1
|
Vasilopoulou F, Escolano C, Pallàs M, Griñán-Ferré C. Microarray Analysis Revealed Inflammatory Transcriptomic Changes after LSL60101 Treatment in 5XFAD Mice Model. Genes (Basel) 2021; 12:1315. [PMID: 34573297 PMCID: PMC8468036 DOI: 10.3390/genes12091315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
I2-IR have been found dysregulated in patients with neurodegenerative diseases, such as Alzheimer's disease (AD), in which the importance of neuroinflammation in the establishment and maintenance of cognitive decline is well-documented. To research the implication of I2-IR in neuroinflammatory pathways altered in AD, we determined the expression profile of genes associated with inflammation in the 5XFAD model treated with LSL60101, a well-established I2-IR ligand. Thus, we performed a qPCR array containing 84 inflammation-related genes. Hierarchical clustering analysis revealed three gene clusters, suggesting that treatment with LSL60101 affects the gene expression associated with inflammation in the 5XFAD model. Furthermore, we evaluated the functions of the three clusters; thereby performing a pathway enrichment analysis using the GO database. As we expected, clusters 2 and 3 showed alterations in the inflammatory response, chemotaxis and the chemokine-mediated signaling pathway, among others. To validate previous results from the gene profiling analysis, the expression levels of a representative subset of mRNAs were selected according to the intensity of the observed changes and their biological relevance. Interestingly, changes induced by LSL60101 in the 5XFAD model were validated for several genes. These results suggest that treatment with LSL60101 in the 5XFAD model reverses the inflammatory process during the development of AD.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| |
Collapse
|
2
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Holstein GR, Friedrich VL, Martinelli GP. Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 2016; 234:2747-60. [PMID: 27411812 DOI: 10.1007/s00221-016-4725-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Victor L Friedrich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
4
|
Nassar NN, Abdel-Rahman AA. Brain stem adenosine receptors modulate centrally mediated hypotensive responses in conscious rats: A review. J Adv Res 2014; 6:331-40. [PMID: 26257930 PMCID: PMC4522583 DOI: 10.1016/j.jare.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or at central level in experimental animals. However, there are no dedicated reviews on the involvement of adenosine in mediating the hypotensive response of centrally administered clonidine in general and specifically in aortically barodenervated rats (ABD). The conscious ABD rat model exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, compared with conscious sham-operated (SO) rats. The current review focuses on, the role of adenosine receptors in blood pressure (BP) regulation and their possible crosstalk with other receptors e.g. imidazoline (I1) and alpha (α2A) adrenergic receptor (AR). The former receptor is a molecular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors is regulated by baroreceptors and how such balance influences the centrally mediated hypotensive responses. The use of the ABD rat model yielded insight into the downstream signaling cascades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.
Collapse
Key Words
- 8-SPT, 8-(p-sulfophenyl)-theophylline. Non-selective adenosine receptor blocker
- A1, adenosine subtype A1 receptor
- A2A, adenosine subtype A2A receptor
- ABC, avidin biotin complex
- ABD rat, aortic barodenervated rat
- ATP, adenosine triphosphate
- BP, blood pressure
- CGS21680, 2-[4-[(2-carboxyethyl)phenyl]ethylaminophenyl]ethylamino]-5′-N-ethylcarboxamidoadenosine. Selective A2A receptor agonist
- CNS, central nervous system
- CPA, N6-cyclopentyladenosine. Selective A1 receptor agonist
- Central adenosine receptors
- Centrally mediated hypotension
- Clonidine
- Conscious rats
- DAG, diacylglycerol
- DPCPX, 8-cyclopentyl-1,3-dipropylxanthine. Selective A1 receptor antagonist
- ERK1/2, extracellular signal regulated kinase
- I.C., intracisternal
- I.V., intravenous
- I1, imidazoline subtype 1 receptor
- IP3, Inositol Triphosphate
- Imidazoline I1-receptor
- JNK, C-Jun N-terminal kinase
- L-NAME, Nω-nitro-l-arginine methyl ester hydrochloride. Non-selective nitric oxide synthase inhibitor
- MAPK-NOS signaling
- NO, nitric oxide
- NOS, nitric oxide synthase
- NTS, nucleus tractus solitarius
- PC-PLC, phosphatidyl choline-selective phospholipase C
- PC12 cells, pheochromocytoma cells
- PD98059, selective extracellular signal regulated kinase inhibitor
- PDE, phosphodiesterase
- PKA, protein kinase A
- RVLM, rostral ventrolateral medulla
- SAPK, stress activated protein kinase
- SCH58261, 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-[Formula: see text]]-1,2,4-triazolo[1,5-c]pyrimidine. Selective adenosine A2A antagonist
- SHR, spontaneously hypertensive rat
- SND, sympathetic neuronal discharge
- SO, sham operated = conscious normotensive rats
- WKY, Wistar Kyoto rat
- cAMP, cyclic adenosine monophosphate
- α2 AR, alpha 2 adrenergic receptor
- αMNE, alpha methyl norepinephrine
Collapse
Affiliation(s)
- Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, NC, USA
| |
Collapse
|
5
|
Bott-Flügel L, Bernshausen A, Schneider H, Luppa P, Zimmermann K, Albrecht-Küpper B, Kast R, Laugwitz KL, Ehmke H, Knorr A, Seyfarth M. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PLoS One 2011; 6:e18048. [PMID: 21464936 PMCID: PMC3065468 DOI: 10.1371/journal.pone.0018048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/23/2011] [Indexed: 11/24/2022] Open
Abstract
The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10(-8) M (30 µg/l), 6 · 10(-7) M (300 µg/l) or 2-chloro-N(6)-cyclopentyladenosine (CCPA) 10(-6) M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1 = 0.90 ± 0.08 with capadenoson 6 · 10(-8) M, 0.54 ± 0.02 with 6 · 10(-7) M), but not in Wistar hearts (S2/S1 = 1.05 ± 0.12 with 6 · 10(-8) M, 1.03 ± 0.09 with 6 · 10(-7) M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35)S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1)-receptor stimulation). These results suggest that partial adenosine A(1)-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.
Collapse
Affiliation(s)
- Lorenz Bott-Flügel
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Alexandra Bernshausen
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heike Schneider
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Peter Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Katja Zimmermann
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | | | - Raimund Kast
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Karl-Ludwig Laugwitz
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heimo Ehmke
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Knorr
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Melchior Seyfarth
- Medizinische Klinik 3, HELIOS Klinikum Wuppertal and Lehrstuhl für Kardiologie, Universität Witten/Herdecke, Witten, Germany
| |
Collapse
|
6
|
Bozdagi O, Wang XB, Martinelli GP, Prell G, Friedrich VL, Huntley GW, Holstein GR. Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of imidazoline receptors. J Neurophysiol 2011; 105:1266-75. [PMID: 21228308 PMCID: PMC3074409 DOI: 10.1152/jn.00263.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022] Open
Abstract
Imidazole-4-acetic acid-ribotide (IAA-RP), an endogenous agonist at imidazoline receptors (I-Rs), is a putative neurotransmitter/regulator in mammalian brain. We studied the effects of IAA-RP on excitatory transmission by performing extracellular and whole cell recordings at Schaffer collateral-CA1 synapses in rat hippocampal slices. Bath-applied IAA-RP induced a concentration-dependent depression of synaptic transmission that, after washout, returned to baseline within 20 min. Maximal decrease occurred with 10 μM IAA-RP, which reduced the slope of field extracellular postsynaptic potentials (fEPSPs) to 51.2 ± 5.7% of baseline at 20 min of exposure. Imidazole-4-acetic acid-riboside (IAA-R; 10 μM), the endogenous dephosphorylated metabolite of IAA-RP, also produced inhibition of fEPSPs. This effect was smaller than that produced by IAA-RP (to 65.9 ± 3.8% of baseline) and occurred after a further 5- to 8-min delay. The frequency, but not the amplitude, of miniature excitatory postsynaptic currents was decreased, and paired-pulse facilitation (PPF) was increased after application of IAA-RP, suggesting a principally presynaptic site of action. Since IAA-RP also has low affinity for α(2)-adrenergic receptors (α(2)-ARs), we tested synaptic depression induced by IAA-RP in the presence of α(2)-ARs, I(1)-R, or I(3)-R antagonists. The α(2)-AR antagonist rauwolscine (100 nM), which blocked the actions of the α(2)-AR agonist clonidine, did not affect either the IAA-RP-induced synaptic depression or the increase in PPF. In contrast, efaroxan (50 μM), a mixed I(1)-R and α(2)-AR antagonist, abolished the synaptic depression induced by IAA-RP and abolished the related increase in PPF. KU-14R, an I(3)-R antagonist, partially attenuated responses to IAA-RP. Taken together, these data support a role for IAA-RP in modulating synaptic transmission in the hippocampus through activation of I-Rs.
Collapse
Affiliation(s)
- O Bozdagi
- Department of Neurology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Chung S, Ahn DS, Kim YH, Kim YS, Joeng JH, Nam TS. Modulation of N-type calcium currents by presynaptic imidazoline receptor activation in rat superior cervical ganglion neurons. Exp Physiol 2010; 95:982-93. [PMID: 20696781 DOI: 10.1113/expphysiol.2010.053355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presynaptic imidazoline receptors (R(i-pre)) are found in the sympathetic axon terminals of animal and human cardiovascular systems, and they regulate blood pressure by modulating the release of peripheral noradrenaline (NA). The cellular mechanism of R(i-pre)-induced inhibition of NA release is unknown. We, therefore, investigated the effect of R(i-pre) activation on voltage-dependent Ca(2+) channels in rat superior cervical ganglion (SCG) neurons, using the conventional whole-cell patch-clamp method. Cirazoline (30 μM), an R(i-pre) agonist as well as an α-adrenoceptor (R(α)) agonist, decreased Ca(2+) currents (I(Ca)) by about 50% in a voltage-dependent manner with prepulse facilitation. In the presence of low-dose rauwolscine (3 μM), which blocks the α(2)-adrenoceptor (R(α2)), cirazoline still inhibited I(Ca) by about 30%, but prepulse facilitation was significantly attenuated. This inhibitory action of cirazoline was almost completely prevented by high-dose rauwolscine (30 μM), which blocks R(i-pre) as well as R(α2). In addition, pretreatment with LY320135 (10 μM), another R(i-pre) antagonist, in combination with low-dose rauwolscine (3 μM), also blocked the R(α2)-resistant effect of cirazoline. Addition of guanosine-5-O-(2-thiodiphosphate) (2 mm) to the internal solutions significantly attenuated the action of cirazoline. However, pertussis toxin (500 ng ml(1)) did not significantly influence the inhibitory effect of cirazoline. Moreover, cirazoline (30 μM) suppressed M current in SCG neurons cultured overnight. Finally, omega-conotoxin (omega-CgTx) GVIA (1 μM) obstructed cirazoline-induced current inhibition, and cirazoline (30 μM) significantly decreased the frequency of action potential firing in a partly reversible manner. This cirazoline-induced inhibition of action potential firing was almost completely occluded in the presence of omega-CgTx. Taken together, our results suggest that activation of R(i-pre) in SCG neurons reduced N-type I(Ca) in a pertussis toxin- and voltage-insensitive pathway, and this inhibition attenuated repetitive action potential firing in SCG neurons.
Collapse
Affiliation(s)
- Seungsoo Chung
- Brain Korea 21 Project for Medical Science, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Abdel-Rahman AA. Inhibition of nischarin expression attenuates rilmenidine-evoked hypotension and phosphorylated extracellular signal-regulated kinase 1/2 production in the rostral ventrolateral medulla of rats. J Pharmacol Exp Ther 2008; 324:72-8. [PMID: 17940198 PMCID: PMC2704025 DOI: 10.1124/jpet.107.129049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imidazoline (I(1))-evoked hypotension is linked to enhanced phosphorylated extracellular signal-regulated kinase (pERK)1/2 production in the rostral ventrolateral medulla (RVLM). Recent cell culture findings suggest that nischarin is a candidate for the I(1) receptor. In the present study, nischarin antisense oligodeoxynucleotide (ODN) (AS1 or AS2), designed according to nischarin cDNA sequence, was administered intracisternally (i.c., 2 nmol/rat for 2 days) to knockdown central nischarin expression; control rats received the corresponding mismatched ODN (MM1 or MM2) or artificial cerebrospinal fluid (aCSF). We investigated the effects of AS1 or AS2 on nischarin expression in the RVLM, and on the hypotension and RVLM pERK1/2 production elicited by the I(1)-selective agonist rilmenidine (25 mug/rat i.c.). Compared with aCSF, the mismatched ODN (MM1 or MM2) had no significant effect on RVLM nischarin expression or the cardiovascular and cellular (RVLM pERK1/2) responses elicited by rilmenidine. However, either antisense ODN substantially (>80%) reduced nischarin expression in the RVLM (AS1/MM1, 3 +/- 1 versus 32 +/- 2 positive cells; AS2/MM2, 4 +/- 1 versus 31 +/- 2 positive cells) and abrogated rilmenidine (I(1))-evoked hypotension (AS1/MM1, -4.1 +/- 0.9 versus -10.8 +/- 1.9 mm Hg; AS2/MM2, -2.1 +/- 1.1 versus -15.3 +/- 2.5 mm Hg) and ERK1/2 activation in the RVLM (AS1/MM1, 10 +/- 1 versus 15 +/- 2 positive cells; AS2/MM2, 9 +/- 1 versus 18 +/- 2 positive cells). Finally, pERK1/2 generated by central I(1) receptor activation is colocalized with nischarin in the RVLM neurons. This is the first evidence in vivo that nischarin plays a critical role in I(1) receptor-mediated pERK1/2 production in the RVLM and the subsequent hypotension.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
9
|
Wilson CG, Akhter S, Mayer CA, Kc P, Balan KV, Ernsberger P, Haxhiu MA. Allergic lung inflammation affects central noradrenergic control of cholinergic outflow to the airways in ferrets. J Appl Physiol (1985) 2007; 103:2095-104. [PMID: 17872402 DOI: 10.1152/japplphysiol.01182.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain stem noradrenergic cell groups mediating autonomic responses to stress project to airway-related vagal preganglionic neurons (AVPNs). In ferrets, their activation produces withdrawal of cholinergic outflow to the airways via release of norepinephrine and activation of alpha(2A)-adrenergic receptors (alpha(2A)-AR) expressed by AVPNs. In these studies, we examined the effects of allergen exposure of the airway (AE) with ovalbumin on noradrenergic transmission regulating the activity of AVPNs and, consequently, airway smooth muscle tone. Experiments were performed in vehicle control (Con) and AE ferrets. Microperfusion of an alpha(2A)-AR agonist (guanabenz) in close proximity to AVPNs elicited more pronounced effects in Con than AE ferrets, including a decrease in unit activity and reflexly evoked responses of putative AVPN neurons with a corresponding decrease in cholinergic outflow to the airways. Although no differences were found in the extent of noradrenergic innervation of the AVPNs, RT-PCR and Western blot studies demonstrated that AE and repeated exposure to antigen significantly reduced expression of alpha(2A)-ARs at message and protein levels. These findings indicate that, in an animal model of allergic asthma, sensitization and repeated challenges with a specific allergen diminish central inhibitory noradrenergic modulation of AVPNs, possibly via downregulation of alpha(2A)-AR expression by these neurons.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tanabe M, Kino Y, Honda M, Ono H. Presynaptic I1-imidazoline receptors reduce GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 2006; 26:1795-802. [PMID: 16467528 PMCID: PMC6793622 DOI: 10.1523/jneurosci.4642-05.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Imidazoline receptors are expressed widely in the CNS. In the present study, whole-cell patch-clamp recordings were made from medium spiny neurons in dorsal striatum slices from the rat brain, and the roles of I1-imidazoline receptors in the modulation of synaptic transmission were studied. Moxonidine, an I1-imidazoline receptor agonist, decreased the GABAA receptor-mediated IPSCs in a concentration-dependent manner. However, glutamate-mediated EPSCs were hardly affected. The depression of IPSCs by moxonidine was antagonized by either idazoxan or efaroxan, which are both imidazoline receptor antagonists containing an imidazoline moiety. In contrast, yohimbine and SKF86466 (6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine), which are alpha2-adrenergic receptor antagonists with no affinity for imidazoline receptors, did not affect the moxonidine-induced inhibition of IPSCs. Moxonidine increased the paired-pulse ratio and reduced the frequency of miniature IPSCs without affecting their amplitude, indicating that this agent inhibits IPSCs via presynaptic mechanisms. Moreover, the sulfhydryl alkylating agent N-ethylmaleimide (NEM) significantly reduced the moxonidine-induced inhibition of IPSCs. Thus, the activation of presynaptic I1-imidazoline receptors decreases GABA-mediated inhibition of medium spiny neurons in the striatum, in which NEM-sensitive proteins such as G(i/o)-type G-proteins play an essential role. The adenylate cyclase activator forskolin partly opposed IPSC inhibition elicited by subsequently applied moxonidine. Furthermore, the protein kinase C (PKC) activator phorbol 12,13-dibutyrate attenuated and the PKC inhibitor chelerythrine potentiated the moxonidine-induced inhibition of IPSCs. These results suggest that IPSC inhibition via presynaptic I1-imidazoline receptors involves intracellular adenylate cyclase activity and is influenced by static PKC activity in the striatum.
Collapse
Affiliation(s)
- Mitsuo Tanabe
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | | | | | | |
Collapse
|
11
|
Prell GD, Martinelli GP, Holstein GR, Matulić-Adamić J, Watanabe KA, Chan SLF, Morgan NG, Haxhiu MA, Ernsberger P. Imidazoleacetic acid-ribotide: an endogenous ligand that stimulates imidazol(in)e receptors. Proc Natl Acad Sci U S A 2004; 101:13677-82. [PMID: 15365189 PMCID: PMC518812 DOI: 10.1073/pnas.0404846101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 11/18/2022] Open
Abstract
We identified the previously unknown structures of ribosylated imidazoleacetic acids in rat, bovine, and human tissues to be imidazole-4-acetic acid-ribotide (IAA-RP) and its metabolite, imidazole-4-acetic acid-riboside. We also found that IAA-RP has physicochemical properties similar to those of an unidentified substance(s) extracted from mammalian tissues that interacts with imidazol(in)e receptors (I-Rs). ["Imidazoline," by consensus (International Union of Pharmacology), includes imidazole, imidazoline, and related compounds. We demonstrate that the imidazole IAA-RP acts at I-Rs, and because few (if any) imidazolines exist in vivo, we have adopted the term "imidazol(in)e-Rs."] The latter regulate multiple functions in the CNS and periphery. We now show that IAA-RP (i) is present in brain and tissue extracts that exhibit I-R activity; (ii) is present in neurons of brainstem areas, including the rostroventrolateral medulla, a region where drugs active at I-Rs are known to modulate blood pressure; (iii) is present within synaptosome-enriched fractions of brain where its release is Ca(2+)-dependent, consistent with transmitter function; (iv) produces I-R-linked effects in vitro (e.g., arachidonic acid and insulin release) that are blocked by relevant antagonists; and (v) produces hypertension when microinjected into the rostroventrolateral medulla. Our data also suggest that IAA-RP may interact with a novel imidazol(in)e-like receptor at this site. We propose that IAA-RP is a neuroregulator acting via I-Rs.
Collapse
Affiliation(s)
- George D Prell
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moreira TS, Takakura ACT, Menani JV, Sato MA, Colombari E. Central blockade of nitric oxide synthesis reduces moxonidine-induced hypotension. Br J Pharmacol 2004; 142:765-71. [PMID: 15172964 PMCID: PMC1575058 DOI: 10.1038/sj.bjp.0705853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure. 2. In the present study, we investigated the effects of pretreatment with l-NAME (NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats. 3. Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta. 4. Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances. 5. Pretreatment with l-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm). 6. The results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats.
Collapse
Affiliation(s)
- Thiago Santos Moreira
- Department of Physiology, Universidade Federal de Sao Paulo - Escola Paulista de Medicina, 04023-060, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
13
|
Yamazato M, Sakima A, Nakazato J, Sesoko S, Muratani H, Fukiyama K. Hypotensive and sedative effects of clonidine injected into the rostral ventrolateral medulla of conscious rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1868-76. [PMID: 11705772 DOI: 10.1152/ajpregu.2001.281.6.r1868] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of clonidine injected unilaterally into the rostral ventrolateral medulla (RVLM) of conscious, unrestrained rats. We also examined whether the local alpha(2)-adrenoceptor mechanism contributed to the action of clonidine injected into the RVLM. Injection of clonidine but not vehicle solution significantly decreased the mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) in conscious, unrestrained rats as well as in propofol-anesthetized rats. The frequency of natural behavior was significantly lower after clonidine injection than after vehicle injection. The depressor and sympathoinhibitory responses were significantly larger in the propofol-anesthetized rats than in the conscious rats. Coinjection of a selective alpha(2)-adrenoceptor antagonist, 2-methoxyidazoxan, with clonidine into the RVLM significantly attenuated the depressor, bradycardiac, sympathoinhibitory, and sedative effects of clonidine injected alone. In conclusion, clonidine injected into the RVLM decreased MAP, HR, and RSNA and caused sedation in conscious, unrestrained rats. The action of clonidine in the RVLM was at least partly mediated by alpha(2)-adrenoceptor mechanisms.
Collapse
Affiliation(s)
- M Yamazato
- Third Department of Internal Medicine, University of the Ryukyus School of Medicine, 207 Uehara, Okinawa 903-0215, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Szabo B, Fritz T, Wedzony K. Effects of imidazoline antihypertensive drugs on sympathetic tone and noradrenaline release in the prefrontal cortex. Br J Pharmacol 2001; 134:295-304. [PMID: 11564647 PMCID: PMC1572948 DOI: 10.1038/sj.bjp.0704237] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of the present study was to compare the effects of the centrally acting antihypertensive drugs rilmenidine, moxonidine, clonidine and guanabenz on sympathetic tone with their effects on noradrenaline release in the cerebral cortex. In particular, the hypothesis was tested that rilmenidine and moxonidine, due to their high affinity for sympatho-inhibitory imidazoline I(1) receptors and low affinity for alpha(2)-adrenoceptors, lower sympathetic tone without causing an alpha(2)-adrenoceptor-mediated inhibition of cerebrocortical noradrenaline release. 2. In rats anaesthetized with urethane, blood pressure and heart rate were measured and the concentration of noradrenaline in arterial blood plasma was determined. The release of noradrenaline in the medial prefrontal cortex was estimated by microdialysis. Intravenous administration of rilmenidine (30, 100, 300 and 1000 microg kg(-1)), moxonidine (10, 30, 100 and 300 microg kg(-1)), clonidine (1, 3, 10 and 30 microg kg(-1)) and guanabenz (1, 3, 10 and 30 microg kg(-1)) led to dose-dependent hypotension and bradycardia; the plasma noradrenaline concentration also decreased. After the two highest doses, all four drugs lowered noradrenaline release in the prefrontal cortex. At doses eliciting equal hypotensive and sympatho-inhibitory responses, rilmenidine and moxonidine inhibited cerebral cortical noradrenaline release at least as much as clonidine and guanabenz. 3. The results show that rilmenidine and moxonidine lower cerebrocortical noradrenaline release at doses similar to those which cause sympatho-inhibition. This effect was probably due to an alpha(2)-adrenoceptor-mediated inhibition of the firing of locus coeruleus neurons and, in addition, to presynaptic inhibition of noradrenaline release at the level of the axon terminals in the cortex. The results argue against the hypothesis that rilmenidine and moxonidine, due to their selectivity for sympatho-inhibitory I(1) imidazoline receptors, do not suppress noradrenergic neurons in the central nervous system.
Collapse
Affiliation(s)
- B Szabo
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwigs University, Hermann-Herder-Strasse 5, D-79104 Freiburg i. Br., Germany.
| | | | | |
Collapse
|
15
|
Bruban V, Feldman J, Greney H, Dontenwill M, Schann S, Jarry C, Payard M, Boutin J, Scalbert E, Pfeiffer B, Renard P, Vanhoutte P, Bousquet P. Respective contributions of alpha-adrenergic and non-adrenergic mechanisms in the hypotensive effect of imidazoline-like drugs. Br J Pharmacol 2001; 133:261-6. [PMID: 11350862 PMCID: PMC1572786 DOI: 10.1038/sj.bjp.0704080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The hypotensive effect of imidazoline-like drugs, such as clonidine, was first attributed to the exclusive stimulation of central alpha2-adrenoceptors (alpha2ARs). However, a body of evidence suggests that non-adrenergic mechanisms may also account for this hypotension. This work aims (i) to check whether imidazoline-like drugs with no alpha2-adrenergic agonist activity may alter blood pressure (BP) and (ii) to seek a possible interaction between such a drug and an alpha2ARs agonist alpha-methylnoradrenaline (alpha-MNA). We selected S23515 and S23757, two imidazoline-like drugs with negligible affinities and activities at alpha2ARs but with high affinities for non-adrenergic imidazoline binding sites (IBS). S23515 decreased BP dose-dependently (-27+/-5% maximal effect) when administered intracisternally (i.c.) to anaesthetized rabbits. The hypotension induced by S23515 (100 microg kg(-1) i.c.) was prevented by S23757 (1 mg kg(-1) i.c.) and efaroxan (10 microg kg(-1) i.c.), while these compounds, devoid of haemodynamic action by themselves, did not alter the hypotensive effect of alpha-MNA (3 and 30 microg kg(-1) i.c.). Moreover, the alpha2ARs antagonist rauwolscine (3 microg kg(-1) i.c.) did not prevent the effect of S23515. Finally, whilst 3 microg kg(-1) of S23515 or 0.5 microg kg(-1) of alpha-MNA had weak hypotensive effects, the sequential i.c. administration of these two drugs induced a marked hypotension (-23+/-2%). These results indicate that an imidazoline-like drug with no alpha2-adrenergic properties lowers BP and interacts synergistically with an alpha(ARs agonist.
Collapse
Affiliation(s)
- Véronique Bruban
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
| | - Josiane Feldman
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
| | - Hugues Greney
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
| | - Monique Dontenwill
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
| | - Stephan Schann
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
| | - Christian Jarry
- Laboratoire de Chimie Physique, Faculté des Sciences Pharmaceutiques, Université Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux cedex, France
| | - Marc Payard
- Laboratoire de Chimie Pharmaceutique, Faculté de Pharmacie, 35 chemin des Maraîchers, 31400 Toulouse, France
| | - Jean Boutin
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie cedex, France
| | - Elizabeth Scalbert
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie cedex, France
| | - Bruno Pfeiffer
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie cedex, France
| | - Pierre Renard
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie cedex, France
| | - Paul Vanhoutte
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie cedex, France
| | - Pascal Bousquet
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67000 Strasbourg, France
- Author for correspondence:
| |
Collapse
|
16
|
Prichard BN, Graham BR. I1 imidazoline agonists. General clinical pharmacology of imidazoline receptors: implications for the treatment of the elderly. Drugs Aging 2000; 17:133-59. [PMID: 10984201 DOI: 10.2165/00002512-200017020-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In recent years evidence has accumulated for the existence of central imidazoline (I1) receptors that influence blood pressure. While there is some controversy, it has been suggested that clonidine exerts its blood pressure-lowering effect mainly by activation of imidazoline I1 receptors in the rostral ventrolateral medulla, while its sedative effect is mediated by activation of central alpha2-receptors. Moxonidine and rilmenidine are 2 imidazoline compounds with 30-fold greater specificity for I1 receptors than for alpha2-receptors. In comparison, clonidine displays a 4-fold specificity for I1 receptors compared with alpha2 receptors. Moxonidine and rilmenidine lower blood pressure by reducing peripheral resistance. They reduce circulating catecholamine levels and moxonidine reportedly reduces sympathetic nerve activity in patients with hypertension. Moxonidine and rilmenidine modestly reduce elevated blood glucose levels and moxonidine has been reported to reduce insulin resistance in hypertensive patients with raised insulin resistance. Small reductions in plasma levels of total cholesterol, low density lipoprotein-cholesterol and triglycerides have been reported with rilmenidine. Both moxonidine and rilmenidine are well absorbed after oral administration and are eliminated unchanged by the kidneys. The elimination half-life (t(1/2)) of rilmenidine and moxonidine is 8 and 2 hours, respectively, but trough/peak plasma concentration ratios indicate that moxonidine can be administered once daily, suggesting possible CNS retention. As would be expected, t(1/2) values are increased in patients with reduced renal function, and in elderly individuals. Both drugs have been compared with established antihypertensive drugs from all the major groups. Studies, almost all of which were of a double-blind, parallel-group design, indicate that blood pressure control with moxonidine or rilmenidine is similar to that with established drugs, i.e. alpha-blocking drugs, calcium antagonists, ACE inhibitors, beta-blocking drugs and diuretic agents. There have been few studies conducted solely in elderly patients. However, evidence clearly suggests that the antihypertensive effect of the imidazoline compounds is not reduced in elderly patients. The overall adverse effect profile of moxonidine and rilmenidine compares reasonably with established agents. In accord with the receptor-binding studies, drowsiness and dry mouth are observed less often with these drugs than with other centrally acting drugs, although the symptoms occur more often than with placebo. An overshoot of blood pressure was seen when treatment with clonidine, but not moxonidine, was abruptly discontinued in conscious, spontaneously hypertensive rats. Clinical evidence of withdrawal reaction with moxonidine or rilmenidine is scant but caution should be observed pending more formal studies.
Collapse
Affiliation(s)
- B N Prichard
- Centre for Clinical Pharmacology, University College London, England
| | | |
Collapse
|
17
|
Tolentino-Silva FP, Haxhiu MA, Ernsberger P, Waldbaum S, Dreshaj IA. Differential cardiorespiratory control elicited by activation of ventral medullary sites in mice. J Appl Physiol (1985) 2000; 89:437-44. [PMID: 10926624 DOI: 10.1152/jappl.2000.89.2.437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the respiratory and blood pressure responses to chemical stimulation of two regions of the ventral brainstem in mice: the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). Stimulation of the RVLM by microinjections of the excitatory amino acid L-glutamate induced increases in diaphragm activity and breathing frequency, elevation of blood pressure (BP), and a slight increase in heart rate (HR). However, activation of the CVLM induced a decrease in breathing frequency, mainly due to prolongation of expiratory time (TE), and hypotension associated with a slight slowing of HR. Because adrenergic mechanisms are known to participate in the control of respiratory timing, we examined the role of alpha(2)-adrenergic receptors in the RVLM region in mediating these inhibitory effects. The findings demonstrated that blockade of the alpha(2)-adrenergic receptors within the RVLM by prior microinjection of SKF-86466 (an alpha(2)-adrenergic receptor blocker) significantly reduced changes in TE induced by CVLM stimulation but had little effect on BP responses. These results indicate that, in mice, activation of the RVLM increases respiratory drive associated with an elevation of BP, but stimulation of CVLM induces prolongation of TE via an alpha(2)-adrenergic signal transduction pathway.
Collapse
|
18
|
Thomas AJ, Erokwu BO, Yamamoto BK, Ernsberger P, Bishara O, Strohl KP. Alterations in respiratory behavior, brain neurochemistry and receptor density induced by pharmacologic suppression of sleep in the neonatal period. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 120:181-9. [PMID: 10775770 DOI: 10.1016/s0165-3806(00)00008-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The present study examined if drug suppression of active sleep (AS) in the neonate affected the development and expression of respiratory behavior. Secondly, we assessed brain neurochemistry and receptor density in specific supra-medullary brain regions to identify coincident biochemical alterations. Sprague-Dawley newborn rat pups were randomized and divided among six rat mothers (n=10/mother/group), each mother housed separately. Two untreated control (UC) groups received either no interventions or were fed milk vehicle twice daily and were handled similarly to the drug intervention animals. Pharmacological disruption of sleep was achieved by administration (2 groups of each) of either clonidine (CLO) 100 microm/kg, or scopolamine (SCO) 800 microm/kg, given orally twice daily for the first 7 days of life. On postnatal (P) days P10 and P19 of life, pups were assessed for metabolism, minute ventilation (VE), tidal volume (Vt) and frequency (f). On P21 (14 days after the end of drug exposure), pups from each condition were sacrificed and punch biopsies of the frontal cortex, hypothalamus, and hippocampus were examined for hydroxytryptophan (5-HT), and norepinepherine (NE) by HPLC. An equal number of pups were sacrificed and brains examined for muscarinic acetylcholine (mAch), alpha2-adrenergic and I1-imidazoline receptor density. RESULTS Both CLO and SCO exposed animals had a lower V(t) and respiratory quotient than UC animals (p<0.01). CLO animals exhibited a higher f (p<0.01) and both CLO and SCO exhibited a lower V(t) (p<0.05) than the UC groups; VE was reduced in the SCO groups, compared with CLO and UC groups (p<0.01). Pattern of breathing in response to brief hypoxia exposure was altered for CLO and SCO. The normal decline in VE during sleep was not observed in CLO rats. Both drug exposures resulted in a comparable reduction in hypothalamic NE and 5-HT levels (p<0.05), while in the frontal cortex, and the hippocampus variable changes in NE and 5-HT, occurred. In CLO and SCO rats mAch receptors were increased in cortex, and reduced in hypothalamus; I1-imidazoline receptors were increased in hypothalamus and decreased in hippocampus (p<0.05 for each). In contrast, alpha2-adrenergic receptors were increased in cortex for both CLO and SCO, decreased in hypothalamus for CLO, and decreased in hippocampus for SCO (p<0.05 for each). CONCLUSIONS these data show that drug-induced neonatal sleep suppression will alter ventilatory pattern, metabolism, and site-specific concentrations of adrenergic neurotransmitters and in receptor density, perhaps as a result of suppression of neonatal AS.
Collapse
Affiliation(s)
- A J Thomas
- Center for Sleep Disorders Research, Department of Medicine, Case Western Reserve University and the Department of Veterans Affairs Medical Center, 111j(w)VAMC, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Two primary questions are addressed. First, do I1-imidazoline binding sites fulfill all the essential criteria for identification as a true receptor? Second, what are the cellular signaling pathways coupled to this novel receptor? I1-imidazoline binding sites show specificity in binding assays, linkage to physiologic functions, appropriate anatomic, and cellular and subcellular localization. Most important, binding affinities correlate with functional drug responses. I1-imidazoline binding sites meet several additional criteria identified with functional receptors: they show physiologic regulation and endogenous ligands and, most crucially, are coupled to cellular signaling events. A series of studies have identified cellular events triggered by I1-imidazoline receptor occupancy. This receptor is not coupled to conventional pathways downstream of heterotrimeric G-proteins, such as activation or inhibition of adenylyl or guanylyl cyclases, stimulation of inositol phospholipid hydrolysis, or induction of rapid calcium fluxes. The I1-imidazoline receptor is coupled to choline phospholipid hydrolysis, leading to the generation of diacylglyceride, arachidonic acid, and eicosanoids. Additional cellular responses include inhibition of Na+/H+ exchange and induction of genes for catecholamine synthetic enzymes. The signaling pathways linked to the I1-imidazoline receptor are similar to those of the interleukin family, implying that I1-receptors may belong to the family of neurocytokine receptors.
Collapse
Affiliation(s)
- P Ernsberger
- Department of Nutrition, Case Western Reserve School of Medicine, Cleveland, Ohio 44106-4906, USA.
| |
Collapse
|
20
|
Abstract
Normally, the kidney plays the dominant role in setting long-term arterial pressure, and the nervous system acts primarily as a short-term regulator, adjusting arterial pressure to acute challenges (eg, standing, running, and stress). However, in several animal models and in subsets of hypertensive human patients, the nervous system seems to play a more significant role in the chronic elevation of arterial pressure. Many clinical studies suggest that the peripheral sympathetic nerves are intimately involved in hypertension, and researchers recently characterized abnormalities in the brain that seem to predispose animal models to sympathetic nervous system overactivity and hypertension. Together, the current data strongly suggest that the brain, via the sympathetic nervous system, directly contributes to some forms of hypertension and indirectly contributes to all of them. This review is not intended as an exhaustive examination of all studies on the role of the nervous system in hypertension but rather focuses on several intriguing experiments that provide provocative new insights on this topic.
Collapse
Affiliation(s)
- J M Wyss
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
21
|
Bing C, King P, Pickavance L, Brown M, Ziegler D, Kaan E, Williams G. The effect of moxonidine on feeding and body fat in obese Zucker rats: role of hypothalamic NPY neurones. Br J Pharmacol 1999; 127:35-42. [PMID: 10369453 PMCID: PMC1565981 DOI: 10.1038/sj.bjp.0702494] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The antihypertensive agent moxonidine, an imidazoline Ii-receptor agonist, also induces hypophagia and lowers body weight in the obese spontaneously hypertensive rat, but the central mediation of this action and the neuronal pathways that moxonidine may interact with are not known. We studied whether moxonidine has anti-obesity effects in the genetically-obese and insulin-resistant fa/fa Zucker rat, and whether these are mediated through inhibition of the hypothalamic neuropeptide Y (NPY) neurones. Lean and obese Zucker rats were given moxonidine (3 mg kg(-1) day(-1)) or saline by gavage for 21 days. Moxonidine decreased food intake throughout by 20% in obese rats (P<0.001) and by 8% in lean rats (P<0.001), and reduced weight gain that final body weight was 15% lower in obese (P<0.001) and 7% lower in lean (P<0.01) rats than their untreated controls. Plasma insulin and leptin levels were decreased in moxonidine-treated obese rats (P<0.01 and P<0.05), but unchanged in treated lean rats. Uncoupling protein-1 gene expression in brown adipose tissue was stimulated by 40-50% (P< or =0.05) in both obese and lean animals given moxonidine. Obese animals given moxonidine showed a 37% reduction in hypothalamic NPY mRNA levels (P = 0.01), together with significantly increased NPY concentrations in the paraventricular nucleus (P<0.05), but no changes in the arcuate nucleus or other nuclei; this is consistent with reduced NPY synthesis in the arcuate nucleus and blocked release of NPY in the paraventricular nucleus. In lean animals, moxonidine did not affect NPY levels or NPY mRNA. The hypophagic, thermogenic and anti-obesity effects of moxonidine in obese Zucker rats may be partly due to inhibition of the NPY neurones, whose inappropriate overactivity may underlie obesity in this model.
Collapse
Affiliation(s)
- C Bing
- Department of Medicine, University of Liverpool
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu QM, Lesnick JD, Jasper JR, MacLennan SJ, Dillon MP, Eglen RM, Blue DR. Cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N alpha2A-adrenoceptor transgenic mice. Br J Pharmacol 1999; 126:1522-30. [PMID: 10217548 PMCID: PMC1565905 DOI: 10.1038/sj.bjp.0702429] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1998] [Revised: 12/14/1998] [Accepted: 12/21/1998] [Indexed: 11/09/2022] Open
Abstract
1. We investigated the cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N alpha2A-adrenoceptor mice. The in vitro pharmacology of these agonists was determined at recombinant (human) alpha2-adrenoceptors and at endogenous (dog) alpha2A-adrenoceptors. 2. In wild-type mice, rilmenidine, moxonidine (100, 300 and 1000 microg kg(-1), i.v.) and clonidine (30, 100 and 300 microg kg(-1), i.v.) dose-dependently decreased blood pressure and heart rate. 3. In D79N alpha2A-adrenoceptor mice, responses to rilmenidine and moxonidine did not differ from vehicle control. Clonidine-induced hypotension was absent, but dose-dependent hypertension and bradycardia were observed. 4. In wild-type mice, responses to moxonidine (1 mg kg(-1), i.v.) were antagonized by the non-selective, non-imidazoline alpha2-adrenoceptor antagonist, RS-79948-197 (1 mg kg(-1), i.v.). 5. Affinity estimates (pKi) at human alpha2A-, alpha2B- and alpha2C-adrenoceptors, respectively, were: rilmenidine (5.80, 5.76 and 5.33), moxonidine (5.37, <5 and <5) and clonidine (7.21, 7.16 and 6.87). In a [35S]-GTPgammaS incorporation assay, moxonidine and clonidine were alpha2A-adrenoceptor agonists (pEC50/intrinsic activity relative to noradrenaline): moxonidine (5.74/0.85) and clonidine (7.57/0.32). 6. In dog saphenous vein, concentration-dependent contractions were observed (pEC50/intrinsic activity relative to noradrenaline): rilmenidine (5.83/0.70), moxonidine (6.48/0.98) and clonidine (7.22/0.83). Agonist-independent affinities were obtained with RS-79948-197. 7. Thus, expression of alpha2A-adrenoceptors is a prerequisite for the cardiovascular effects of moxonidine and rilmenidine in conscious mice. There was no evidence of I1-imidazoline receptor-mediated effects. The ability of these compounds to act as alpha2A-adrenoceptor agonists in vitro supports this conclusion.
Collapse
Affiliation(s)
- Q-M Zhu
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - J D Lesnick
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - J R Jasper
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - S J MacLennan
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - M P Dillon
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - R M Eglen
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| | - D R Blue
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A
| |
Collapse
|