworthy, the puissant cytotoxic activity of NK cells not only kills tumor cells directly, but also increases the response of tumors to radiation via activating several radiosensitization pathways. Herein, we review the mechanisms by which NK cells and radiotherapy mutually promote their killing function against solid malignancies. We also discuss potential strategies harnessing such features in combined anticancer care.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sunkai Ling
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlin Shao
- Institution of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Jia Q, Bai D, Zheng X, Zhu L, Ou K, Wang X, Tong H, Zhang Y, Wang J, Zeng J, Yan S, Li S, Li XJ, Yin P. Comparing HD knockin pigs and mice reveals the pathological role of IL-17. Cell Rep 2023; 42:113443. [PMID: 37979175 DOI: 10.1016/j.celrep.2023.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Our previous work has established a knockin (KI) pig model of Huntington's disease (HD) that can replicate the typical pathological features of HD, including selective striatal neuronal loss, reactive gliosis, and axonal degeneration. However, HD KI mice exhibit milder neuropathological phenotypes and lack overt neurodegeneration. By performing RNA sequencing to compare the gene expression profiles between HD KI pigs and mice, we find that genes related to interleukin-17 (IL-17) signaling are upregulated in the HD pig brains compared to the mouse brains. Delivery of IL-17 into the brain striatum of HD KI mice causes greater reactive gliosis and synaptic deficiency compared to HD KI mice that received PBS. These findings suggest that the upregulation of genes related to IL-17 signaling in HD pig brains contributes to severe glial pathology in HD and identify this as a potential therapeutic target for treating HD.
Collapse
Affiliation(s)
- Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kaili Ou
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jing Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun Zeng
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Namous H, Strillacci MG, Braz CU, Shanmuganayagam D, Krueger C, Peppas A, Soffregen WC, Reed J, Granada JF, Khatib H. ITGB2 is a central hub-gene associated with inflammation and early fibro-atheroma development in a swine model of atherosclerosis. ATHEROSCLEROSIS PLUS 2023; 54:30-41. [PMID: 38116576 PMCID: PMC10728570 DOI: 10.1016/j.athplu.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/14/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Background and aim The complex dynamic interplay between different biological pathways involved in atherosclerosis development has rendered the identification of specific therapeutic targets a challenging quest. We aimed to identify specific genes and mechanistic pathways associated with the early development of fibro-atheromas in a swine model of atherosclerosis. Methods The Wisconsin Miniature Swine™ model of Familial Hypercholesterolemia (WMS-FH, n = 11) and genetically related WMS controls (WMS-N, n = 11) were used. The infrarenal aorta was harvested from both groups for histopathologic and transcriptomic profiling at 12 months. Bioinformatic analysis was performed to identify hub genes and pathways central to disease pathophysiology. The expression of ITGB2, the top ranked hub gene, was manipulated in cell culture and the expression of interconnected genes was tested. Results Fibro-atheromatous lesions were documented in all WMS-FH aortic tissues and displayed internal elastic lamina (IEL) disruption, significant reduction of myofibroblast presence and disorganized collagen deposition. No fibro-atheromas were observed in the control group. A total of 266 differentially expressed genes (DEGs) were upregulated in WMS-FH aortic tissues, while 29 genes were downregulated. Top identified hub genes included ITGB2, C1QA, LCP2, SPI1, CSF1R, C5AR1, CTSS, MPEG1, C1QC, and CSF2RB. Overexpression of ITGB2 resulted in elevated expression of other interconnected genes expressed in porcine endothelial cells. Conclusion In a swine translational model of atherosclerosis, transcriptomic analysis identified ITGB2 as a central hub gene associated inflammation and early fibroatheroma development making it a potential therapeutic target at this stage of disease.
Collapse
Affiliation(s)
- Hadjer Namous
- Department of Animal and Dairy Sciences – University of Wisconsin Madison, WI, USA
| | | | - Camila Urbano Braz
- Department of Animal and Dairy Sciences – University of Wisconsin Madison, WI, USA
| | | | - Christian Krueger
- Department of Animal and Dairy Sciences – University of Wisconsin Madison, WI, USA
| | - Athanasios Peppas
- Skirball Center for Innovation, Cardiovascular Research Foundation, New York, NY, USA
| | - William C. Soffregen
- Northstar Preclinical and Pathology Services, LLC and Skirball Center for Innovation, Cardiovascular Research Foundation, New York, NY, USA
| | - Jess Reed
- Department of Animal and Dairy Sciences – University of Wisconsin Madison, WI, USA
| | - Juan F. Granada
- Skirball Center for Innovation, Cardiovascular Research Foundation, New York, NY, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences – University of Wisconsin Madison, WI, USA
| |
Collapse
|
29
|
Boutari C, Kokkorakis M, Stefanakis K, Valenzuela-Vallejo L, Axarloglou E, Volčanšek Š, Chakhtoura M, Mantzoros CS. Recent research advances in metabolism, clinical and experimental. Metabolism 2023; 149:155722. [PMID: 37931873 DOI: 10.1016/j.metabol.2023.155722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Evangelos Axarloglou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia; Medical Faculty Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States of America.
| |
Collapse
|
30
|
Bhoge PR, Raigawali R, Mardhekar S, Anand S, Kikkeri R. Synergestic interplay of uronic acid and sulfation composition of heparan sulfate on molecular recognition to activity. Carbohydr Res 2023; 532:108919. [PMID: 37557021 DOI: 10.1016/j.carres.2023.108919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India.
| |
Collapse
|
31
|
Casella B, Farmer JP, Nesheva DN, Williams HEL, Charlton SJ, Holliday ND, Laughton CA, Mistry SN. Design, Synthesis, and Application of Fluorescent Ligands Targeting the Intracellular Allosteric Binding Site of the CXC Chemokine Receptor 2. J Med Chem 2023; 66:12911-12930. [PMID: 37523859 PMCID: PMC10544029 DOI: 10.1021/acs.jmedchem.3c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/02/2023]
Abstract
The inhibition of CXC chemokine receptor 2 (CXCR2), a key inflammatory mediator, is a potential strategy in the treatment of several pulmonary diseases and cancers. The complexity of endogenous chemokine interaction with the orthosteric binding site has led to the development of CXCR2 negative allosteric modulators (NAMs) targeting an intracellular pocket near the G protein binding site. Our understanding of NAM binding and mode of action has been limited by the availability of suitable tracer ligands for competition studies, allowing direct ligand binding measurements. Here, we report the rational design, synthesis, and pharmacological evaluation of a series of fluorescent NAMs, based on navarixin (2), which display high affinity and preferential binding for CXCR2 over CXCR1. We demonstrate their application in fluorescence imaging and NanoBRET binding assays, in whole cells or membranes, capable of kinetic and equilibrium analysis of NAM binding, providing a platform to screen for alternative chemophores targeting these receptors.
Collapse
Affiliation(s)
- Bianca
Maria Casella
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - James P. Farmer
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Desislava N. Nesheva
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Huw E. L. Williams
- School
of Chemistry, University of Nottingham Biodiscovery
Institute, Nottingham NG7 2RD, UK
| | - Steven J. Charlton
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- OMass
Therapeutics Ltd., Oxford OX4 2GX, UK
| | - Nicholas D. Holliday
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Excellerate
Bioscience Ltd., Biocity, University of
Nottingham, Nottingham NG1 1GF, UK
| | - Charles A. Laughton
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - Shailesh N. Mistry
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| |
Collapse
|
32
|
Ateya A, Safhi FA, El-Emam H, Al-Ghadi MQ, Abdo M, Fericean L, Olga R, Mihaela O, Hizam MM, Mamdouh M, Abu El-Naga EM, Raslan WS. DNA Polymorphisms and mRNA Levels of Immune Biomarkers as Candidates for Inflammatory Postpartum Disorders Susceptibility in Italian Buffaloes. Vet Sci 2023; 10:573. [PMID: 37756095 PMCID: PMC10534879 DOI: 10.3390/vetsci10090573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
The immunological genes that may interact with inflammatory postpartum diseases in Italian buffaloes were examined in this study. A total number of 120 female Italian buffaloes (60 normal and 60 with inflammatory reproductive diseases) were employed. Each buffalo's jugular vein was pierced to get five milliliters of blood. To obtain whole blood and extract DNA and RNA, the blood was placed within tubes containing sodium fluoride or EDTA anticoagulants. The immunological (IKBKG, LGALS, IL1B, CCL2, RANTES, MASP2, HMGB1, and S-LZ) genes' nucleotide sequence differences between healthy buffaloes and buffaloes affected by inflammatory reproductive diseases were found by employing PCR-DNA sequencing. According to Fisher's exact test (p ˂ 0.01), there were noticeably different probabilities of all major nucleotide changes spreading among buffalo groups with and without reproductive problems. Buffaloes were significantly more likely to express the examined genes when they had inflammatory reproductive diseases. The outcomes might support the significance of these markers' nucleotide variations and gene expression patterns as indicators of the prevalence of inflammatory reproductive disorders and provide a workable buffalo management policy.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Huda El-Emam
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania; (L.F.); (O.M.)
| | - Manar M. Hizam
- College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| | - Eman M. Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt;
| | - Walaa S. Raslan
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; (M.M.); (W.S.R.)
| |
Collapse
|
33
|
Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023; 11:2526. [PMID: 37760967 PMCID: PMC10525842 DOI: 10.3390/biomedicines11092526] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes the recent knowledge of the cellular and molecular processes that occur during wound healing. However, these biological mechanisms have yet to be defined in detail; this is demonstrated by the fact that alterations of events to pathological states, such as keloids, consisting of the excessive formation of scars, have consequences yet to be defined in detail. Attention is also dedicated to new therapies proposed for these kinds of pathologies. Awareness of these scientific problems is important for experts of various disciplines who are confronted with these kinds of presentations daily.
Collapse
Affiliation(s)
- Montserrat Fernández-Guarino
- Dermatology Service, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Maria Luisa Hernández-Bule
- Bioelectromagnetic Lab, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy
| |
Collapse
|
34
|
Alluri SR, Higashi Y, Berendzen A, Grisanti LA, Watkinson LD, Singh K, Hoffman TJ, Carmack T, Devanny EA, Tanner M, Kil KE. Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for imaging of CXCR3 receptor in mouse models of atherosclerosis. EJNMMI Res 2023; 13:67. [PMID: 37438543 PMCID: PMC10338423 DOI: 10.1186/s13550-023-01017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND CXCR3 is a chemokine receptor and is expressed in innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, detection of CXCR3 by positron emission tomography (PET) radiotracer can be a useful tool for detecting the development of atherosclerosis in a noninvasive manner. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. RESULTS The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured Ki values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [18F]1 was prepared by a two-step radiosynthesis with a decay-corrected radiochemical yield of 13 ± 2%, radiochemical purity > 99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (n = 6). The baseline studies showed that [18F]1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue in Apolipoprotein E (ApoE) knockout (KO) mice fed with a high-fat diet over 12 weeks. The uptake of [18F]1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [18F]1 in the abdominal aorta of C57BL/6 control mice fed with a normal diet were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. Immunohistochemistry studies demonstrated that [18F]1-positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [18F]1, and their CXCR3 expressions were minimal. CONCLUSION [18F]1 was synthesized with good radiochemical yield and high radiochemical purity. In PET imaging studies, [18F]1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [18F]1 visualized CXCR3 expression in different regions in mice aligned with the tissue histology studies. Taken together, [18F]1 is a potential PET radiotracer for imaging CXCR3 in atherosclerosis.
Collapse
Affiliation(s)
- Santosh R Alluri
- University of Missouri Research Reactor, University of Missouri, 1513 Research Park Drive, Columbia, MO, 65211, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06519, USA
| | - Yusuke Higashi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ashley Berendzen
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Lisa D Watkinson
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Kamlendra Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Timothy J Hoffman
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Terry Carmack
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Elizabeth A Devanny
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA
| | - Miles Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, 1513 Research Park Drive, Columbia, MO, 65211, USA.
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
35
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
36
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
37
|
Fessler SN, Chang Y, Liu L, Johnston CS. Curcumin Confers Anti-Inflammatory Effects in Adults Who Recovered from COVID-19 and Were Subsequently Vaccinated: A Randomized Controlled Trial. Nutrients 2023; 15:nu15071548. [PMID: 37049389 PMCID: PMC10096702 DOI: 10.3390/nu15071548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
COVID-19 infection and vaccination offer disparate levels of defense against reinfection and breakthrough infection. This study was designed to examine the effects of curcumin supplementation, specifically HydroCurc (CURC), versus placebo (CON) on circulating inflammatory biomarkers in adults who had previously been diagnosed with COVID-19 and subsequently received a primary series of monovalent vaccine doses. This study was conducted between June 2021 and May 2022. Participants were randomized to receive CURC (500 mg) or CON capsules twice daily for four weeks. Blood sampling was completed at baseline and week-4 and analyzed for biomarkers. Linear regression was utilized to examine the between-group differences in post-trial inflammatory biomarker levels, adjusting for baseline and covariates including age, sex, race/ethnicity, and interval between COVID-19 diagnosis and trial enrollment. The sample (n = 31) was 71% female (Age 27.6 ± 10.4 y). The CURC group exhibited significantly lower post-trial concentrations of proinflammatory IL-6 (β = -0.52, 95%CI: -1.03, -0.014, p = 0.046) and MCP-1 (β = -0.12, 95%CI: -0.23, -0.015, p = 0.027) compared to CON, adjusting for baseline and covariates. Curcumin intake confers anti-inflammatory activity and may be a promising prophylactic nutraceutical strategy for COVID-19. These results suggest that 4 weeks of curcumin supplementation resulted in significantly lower concentrations of proinflammatory cytokines in adults who recovered from COVID-19 infection and were subsequently vaccinated.
Collapse
Affiliation(s)
- Samantha N Fessler
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Yung Chang
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Carol S Johnston
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
38
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Alluri SR, Higashi Y, Berendzen A, Grisanti LA, Watkinson LD, Singh K, Hoffman TJ, Carmack T, Devanny EA, Tanner M, Kil KE. Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for imaging of CXCR3 receptor in mouse models of atherosclerosis. RESEARCH SQUARE 2023:rs.3.rs-2539952. [PMID: 36865232 PMCID: PMC9980197 DOI: 10.21203/rs.3.rs-2539952/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background: CXCR3 is a chemokine receptor and is expressed on innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, the detection of CXCR3 by positron emission tomography (PET) radiotracer may be a useful tool to detect atherosclerosis development noninvasively. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18 F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. Methods: The reference standard ( S )-2-(5-chloro-6-(4-(1-(4-chloro-2-fluorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)pyridin-3-yl)-1,3,4-oxadiazole ( 1 ) and its corresponding precursor 9 were synthesized using organic syntheses. The radiotracer [ 18 F] 1 was prepared in one-pot, two-step synthesis via aromatic 18 F-substitution followed by reductive amination. Cell binding assays were conducted using 1 , [ 125 I]CXCL10, and CXCR3A- and CXCR3B-transfected human embryonic kidney (HEK) 293 cells. Dynamic PET imaging studies over 90 min were performed on C57BL/6 and apolipoprotein E (ApoE) knockout (KO) mice that were subjected to a normal and high-fat diet for 12 weeks, respectively. Blocking studies were conducted with preadministration of the hydrochloride salt of 1 (5 mg/kg) to assess the binding specificity. Time-activity curves (TACs) for [ 18 F] 1 in both mice were used to extract standard uptake values (SUVs). Biodistribution studies were performed on C57BL/6 mice, and the distribution of CXCR3 in the abdominal aorta of ApoE KO mice was assessed by immunohistochemistry (IHC). Results: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured K i values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [ 18 F] 1 was prepared with decay-corrected radiochemical yield (RCY) of 13 ± 2%, radiochemical purity (RCP) >99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (EOS) ( n =6). The baseline studies showed that [ 18 F] 1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue (BAT) in ApoE KO mice. The uptake of [ 18 F] 1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [ 18 F] 1 in the abdominal aorta of C57BL/6 mice were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. IHC studies demonstrated that [ 18 F] 1 -positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [ 18 F] 1 , and their CXCR3 expressions were minimal. Conclusion: The novel radiotracer, [ 18 F] 1 was synthesized with good RCY and high RCP. In PET imaging studies, [ 18 F] 1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [ 18 F] 1 visualized CXCR3 expression in different regions in mice is in line with the tissue histology studies. Taken together, [ 18 F] 1 is a potential PET radiotracer for the imaging of CXCR3 in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Terry Carmack
- Truman VA: Harry S Truman Memorial Veterans' Hospital
| | | | - Miles Tanner
- University of Missouri College of Veterinary Medicine
| | | |
Collapse
|
40
|
Ozato Y, Kojima Y, Kobayashi Y, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Kagawa K, Goto Y, Utou M, Fukunaga M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Niida A, Hirose H, Hayashi S, Koseki J, Oki E, Fukuchi S, Murakami K, Tobo T, Nagayama S, Uemura M, Sakamoto T, Oshima M, Doki Y, Eguchi H, Mori M, Iwasaki T, Oda Y, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell transcriptomics decipher the cellular environment containing HLA-G+ cancer cells and SPP1+ macrophages in colorectal cancer. Cell Rep 2023; 42:111929. [PMID: 36656712 DOI: 10.1016/j.celrep.2022.111929] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/31/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
The cellular interactions in the tumor microenvironment of colorectal cancer (CRC) are poorly understood, hindering patient treatment. In the current study, we investigate whether events occurring at the invasion front are of particular importance for CRC treatment strategies. To this end, we analyze CRC tissues by combining spatial transcriptomics from patients with a public single-cell transcriptomic atlas to determine cell-cell interactions at the invasion front. We show that CRC cells are localized specifically at the invasion front. These cells induce human leukocyte antigen G (HLA-G) to produce secreted phosphoprotein 1 (SPP1)+ macrophages while conferring CRC cells with anti-tumor immunity, as well as proliferative and invasive properties. Taken together, these findings highlight the signaling between CRC cell populations and stromal cell populations at the cellular level.
Collapse
Affiliation(s)
- Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Kouichi Kagawa
- Department of Gastroenterology, Shinbeppu Hospital, Beppu 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shinbeppu Hospital, Beppu 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Mituko Fukunaga
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, the Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu 879-5593, Japan
| | - Taro Tobo
- Department of Pathology, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Satoshi Nagayama
- Gastroenterological Center, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takeshi Iwasaki
- Department of Pathology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Pathology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, the Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan.
| |
Collapse
|
41
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
42
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
43
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
44
|
Li L, Konigsberg IR, Bhargava M, Liu S, MacPhail K, Mayer A, Davidson EJ, Liao SY, Lei Z, Mroz PM, Fingerlin TE, Yang IV, Maier LA. Multiomic Signatures of Chronic Beryllium Disease Bronchoalveolar Lavage Cells Relate to T-Cell Function and Innate Immunity. Am J Respir Cell Mol Biol 2022; 67:632-640. [PMID: 35972918 PMCID: PMC9743181 DOI: 10.1165/rcmb.2022-0077oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.
Collapse
Affiliation(s)
- Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
| | - Iain R. Konigsberg
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Maneesh Bhargava
- Pulmonary, Allergy, Critical Care and Sleep, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sucai Liu
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Annyce Mayer
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Department of Environmental and Occupational Health
| | - Elizabeth J. Davidson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| | - Zhe Lei
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Peggy M. Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
- Department of Biostatistics and Bioinformatics, and
| | - Ivana V. Yang
- Division of Pulmonary and Critical Care Sciences
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Lisa A. Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| |
Collapse
|
45
|
Liu N, Bauer M, Press AT. The immunological function of CXCR2 in the liver during sepsis. J Inflamm (Lond) 2022; 19:23. [DOI: 10.1186/s12950-022-00321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The chemokine receptor CXCR2 and its ligands, especially CXCL8, are crucial mediators for the progression of liver inflammation and liver failure in sepsis. Neutrophils have the highest CXCR2 expression in mice and humans, and their activation via CXCL8 facilitates their migration to the inflamed liver for the clearance of the pathogens and, in turn, the inflammation.
Main body
In sepsis, the inflammatory insult causes extensive neutrophil migration to the liver that overwhelms the immune response. To compensate for the strong receptor activation, CXCR2 desensitizes, incapacitating the immune cells to efficiently clear pathogens, causing further life-threatening liver damage and uncontrolled pathogen spread.
Conclusion
CXCR2 function during infection strongly depends on the expressing cell type. It signals pro- and anti-inflammatory effects that may prompt novel cell-type-specific CXCR2-directed therapeutics.
Collapse
|
46
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
47
|
Gao A, Wu L, Li L, Han B, Ye J. Molecular cloning, characterization and expression analysis of CXCR3a and CXCR3b from Nile tilapia (Oreochromis niloticus). JOURNAL OF FISH BIOLOGY 2022; 101:431-440. [PMID: 35542985 DOI: 10.1111/jfb.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
The CXC chemokine receptors (CXCRs) are members of the seven transmembrane (7-TM) G-protein-coupled receptor superfamily that involves innate and adaptive immune systems. In this study, CXCR3a and CXCR3b from Nile tilapia (Oreochromis niloticus) were cloned and identified, designated as OnCXCR3a and OnCXCR3b. The open reading frames of OnCXCR3a and OnCXCR3b were 1074 and 1080 bp, encoding the predicted proteins of 357 and 359 amino acids, respectively. Multiple alignment analysis of OnCXCR3a- and OnCXCR3b-deduced protein sequences with the mammalian and bird sequences indicated the presence of typical structural features of chemokine receptors, including a 7-TM domain and conserved motifs. Quantitative real-time PCR analysis revealed that OnCXCR3a and OnCXCR3b were constitutively expressed in a wide range of tissues. When stimulated with Streptococcus agalactiae, Aeromonas hydrophila, polyinosinic:polycytidylic acid and lipopolysaccharide in vivo or in vitro on leukocytes, the mRNA levels of OnCXCR3a and OnCXCR3b were significantly upregulated. Overall, these results indicated that OnCXCR3s might be involved in host immune responses in Nile tilapia.
Collapse
Affiliation(s)
- Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Lan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Biao Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| |
Collapse
|
48
|
Wang F, Huang C, Long J, Zhao ZB, Ma HQ, Yao XQ, Li L, Lian ZX. Notch signaling mutations increase intra-tumor chemokine expression and predict response to immunotherapy in colorectal cancer. BMC Cancer 2022; 22:933. [PMID: 36038820 PMCID: PMC9426242 DOI: 10.1186/s12885-022-10032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Notch signaling mutation is associated with enhanced anti-tumor immune response in colorectal cancer (CRC). In this study, we aim to investigate the underlying mechanism and the predictive potential of Notch signaling mutation for responding to immunotherapy in CRC. Methods We analyzed the immune response associated genes in CRC with Notch signaling mutation concomitant with or without microsatellite instability (MSI) using TCGA dataset and investigated the mutation profiles of the Notch signaling pathway using cBioPortal. The Notch signaling scores and immune cell infiltration scores in different groups were calculated. We applied the Kaplan–Meier method for survival analysis in CRC patients who underwent immunotherapy, and the log-rank test to determine the statistically significant differences in survival. Notch1-knock-down cell line was constructed to detect the pathway and gene variations. Results We found that Notch signaling pathway mutation was associated with activated immune response, especially in those with MSI. Such association is useful for predicting a prolonged overall survival of CRC patients who underwent immune checkpoint inhibitor treatment. The mutation resulted in the functional loss of Notch signaling and may modulate the tumor immune microenvironment by increasing the expression of chemokines that are important for recruiting immune cells. Conclusions The Notch signaling mutation can modulate the chemotaxis of immune cells by upregulating the chemokine levels of the tumor immune microenvironment, and CRC patients with Notch signaling pathway mutation have better overall survival after immune checkpoint inhibitor treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10032-5.
Collapse
Affiliation(s)
- Fei Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.,Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chuan Huang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zhi-Bin Zhao
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Hai-Qing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China. .,Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
| | - Liang Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Zhe-Xiong Lian
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
49
|
Kim M, Fisher DT, Bogner PN, Sharma U, Yu H, Skitzki JJ, Repasky EA. Manipulating adrenergic stress receptor signalling to enhance immunosuppression and prolong survival of vascularized composite tissue transplants. Clin Transl Med 2022; 12:e996. [PMID: 35994413 PMCID: PMC9394753 DOI: 10.1002/ctm2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Vascularized composite tissue allotransplantation (VCA) to replace limbs or faces damaged beyond repair is now possible. The resulting clear benefit to quality of life is a compelling reason to attempt this complex procedure. Unfortunately, the high doses of immunosuppressive drugs required to protect this type of allograft result in significant morbidity and mortality giving rise to ethical concerns about performing this surgery in patients with non-life-threatening conditions. Here we tested whether we could suppress anti-graft immune activity by using a safe β2 -adrenergic receptor (AR) agonist, terbutaline, to mimic the natural immune suppression generated by nervous system-induced signalling through AR. METHODS A heterotopic hind limb transplantation model was used with C57BL/6 (H-2b) as recipients and BALB/c (H-2d) mice as donors. To test the modulation of the immune response, graft survival was investigated after daily intraperitoneal injection of β2 -AR agonist with and without tacrolimus. Analyses of immune compositions and quantification of pro-inflammatory cytokines were performed to gauge functional immunomodulation. The contributions to allograft survival of β2 -AR signalling in donor and recipient tissue were investigated with β2 -AR-/- strains. RESULTS Treatment with the β2 -AR agonist delayed VCA rejection, even with a subtherapeutic dose of tacrolimus. β2 -AR agonist decreased T-cell infiltration into the transplanted grafts and decreased memory T-cell populations in recipient's circulation. In addition, decreased levels of inflammatory cytokines (IFN-γ, IL-6, TNF-α, CXCL-1/10 and CCL3/4/5/7) were detected following β2 -AR agonist treatment, and there was a decreased expression of ICAM-1 and vascular cell adhesion molecule-1 in donor stromal cells. CONCLUSIONS β2 -AR agonist can be used safely to mimic the natural suppression of immune responses, which occurs during adrenergic stress-signalling and thereby can be used in combination regimens to reduce the dose needed of toxic immunosuppressive drugs such as tacrolimus. This strategy can be further evaluated for feasibility in the clinic.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Daniel T. Fisher
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Paul N. Bogner
- Department of PathologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Umesh Sharma
- Department of Medicine, Division of CardiologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Han Yu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Joseph J. Skitzki
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Elizabeth A. Repasky
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
50
|
An Update on the Chemokine System in the Development of NAFLD. Medicina (B Aires) 2022; 58:medicina58060761. [PMID: 35744024 PMCID: PMC9227560 DOI: 10.3390/medicina58060761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Sustained hepatic inflammation is a key driver of the transition from simple fatty liver to nonalcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. Hepatic inflammation is orchestrated by chemokines, a family of chemoattractant cytokines that are produced by hepatocytes, Kupffer cells (liver resident macrophages), hepatic stellate cells, endothelial cells, and vascular smooth muscle cells. Over the last three decades, accumulating evidence from both clinical and experimental investigations demonstrated that chemokines and their receptors are increased in the livers of NAFLD patients and that CC chemokine ligand (CCL) 2 and CCL5 in particular play a pivotal role in inducing insulin resistance, steatosis, inflammation, and fibrosis in liver disease. Cenicriviroc (CVC), a dual antagonist of these chemokines’ receptors, CCR2 and CCR5, has been tested in clinical trials in patients with NASH-associated liver fibrosis. Additionally, recent studies revealed that other chemokines, such as CCL3, CCL25, CX3C chemokine ligand 1 (CX3CL1), CXC chemokine ligand 1 (CXCL1), and CXCL16, can also contribute to the pathogenesis of NAFLD. Here, we review recent updates on the roles of chemokines in the development of NAFLD and their blockade as a potential therapeutic approach.
Collapse
|