1
|
Chomanskis Ž, Jonkus V, Danielius T, Paulauskas T, Orvydaitė M, Melaika K, Rukšėnas O, Hendrixson V, Ročka S. Hypotensive Effect of Electric Stimulation of Caudal Ventrolateral Medulla in Freely Moving Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1046. [PMID: 37374250 DOI: 10.3390/medicina59061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: An altered sympathetic function is established in primary arterial hypertension (PAH) development. Therefore, PAH could be targeted by applying an electric current to the medulla where reflex centers for blood pressure control reside. This study aims to evaluate the electric caudal ventrolateral medulla (CVLM) stimulation effect on blood pressure and animal survivability in a freely moving rat model. Materials and Methods: A total of 20 Wistar rats aged 12-16 weeks were randomly assigned to either: the experimental group (n = 10; electrode tip implanted in CVLM region) or the control group (n = 10; tip implanted 4 mm above the CVLM in the cerebellum). After a period of recovery (4 days), an experimental phase ensued, divided into an "OFF stimulation" period (5-7 days post-surgery) and an "ON stimulation" period (8-14 days post-surgery). Results: Three animals (15%, one in the control, two in the experimental group) dropped out due to postoperative complications. Arterial pressure in the experimental group rats during the "OFF stimulation" period decreased by 8.23 mm Hg (p = 0.001) and heart rate by 26.93 beats/min (p = 0.008). Conclusions: From a physiological perspective, CVLM could be an effective deep brain stimulation (DBS) target for drug-resistant hypertension: able to influence the baroreflex arc directly, having no known direct integrative or neuroendocrine function. Targeting the baroreflex regulatory center, but not its sensory or effector parts, could lead to a more predictable effect and stability of the control system. Although targeting neural centers in the medullary region is considered dangerous and prone to complications, it could open a new vista for deep brain stimulation therapy. A possible change in electrode design would be required to apply CVLM DBS in clinical trials in the future.
Collapse
Affiliation(s)
- Žilvinas Chomanskis
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vytautas Jonkus
- Faculty of Physics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tadas Danielius
- Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tomas Paulauskas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Monika Orvydaitė
- Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | | | - Osvaldas Rukšėnas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vaiva Hendrixson
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Saulius Ročka
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| |
Collapse
|
2
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
3
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Sangsiri S, Xu H, Fernandes R, Fink GD, Lujan HL, DiCarlo SE, Galligan JJ. Spinal cord injury alters purinergic neurotransmission to mesenteric arteries in rats. Am J Physiol Heart Circ Physiol 2019; 318:H223-H237. [PMID: 31774690 DOI: 10.1152/ajpheart.00525.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complications associated with spinal cord injury (SCI) result from unregulated reflexes below the lesion level. Understanding neurotransmission distal to the SCI could improve quality of life by mitigating complications. The long-term impact of SCI on neurovascular transmission is poorly understood, but reduced sympathetic activity below the site of SCI enhances arterial neurotransmission (1). We studied sympathetic neurovascular transmission using a rat model of long-term paraplegia (T2-3) and tetraplegia (C6-7). Sixteen weeks after SCI, T2-3 and C6-7 rats had lower blood pressure (BP) than sham rats (103 ± 2 and 97 ± 4 vs. 117 ± 6 mmHg, P < 0.05). T2-3 rats had tachycardia (410 ± 6 beats/min), and C6-7 rats had bradycardia (299 ± 10 beats/min) compared with intact rats (321 ± 4 beats/min, P < 0.05). Purinergic excitatory junction potentials (EJPs) were measured in mesenteric arteries (MA) using microlectrodes, and norepinephrine (NE) release was measured using amperometry. NE release was similar in all groups, while EJP frequency-response curves from T2-3 and C6-7 rats were left-shifted vs. sham rats. EJPs in T2-3 and C6-7 rats showed facilitation followed by run-down during stimulation trains (10 Hz, 50 stimuli). MA reactivity to exogenous NE and ATP was similar in all rats. In T2-3 and C6-7 rats, NE content was increased in left cardiac ventricles compared with intact rats, but was not changed in MA, kidney, or spleen. Our data indicate that peripheral purinergic, but not adrenergic, neurotransmission increases following SCI via enhanced ATP release from periarterial nerves. Sympathetic BP support is reduced after SCI, but improving neurotransmitter release might maintain cardiovascular stability in individuals living with SCI.NEW & NOTEWORTHY This study revealed increased purinergic, but not noradrenergic, neurotransmission to mesenteric arteries in rats with spinal cord injury (SCI). An increased releasable pool of ATP in periarterial sympathetic nerves may contribute to autonomic dysreflexia following SCI, suggesting that purinergic neurotransmission may be a therapeutic target for maintaining stable blood pressure in individuals living with SCI. The selective increase in ATP release suggests that ATP and norepinephrine may be stored in separate synaptic vesicles in periarterial sympathetic varicosities.
Collapse
Affiliation(s)
- Sutheera Sangsiri
- Department of Preclinical Science, Thammasat University, Pathumthani, Thailand.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Greg D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Heidi L Lujan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
5
|
Lu J, Wang HW, Ahmad M, Keshtkar-Jahromi M, Blaustein MP, Hamlyn JM, Leenen FHH. Central and peripheral slow-pressor mechanisms contributing to Angiotensin II-salt hypertension in rats. Cardiovasc Res 2019; 114:233-246. [PMID: 29126194 DOI: 10.1093/cvr/cvx214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Aims High salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt. Methods and results In protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-β-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta. Conclusion These results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.
Collapse
Affiliation(s)
- Jiao Lu
- Brain and Heart Research Group, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| | - Marzieh Keshtkar-Jahromi
- Brain and Heart Research Group, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada.,Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore S, Baltimore, MD 21201, USA
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore S, Baltimore, MD 21201, USA.,Department of Medicine, University of Maryland School of Medicine, 655 West Baltimore S, Baltimore, MD 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore S, Baltimore, MD 21201, USA
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
6
|
Xiao B, Liu F, Lu JC, Chen F, Pei WN, Yang XC. IGF-1 deletion affects renal sympathetic nerve activity, left ventricular dysfunction, and renal function in DOCA-salt hypertensive mice. Physiol Res 2019; 68:209-217. [PMID: 30628826 DOI: 10.33549/physiolres.933918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine the influence of IGF-1 deletion on renal sympathetic nerve activity (RSNA), left ventricular dysfunction, and renal function in deoxycorticosterone acetate (DOCA)-salt hypertensive mice. The DOCA-salt hypertensive mice models were constructed and the experiment was classified into WT (Wild-type mice) +sham, LID (Liver-specific IGF-1 deficient mice) + sham, WT + DOCA, and LID+ DOCA groups. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum IGF-1 levels in mice. The plasma norepinephrine (NE), urine protein, urea nitrogen and creatinine, as well as RSNA were measured. Echocardiography was performed to assess left ventricular dysfunction, and HE staining to observe the pathological changes in renal tissue of mice. DOCA-salt induction time-dependently increased the systolic blood pressure (SBP) of mice, especially in DOCA-salt LID mice. Besides, the serum IGF-1 levels in WT mice were decreased after DOCA-salt induction. In addition, the plasma NE concentration and NE spillover, urinary protein, urea nitrogen, creatinine and RSNA were remarkably elevated with severe left ventricular dysfunction, but the creatinine clearance was reduced in DOCA-salt mice, and these similar changes were obvious in DOCA-salt mice with IGF-1 deletion. Moreover, the DOCA-salt mice had tubular ectasia, glomerular fibrosis, interstitial cell infiltration, and increased arterial wall thickness, and the DOCA-salt LID mice were more serious in those aspects. Deletion of IGF-1 may lead to enhanced RSNA in DOCA-salt hypertensive mice, thereby further aggravating left ventricular dysfunction and renal damage.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | | | | | | | | | | |
Collapse
|
7
|
Mourão AA, de Mello ABS, Dos Santos Moreira MC, Rodrigues KL, Lopes PR, Xavier CH, Gomes RM, Freiria-Oliveira AH, Blanch GT, Colombari E, Pedrino GR. Median preoptic nucleus excitatory neurotransmitters in the maintenance of hypertensive state. Brain Res Bull 2018; 142:207-215. [PMID: 29944948 DOI: 10.1016/j.brainresbull.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
The crucial role of the median preoptic nucleus (MnPO) in the maintenance of hydroelectrolytic balance and autonomic regulation have been highlighted. Recently, the participation of the MnPO in the control of sympathetic nerve activity was demonstrated in essential hypertension model. However, peculiarities on the neurochemical changes underlying the differential role of MnPO during hypertension remain to be clarified. Therefore, this study aimed to investigate the main excitatory pathways that modulate MnPO neurons in hypertensive rats. Spontaneously hypertensive rats (SHR) and rats submitted previously to the Goldblatt protocol (two kidneys; one clip; 2K1C) were used. Rats of both groups (250 to 350 g, n = 6) were anesthetized with urethane (1.2 g/kg,i.v.) and instrumented to record mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA). Nanoinjection (100 nl) of saline (NaCl, 150 mM), losartan (AT1 receptor antagonist; 10 mM) and kynurenic acid (glutamate receptor antagonist; 50 mM) into the MnPO were performed. In 2K1C rats, glutamatergic blockade promoted decreases in MAP and RSNA (-19.1 ± 0.9 mmHg, -21.6 ± 2.8%, p < 0.05) when compared to saline (-0.4 ± 0.6 mmHg, 0.2 ± 0.7%, p < 0.05). Angiotensinergic inhibition also reduced these parameters (-11.5 ± 1.2 mmHg, -10.5 ± 1.0%, p < 0.05) in 2K1C. In SHR, Kynurenic acid nanoinjections produced hypotension and sympathoinhibition (-21.0 ± 2.5 mmHg, -24.7 ± 2.4%, p < 0.05), as well losartan nanoinjections (-9.7 ± 1.2 mmHg; p < 0.05) and RSNA (-12.0 ± 2.4%, p < 0.05). These findings support the conclusion that a tonic excitatory neurotransmission exerted by angiotensin II, and mostly by glutamate in the MnPO could participate in the modulation of blood pressure and RSNA independent on whether hypertension is primarily neurogenic or is secondary to stenosis in renal artery.
Collapse
Affiliation(s)
- Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Aryanne B Soares de Mello
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Marina C Dos Santos Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Karla L Rodrigues
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Carlos H Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Rodrigo M Gomes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - André H Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Graziela T Blanch
- School of Medicine, Pharmacy and Biomedicine, Pontifical Catholic University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
8
|
|
9
|
Holbein WW, Blackburn MB, Andrade MA, Toney GM. Burst patterning of hypothalamic paraventricular nucleus-driven sympathetic nerve activity in ANG II-salt hypertension. Am J Physiol Heart Circ Physiol 2017; 314:H530-H541. [PMID: 29167122 DOI: 10.1152/ajpheart.00560.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ANG II-salt hypertension selectively increases splanchnic sympathetic nerve activity (sSNA), but the extent to which this reflects increased respiratory versus cardiac rhythmic bursting is unknown. Here, integrated sSNA was elevated in ANG II-infused rats fed a high-salt (2% NaCl) diet (ANG II-HSD) compared with vehicle-infused rats fed a normal-salt (0.4% NaCl) diet (Veh-NSD; P < 0.01). Increased sSNA was not accompanied by increased inspiratory or expiratory bursting, consistent with no group difference in central inspiratory drive. Consistent with preserved inhibitory baroreflex entrainment of elevated sSNA in ANG II-HSD rats, the time integral ( P < 0.05) and amplitude ( P < 0.01) of cardiac rhythmic sSNA were increased. Consistent with activity of hypothalamic paraventricular nucleus (PVN) neurons supporting basal SNA in ANG II-salt hypertension, inhibition of PVN with the GABA-A receptor agonist muscimol reduced mean arterial pressure (MAP) and integrated sSNA only in the ANG II-HSD group ( P < 0.001). PVN inhibition had no effect on respiratory rhythmic sSNA bursting in either group but reduced cardiac rhythmic sSNA in ANG II-HSD rats only ( P < 0.01). The latter likely reflected reduced inhibitory baroreflex entrainment subsequent to the fall of MAP. Of note is that MAP as well as integrated and rhythmic burst patterns of sSNA were similar in vehicle-infused rats whether they were fed a normal or high-salt diet. Findings indicate that PVN neurons support elevated sSNA in ANG II-HSD rats by driving a tonic component of activity without altering respiratory or cardiac rhythmic bursting. Because sSNA was unchanged in Veh-HSD rats, activation of PVN-driven tonic sSNA appears to require central actions of ANG II. NEW & NOTEWORTHY ANG II-salt hypertension is strongly neurogenic and depends on hypothalamic paraventricular nucleus (PVN)-driven splanchnic sympathetic nerve activity (sSNA). Here, respiratory and cardiac bursts of sSNA were preserved in ANG II-salt rats and unaltered by PVN inhibition, suggesting that PVN neurons drive a tonic component of sSNA rather than modulating dominant patterns of burst discharge.
Collapse
Affiliation(s)
- Walter W Holbein
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Megan B Blackburn
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
10
|
Excess Body Weight, Insulin Resistance and Isolated Systolic Hypertension: Potential Pathophysiological Links. High Blood Press Cardiovasc Prev 2017; 25:17-23. [DOI: 10.1007/s40292-017-0240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
|
11
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Bądzyńska B, Lipkowski AW, Olszyński KH, Sadowski J. Different blood pressure responses to opioids in 3 rat hypertension models: role of the baseline status of sympathetic and renin-angiotensin systems. Can J Physiol Pharmacol 2016; 94:1159-1169. [PMID: 27494747 DOI: 10.1139/cjpp-2016-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioids interact with sympathetic and renin-angiotensin systems in control of mean arterial pressure (MAP). Our earlier finding that biphalin, a synthetic enkephalin analogue, decreased MAP in anaesthetized spontaneously hypertensive rats (SHR) prompted us to further explore this action, to get new insights into pathogenesis of various forms of hypertension. Biphalin effects were studied in SHR, uninephrectomized rats on a high-salt diet (HS/UNX), and rats with angiotensin-induced hypertension (Ang-iH). Besides MAP, renal and iliac blood flows (RBF, IBF) and vascular resistances were measured. In anaesthetized and conscious SHR, biphalin (300 μg·h-1·kg-1 i.v.) decreased MAP by ∼10 and ∼20 mm Hg, respectively (P < 0.001). In anaesthetized HS/UNX and normotensive rats, MAP increased by ∼6-7 mm Hg (P < 0.02); without anaesthesia, only transient decreases occurred. MAP never changed in Ang-iH rats. Morphine (1.5 mg·h-1·kg-1 i.v.) decreased MAP in HS/UNX but only transiently so without anaesthesia; such anaesthesia dependence of response was also seen in normotensive rats. Ang-iH rats never responded to morphine. Hypotensive effect in SHR only depends primarily on the reduction by biphalin of vascular responsiveness to increased sympathetic stimulation; such increase is well documented for SHR. No MAP response to biphalin or morphine in Ang-iH could depend on angiotensin-induced alterations of the vascular wall morphology and function.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- a Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Andrzej W Lipkowski
- b Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Krzysztof H Olszyński
- a Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland.,c Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, First Faculty of Medicine, Medical University of Warsaw, 1b Banacha St., 02-097, Warsaw, Poland
| | - Janusz Sadowski
- a Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Larson RA, Gui L, Huber MJ, Chapp AD, Zhu J, LaGrange LP, Shan Z, Chen QH. Sympathoexcitation in ANG II-salt hypertension involves reduced SK channel function in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2015; 308:H1547-55. [PMID: 25862832 DOI: 10.1152/ajpheart.00832.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
Hypertension (HTN) resulting from subcutaneous infusion of ANG II and dietary high salt (HS) intake involves sympathoexcitation. Recently, we reported reduced small-conductance Ca(2+)-activated K(+) (SK) current and increased excitability of presympathetic neurons in the paraventricular nucleus (PVN) in ANG II-salt HTN. Here, we hypothesized that ANG II-salt HTN would be accompanied by altered PVN SK channel activity, which may contribute to sympathoexcitation in vivo. In anesthetized rats with normal salt (NS) intake, bilateral PVN microinjection of apamin (12.5 pmol/50 nl each), the SK channel blocker, remarkably elevated splanchnic sympathetic nerve activity (SSNA), renal sympathetic nerve activity (RSNA), and mean arterial pressure (MAP). In contrast, rats with ANG II-salt HTN demonstrated significantly attenuated SSNA, RSNA, and MAP (P < 0.05) responses to PVN-injected apamin compared with NS control rats. Next, we sought to examine the individual contributions of HS and subcutaneous infusion of ANG II on PVN SK channel function. SSNA, RSNA, and MAP responses to PVN-injected apamin in rats with HS alone were significantly attenuated compared with NS-fed rats. In contrast, sympathetic nerve activity responses to PVN-injected apamin in ANG II-treated rats were slightly attenuated with SSNA, demonstrating no statistical difference compared with NS-fed rats, whereas MAP responses to PVN-injected apamin were similar to NS-fed rats. Finally, Western blot analysis showed no statistical difference in SK1-SK3 expression in the PVN between NS and ANG II-salt HTN. We conclude that reduced SK channel function in the PVN is involved in the sympathoexcitation associated with ANG II-salt HTN. Dietary HS may play a dominant role in reducing SK channel function, thus contributing to sympathoexcitation in ANG II-salt HTN.
Collapse
Affiliation(s)
- Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Le Gui
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; and
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jianhua Zhu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; and
| | - Lila P LaGrange
- Department of Pharmaceutical Sciences, University of the Incarnate Word, Feik School of Pharmacy, San Antonio, Texas
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan;
| |
Collapse
|
15
|
Li SB, Li YF, Mao ZF, Hu HH, Ouyang SH, Wu YP, Tsoi B, Gong P, Kurihara H, He RR. Differing chemical compositions of three teas may explain their different effects on acute blood pressure in spontaneously hypertensive rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1236-1242. [PMID: 25043720 DOI: 10.1002/jsfa.6811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/21/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Heavy tea consumption is suggested to be unsuitable for hypertensive people. However, the bioactive substances in different varieties of tea leaves are very different. This study compares the effects of three Chinese teas - C. sinensis, C. ptilophylla and C. assamica var. kucha - on blood pressure (BP) and heart rate in spontaneously hypertensive rats (SHRs). RESULTS Intragastric administration of C. sinensis extract led to an acute increase in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate in SHRs. However, C. ptilophylla and C. assamica var. kucha exerted no obvious influences on SBP, DBP or heart rate. Similar to the extract of C. sinensis, intragastric administration of caffeine also led to an acute increase in BP and heart rate in SHRs. In contrast, theobromine and theacrine - purine alkaloids predominantly contained in C. ptilophylla and C. assamica var. kucha, respectively - had no pressor effects. The effect of caffeine on BP was related to the regulation of plasma epinephrine and norepinephrine levels in SHRs. CONCLUSION The different effects of C. sinensis, C. ptilophylla and C. assamica var. kucha on BP might be explained, at least partially, by the differences in the varieties and contents of purine alkaloids.
Collapse
Affiliation(s)
- Shan-Bing Li
- Pharmacy College, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Averina VA, Othmer HG, Fink GD, Osborn JW. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. J Physiol 2014; 593:3065-75. [PMID: 26173827 DOI: 10.1113/jphysiol.2014.278317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/29/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022] Open
Abstract
Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called 'renal function curve'. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII-salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the 'neurogenic model'. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII-salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the 'renal function curve', are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G-C model, but may also result from neurogenic dysfunction.
Collapse
Affiliation(s)
- Viktoria A Averina
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - John W Osborn
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Stocker SD, Monahan KD, Browning KN. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr Hypertens Rep 2014; 15:538-46. [PMID: 24052211 DOI: 10.1007/s11906-013-0385-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excess dietary salt intake is a major contributing factor to the pathogenesis of salt-sensitive hypertension. Strong evidence suggests that salt-sensitive hypertension is attributed to renal dysfunction, vascular abnormalities, and activation of the sympathetic nervous system. Indeed, sympathetic nerve transections or interruption of neurotransmission in various brain centers lowers arterial blood pressure (ABP) in many salt-sensitive models. The purpose of this article is to discuss recent evidence that supports a role of plasma or cerebrospinal fluid hypernatremia as a key mediator of sympathoexcitation and elevated ABP. Both experimental and clinical studies using time-controlled sampling have documented that a diet high in salt increases plasma and cerebrospinal fluid sodium concentration. To the extent it has been tested, acute and chronic elevations in sodium concentration activates the sympathetic nervous system in animals and humans. A further understanding of how the central nervous system detects changes in plasma or cerebrospinal fluid sodium concentration may lead to new therapeutic treatment strategies in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive H166, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
18
|
Kuroki MT, Fink GD, Osborn JW. Comparison of arterial pressure and plasma ANG II responses to three methods of subcutaneous ANG II administration. Am J Physiol Heart Circ Physiol 2014; 307:H670-9. [PMID: 24993045 DOI: 10.1152/ajpheart.00922.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiotensin II (ANG II)-induced hypertension is a commonly studied model of experimental hypertension, particularly in rodents, and is often generated by subcutaneous delivery of ANG II using Alzet osmotic minipumps chronically implanted under the skin. We have observed that, in a subset of animals subjected to this protocol, mean arterial pressure (MAP) begins to decline gradually starting the second week of ANG II infusion, resulting in a blunting of the slow pressor response and reduced final MAP. We hypothesized that this variability in the slow pressor response to ANG II was mainly due to factors unique to Alzet pumps. To test this, we compared the pressure profile and changes in plasma ANG II levels during subcutaneous ANG II administration (150 ng·kg(-1)·min(-1)) using either Alzet minipumps, iPrecio implantable pumps, or a Harvard external infusion pump. At the end of 14 days of ANG II, MAP was highest in the iPrecio group (156 ± 3 mmHg) followed by Harvard (140 ± 3 mmHg) and Alzet (122 ± 3 mmHg) groups. The rate of the slow pressor response, measured as daily increases in pressure averaged over days 2-14 of ANG II, was similar between iPrecio and Harvard groups (2.7 ± 0.4 and 2.2 ± 0.4 mmHg/day) but was significantly blunted in the Alzet group (0.4 ± 0.4 mmHg/day) due to a gradual decline in MAP in a subset of rats. We also found differences in the temporal profile of plasma ANG II between infusion groups. We conclude that the gradual decline in MAP observed in a subset of rats during ANG II infusion using Alzet pumps is mainly due to pump-dependent factors when applied in this particular context.
Collapse
Affiliation(s)
- Marcos T Kuroki
- Graduate Program in Neuroscience and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - John W Osborn
- Graduate Program in Neuroscience and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| |
Collapse
|
19
|
Osborn JW, Olson DM, Guzman P, Toney GM, Fink GD. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil. Physiol Rep 2014; 2:e00245. [PMID: 24744909 PMCID: PMC3966233 DOI: 10.1002/phy2.245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/07/2022] Open
Abstract
Hypertension induced by chronic administration of angiotensin II (AngII) is exacerbated by high‐salt intake. Previous studies have demonstrated that this salt‐sensitive component is due to increased activity of the sympathetic nervous system, suggesting an interaction of plasma AngII with sodium‐sensitive regions of the brain. This study tested the hypothesis that the salt‐sensitive component of AngII‐induced hypertension would be prevented by intracerebroventricular (ICV) administration of the sodium channel/transporter blocker benzamil. Male Sprague Dawley rats were instrumented to measure mean arterial pressure (MAP) by radio telemetry and for ICV administration of benzamil or vehicle and placed in metabolic cages for measurement of sodium and water intake and excretion. In rats consuming a high‐salt diet (2.0% NaCl) and treated with ICV vehicle, administration of AngII (150 ng/kg/min, sc) for 13 days increased MAP by ~30 mmHg. ICV administration of benzamil (16 nmol/day) had no effect during the first 5 days of AngII, but returned MAP to control levels by Day 13. There were minimal or no differences between ICV vehicle or benzamil groups in regards to sodium and water balance. A lower dose of ICV benzamil administered ICV at 8 nmol/day had no effect on the MAP response to AngII in rats on a high‐salt diet. Finally, in contrast to rats on a high‐salt diet, AngII had negligible effects on MAP in rats consuming a low‐salt diet (0.1% NaCl) and there were no differences in any variable between ICV benzamil (16 nmol/day) and ICV vehicle‐treated groups. We conclude that the salt‐sensitive component of AngII‐induced hypertension is dependent on benzamil blockable sodium channels or transporters in the brain. Chronic intracerebroventricular infusion of benzamil at 16 nmol/day attenuates AngII–salt hypertension. This effect is not observed at a dose of 8 nmol/day.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Dalay M Olson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Pilar Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Glenn M Toney
- Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Bardgett ME, Holbein WW, Herrera-Rosales M, Toney GM. Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α. Hypertension 2013; 63:527-34. [PMID: 24324037 DOI: 10.1161/hypertensionaha.113.02429] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of angiotensin II (Ang II)-dependent hypertension involves microglial activation and proinflammatory cytokine actions in the hypothalamic paraventricular nucleus (PVN). Cytokines activate receptor signaling pathways that can both acutely grade neuronal discharge and trigger long-term adaptive changes that modulate neuronal excitability through gene transcription. Here, we investigated contributions of PVN cytokines to maintenance of hypertension induced by subcutaneous infusion of Ang II (150 ng/kg per min) for 14 days in rats consuming a 2% NaCl diet. Results indicate that bilateral PVN inhibition with the GABA-A receptor agonist muscimol (100 pmol/50 nL) caused significantly greater reductions of renal and splanchnic sympathetic nerve activity (SNA) and mean arterial pressure in hypertensive than in normotensive rats (P<0.01). Thus, ongoing PVN neuronal activity seems required for support of hypertension. Next, the role of the prototypical cytokine tumor necrosis factor-α was investigated. Whereas PVN injection of tumor necrosis factor-α (0.3 pmol/50 nL) acutely increased lumbar and splanchnic SNA and mean arterial pressure, interfering with endogenous tumor necrosis factor-α by injection of etanercept (10 μg/50 nL) was without effect in hypertensive and normotensive rats. Next, we determined that although microglial activation in PVN was increased in hypertensive rats, bilateral injections of minocycline (0.5 μg/50 nL), an inhibitor of microglial activation, failed to reduce lumbar or splanchnic SNA or mean arterial pressure in hypertensive or in normotensive rats. Collectively, these findings indicate that established Ang II-salt hypertension is supported by PVN neuronal activity, but short term maintenance of SNA and arterial blood pressure does not depend on ongoing local actions of tumor necrosis factor-α.
Collapse
Affiliation(s)
- Megan E Bardgett
- Department of Physiology, MC7756, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229.
| | | | | | | |
Collapse
|
21
|
Pedrino GR, Calderon AS, Andrade MA, Cravo SL, Toney GM. Discharge of RVLM vasomotor neurons is not increased in anesthetized angiotensin II-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 305:H1781-9. [PMID: 24124187 DOI: 10.1152/ajpheart.00657.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg(-1)·min(-1) sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats (P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats (P < 0.01). Extracellular single unit recordings in HT (n = 28) and NT (n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater (P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.
Collapse
Affiliation(s)
- Gustavo R Pedrino
- Department of Physiological Science, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | |
Collapse
|
22
|
Collister JP, Olson MK, Nahey DB, Vieira AA, Osborn JW. OVLT lesion decreases basal arterial pressure and the chronic hypertensive response to AngII in rats on a high-salt diet. Physiol Rep 2013; 1:e00128. [PMID: 24303192 PMCID: PMC3841056 DOI: 10.1002/phy2.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
We have reported that lesion of the organum vasculosum of the lamina terminalis (OVLT) has no effect on basal levels of mean arterial pressure (MAP) but abolishes the hypertensive effects of angiotensin II (AngII) in rats consuming a normal-salt diet. These results suggest that the OVLT does not contribute to regulation of MAP under conditions of normal salt intake, but it is an important brain site for the hypertensive actions of AngII. The OVLT has been proposed as a major sodium sensor in the brain and the hypertensive effects of AngII are exacerbated by high-salt intake. Therefore, the objective of this study was to investigate the role of the OVLT during AngII-induced hypertension in rats fed a high-salt diet. Male Sprague-Dawley rats underwent sham (Sham; n = 9) or OVLT lesion (OVLTx; n = 8) surgery and were placed on a high-salt (2% NaCl) diet. MAP was measured by radio telemetry during three control days, 10 days of AngII infusion (10 ng/kg/min, i.v.), and a 3-day recovery period. MAP was significantly lower in OVLTx (97 ± 2 mmHg) compared to Sham (106 ± 1 mmHg) rats during the control period (P < 0.05). Moreover, the chronic pressor response to AngII was markedly attenuated in OVLTx rats. MAP increased 58 ± 3 mmHg in Sham rats by Day 10 of AngII compared to a 40 ± 7 mmHg increase in OVLTx rats (P < 0.05). We conclude that (1) the OVLT regulates the basal levels of MAP in rats consuming a high-salt and (2) the OVLT is an important brain site of action for the pathogenesis of AngII-salt hypertension in the rat. Supported by HL076312.
Collapse
Affiliation(s)
- John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota St. Paul, MN
| | | | | | | | | |
Collapse
|
23
|
Asirvatham-Jeyaraj N, King AJ, Northcott CA, Madan S, Fink GD. Cyclooxygenase-1 inhibition attenuates angiotensin II-salt hypertension and neurogenic pressor activity in the rat. Am J Physiol Heart Circ Physiol 2013; 305:H1462-70. [PMID: 24014677 DOI: 10.1152/ajpheart.00245.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclooxygenase (COX)-derived prostanoids contribute to angiotensin II (ANG II) hypertension (HTN). However, the specific mechanisms by which prostanoids act are unclear. ANG II-induced HTN is caused partly by increased sympathetic nervous system activity, especially in a setting of high dietary salt intake. This study tested the hypothesis that COX-derived prostanoids cause ANG II-salt sympathoexcitation and HTN. Experiments were conducted in conscious rats. Infusion of ANG II (150 ng·kg(-1)·min(-1) sc) caused a marked HTN in rats on 2% salt diet, but a much smaller increase in blood pressure in rats on 0.4% salt diet. The nonselective COX inhibitor ketoprofen (2 mg/kg sc) given throughout the ANG-II infusion period attenuated HTN development in rats on 2% NaCl diet, but not in rats on 0.4% NaCl diet. The acute depressor response to ganglion blockade was used to assess neurogenic pressor activity in rats on 2% NaCl diet. Ketoprofen-treated rats showed a smaller fall in arterial pressure in response to ganglion blockade during ANG-II infusion than did nontreated controls. In additional experiments, ketoprofen-treated rats exhibited smaller increases in plasma norepinephrine levels and whole body norepinephrine spillover than we previously reported in ANG II-salt HTN. Finally, the effects of the selective COX-1 inhibitor SC560 (10 mg·kg(-1)·day(-1) ip) and the selective COX-2 inhibitor nimesulide (10 mg·kg(-1)·day(-1) ip) were investigated. Treatment with SC560 but not nimesulide significantly reduced blood pressure and the depressor response to ganglion blockade in ANG II-salt HTN rats. The results suggest that COX-1 products are critical for sympathoexcitation and the full development of ANG II-salt HTN in rats.
Collapse
|
24
|
Wang Y, Chen L, Wier WG, Zhang J. Intravital Förster resonance energy transfer imaging reveals elevated [Ca2+]i and enhanced sympathetic tone in femoral arteries of angiotensin II-infused hypertensive biosensor mice. J Physiol 2013; 591:5321-36. [PMID: 23981717 DOI: 10.1113/jphysiol.2013.257808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Artery narrowing in hypertension can only result from structural remodelling of the artery, or increased smooth muscle contraction. The latter may occur with, or without, increases in [Ca(2+)]i. Here, we sought to measure, in living hypertensive mice, possible changes in artery dimensions and/or [Ca(2+)]i, and to determine some of the mechanisms involved. Ca(2+)/calmodulin biosensor (Förster resonance energy transfer-based) mice were made hypertensive by s.c. infusion of angiotensin II (Ang II, 400 ng kg(-1) min(-1), 2-3 weeks). Intravital fluorescence microscopy was used to determine [Ca(2+)]i and outer diameter of surgically exposed, intact femoral artery (FA) of anaesthetized mice. Active contractile FA 'tone' was calculated from the basal-state diameter and the passive (i.e. Ca(2+)-free) diameter (PD). Compared to saline control, FAs of Ang II-infused mice had (1) ∼21% higher active tone and (2) ∼78 nm higher smooth muscle [Ca(2+)]i, but (3) the same PDs. The local Ang II receptor (AT1R) blocker losartan had negligible effect on tone or [Ca(2+)]i in control FAs, but reduced the basal tone by ∼9% in Ang II FAs. Both i.v. hexamethonium and locally applied prazosin abolished the difference in FA tone and [Ca(2+)]i, suggesting a dominant role of sympathetic nerve activity (SNA). Changes in diameter and [Ca(2+)]i in response to locally applied phenylephrine, Ang II, arginine vasopressin, elevated [K(+)]o and acetylcholine were not altered. In summary, FAs of living Ang II hypertensive mice have higher [Ca(2+)]i, and are more constricted, due, primarily, to elevated SNA and some increased arterial AT1R activation. Evidence of altered artery reactivity or remodeling was not found.
Collapse
Affiliation(s)
- Youhua Wang
- J. Zhang: Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
25
|
Wade J, Peabody C, Tang YP, Qi L, Burnett R. Estradiol modulates neurotransmitter concentrations in the developing zebra finch song system. Brain Res 2013; 1517:87-92. [PMID: 23628476 PMCID: PMC3674499 DOI: 10.1016/j.brainres.2013.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/02/2023]
Abstract
The neural song system in zebra finches is highly sexually dimorphic; only males sing and the brain regions controlling song are far larger in males than females. Estradiol (E2) administered during development can partially masculinize both structure and function. However, additional mechanisms, including those through which E2 may act, remain unclear. Male and female zebra finches were treated with E2 or control vehicle from post-hatching days 3 through 25, at which time norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were measured in individual nuclei of the song system. Main effects of sex were not detected. However, E2 increased NE in the robust nucleus of the arcopallium (RA). In HVC (proper name), the hormone decreased 5-HT across the two sexes and increased DA in females only. These effects suggest that, while baseline levels of these neurotransmitters may not contribute to sexually dimorphic development of the song system, they could play specific roles in functions common to both sexes and/or in modification of the song system by exogenous E2.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
26
|
Averina VA, Othmer HG, Fink GD, Osborn JW. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J Physiol 2012; 590:5975-92. [PMID: 22890716 DOI: 10.1113/jphysiol.2012.228619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A conceptually novel mathematical model of neurogenic angiotensin II-salt hypertension is developed and analysed. The model consists of a lumped parameter circulatory model with two parallel vascular beds; two distinct control mechanisms for both natriuresis and arterial resistances can be implemented, resulting in four versions of the model. In contrast with the classical Guyton-Coleman model (GC model) of hypertension, in the standard version of our new model natriuresis is assumed to be independent of arterial pressure and instead driven solely by sodium intake; arterial resistances are driven by increased sympathetic nervous system activity in response to the elevated plasma angiotensin II and increased salt intake (AngII-salt). We compare the standard version of our new model against a simplified Guyton-Coleman model in which natriuresis is a function of arterial pressure via the pressure-natriuresis mechanism, and arterial resistances are controlled via the whole-body autoregulation mechanism. We show that the simplified GC model and the new model correctly predict haemodynamic and renal excretory responses to induced changes in angiotensin II and sodium inputs. Importantly, the new model reproduces the pressure-natriuresis relationship--the correlation between arterial pressure and sodium excretion--despite the assumption of pressure-independent natriuresis. These results show that our model provides a conceptually new alternative to Guyton's theory without contradicting observed haemodynamic changes or pressure-natriuresis relationships. Furthermore, the new model supports the view that hypertension need not necessarily have a renal aetiology and that long-term arterial pressure could be determined by sympathetic nervous system activity without involving the renal sympathetic nerves.
Collapse
Affiliation(s)
- Viktoria A Averina
- University of Minnesota, Department of Mathematics, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
27
|
Guild SJ, McBryde FD, Malpas SC, Barrett CJ. High Dietary Salt and Angiotensin II Chronically Increase Renal Sympathetic Nerve Activity. Hypertension 2012; 59:614-20. [DOI: 10.1161/hypertensionaha.111.180885] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sarah-Jane Guild
- From the Circulatory Control Laboratory, Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Fiona D. McBryde
- From the Circulatory Control Laboratory, Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Simon C. Malpas
- From the Circulatory Control Laboratory, Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Carolyn J. Barrett
- From the Circulatory Control Laboratory, Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Osborn JW, Hendel MD, Collister JP, Ariza-Guzman PA, Fink GD. The role of the subfornical organ in angiotensin II-salt hypertension in the rat. Exp Physiol 2012; 97:80-8. [PMID: 21967900 PMCID: PMC3253211 DOI: 10.1113/expphysiol.2011.060491] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypertension caused by chronic infusion of angiotensin II (Ang II) in experimental animals is dependent, in part, on increased activity of the sympathetic nervous system. This chronic sympathoexcitatory response is amplified by a high-salt diet, suggesting an interaction of circulating Ang II and dietary salt on sympathetic regulatory pathways in the brain. The present study tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ known to be activated by circulating Ang II, is crucial to the pathogenesis of hypertension induced by chronic Ang II administration in rats on a high-salt diet (Ang II-salt model). Rats were randomly selected to undergo either subfornical organ lesion (SFOx) or sham surgery (Sham) and then placed on a high-salt (2% NaCl) diet. One week later, rats were instrumented for radiotelemetric measurement of mean arterial pressure (MAP) and heart rate (HR) and placed in metabolic cages to measure sodium and water balance. Baseline MAP was slightly (but not statistically) lower in SFOx compared with Sham rats during the 5 day control period. During the subsequent 10 days of Ang II administration, MAP was statistically lower in SFOx rats. However, when MAP responses to Ang II were analysed by comparing the change from the 5 day baseline period, only on the fifth day of Ang II was MAP significantly different between groups. There were no differences between groups for water or sodium balance throughout the protocol. We conclude that, although the SFO is required for the complete expression of Ang II-salt hypertension in the rat, other brain sites are also involved.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Room 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
29
|
Kuroki MT, Guzman PA, Fink GD, Osborn JW. Time-dependent changes in autonomic control of splanchnic vascular resistance and heart rate in ANG II-salt hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H763-9. [PMID: 22114134 DOI: 10.1152/ajpheart.00930.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.
Collapse
Affiliation(s)
- Marcos T Kuroki
- Dept. of Integrative Biology and Physiology, 321 Church St. SE, Rm. 6-125 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
30
|
Kandlikar SS, Fink GD. Splanchnic sympathetic nerves in the development of mild DOCA-salt hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H1965-73. [PMID: 21890693 DOI: 10.1152/ajpheart.00086.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that mild deoxycorticosterone acetate (DOCA)-salt hypertension develops in the absence of generalized sympathoexcitation. However, sympathetic nervous system activity (SNA) is regionally heterogeneous, so we began to investigate the role of sympathetic nerves to specific regions. Our first study on that possibility revealed no contribution of renal nerves to hypertension development. The splanchnic sympathetic nerves are implicated in blood pressure (BP) regulation because splanchnic denervation effectively lowers BP in human hypertension. Here we tested the hypothesis that splanchnic SNA contributes to the development of mild DOCA-salt hypertension. Splanchnic denervation was achieved by celiac ganglionectomy (CGX) in one group of rats while another group underwent sham surgery (SHAM-GX). After DOCA treatment (50 mg/kg) in rats with both kidneys intact, CGX rats exhibited a significantly attenuated increase in BP compared with SHAM-GX rats (15.6 ± 2.2 vs. 25.6 ± 2.2 mmHg, day 28 after DOCA treatment). In other rats, whole body norepinephrine (NE) spillover, measured to determine if CGX attenuated hypertension development by reducing global SNA, was not found to be different between SHAM-GX and CGX rats. In a third group, nonhepatic splanchnic NE spillover was measured as an index of splanchnic SNA, but this was not different between SHAM (non-DOCA-treated) and DOCA rats during hypertension development. In a final group, CGX effectively abolished nonhepatic splanchnic NE spillover. These data suggest that an intact splanchnic innervation is necessary for mild DOCA-salt hypertension development but not increased splanchnic SNA or NE release. Increased splanchnic vascular reactivity to NE during DOCA-salt treatment is one possible explanation.
Collapse
Affiliation(s)
- Sachin S Kandlikar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
31
|
Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol 2011; 301:H654-62. [PMID: 21705676 DOI: 10.1152/ajpheart.00355.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A growing body of evidence indicates that a number of common complex diseases, including hypertension, heart failure, and obesity, are characterized by alterations in central neurocardiovascular regulation. However, our understanding of how changes within the central nervous system contribute to the development and progression of these and other diseases remains unclear. As with many areas of cardiovascular research, the mouse has emerged as a key species for investigations of neuroregulatory processes because of its amenability to highly specific genetic manipulations. In parallel with the development of increasingly sophisticated murine models has come the miniaturization and advancement in methodologies for in vivo assessment of neurocardiovascular end points in the mouse. The following brief review will focus on a number of key direct and indirect experimental approaches currently in use, including measurement of arterial blood pressure, assessment of cardiovascular autonomic control, and evaluation of arterial baroreflex function. The advantages and limitations of each methodology are highlighted to allow for a critical evaluation by the reader when considering these approaches.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA.
| | | |
Collapse
|
32
|
Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep 2011; 13:221-8. [PMID: 21298369 PMCID: PMC3076522 DOI: 10.1007/s11906-011-0188-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronically elevated plasma angiotensin II (AngII) causes a salt-sensitive form of hypertension that is associated with a differential pattern of peripheral sympathetic outflow. This "AngII-salt sympathetic signature" is characterized by a transient reduction in sympathetic nervous system activity (SNA) to the kidneys, no change in SNA to skeletal muscle, and a delayed activation of SNA to the splanchnic circulation. Studies suggest that the augmented sympathetic influence on the splanchnic vascular bed increases vascular resistance and decreases vascular capacitance, leading to hypertension via translocation of blood volume from the venous to the arterial circulation. This unique sympathetic signature is hypothesized to be generated by a balance of central excitatory inputs and differential baroreceptor inhibitory inputs to sympathetic premotor neurons in the rostral ventrolateral medulla. The relevance of these findings to human hypertension and the future development of targeted sympatholytic therapies are discussed.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
33
|
Kandlikar SS, Fink GD. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves. Am J Physiol Heart Circ Physiol 2011; 300:H1781-7. [PMID: 21357502 DOI: 10.1152/ajpheart.00972.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess sympathetic nervous system activity (SNA) is linked to human essential and experimental hypertension. To test whether sympathetic activation is associated with a model of deoxycorticosterone acetate (DOCA)-salt hypertension featuring two kidneys and a moderate elevation of blood pressure, we measured whole body norepinephrine (NE) spillover as an index of global SNA. Studies were conducted in chronically catheterized male Sprague-Dawley rats drinking water containing 1% NaCl and 0.2% KCl. After a 7-day surgical recovery and a 3-day control period, a DOCA pellet (50 mg/kg) was implanted subcutaneously in one group of rats (DOCA), while the other group underwent sham implantation (Sham). NE spillover was measured on control day 2 and days 7 and 14 after DOCA administration or sham implantation. During the control period, mean arterial pressure (MAP) was similar in Sham and DOCA rats. MAP was significantly increased in the DOCA group compared with the Sham group after DOCA administration (day 14: Sham = 109 ± 5.3, DOCA = 128 ± 3.6 mmHg). However, plasma NE concentration, clearance, and spillover were not different in the two groups at any time. To determine whether selective sympathetic activation to the kidneys contributes to hypertension development, additional studies were performed in renal denervated (RDX) and sham-denervated (Sham-DX) rats. MAP, measured by radiotelemetry, was similar in both groups during the control and DOCA treatment periods. In conclusion, global SNA is not increased during the development of mild DOCA-salt hypertension, and fully intact renal nerves are not essential for hypertension development in this model.
Collapse
Affiliation(s)
- Sachin S Kandlikar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
34
|
Saeed A, DiBona GF, Marcussen N, Guron G. High-NaCl intake impairs dynamic autoregulation of renal blood flow in ANG II-infused rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1142-9. [DOI: 10.1152/ajpregu.00326.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate dynamic autoregulation of renal blood flow (RBF) in ANG II-infused rats and the influence of high-NaCl intake. Sprague-Dawley rats received ANG II (250 ng·kg−1·min−1 sc) or saline vehicle (sham) for 14 days after which acute renal clearance experiments were performed during thiobutabarbital anesthesia. Rats ( n = 8–10 per group) were either on a normal (NNa; 0.4% NaCl)- or high (HNa; 8% NaCl)-NaCl diet. Separate groups were treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol; 1 M in drinking water). Transfer function analysis from arterial pressure to RBF in the frequency domain was used to examine the myogenic response (MR; 0.06–0.09 Hz) and the tubuloglomerular feedback mechanism (TGF; 0.03–0.06 Hz). MAP was elevated in ANG II-infused rats compared with sham groups ( P < 0.05). RBF in ANG II HNa was reduced vs. sham NNa and sham HNa (6.0 ± 0.3 vs. 7.9 ± 0.3 and 9.1 ± 0.3 ml·min−1·g kidney wt−1, P < 0.05). transfer function gain in ANG II HNa was significantly elevated in the frequency range of the MR (1.26 ± 0.50 dB, P < 0.05 vs. all other groups) and in the frequency range of the TGF (−0.02 ± 0.50 dB, P < 0.05 vs. sham NNa and sham HNa). Gain values in the frequency range of the MR and TGF were significantly reduced by tempol in ANG II-infused rats on HNa diet. In summary, the MR and TGF components of RBF autoregulation were impaired in ANG II HNa, and these abnormalities were attenuated by tempol, suggesting a pathogenetic role for superoxide in the impaired RBF autoregulatory response.
Collapse
Affiliation(s)
- Aso Saeed
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gerald F. DiBona
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Department of Veterans Affairs Medical Center and University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gregor Guron
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Johnson KB, Thompson JM, Watts SW. Modification of proteins by norepinephrine is important for vascular contraction. Front Physiol 2010; 1:131. [PMID: 21423373 PMCID: PMC3059971 DOI: 10.3389/fphys.2010.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/09/2010] [Indexed: 02/03/2023] Open
Abstract
Norepinephrine (NE) is thought to mediate its effects through G-protein coupled receptors. However, previous studies have shown that NE and another primary amine, serotonin, also have the ability to exert effects in a receptor-independent manner. We hypothesized that the enzyme transglutaminase II (TG II) has the ability to modify proteins with NE and that this modification is physiologically relevant. As our model we used rat aortic and vena cava tissues, two tissues that depend on NE to modulate vascular tone. Immunohistochemical and immunocytochemical staining showed that NE and TG II are present in smooth muscle cells of these tissues. Western analysis shows aorta and vena cava homogenate proteins are recognized by an antibody raised against NE conjugated to bovine serum albumin (NE-BSA). NE and α-actin colocalize in cultured aorta and vena cava smooth muscle cells. Freshly dissociated smooth muscle cells from these vessels were able to take up NE-biotin. In isolated tissue baths, inhibition of TG II with cystamine (0.5 mM) completely abolished NE-induced contraction in the aorta but only attenuated the receptor-independent contractant KCl (max contraction to 100 mM KCl in cystamine treated = 88.8 ± 7.0% of vehicle treated, p < 0.05). In the vena cava, contraction to NE was abolished with 0.1 mM cystamine and KCl contraction was attenuated (max contraction to 100 mM KCl in cystamine treated = 54.8 ± 7.0% of vehicle treated, p < 0.05). Taken together, these results show that vascular smooth muscle cells take up and utilize NE for the modification of proteins, and that this modification may play an important role in vascular contraction.
Collapse
Affiliation(s)
- Kyle B Johnson
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA
| | | | | |
Collapse
|
36
|
Chen QH, Andrade MA, Calderon AS, Toney GM. Hypertension induced by angiotensin II and a high salt diet involves reduced SK current and increased excitability of RVLM projecting PVN neurons. J Neurophysiol 2010; 104:2329-37. [PMID: 20719931 DOI: 10.1152/jn.01013.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although evidence indicates that activation of presympathetic paraventricular nucleus (PVN) neurons contributes to the pathogenesis of salt-sensitive hypertension, the underlying cellular mechanisms are not fully understood. Recent evidence indicates that small conductance Ca(2+)-activated K(+) (SK) channels play a significant role in regulating the excitability of a key group of sympathetic regulatory PVN neurons, those with axonal projections to the rostral ventrolateral medulla (RVLM; i.e., PVN-RVLM neurons). In the present study, rats consuming a high salt (2% NaCl) diet were made hypertensive by systemic infusion of angiotensin II (AngII), and whole cell patch-clamp recordings were made in brain slice from retrogradely labeled PVN-RVLM neurons. To determine if the amplitude of SK current was altered in neurons from hypertensive rats, voltage-clamp recordings were performed to isolate SK current. Results indicate that SK current amplitude (P < 0.05) and density (P < 0.01) were significantly smaller in the hypertensive group. To investigate the impact of this on intrinsic excitability, current-clamp recordings were performed in separate groups of PVN-RVLM neurons. Results indicate that the frequency of spikes evoked by current injection was significantly higher in the hypertensive group (P < 0.05-0.01). Whereas bath application of the SK channel blocker apamin significantly increased discharge of neurons from normotensive rats (P < 0.05-0.01), no effect was observed in the hypertensive group. In response to ramp current injections, subthreshold depolarizing input resistance was greater in the hypertensive group compared with the normotensive group (P < 0.05). Blockade of SK channels increased depolarizing input resistance in normotensive controls (P < 0.05) but had no effect in the hypertensive group. On termination of current pulses, a medium afterhyperpolarization potential (mAHP) was observed in most neurons of the normotensive group. In the hypertensive group, the mAHP was either small or absent. In the latter case, an afterdepolarization potential (ADP) was observed that was unaffected by apamin. Apamin treatment in the normotensive group blocked the mAHP and revealed an ADP resembling that seen in the hypertensive group. We conclude that diminished SK current likely underlies the absence of mAHPs in PVN-RVLM neurons from hypertensive rats. Both the ADP and greater depolarizing input resistance likely contribute to increased excitability of PVN-RVLM neurons from rats with AngII-Salt hypertension.
Collapse
Affiliation(s)
- Qing-Hui Chen
- Exercise Science, Health and Physical Education Department, Michigan Technological University, Houghton, Michigan; USA.
| | | | | | | |
Collapse
|
37
|
Stocker SD, Madden CJ, Sved AF. Excess dietary salt intake alters the excitability of central sympathetic networks. Physiol Behav 2010; 100:519-24. [PMID: 20434471 PMCID: PMC3024145 DOI: 10.1016/j.physbeh.2010.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
The ingestion of excess dietary salt (defined as NaCl) is strongly correlated with cardiovascular disease, morbidity, mortality, and is regarded as a major contributing factor to the pathogenesis of hypertension. Although several mechanisms contribute to the adverse consequences of dietary salt intake, accumulating evidence suggests that dietary salt loading produces neurogenically-mediated increases in total peripheral resistance to raise arterial blood pressure (ABP). Evidence from clinical studies and experimental models clearly establishes a hypertensive effect of dietary salt loading in a subset of individuals who are deemed "salt-sensitive". However, we will discuss and present evidence to develop a novel hypothesis to suggest that while chronic increases in dietary salt intake do not elevate mean ABP in "non-salt-sensitive" animals, dietary salt intake does enhance several sympathetic reflexes thereby predisposing these animals and/or individuals to the development of salt-sensitive hypertension. Additional evidence raises an intriguing hypothesis that these enhanced sympathetic reflexes are largely attributed to the ability of excess dietary salt intake to selectively enhance the excitability of sympathetic-regulatory neurons in the rostral ventrolateral medulla. Insight into the cellular mechanisms by which dietary salt intake alters the responsiveness of RVLM circuits will likely provide a foundation for developing new therapeutic approaches to treat salt-sensitive hypertension. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Penn State University College of Medicine, 500 University Drive H166, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
38
|
Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol 2010; 37:e58-69. [DOI: 10.1111/j.1440-1681.2009.05233.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Yoshimoto M, Miki K, Fink GD, King A, Osborn JW. Chronic angiotensin II infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension 2010; 55:644-51. [PMID: 20100996 DOI: 10.1161/hypertensionaha.109.145110] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (AngII)-induced hypertension in experimental animals has been proposed to be attributed in part to activation of the sympathetic nervous system. This sympathetic activation appears to be accentuated in animals consuming a high-salt diet (AngII-salt hypertension). However, accurate quantification of sympathetic activity is difficult, and controversy remains. It is particularly important to ask which are the critical vascular beds targeted by increased sympathetic nerve activity (SNA) in AngII-salt hypertension. To address this issue, mean arterial pressure and renal SNA or lumbar SNA were continuously recorded during a 5-day control period, 11 days of AngII (150 ng/kg per minute, SC), and a 5-day recovery period in conscious rats on a high-salt (2% NaCl) diet. Although mean arterial pressure reached a new steady-state level of 30 to 35 mm Hg above control levels by the end of the AngII period, renal SNA decreased by 40% during the first 7 days of AngII and then returned toward control levels by day 10 of AngII. In contrast, lumbar SNA remained at control levels throughout the AngII period. In another experiment we measured hindlimb norepinephrine spillover in conscious rats on normal (0.4%) or high- (2.0%) salt diets before and during 14 days of AngII administration. AngII had no significant affect on hindlimb norepinephrine spillover in either group. We conclude that chronic AngII modulates renal and lumbar SNAs differentially in rats consuming a high-salt diet and that AngII-salt hypertension in the rat is not caused by increased SNA to the renal or hindlimb vascular beds.
Collapse
Affiliation(s)
- Misa Yoshimoto
- Department of Integrative Biology and Physiology, University of Minnesota, Room 6-125 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
40
|
Osborn JW, Fink GD. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol 2010; 95:61-8. [PMID: 19717492 PMCID: PMC2856071 DOI: 10.1113/expphysiol.2008.046326] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is now well accepted that many forms of experimental hypertension and human essential hypertension are caused by increased activity of the sympathetic nervous system. However, the role of region-specific changes in sympathetic nerve activity (SNA) in the pathogenesis of hypertension has been difficult to determine because methods for chronic measurement of SNA in conscious animals have not been available. We have recently combined indirect, and continuous and chronic direct, assessment of region-specific SNA to characterize hypertension produced by administration of angiotensin II (Ang II) to rats consuming a high-salt diet (Ang II-salt hypertension). Angiotensin II increases whole-body noradrenaline (NA) spillover and depressor responses to ganglionic blockade in rats consuming a high-salt diet, but not in rats on a normal-salt diet. Despite this evidence for increased 'whole-body SNA' in Ang II-salt hypertensive rats, renal SNA is decreased in this model and renal denervation does not attenuate the steady-state level of arterial pressure. In addition, neither lumbar SNA, which largely targets skeletal muscle, nor hindlimb NA spillover is changed from control levels in Ang II-salt hypertensive rats. However, surgical denervation of the splanchnic vascular bed attenuates/abolishes the increase in arterial pressure and total peripheral resistance, as well as the decrease in vascular capacitance, observed in Ang II-salt hypertensive rats. We hypothesize that the 'sympathetic signature' of Ang II-salt hypertension is characterized by increased splanchnic SNA, no change in skeletal muscle SNA and decreased renal SNA, and this sympathetic signature creates unique haemodynamic changes capable of producing sustained hypertension.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Room 6-125 Jackson Hall, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
41
|
Enhanced responses to ganglion blockade do not reflect sympathetic nervous system contribution to angiotensin II-induced hypertension. J Hypertens 2009; 27:1838-48. [PMID: 19512943 DOI: 10.1097/hjh.0b013e32832dd0d8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We examined whether a specific increase in sympathetic nervous system (SNS) activity accounts for the enhanced depressor response to ganglion blockade in angiotensin II (AngII)-induced hypertension in rabbits or whether it reflects a general increased sensitivity of arterial pressure to vasodilatation. METHODS Rabbits were renal denervated or sham-operated and 2 weeks later AngII (50 ng/kg per min) infusion commenced. Mean arterial pressure (MAP) responses to ganglion blockade (pentolinium) and vasodilators nitroprusside and adenosine were measured 2-4 weeks later. RESULTS Basal MAP was 74 +/- 2 mmHg and maximum hypotensive responses to pentolinium, nitroprusside and adenosine were -17 +/- 2, -17 +/- 1 and -21 +/- 2 mmHg. AngII increased MAP similarly in intact and renal denervated rabbits (+25 +/- 4 mmHg and +31 +/- 4 mmHg, respectively). In intact rabbits, depressor responses to pentolinium were augmented by 75% during AngII infusion but responses to vasodilators also increased by 73-106% suggesting general augmentation of vascular reactivity rather than a specific increase in SNS neural activity. Consistent with this notion, total noradrenaline spillover was similar in normal and AngII-treated rabbits. In renal denervated rabbits, AngII enhanced depressor responses to vasodilators but not pentolinium, suggesting that sympathetic activity may be reduced by AngII hypertension when renal nerves are absent. In anaesthetized rabbits, methoxamine-induced decreases in hindlimb vascular conductance were greater in hypertensive than normotensive rabbits suggesting the presence of vascular hypertrophy of sufficient magnitude to explain increased responses to ganglion blockade and vasodilators. CONCLUSION Enhanced depressor responses to ganglion blockade in AngII hypertension do not reflect augmented SNS activity, but rather, augmented sympathetic vasoconstriction mediated by a vascular amplifier effect.
Collapse
|
42
|
Park J, Galligan JJ, Fink GD, Swain GM. Alterations in sympathetic neuroeffector transmission to mesenteric arteries but not veins in DOCA-salt hypertension. Auton Neurosci 2009; 152:11-20. [PMID: 19914150 DOI: 10.1016/j.autneu.2009.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/14/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
We studied hypertension-associated changes in prejunctional alpha(2) adrenergic receptor (alpha(2)-AR) function using amperometry to monitor in vitro norepinephrine (NE) measured as oxidation currents. Vasoconstriction was measured using video imaging. NE release was induced by electrical stimulation of sympathetic nerves associated with mesenteric arteries (MA) and veins (MV) of sham and DOCA-salt hypertensive rats. NE oxidation currents were larger in DOCA-salt compared to sham MA; there were no differences between currents in sham and DOCA-salt MV. Increases in NE oxidation currents followed a multi-exponential time course in sham MA. In DOCA-salt MA and sham and DOCA-salt MV, the time course was mono-exponential. Yohimbine (alpha(2)-AR antagonist, 1 microM), caused a mono-exponential increase in NE oxidation currents in sham and DOCA-salt MA. Yohimbine increased NE oxidation currents and constrictions more in sham compared to DOCA-salt MA and compared to MV. UK 14,304 (alpha(2)-AR agonist, 1.0 microM), reduced currents less in DOCA-salt MA and sham and DOCA-salt MV compared to sham MA. Prazosin (alpha(1)-AR antagonist, 0.1 microM) did not alter NE oxidation currents. Prazosin inhibited constrictions more in DOCA-salt compared to sham MA and almost completely blocked constrictions in sham and DOCA-salt MV. Prazosin-resistant constrictions in MA were blocked by the P2 receptor antagonist, PPADS (10 microM). Prejunctional alpha(2)-ARs modify NE concentrations near neuroeffector junctions in MA and MV. alpha(2)-AR function is most prominent in MA and is impaired in DOCA-salt MA but not MV. Purinergic transmission predominates in sham MA. NE is the dominant vasoconstrictor in DOCA-salt MA and sham and DOCA-salt MV.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Chemistry, Michigan Sate University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
43
|
McBryde FD, Malpas SC, Guild SJ, Barrett CJ. A high-salt diet does not influence renal sympathetic nerve activity: a direct telemetric investigation. Am J Physiol Regul Integr Comp Physiol 2009; 297:R396-402. [DOI: 10.1152/ajpregu.90741.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The importance of dietary salt in the development of hypertension has long been a source of controversy. Recent studies suggest a combination of high-salt and ANG II infusion may increase sympathetic drive; however, the effect of a change in dietary salt alone is unclear. Using telemetry, we recorded renal sympathetic nerve activity (RSNA), arterial pressure (MAP), and heart rate (HR) in seven New Zealand white rabbits before and during a 6-day period of increased salt intake (normal NaCl 0.5 g·kg−1·day−1, high NaCl 2.5 g·kg−1·day−1) and a second group of seven rabbits with normal salt intake throughout. The responses to stressful stimuli encountered in the laboratory were recorded and compared with rest in control and high-salt groups. Resting MAP, HR, and RSNA were not significantly altered with high salt intake [88 ± 5 vs. 91 ± 6 mmHg; 251 ± 8 vs. 244 ± 9 beats per minute (bpm); 9.7 ± and 1.2 vs. 10.8 ± 1.7 normalized units (nu)] despite significant reductions in plasma renin activity (1.88 ± 0.18 vs. 1.27 ± 0.15 nmol ANG I·l−1·h−1; P < 0.05) and ANG II (7.5 ± 1.2 vs. 4.3 ± 0.8 pmol/l). Increasing levels of stressful stimuli (resting in home cage, containment in box, handling, and nasopharyngeal activation) in animals on a normal salt diet caused graded increases in MAP (89 ± 2 mmHg, 95 ± 2 mmHg, 107 ± 4 mmHg, and 122 ± 5 mmHg, respectively) and RSNA (9.7 ± 0.9 nu; 11.8 ± 2.7 nu; 31.4 ± 3.7 nu; 100 nu) but not HR (245 ± 8 bpm; 234 ± 8 bpm; 262 ± 9 bpm; 36 ± 5 bpm). High dietary salt did not significantly alter the responses to stress. We conclude that a 6-day period of high salt intake does not alter the level of RSNA, with non-neural mechanisms primarily responsible for the observed renin-angiotensin system suppression.
Collapse
|
44
|
Fink GD. Arthur C. Corcoran Memorial Lecture. Sympathetic activity, vascular capacitance, and long-term regulation of arterial pressure. Hypertension 2009; 53:307-12. [PMID: 19114645 PMCID: PMC2685147 DOI: 10.1161/hypertensionaha.108.119990] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 12/01/2008] [Indexed: 11/16/2022]
Affiliation(s)
- Gregory D Fink
- Department of Pharmacology and Toxicology, B440 Life Sciences Building, Michigan State University, East Lansing, MI 48824-1317, USA.
| |
Collapse
|