1
|
Wang H, Ma L, Guo Y, Ren L, Li G, Sang N. PM 2.5 Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner. TOXICS 2024; 12:878. [PMID: 39771093 PMCID: PMC11679005 DOI: 10.3390/toxics12120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
As one of the most common air pollutants, fine particulate matter (PM2.5) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM2.5 for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration. Meanwhile, pathological staining showed that the kidneys of female mice exhibited enlarged glomerulus that filled the entire Bowman's capsule in the female mice. Afterward, we explored the potential causes and mechanisms of glomerular hyperfiltration. Variations in mRNA levels of key genes involved in the renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) demonstrated that PM2.5 led to elevated glomerular capillary hydrostatic pressure in female mice by disturbing the balance between the RAS and KKS, which in turn increased the glomerular filtration rate (GFR). In addition, we found that PM2.5 increased blood glucose levels in the females, which enhanced tubular reabsorption of glucose, attenuated macular dense sensory signaling, induced renal hypoxia, and affected adenosine triphosphate (ATP) synthesis, thus attenuating tubuloglomerular feedback (TGF)-induced afferent arteriolar constriction and leading to glomerular hyperfiltration. In conclusion, this study indicated that PM2.5 induced glomerular hyperfiltration in female mice by affecting RAS/KKS imbalances, as well as the regulation of TGF; innovatively unveiled the association between PM2.5 subchronic exposure and early kidney injury and its gender dependence; enriched the toxicological evidence of PM2.5 and confirmed the importance of reducing ambient PM2.5 concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Sang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (H.W.); (L.M.); (Y.G.); (L.R.); (G.L.)
| |
Collapse
|
2
|
Dauw J, Meekers E, Martens P, Deferm S, Dhont S, Marchal W, Mesotten L, Dupont M, Nijst P, Tang WHW, Janssens SP, Mullens W. Sodium loading in ambulatory patients with heart failure with reduced ejection fraction: Mechanistic insights into sodium handling. Eur J Heart Fail 2024. [PMID: 38247136 DOI: 10.1002/ejhf.3131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
AIMS Sodium restriction was not associated with improved outcomes in heart failure patients in recent trials. The skin might act as a sodium buffer, potentially explaining tolerance to fluctuations in sodium intake without volume overload, but this is insufficiently understood. Therefore, we studied the handling of an increased sodium load in patients with heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS Twenty-one ambulatory, stable HFrEF patients and 10 healthy controls underwent a 2-week run-in phase, followed by a 4-week period of daily 1.2 g (51 mmol) sodium intake increment. Clinical, echocardiographic, 24-h urine collection, and bioelectrical impedance data were collected every 2 weeks. Blood volume, skin sodium content, and skin glycosaminoglycan content were assessed before and after sodium loading. Sodium loading did not significantly affect weight, blood pressure, congestion score, N-terminal pro-brain natriuretic peptide, echocardiographic indices of congestion, or total body water in HFrEF (all p > 0.09). There was no change in total blood volume (4748 ml vs. 4885 ml; p = 0.327). Natriuresis increased from 150 mmol/24 h to 173 mmol/24 h (p = 0.024), while plasma renin decreased from 286 to 88 μU/L (p = 0.002). There were no significant changes in skin sodium content, total glycosaminoglycan content, or sulfated glycosaminoglycan content (all p > 0.265). Healthy controls had no change in volume status, but a higher increase in natriuresis without any change in renin. CONCLUSIONS Selected HFrEF patients can tolerate sodium loading, with increased renal sodium excretion and decreased neurohormonal activation.
Collapse
Affiliation(s)
- Jeroen Dauw
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
- UHasselt - Hasselt University, Doctoral School for Medicine and Life Sciences, LCRC, Diepenbeek, Belgium
| | - Evelyne Meekers
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
- UHasselt - Hasselt University, Doctoral School for Medicine and Life Sciences, LCRC, Diepenbeek, Belgium
| | - Pieter Martens
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
| | - Sébastien Deferm
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
| | - Sebastiaan Dhont
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
- UHasselt - Hasselt University, Doctoral School for Medicine and Life Sciences, LCRC, Diepenbeek, Belgium
| | - Wouter Marchal
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Diepenbeek, Belgium
| | - Liesbeth Mesotten
- Ziekenhuis Oost-Limburg, Department of Nuclear Medicine, Genk, Belgium
| | - Matthias Dupont
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
| | - Petra Nijst
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
| | | | - Stefan P Janssens
- Department of Cardiovascular Diseases, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg, Department of Cardiology, Genk, Belgium
- Faculty of Medicine and Life Sciences, LCRC, UHasselt - Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium
| |
Collapse
|
3
|
Abegaz TM, Baljoon A, Kilanko O, Sherbeny F, Ali AA. Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes. Comput Biol Med 2023; 164:107289. [PMID: 37557056 DOI: 10.1016/j.compbiomed.2023.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients. METHODS Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy. RESULTS Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE. CONCLUSION The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
Collapse
Affiliation(s)
- Tadesse M Abegaz
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Ahmead Baljoon
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Oluwaseun Kilanko
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Fatimah Sherbeny
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Askal Ayalew Ali
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
4
|
Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, Di Salvo J, Epifani R, Marfella R, Docimo G, Lettieri M, Sardu C, Sasso FC. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci 2022; 23:3651. [PMID: 35409011 PMCID: PMC8998569 DOI: 10.3390/ijms23073651] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
- Mediterrannea Cardiocentro, 80122 Napoli, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Miriam Lettieri
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
5
|
Kataoka H. Chloride in Heart Failure Syndrome: Its Pathophysiologic Role and Therapeutic Implication. Cardiol Ther 2021; 10:407-428. [PMID: 34398440 PMCID: PMC8555043 DOI: 10.1007/s40119-021-00238-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Until recently, most studies of heart failure (HF) focused on body fluid dynamics through control of the sodium and water balance in the body. Chloride has remained largely ignored in the medical literature, and in clinical practice, chloride is generally considered as an afterthought to the better-known electrolytes of sodium and potassium. In recent years, however, the important role of chloride in the distribution of body fluid has emerged in the field of HF pathophysiology. Investigation of HF pathophysiology according to the dynamics of serum chloride is rational considering that chloride is an established key electrolyte for tubulo-glomerular feedback in the kidney and a possible regulatory electrolyte for body fluid distribution. The present review provides a historical overview of HF pathophysiology, followed by descriptions of the recent attention to the electrolyte chloride in the cardiovascular field, the known role of chloride in the human body, and recent new findings regarding the role of chloride leading to the proposed ‘chloride theory’ hypothesis in HF pathophysiology. Next, vascular and organ congestion in HF is discussed, and finally, a new classification and potential therapeutic strategy are proposed according to the ‘chloride theory’.
Collapse
|
6
|
Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, Suda N, Siwakoti K, Ahmad T, Jacoby D, Riello R, Bellumkonda L, Cox Z, Collins S, Jeon S, Turner JM, Wilson FP, Butler J, Inzucchi SE, Testani JM. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020; 142:1028-1039. [PMID: 32410463 PMCID: PMC7521417 DOI: 10.1161/circulationaha.120.045691] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors improve heart failure-related outcomes. The mechanisms underlying these benefits are not well understood, but diuretic properties may contribute. Traditional diuretics such as furosemide induce substantial neurohormonal activation, contributing to the limited improvement in intravascular volume often seen with these agents. However, the proximal tubular site of action of the sodium-glucose cotransporter-2 inhibitors may help circumvent these limitations. METHODS Twenty patients with type 2 diabetes mellitus and chronic, stable heart failure completed a randomized, placebo-controlled crossover study of empagliflozin 10 mg daily versus placebo. Patients underwent an intensive 6-hour biospecimen collection and cardiorenal phenotyping at baseline and again after 14 days of study drug. After a 2-week washout, patients crossed over to the alternate therapy with the above protocol repeated. RESULTS Oral empagliflozin was rapidly absorbed as evidenced by a 27-fold increase in urinary glucose excretion by 3 hours (P<0.0001). Fractional excretion of sodium increased significantly with empagliflozin monotherapy versus placebo (fractional excretion of sodium, 1.2±0.7% versus 0.7±0.4%; P=0.001), and there was a synergistic effect in combination with bumetanide (fractional excretion of sodium, 5.8±2.5% versus 3.9±1.9%; P=0.001). At 14 days, the natriuretic effect of empagliflozin persisted, resulting in a reduction in blood volume (-208 mL [interquartile range, -536 to 153 mL] versus -14 mL [interquartile range, -282 to 335 mL]; P=0.035) and plasma volume (-138 mL, interquartile range, -379 to 154±453 mL; P=0.04). This natriuresis was not, however, associated with evidence of neurohormonal activation because the change in norepinephrine was superior (P=0.02) and all other neurohormones were similar (P<0.34) during the empagliflozin versus placebo period. Furthermore, there was no evidence of potassium wasting (P=0.20) or renal dysfunction (P>0.11 for all biomarkers), whereas both serum magnesium (P<0.001) and uric acid levels (P=0.008) improved. CONCLUSIONS Empagliflozin causes significant natriuresis, particularly when combined with loop diuretics, resulting in an improvement in blood volume. However, off-target electrolyte wasting, renal dysfunction, and neurohormonal activation were not observed. This favorable diuretic profile may offer significant advantage in the management of volume status in patients with heart failure and may represent a mechanism contributing to the superior long-term heart failure outcomes observed with these agents. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03027960.
Collapse
Affiliation(s)
- Matthew Griffin
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Veena S. Rao
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Juan Ivey-Miranda
- Hospital de Cardiologia, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - James Fleming
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Devin Mahoney
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Christopher Maulion
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Nisha Suda
- Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY
| | - Krishmita Siwakoti
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Tariq Ahmad
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Daniel Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Ralph Riello
- Division of Pharmacy, Yale University School of Medicine, New Haven, CT, USA
| | - Lavanya Bellumkonda
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| | - Zachary Cox
- Department of Pharmacy Practice, Lipscomb University College of Pharmacy, Nashville, TN
| | - Sean Collins
- Deparment of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jeffrey M. Turner
- Department of Medicine, Division of Nephrology, Yale University School of Medicine, New Haven CT
| | - F. Perry Wilson
- Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS
| | - Silvio E. Inzucchi
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT
| | - Jeffrey M. Testani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW To provide insight into the role of urine biomarkers and electrolytes for the management of heart failure. RECENT FINDINGS The age-dependent decrease in glomerular filtration rate due to loss of functional nephrons occurs at a faster pace in heart failure, potentially exacerbated by episodes of acute kidney injury. Urine biomarkers have not convincingly demonstrated to improve detection of irreversible renal damage and predict long-term renal trajectories, compared with serial creatinine measurements. Recent data show that natriuresis and diuretic response track poorly with glomerular filtration, but strongly with prognosis. Urine sodium concentration > 50-70 mmol/L was recently put forward through expert consensus as an adequate diuretic response. The value of urine biomarkers to detect structural renal damage in heart failure remains unsure and the latter is probably uncommon, especially over short-term follow-up. Urine electrolytes on the other hand predict diuretic response accurately and may allow better diuretic titration.
Collapse
|
8
|
Upregulation of Claudin-7 Expression by Angiotensin II in Colonic Epithelial Cells of Mice Fed with NaCl-Depleted Diets. Int J Mol Sci 2020; 21:ijms21041442. [PMID: 32093310 PMCID: PMC7073026 DOI: 10.3390/ijms21041442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Dietary NaCl depletion increases Na+ and Cl− absorption in the colon, but the mechanisms are not fully understood. So far, we reported that the expression of claudin-7 (CLDN7), a tight junction (TJ) protein, was upregulated in the mice fed with NaCl-depleted diets, but the regulatory mechanism has not been clarified. Here, we found that angiotensin II (ANGII) increases the mRNA level of CLDN7, which was inhibited by losartan, a type 1 ANGII (AT1) receptor antagonist. Immunofluorescence measurement showed that CLDN7 is colocalized with zonula occludens-1 at the TJ in untreated and ANGII-treated cells. ANGII decreased transepithelial electrical resistance (TER) and increased permeability to C1− without affecting permeability to lucifer yellow, a paracellular flux marker. In contrast, TER was increased by CLDN7 knockdown in the absence and presence of ANGII. ANGII increased the nuclear distribution of phosphorylated p65 subunit of NF-κB, which was inhibited by losartan. The ANGII-induced elevation of CLDN7 expression was blocked by BAY 11-7082 (BAY), an NF-κB inhibitor. Luciferase reporter assay showed that ANGII increases promoter activity of CLDN7, which was inhibited by the treatment with losartan or BAY, and introduction of mutations in κB-binding motifs in the promoter. The binding of p65 on the promoter region of CLDN7 was increased by ANGII, which was inhibited by losartan and BAY in chromatin immunoprecipitation assay. Our data suggest that ANGII acts on AT1 receptor and increases paracellular permeability to Cl− mediated by the elevation of CLDN7 expression in the colon.
Collapse
|
9
|
Wei J, Zhang J, Jiang S, Wang L, Persson AEG, Liu R. High-Protein Diet-Induced Glomerular Hyperfiltration Is Dependent on Neuronal Nitric Oxide Synthase β in the Macula Densa via Tubuloglomerular Feedback Response. Hypertension 2019; 74:864-871. [PMID: 31422689 DOI: 10.1161/hypertensionaha.119.13077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well known that high protein intake increases glomerular filtration rate. Evidence from several studies indicated that NO and tubuloglomerular feedback (TGF) mediate the effect. However, a recent study with a neuronal NO synthase-α knockout model refuted this mechanism and concluded that neither neuronal NO synthase nor TGF response is involved in the protein-induced hyperfiltration. To examine the discrepancy, this study tested a hypothesis that neuronal NO synthase-β in the macula densa mediates the high-protein diet-induced glomerular hyperfiltration via TGF mechanism. We examined the effects of high protein intake on NO generation at the macula densa, TGF response, and glomerular filtration rate in wild-type and macula densa-specific neuronal NO synthase KO mice. In wild-type mice, high-protein diet increased kidney weight, glomerular filtration rate, and renal blood flow, while reduced renal vascular resistance. TGF response in vivo and in vitro was blunted, and NO generation in the macula densa was increased following high-protein diet, associated with upregulations of neuronal NO synthase-β expression and phosphorylation at Ser1417. In contrast, these high-protein diet-induced changes in NO generation at the macula densa, TGF response, renal blood flow, and glomerular filtration rate in wild-type mice were largely attenuated in macula densa-specific neuronal NO synthase KO mice. In conclusion, we demonstrated that high-protein diet-induced glomerular hyperfiltration is dependent on neuronal NO synthase β in the macula densa via TGF response.
Collapse
Affiliation(s)
- Jin Wei
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Shan Jiang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - A Erik G Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Sweden (A.E.G.P.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| |
Collapse
|
10
|
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315:R945-R962. [DOI: 10.1152/ajpregu.00363.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical concepts of human sodium balance include 1) a total pool of Na+ of ≈4,200 mmol (total body sodium, TBS) distributed primarily in the extracellular fluid (ECV) and bone, 2) intake variations of 0.03 to ≈6 mmol·kg body mass−1·day−1, 3) asymptotic transitions between steady states with a halftime (T½) of 21 h, 4) changes in TBS driven by sodium intake measuring ≈1.3 day [ΔTBS/Δ(Na+ intake/day)], 5) adjustment of Na+ excretion to match any diet thus providing metabolic steady state, and 6) regulation of TBS via controlled excretion (90–95% renal) mediated by surrogate variables. The present focus areas include 1) uneven, nonosmotic distribution of increments in TBS primarily in “skin,” 2) long-term instability of TBS during constant Na+ intake, and 3) physiological regulation of renal Na+ excretion primarily by neurohumoral mechanisms dependent on ECV rather than arterial pressure. Under physiological conditions 1) the nonosmotic distribution of Na+ seems conceptually important, but quantitatively ill defined; 2) long-term variations in TBS represent significant deviations from steady state, but the importance is undetermined; and 3) the neurohumoral mechanisms of sodium homeostasis competing with pressure natriuresis are essential for systematic analysis of short-term and long-term regulation of TBS. Sodium homeostasis and blood pressure regulation are intimately related. Real progress is slow and will accelerate only through recognition of the present level of ignorance. Nonosmotic distribution of sodium, pressure natriuresis, and volume-mediated regulation of renal sodium excretion are essential intertwined concepts in need of clear definitions, conscious models, and future attention.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Nijst P, Verbrugge FH, Martens P, Bertrand PB, Dupont M, Francis GS, Tang WW, Mullens W. Plasma renin activity in patients with heart failure and reduced ejection fraction on optimal medical therapy. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317729919. [PMID: 28875746 PMCID: PMC5843922 DOI: 10.1177/1470320317729919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Renin-angiotensin-aldosterone system (RAAS) activation in heart failure with reduced ejection fraction (HFREF) is detrimental through promotion of ventricular remodeling and salt and water retention. Aims: The aims of this article are to describe RAAS activity in distinct HFREF populations and to assess its prognostic impact. Methods: Venous blood samples were prospectively obtained in 76 healthy volunteers, 72 patients hospitalized for acute decompensated HFREF, and 78 ambulatory chronic HFREF patients without clinical signs of congestion. Sequential measurements were performed in patients with acute decompensated HFREF. Results: Plasma renin activity (PRA) was significantly higher in ambulatory chronic HFREF (7.6 ng/ml/h (2.2; 18.1)) compared to patients with acute decompensated HFREF (1.5 ng/ml/h (0.8; 5.7)) or healthy volunteers (1.4 ng/ml/h (0.6; 2.3)) (all p < 0.05). PRA was significantly associated with arterial blood pressure and renin-angiotensin system blocker dose. A progressive rise in PRA (+4 ng/ml/h (0.4; 10.9); p < 0.001) was observed in acute decompensated HFREF patients after three consecutive days of decongestive treatment. Only in acute HFREF were PRA levels associated with increased cardiovascular mortality or HF readmissions (p = 0.035). Conclusion: PRA is significantly elevated in ambulatory chronic HFREF patients but is not associated with worse outcome. In contrast, in acute HFREF patients, PRA is associated with cardiovascular mortality or HF readmissions.
Collapse
Affiliation(s)
- Petra Nijst
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | | | - Pieter Martens
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | - Philippe B Bertrand
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | - Matthias Dupont
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium
| | - Gary S Francis
- 3 Cardiovascular Division, University of Minnesota Health Heart Care, USA
| | - Wh Wilson Tang
- 4 Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, USA
| | - Wilfried Mullens
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,5 Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review aims to summarize the renal effects of sodium-glucose transporter-2 (SGLT-2) inhibitors and their potential implications in heart failure pathophysiology. RECENT FINDINGS In patients with diabetes and established atherosclerosis, the SGLT-2 inhibitor empagliflozin versus placebo significantly reduced the rate of heart failure admissions with 35%. Moreover, empagliflozin slowed kidney disease progression and reduced the need for renal replacement therapy. SGLT-2 inhibitors inhibit proximal tubular sodium and chloride reabsorption, leading to increased nephron flux throughout the distal renal tubules, most notably at the level of the macula densa. Afferent arteriolar vasoconstriction is promoted through tubulo-glomerular feedback and reduces glomerular capillary hydrostatic pressure, relieving podocyte stress and explaining renal preservation. Further, plasma volume is contracted and natriuresis promoted without inducing neurohumoral activation. Finally, SGLT-2 inhibitors may improve endothelial function and energy metabolism efficiency. Together, these promising features place them as a potential novel treatment for heart failure.
Collapse
Affiliation(s)
- Frederik H Verbrugge
- Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium.
| | - Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium
| |
Collapse
|
13
|
Kataoka H. Proposal for heart failure progression based on the 'chloride theory': worsening heart failure with increased vs. non-increased serum chloride concentration. ESC Heart Fail 2017; 4:623-631. [PMID: 29154432 PMCID: PMC5695179 DOI: 10.1002/ehf2.12191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 01/30/2023] Open
Abstract
AIMS Chloride (Cl) is an established key electrolyte for the activation of the renin-angiotensin-aldosterone system. Recent studies have shown the serum Cl as a key electrolyte for the regulation of body fluid distribution in heart failure (HF) patients. The clinical differences of worsening HF status according to the changes in serum Cl concentration are unclear. METHODS AND RESULTS Data from 47 chronic HF patients were analysed. Upon worsening HF, each patient exhibited at least two HF-related signs. Blood tests included haemoglobin (Hb), haematocrit (Ht), mean red blood cell volume (MCV), albumin, serum solutes, and b-type natriuretic peptide. The relative change in the plasma volume (%PV) from stable to worsening HF was estimated as follows: 100 × {Hb (stable) × [1 - Ht (worse)]}/{Hb (worse) × [1 - Ht (stable)]} - 100. When patients were divided into two groups based on changes in serum Cl concentration from stable to worsening HF, the pathophysiologic features of the patients with increased Cl (range 1-23 mEq/L; n = 31) included a greater increase in serum sodium (2.94 ± 4.15 vs. -0.69 ± 3.75 mEq/L, P = 0.005), higher vascular expansion (12 ± 11.1 vs. 4.81 ± 7.94%, P = 0.026), a tendency towards a greater MCV (1.23 ± 2.36 vs. -0.06 ± 1.88 fL, P = 0.065), and preserved renal function defined by the absence of an increase of serum creatinine (-0.24 ± 0.39 vs. -0.05 ± 0.12 mg/dL, P = 0.057) compared to patients with non-increased Cl (range -9 to 0 mEq/L; n = 16). Clinically, the increased Cl group had fewer HF signs (2.65 ± 0.71 vs. 3.31 ± 0.79, P = 0.005) although the change in symptoms did not differ between groups (48% vs. 63%, P = 0.54). CONCLUSIONS The present study suggests a new clinical entity of worsening HF status, that is, HF with increased vs. non-increased serum Cl concentration from clinical stability to worsening HF.
Collapse
Affiliation(s)
- Hajime Kataoka
- Division of Internal MedicineNishida HospitalSaiki cityOitaJapan
| |
Collapse
|
14
|
Poulsen SB, Christensen BM. Long-term aldosterone administration increases renal Na+-Cl− cotransporter abundance in late distal convoluted tubule. Am J Physiol Renal Physiol 2017; 313:F756-F766. [DOI: 10.1152/ajprenal.00352.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
Renal Na+-Cl− cotransporter (NCC) is expressed in early distal convoluted tubule (DCT) 1 and late DCT (DCT2). NCC activity can be stimulated by aldosterone administration, and the mechanism is assumed to depend on the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates glucocorticoids that would otherwise occupy aldosterone receptors. Because 11β-HSD2 in rat may only be abundantly expressed in DCT2 cells and not in DCT1 cells, it has been speculated that aldosterone specifically stimulates NCC activity in DCT2 cells. In mice, however, it is debated if 11β-HSD2 is expressed in DCT2 cells. The present study examined whether aldosterone administration in mice stimulates NCC abundance and phosphorylation in DCT2 cells but not in DCT1 cells. B6/C57 male mice were administered 100 µg aldosterone·kg body weight−1·24 h−1 for 6 days and euthanized during isoflurane inhalation. Western blotting of whole kidney homogenate showed that aldosterone administration stimulated NCC and pT58-NCC abundances ( P < 0.001). In DCT1 cells, confocal microscopy detected no effect of the aldosterone administration on NCC and pT58-NCC abundances. By contrast, NCC and pT58-NCC abundances were stimulated by aldosterone administration in the middle of DCT2 ( P < 0.001 and <0.01, respectively) and at the junction between DCT2 and CNT ( P < 0.001 and <0.05, respectively). In contrast to rat, immunohistochemistry in mouse showed no/very weak 11β-HSD2 expression in DCT2 cells. Collectively, long-term aldosterone administration stimulates mouse NCC and pT58-NCC abundances in DCT2 cells and presumably not in DCT1 cells.
Collapse
|
15
|
Song J, Wang L, Fan F, Wei J, Zhang J, Lu Y, Fu Y, Wang S, Juncos LA, Liu R. Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics. Hypertension 2017; 70:324-333. [PMID: 28607127 PMCID: PMC5507816 DOI: 10.1161/hypertensionaha.117.09584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/28/2023]
Abstract
We investigated the significance of the primary cilia on the macula densa and thick ascending limb (TAL) in regulation of renal hemodynamics, sodium excretion, and blood pressure in this study. A tissue-specific primary cilia knock-out (KO) mouse line was generated by crossing NKCC2-Cre mice with IFT88-Δ/flox mice (NKCC2CRE; IFT88Δ/flox), in which the primary cilia were deleted from the macula densa and TAL. NO generation was measured with a fluorescent dye (4,5-diaminofluorescein diacetate) in isolated perfused juxtaglomerular apparatus. Deletion of the cilia reduced NO production by 56% and 42% in the macula densa and TAL, respectively. NO generation by the macula densa was inhibited by both a nonselective and a selective nitric oxide synthesis inhibitors, whereas TAL-produced NO was inhibited by a nonselective and not by a selective NO synthesis 1 inhibitor. The tubuloglomerular feedback response was enhanced in the KO mice both in vitro measured with isolated perfused juxtaglomerular apparatuses and in vivo measured with micropuncture. In response to an acute volume expansion, the KO mice exhibited limited glomerular filtration rate elevation and impaired sodium excretion compared with the wild-type mice. The mean arterial pressure measured with telemetry was the same for wild-type and KO mice fed a normal salt diet. After a high salt diet, the mean arterial pressure increased by 17.4±1.6 mm Hg in the KO mice. On the basis of these findings, we concluded that the primary cilia on the macula densa and TAL play an essential role in the control of sodium excretion and blood pressure.
Collapse
Affiliation(s)
- Jiangping Song
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Fan Fan
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Yan Lu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Yiling Fu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.).
| |
Collapse
|
16
|
Clemmer JS, Pruett WA, Coleman TG, Hall JE, Hester RL. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling. Am J Physiol Regul Integr Comp Physiol 2016; 312:R451-R466. [PMID: 27974315 DOI: 10.1152/ajpregu.00353.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
Mathematical modeling is an important tool for understanding quantitative relationships among components of complex physiological systems and for testing competing hypotheses. We used HumMod, a large physiological model, to test hypotheses of blood pressure (BP) salt sensitivity. Systemic hemodynamics, renal, and neurohormonal responses to chronic changes in salt intake were examined during normal renal function, fixed low or high plasma angiotensin II (ANG II) levels, bilateral renal artery stenosis, increased renal sympathetic nerve activity (RSNA), and decreased nephron numbers. Simulations were run for 4 wk at salt intakes ranging from 30 to 1,000 mmol/day. Reducing functional kidney mass or fixing ANG II increased salt sensitivity. Salt sensitivity, associated with inability of ANG II to respond to changes in salt intake, occurred with smaller changes in renal blood flow but greater changes in glomerular filtration rate, renal sodium reabsorption, and total peripheral resistance (TPR). However, clamping TPR at normal or high levels had no major effect on salt sensitivity. There were no clear relationships between BP salt sensitivity and renal vascular resistance or extracellular fluid volume. Our robust mathematical model of cardiovascular, renal, endocrine, and sympathetic nervous system physiology supports the hypothesis that specific types of kidney dysfunction, associated with impaired regulation of ANG II or increased tubular sodium reabsorption, contribute to BP salt sensitivity. However, increased preglomerular resistance, increased RSNA, or inability to decrease TPR does not appear to influence salt sensitivity. This model provides a platform for testing competing concepts of long-term BP control during changes in salt intake.
Collapse
Affiliation(s)
- John S Clemmer
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - W Andrew Pruett
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Thomas G Coleman
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert L Hester
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
17
|
Kataoka H, Yamasaki Y. Strategy for monitoring decompensated heart failure treated by an oral vasopressin antagonist with special reference to the role of serum chloride: A case report. J Cardiol Cases 2016; 14:185-188. [PMID: 30546691 PMCID: PMC6283728 DOI: 10.1016/j.jccase.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/03/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Compared with conventional diuretic therapy, monitoring decompensated heart failure (HF) under treatment with a vasopressin antagonist is problematic because (1) use of this medication usually allows the patient free water intake to prevent drug-induced hypernatremia and (2) this medication often induces only minimal changes in the hemodynamics and blood concentration. In a 68-year-old female HF patient, use of tolvaptan did not induce much change in the urine output, presumably because of the low water intake due to a lack of thirst, but she did achieve a profound weight loss. Both the changes in chloride and sodium were negatively correlated with changes in the hemoglobin and serum creatinine, and positively correlated with changes in the mean red blood cell volume, but changes in the serum chloride were better correlated with each variable than were changes in the serum sodium. .
Collapse
Affiliation(s)
- Hajime Kataoka
- Corresponding author at: Department of Internal Medicine, Nishida Hospital, Tsuruoka-Nishi-Machi 2-266, Saiki-City, Oita 876-0047, Japan. Fax: +81 972 23 3053.
| | | |
Collapse
|
18
|
Huang X, Dorhout Mees E, Vos P, Hamza S, Braam B. Everything we always wanted to know about furosemide but were afraid to ask. Am J Physiol Renal Physiol 2016; 310:F958-71. [PMID: 26911852 DOI: 10.1152/ajprenal.00476.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Furosemide is a widely used, potent natriuretic drug, which inhibits the Na(+)-K(+)-2Cl(-) cotransporter (NKCC)-2 in the ascending limb of the loop of Henle applied to reduce extracellular fluid volume expansion in heart and kidney disease. Undesirable consequences of furosemide, such as worsening of kidney function and unpredictable effects on sodium balance, led to this critical evaluation of how inhibition of NKCC affects renal and cardiovascular physiology. This evaluation reveals important knowledge gaps, involving furosemide as a drug, the function of NKCC2 (and NKCC1), and renal and systemic indirect effects of NKCC inhibition. Regarding renal effects, renal blood flow and glomerular filtration rate could become compromised by activation of tubuloglomerular feedback or by renin release, particularly if renal function is already compromised. Modulation of the intrarenal renin angiotensin system, however, is ill-defined. Regarding systemic effects, vasodilation followed by nonspecific NKCC inhibition and changes in venous compliance are not well understood. Repetitive administration of furosemide induces short-term (braking phenomenon, acute diuretic resistance) and long-term (chronic diuretic resistance) adaptations, of which the mechanisms are not well known. Modulation of NKCC2 expression and activity in kidney and heart failure is ill-defined. Lastly, furosemide's effects on cutaneous sodium stores and on uric acid levels could be beneficial or detrimental. Concluding, a considerable knowledge gap is identified regarding a potent drug with a relatively specific renal target, NKCC2, and renal and systemic actions. Resolving these questions would increase the understanding of NKCCs and their actions and improve rational use of furosemide in pathophysiology of fluid volume expansion.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Evert Dorhout Mees
- Department of Medicine/Nephrology, Utrecht University, Vorden, The Netherlands
| | - Pieter Vos
- Dianet Dialysis Centers, Utrecht, The Netherlands; and
| | - Shereen Hamza
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Branko Braam
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Verbrugge FH, Mullens W, Tang WHW. Management of Cardio-Renal Syndrome and Diuretic Resistance. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:11. [PMID: 26803318 DOI: 10.1007/s11936-015-0436-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OPINION STATEMENT Diuretic resistance in acute heart failure has emerged as a powerful predictor of adverse outcome, which is often independent of underlying glomerular filtration rate (GFR). Metrics of diuretic efficacy differ in their accuracy, convenience, and biological plausibility, which should be taken into account when interpreting their results. Loop diuretic efficacy depends on adequate delivery of both the pharmacological agent itself and its substrate (i.e., sodium chloride) to the loop diuretic site of action at the luminal side of the thick ascending limb of Henle's loop. This requires an adequate dosing strategy, with higher doses needed when GFR is low. Importantly, the kidneys are able only to regulate the effective circulatory volume. Thus, specific problems of intravascular volume depletion and poor cardiac output with impaired renal perfusion should be addressed. Addition of thiazide-type diuretics should be considered when a progressive decrease in loop diuretic efficacy is observed with prolonged use (i.e., the braking phenomenon). Furthermore, thiazide-type diuretics are a useful addition in patients with low GFR to maximally boost fractional sodium excretion when nephron perfusion is poor. However, thiazide-type diuretics limit free water excretion and should be withheld in cases of hypotonic hyponatremia. Mineralocorticoid receptor antagonists (MRA) and acetazolamide are interesting options to increase loop diuretic efficacy, but further study is needed to assess whether improved diuretic efficacy also translates into clinical outcome benefits. Finally, ultrafiltration should be considered in patients with refractory diuretic resistance as persistent volume overload after decongestive treatment is associated with worse outcomes. Whether more upfront use of individually tailored ultrafiltration is superior to pharmacological therapy remains to be shown by adequately powered randomized clinical trials.
Collapse
Affiliation(s)
- Frederik H Verbrugge
- Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium.
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium.
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland Clinic Main Campus J3-4, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Wang L, Shen C, Liu H, Wang S, Chen X, Roman RJ, Juncos LA, Lu Y, Wei J, Zhang J, Yip KP, Liu R. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. Am J Physiol Regul Integr Comp Physiol 2015; 309:R757-66. [PMID: 26269519 PMCID: PMC4666931 DOI: 10.1152/ajpregu.00173.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023]
Abstract
The present study tested whether primary cilia on macula densa serve as a flow sensor to enhance nitric oxide synthase 1 (NOS1) activity and inhibit tubuloglomerular feedback (TGF). Isolated perfused macula densa was loaded with calcein red and 4,5-diaminofluorescein diacetate to monitor cell volume and nitric oxide (NO) generation. An increase in tubular flow rate from 0 to 40 nl/min enhanced NO production by 40.0 ± 1.2%. The flow-induced NO generation was blocked by an inhibitor of NOS1 but not by inhibition of the Na/K/2Cl cotransporter or the removal of electrolytes from the perfusate. NO generation increased from 174.8 ± 21 to 276.1 ± 24 units/min in cultured MMDD1 cells when shear stress was increased from 0.5 to 5.0 dynes/cm(2). The shear stress-induced NO generation was abolished in MMDD1 cells in which the cilia were disrupted using a siRNA to ift88. Increasing the NaCl concentration of the tubular perfusate from 10 to 80 mM NaCl in the isolated perfused juxtaglomerular preparation reduced the diameter of the afferent arteriole by 3.8 ± 0.1 μm. This response was significantly blunted to 2.5 ± 0.2 μm when dextran was added to the perfusate to increase the viscosity and shear stress. Inhibition of NOS1 blocked the effect of dextran on TGF response. In vitro, the effects of raising perfusate viscosity with dextran on tubular hydraulic pressure were minimized by reducing the outflow resistance to avoid stretching of tubular cells. These results suggest that shear stress stimulates primary cilia on the macula densa to enhance NO generation and inhibit TGF responsiveness.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Chunyu Shen
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haifeng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xinshan Chen
- Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Richard J Roman
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Luis A Juncos
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;
| |
Collapse
|
21
|
Verbrugge FH, Grieten L, Mullens W. Management of the cardiorenal syndrome in decompensated heart failure. Cardiorenal Med 2015; 4:176-88. [PMID: 25737682 DOI: 10.1159/000366168] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The management of the cardiorenal syndrome (CRS) in decompensated heart failure (HF) is challenging, with high-quality evidence lacking. SUMMARY The pathophysiology of CRS in decompensated HF is complex, with glomerular filtration rate (GFR) and urine output representing different aspects of kidney function. GFR depends on structural factors (number of functional nephrons and integrity of the glomerular membrane) versus hemodynamic alterations (volume status, renal perfusion, arterial blood pressure, central venous pressure or intra-abdominal pressure) and neurohumoral activation. In contrast, urine output and volume homeostasis are mainly a function of the renal tubules. Treatment of CRS in decompensated HF patients should be individualized based on the underlying pathophysiological processes. KEY MESSAGES Congestion, defined as elevated cardiac filling pressures, is not a surrogate for volume overload. Transient decreases in GFR might be accepted during decongestion, but hypotension must be avoided. Paracentesis and compression therapy are essential to remove fluid overload from third spaces. Increasing the effective circulatory volume improves renal function when cardiac output is depressed. As mechanical support is invasive and inotropes are related to increased mortality, afterload reduction through vasodilator therapy remains the preferred strategy in patients who are normo- or hypertensive. Specific therapies to augment renal perfusion (rolofylline, dopamine or nesiritide) have rendered disappointing results, but recently, serelaxin has been shown to improve renal function, even with a trend towards reduced all-cause mortality in selected patients. Diuretic resistance is associated with worse outcomes, independent of the underlying GFR. Combinational diuretic therapy, with ultrafiltration as a bail-out strategy, is indicated in case of diuretic resistance.
Collapse
Affiliation(s)
- Frederik Hendrik Verbrugge
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium ; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lars Grieten
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium ; Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium ; Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
22
|
Verbrugge FH, Grieten L, Mullens W. New insights into combinational drug therapy to manage congestion in heart failure. Curr Heart Fail Rep 2014; 11:1-9. [PMID: 24218088 DOI: 10.1007/s11897-013-0174-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congestion is the most important contributor to morbidity and mortality in heart failure. In patients without congestion, maintaining a neutral sodium balance is imperative to prevent evolving volume overload. Adequate use of neurohumoral blockers, in combination with dietary sodium restriction, is essential and may preclude the need for maintenance diuretic therapy. If volume overload still prevails, loop diuretics remain the mainstay treatment to reduce excessive extracellular volume. However, combinational drug therapy might offer a more attractive alternative to achieve a balanced natriuresis, instead of further uptitration of loop diuretics. Importantly, elevated cardiac filling pressures may be caused by volume misdistribution and impaired venous capacitance, rather than absolute volume overload. Vasodilator therapy to unload the heart, increase venous capacitance, and lower arterial impedance might be interesting in such cases. This review offers a practical approach into current and potential future pharmacologic therapies for managing congestion, focusing on combinational and targeted therapy.
Collapse
|
23
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
24
|
Wang H, D'Ambrosio MA, Garvin JL, Ren Y, Carretero OA. Connecting tubule glomerular feedback in hypertension. Hypertension 2013; 62:738-45. [PMID: 23959547 DOI: 10.1161/hypertensionaha.113.01846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In Dahl salt-sensitive rats (Dahl SS), glomerular capillary pressure increases in response to high salt intake and this is accompanied by significant glomerular injury compared with spontaneously hypertensive rats with similar blood pressure. Glomerular capillary pressure is controlled mainly by afferent arteriolar resistance, which is regulated by the vasoconstrictor tubule glomerular feedback (TGF) and the vasodilator connecting TGF (CTGF). We hypothesized that Dahl SS have a decreased TGF response and enhanced TGF resetting compared with spontaneously hypertensive rats, and that these differences are attributable in part to an increase in CTGF. In vivo, using micropuncture we measured stop-flow pressure (a surrogate of glomerular capillary pressure). TGF was calculated as the maximal decrease in stop-flow pressure caused by increasing nephron perfusion, TGF resetting as the attenuation in TGF induced by high salt diet, and CTGF as the difference in TGF response before and during CTGF inhibition with benzamil. Compared with spontaneously hypertensive rats, Dahl SS had (1) lower TGF responses in normal (6.6±0.1 versus 11.0±0.2 mm Hg; P<0.001) and high-salt diets (3.3±0.1 versus 10.1±0.3 mm Hg; P<0.001), (2) greater TGF resetting (3.3±0.1 versus 1.0±0.3 mm Hg; P<0.001), and (3) greater CTGF (3.4±0.4 versus 1.2±0.1 mm Hg; P<0.001). We conclude that Dahl SS have lower TGF and greater CTGF than spontaneously hypertensive rats, and that CTGF antagonizes TGF. Furthermore, CTGF is enhanced by a high-salt diet and contributes significantly to TGF resetting. Our findings may explain in part the increase in vasodilatation, glomerular capillary pressure, and glomerular damage in SS hypertension during high salt intake.
Collapse
Affiliation(s)
- Hong Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202.
| | | | | | | | | |
Collapse
|
25
|
Ortiz-Capisano MC, Atchison DK, Harding P, Lasley RD, Beierwaltes WH. Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway. Am J Physiol Renal Physiol 2013; 305:F1209-19. [PMID: 23884142 DOI: 10.1152/ajprenal.00710.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renin is synthesized and released from juxtaglomerular (JG) cells. Adenosine inhibits renin release via an adenosine A1 receptor (A1R) calcium-mediated pathway. How this occurs is unknown. In cardiomyocytes, adenosine increases intracellular calcium via transient receptor potential canonical (TRPC) channels. We hypothesized that adenosine inhibits renin release via A1R activation, opening TRPC channels. However, higher concentrations of adenosine may stimulate renin release through A2R activation. Using primary cultures of isolated mouse JG cells, immunolabeling demonstrated renin and A1R in JG cells, but not A2R subtypes, although RT-PCR indicated the presence of mRNA of both A2AR and A2BR. Incubating JG cells with increasing concentrations of adenosine decreased renin release. Different concentrations of the adenosine receptor agonist N-ethylcarboxamide adenosine (NECA) did not change renin. Activating A1R with 0.5 μM N6-cyclohexyladenosine (CHA) decreased basal renin release from 0.22 ± 0.05 to 0.14 ± 0.03 μg of angiotensin I generated per milliliter of sample per hour of incubation (AngI/ml/mg prot) (P < 0.03), and higher concentrations also inhibited renin. Reducing extracellular calcium with EGTA increased renin release (0.35 ± 0.08 μg AngI/ml/mg prot; P < 0.01), and blocked renin inhibition by CHA (0.28 ± 0.06 μg AngI/ml/mg prot; P < 0. 005 vs. CHA alone). The intracellular calcium chelator BAPTA-AM increased renin release by 55%, and blocked the inhibitory effect of CHA. Repeating these experiments in JG cells from A1R knockout mice using CHA or NECA demonstrated no effect on renin release. However, RT-PCR showed mRNA from TRPC isoforms 3 and 6 in isolated JG cells. Adding the TRPC blocker SKF-96365 reversed CHA-mediated inhibition of renin release. Thus A1R activation results in a calcium-dependent inhibition of renin release via TRPC-mediated calcium entry, but A2 receptors do not regulate renin release.
Collapse
Affiliation(s)
- M Cecilia Ortiz-Capisano
- Henry Ford Hospital, Dept. of Medicine, Hypertension and Vascular Research Division, 7088 E&R Bldg., 2799 W. Grand Blvd., Detroit, MI 48202.
| | | | | | | | | |
Collapse
|
26
|
Damkjær M, Isaksson GL, Stubbe J, Jensen BL, Assersen K, Bie P. Renal renin secretion as regulator of body fluid homeostasis. Pflugers Arch 2012; 465:153-65. [PMID: 23096366 DOI: 10.1007/s00424-012-1171-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/06/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium intake, but the specific pathways involved and the relations between them are not well defined. In animals, renin secretion is a log-linear function of sodium intake. Close associations exist between sodium intake, total body sodium, extracellular fluid volume, and blood volume. Plasma volume increases by about 1.5 mL/mmol increase in daily sodium intake. Several lines of evidence indicate that central blood volume may vary substantially without measurable changes in arterial blood pressure. At least five intertwining feedback loops of renin regulation are identifiable based on controlled variables (blood volume, arterial blood pressure), efferent pathways to the kidney (nervous, humoral), and pathways operating via the macula densa. Taken together, the available evidence favors the notion that under physiological conditions (1) volume-mediated regulation of renin secretion is the primary regulator, (2) macula densa mediated mechanisms play a substantial role as co-mediator although the controlled variables are not well defined so far, and (3) regulation via arterial blood pressure is the exception rather than the rule. Improved quantitative analyses based on in vivo and in silico models are warranted.
Collapse
Affiliation(s)
- Mads Damkjær
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Marvin A. Konstam
- From the Tufts Medical Center and Tufts University School of Medicine, Boston, MA
| |
Collapse
|
28
|
Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 2011; 26:1789-802. [PMID: 21503667 PMCID: PMC3163795 DOI: 10.1007/s00467-011-1871-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle's loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders - the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide-amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide-furosemide type), renin-angiotensin-aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime.
Collapse
Affiliation(s)
- Hannsjörg W. Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany ,Lazarettgarten 23, 76829 Landau, Germany
| | - Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| |
Collapse
|
29
|
Abstract
In the adult organism, systemically circulating renin almost exclusively originates from the juxtaglomerular cells in the afferent arterioles of the kidneys. These cells share similarities with pericytes and myofibro-blasts. They store renin in a vesicular network and granules and release it in a regulated fashion. The release mode of renin is not understood; in particular, the involvement of SNARE proteins is unknown. Renin release is acutely increased via the cAMP signaling pathway, which is triggered mainly by catecholamines and other G(s)-coupled agonists, and is inhibited by calcium-related pathways that are commonly activated by vasoconstrictors. Renin release from juxtaglomerular cells is directly modulated in an inverse fashion by the blood pressure inside the afferent arterioles and by the chloride content in the tubule fluid at the macula densa segment of the distal tubule. Renin release is stimulated by nitric oxide and by prostanoids released by neighboring endothelial and macula densa cells. Steady-state renin concentrations in the plasma are determined essentially by the number of renin-producing cells in the afferent arterioles, which changes in parallel with challenges to the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Armin Kurtz
- Physiologisches Institut der Universität, Regensburg, Germany.
| |
Collapse
|
30
|
Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille C, Dosche C, Kumar S, Castañeda-Bueno M, Gamba G, Bachmann S. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J Biol Chem 2011; 286:30200-10. [PMID: 21737451 DOI: 10.1074/jbc.m111.222968] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na(+),K(+),2Cl(-) cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP(-/-)) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (-49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-D-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-D-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP(-/-) mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.
Collapse
Affiliation(s)
- Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brown RD, Turner AJ, Carlström M, Persson AEG, Gibson KJ. Tubuloglomerular feedback response in the prenatal and postnatal ovine kidney. Am J Physiol Renal Physiol 2011; 300:F1368-74. [DOI: 10.1152/ajprenal.00019.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 ± 1 vs. 64 ± 3 mmHg). The maximum TGF response (ΔPSFmax) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 ± 0.7 vs. 10.6 ± 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 ± 0.9 nl/min in fetuses compared with 19.3 ± 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased ΔPSFmax (4.2 ± 0.4 mmHg) and increased TP to 23.7 ± 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 ± 1.5 to 30.3 ± 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 ± 0.7 nl/min, but it had no effect on ΔPSFmax. This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.
Collapse
Affiliation(s)
- Russell D. Brown
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anita J. Turner
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - Mattias Carlström
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - A. Erik G. Persson
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Karen J. Gibson
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
32
|
Musselman TM, Zhang Z, Masilamani SME. Differential regulation of the bumetanide-sensitive cotransporter (NKCC2) by ovarian hormones. Steroids 2010; 75:760-5. [PMID: 20580730 PMCID: PMC2920368 DOI: 10.1016/j.steroids.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/20/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
The Na-K-2Cl cotransporter (NKCC2) regulates sodium transport along the thick ascending limb of Henle's loop and is important in control of sodium balance, renal concentrating ability and renin release. To determine if there are sex differences in NKCC2 abundance and/or distribution, and to evaluate the contribution of ovarian hormones to any such differences, we performed semiquantitative immunoblotting and immunoperoxidase immunohistochemistry for NKCC2 in the kidney of Sprague Dawley male, female and ovariectomized (OVX) rats with and without 17-beta estradiol or progesterone supplementation. Intact females demonstrated greater NKCC2 protein in homogenates of whole kidney (334+/-29%), cortex (219+/-20%) and outer medulla (133+/-9%) compared to males. Ovarian hormone supplementation to OVX rats regulated NKCC2 in the outer medulla only, with NKCC2 protein abundance decreasing slightly in response to progesterone but increasing in response to 17-beta estradiol. Immunohistochemistry demonstrated prominent NKCC2 labeling in the apical membrane of thick ascending limb cells. Kidney section NKCC2 labeling confirmed regionalized regulation of NKCC2 by ovarian hormones. Localized regulation of NKCC2 by ovarian hormones may have importance in controlling sodium and water balance over the lifetime of women as the milieu of sex hormones varies.
Collapse
Affiliation(s)
- Teddy M Musselman
- Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States
| | | | | |
Collapse
|
33
|
Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals (Basel) 2010; 3:2291-2321. [PMID: 27713354 PMCID: PMC4036662 DOI: 10.3390/ph3072291] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/20/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.
Collapse
Affiliation(s)
- Walter H Hörl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
34
|
Herman MB, Rajkhowa T, Cutuli F, Springate JE, Taub M. Regulation of renal proximal tubule Na-K-ATPase by prostaglandins. Am J Physiol Renal Physiol 2010; 298:F1222-34. [PMID: 20130120 DOI: 10.1152/ajprenal.00467.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prostaglandins (PGs) play a number of roles in the kidney, including regulation of salt and water reabsorption. In this report, evidence was obtained for stimulatory effects of PGs on Na-K-ATPase in primary cultures of rabbit renal proximal tubule (RPT) cells. The results of our real-time PCR studies indicate that in primary RPTs the effects of PGE(2), the major renal PG, are mediated by four classes of PGE (EP) receptors. The role of these EP receptors in the regulation of Na-K-ATPase was examined at the transcriptional level. Na-K-ATPase consists of a catalytic α-subunit encoded by the ATP1A1 gene, as well as a β-subunit encoded by the ATP1B1 gene. Transient transfection studies conducted with pHβ1-1141 Luc, a human ATP1B1 promoter/luciferase construct, indicate that both PGE(1) and PGE(2) are stimulatory. The evidence for the involvement of both the cAMP and Ca(2+) signaling pathways includes the inhibitory effects of the myristolylated PKA inhibitor PKI, the adenylate cyclase (AC) inhibitor SQ22536, and the PKC inhibitors Gö 6976 and Ro-32-0432 on the PGE(1) stimulation. Other effectors that similarly act through cAMP and PKC were also stimulatory to transcription, including norepinephrine and dopamine. In addition to its effects on transcription, a chronic incubation with PGE(1) was observed to result in an increase in Na-K-ATPase mRNA levels as well as an increase in Na-K-ATPase activity. An acute stimulatory effect of PGE(1) on Na-K-ATPase was observed and was associated with an increase in the level of Na-K-ATPase in the basolateral membrane.
Collapse
Affiliation(s)
- Maryann B Herman
- Dept. of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
35
|
Inscho EW. ATP, P2 receptors and the renal microcirculation. Purinergic Signal 2009; 5:447-60. [PMID: 19294530 PMCID: PMC2776135 DOI: 10.1007/s11302-009-9147-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/16/2008] [Indexed: 01/22/2023] Open
Abstract
Purinoceptors are rapidly becoming recognised as important regulators of tissue and organ function. Renal expression of P2 receptors is broad and diverse, as reflected by the fact that P2 receptors have been identified in virtually every major tubular/vascular element. While P2 receptor expression by these renal structures is recognised, the physiological functions that they serve remains to be clarified. Renal vascular P2 receptor expression is complex and poorly understood. Evidence suggests that different complements of P2 receptors are expressed by individual renal vascular segments. This unique distribution has given rise to the postulate that P2 receptors are important for renal vascular function, including regulation of preglomerular resistance and autoregulatory behaviour. More recent studies have also uncovered evidence that hypertension reduces renal vascular reactivity to P2 receptor stimulation in concert with compromised autoregulatory capability. This review will consolidate findings related to the role of P2 receptors in regulating renal microvascular function and will present areas of controversy related to the respective roles of ATP and adenosine in autoregulatory resistance adjustments.
Collapse
Affiliation(s)
- Edward W Inscho
- Department of Physiology, Medical College of Georgia, Augusta, Georgia,
| |
Collapse
|
36
|
Bell PD, Komlosi P, Zhang ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal 2009; 5:461-71. [PMID: 19330465 PMCID: PMC2776136 DOI: 10.1007/s11302-009-9148-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true "sensor cells" since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E(2) (PGE(2)) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells.
Collapse
Affiliation(s)
- P Darwin Bell
- Department of Medicine, Division of Nephrology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA,
| | | | | |
Collapse
|
37
|
Nevéus T, Läckgren G, Tuvemo T, Jerker H, Hjälmås K, Stenberg A. Enuresis - Background and Treatment. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/003655900750169257] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tryggve Nevéus
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Göran Läckgren
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Torsten Tuvemo
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Hetta Jerker
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Kelm Hjälmås
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Arne Stenberg
- Dept of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| |
Collapse
|
38
|
Seeliger E, Wronski T, Ladwig M, Dobrowolski L, Vogel T, Godes M, Persson PB, Flemming B. The renin-angiotensin system and the third mechanism of renal blood flow autoregulation. Am J Physiol Renal Physiol 2009; 296:F1334-45. [DOI: 10.1152/ajprenal.90476.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autoregulation of renal blood flow comprises three mechanisms: the myogenic response (MR), the tubuloglomerular feedback (TGF), and a third mechanism (3M). The nature of 3M is unknown; it may be related to hypotensive resetting of autoregulation that probably relies on pressure-dependent stimulation of the renin-angiotensin system (RAS). Thus we used a normotensive angiotensin II clamp in anesthetized rats and studied autoregulation 1) by slow ramp-shaped reductions in renal perfusion pressure (RPP) followed by ramp-shaped RPP restorations and 2) by means of the step response technique: after 30 s of either total or partial suprarenal aortic occlusion, a step increase in RPP was made and the response of renal vascular conductance analyzed to assess the mechanisms' strength and initial direction (vasodilation or constriction). The angiotensin clamp abolished the resetting of autoregulation during ramp-shaped RPP changes. Under control conditions, the initial TGF response was dilatory after total occlusions but constrictive after partial occlusions. The initial 3M response presented a mirror image to the TGF: it was constrictive after total but dilatory after partial occlusions. The angiotensin clamp suppressed the TGF and turned the initial 3M response following total occlusions into dilation. We conclude that 1) pressure-dependent RAS stimulation is a major cause behind hypotensive resetting of autoregulation, 2) TGF sensitivity strongly depends on pressure-dependent changes in RAS activity, 3) the 3M is modulated, but not mediated, by the RAS, and 4) the 3M acts as a counterbalance to the TGF and might possibly be related to the recently described connecting tubule glomerular feedback.
Collapse
|
39
|
Kantorowicz L, Valego NK, Tang L, Figueroa JP, Chappell MC, Carey LC, Rose JC. Plasma and renal renin concentrations in adult sheep after prenatal betamethasone exposure. Reprod Sci 2009; 15:831-8. [PMID: 19017818 DOI: 10.1177/1933719108318599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examined whether renin expression and secretion and plasma angiotensin II (Ang II) levels were altered in adult sheep exposed to antenatal betamethasone. Pregnant sheep received injections of 0.17 mg/kg betamethasone or vehicle, at 80 and 81 days of gestation, and offspring were studied at 6 and 18 months of age. At 6 months, plasma prorenin concentrations were significantly lower in betamethasone animals (4.63 +/- 0.64 vs 7.09 +/- 0.83 ng angiotensin I/mL/h, P < .01). The percentage of plasma active renin was significantly higher in the betamethasone group (31.93 +/- 4.09% vs 18.57 +/- 2.79%, P < .01). Plasma and renocortical renin levels were similar in both groups at 18 months, but plasma renin activity was lower than at 6 months. Ang II levels were suppressed by betamethasone. The data indicate that prenatal exposure to betamethasone alters processing and secretion of renin in offspring at 6 months, but that this difference is not apparent at 18 months.
Collapse
Affiliation(s)
- Lucia Kantorowicz
- Department of Obstetrics and Gynecology, Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang MZ, Yao B, Fang X, Wang S, Smith JP, Harris RC. Intrarenal dopaminergic system regulates renin expression. Hypertension 2009; 53:564-70. [PMID: 19139376 DOI: 10.1161/hypertensionaha.108.127035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dopamine is a major regulator of proximal tubule salt reabsorption and is a modulator of renin release. Dopamine has been reported to stimulate renin release in vitro through activation of D1-like receptors. However, previous studies investigating dopamine regulation of renin release in vivo have provided contradictory results, indicating stimulation, inhibition, or no effect. We have reported previously that macula densa cyclooxygenase-2 (COX-2) is suppressed by dopamine. Because macula densa COX-2 stimulates renal renin expression, our current studies investigated dopamine regulation of renal renin release and synthesis in vivo. Acute treatment with a D1-like receptor agonist, fenoldopam, significantly inhibited renin release, as did acute inhibition of proximal tubule salt reabsorption with acetazolamide. In catechol-O-methyl transferase knockout (COMT(-/-)) mice, which have increased kidney dopamine levels because of deletion of the major intrarenal dopamine metabolizing enzyme, there was attenuation in response to a low-salt diet of the increases of renal cortical COX-2 and renin expression and renin release. A high-salt diet led to significant decreases in renal renin expression but much less significant decreases in COMT(-/-) mice than wild type mice, resulting in higher renal renin expression in COMT(-/-) mice. In high salt-treated wild-type mice or COX-2 knockout mice on a normal salt diet, fenoldopam stimulated renal renin expression. These results suggest that dopamine predominantly inhibits renal renin expression and release by inhibiting macula densa COX-2, but suppression of renal cortical COX-2 activity reveals a contrasting effect of dopamine to stimulate renal renin expression through activation of D1-like receptors.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
41
|
Paterna S, Parrinello G, Cannizzaro S, Fasullo S, Torres D, Sarullo FM, Di Pasquale P. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 2009; 103:93-102. [PMID: 19101237 DOI: 10.1016/j.amjcard.2008.08.043] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/10/2008] [Accepted: 08/10/2008] [Indexed: 12/19/2022]
Abstract
Studies have shown that patients with compensated heart failure (HF) receiving high diuretic doses associated with normal sodium diet and fluid intake restrictions demonstrated significant reductions in readmissions and mortality compared with those who received low-sodium diets, and over a 6-month observation period, a reduction in neurohormonal activation was also observed. The aim of this study was to evaluate the effects of different sodium diets associated with different diuretic doses and different levels of fluid intake on hospital readmissions and neurohormonal changes after 6-month follow-up in patients with compensated HF. Four hundred ten consecutive patients with compensated HF (New York Heart Association class II to IV) aged 53 to 86 years, with ejection fractions <35% and serum creatinine <2 mg/dl, were randomized into 8 groups: group A (n = 52): 1,000 ml/day of fluid intake, 120 mmol/day, and 250 mg furosemide twice daily; group B (n = 51): 1,000 ml/day of fluid intake, 120 mmol/day, and 125 mg furosemide twice daily; group C (n = 51): 1,000 ml/day fluid intake, 80 mmol/day, and 250 mg furosemide twice daily; group D (n = 51): 1,000 ml/day fluid intake, 80 mmol/day, and 125 mg furosemide twice daily; group E (n = 52): 2,000 ml/day fluid intake, 120 mmol/day, and 250 mg furosemide twice daily; group F (n = 50): 2,000 ml/day fluid intake, 120 mmol/day, and 125 mg furosemide twice daily; group G (n = 52): 2,000 ml/day fluid intake, 80 mmol/day, and 250 mg furosemide twice daily; and group H (n = 51): 2,000 ml/day fluid intake, 80 mmol/day, and 125 mg furosemide twice daily. All patients received the treatments >or=30 days after discharge and for 180 days afterward. Signs of HF, body weight, blood pressure, heart rate, laboratory parameters, electrocardiograms, echocardiograms, brain natriuretic peptide, aldosterone, and plasma renin activity were examined at baseline and 180 days later. Group A showed the best results, with a significant reduction (p <0.001) in readmissions, brain natriuretic peptide, aldosterone, and plasma renin activity compared with the other groups during follow-up (p <0.001). In conclusion, these data suggest that the combination of a normal-sodium diet with high diuretic doses and fluid intake restriction, compared with different combinations of sodium diets with more modest fluid intake restrictions and conventional diuretic doses, leads to reductions in readmissions, neurohormonal activation, and renal dysfunction.
Collapse
|
42
|
Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. Possible mediators of connecting tubule glomerular feedback. Hypertension 2008; 53:319-23. [PMID: 19047578 DOI: 10.1161/hypertensionaha.108.124545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the renal cortex, the connecting tubule (CNT) returns to the glomerular hilum and contacts the afferent arteriole (Af-Art). Increasing Na delivery to the CNT dilates the Af-Art by activating epithelial Na channels, a process that we call connecting tubule glomerular feedback (CTGF). However, the mediator(s) of CTGF are unknown. We tested the hypothesis that Na reabsorption by the CNT induces release of arachidonic acid metabolites that diffuse to and dilate the Af-Art. Microdissected rabbit Af-Arts and adherent CNTs were simultaneously microperfused. CTGF was measured as the increase in diameter of norepinephrine-preconstricted Af-Arts in response to switching NaCl concentration in the lumen of the CNT from 10 to 80 mmol/L. Under control conditions, CTGF was repeatable and completely reversed norepinephrine-induced vasoconstriction. In the presence of 5,8,11,14-eicosatetraynoic acid, an inhibitor of arachidonic acid metabolism, CTGF was completely blocked (-0.7+/-0.3 versus 7.3+/-0.5 microm), suggesting that arachidonic acid metabolites mediate CTGF. Because both cyclooxygenase-derived prostaglandins and epoxygenase-derived epoxyeicosatrienoic acids are known vasodilatory arachidonic acid metabolites, we tested whether indomethacin or MS-PPOH (a cyclooxygenase and an epoxygenase inhibitor) could block CTGF. Both indomethacin and MS-PPOH partially blocked CTGF (2.3+/-0.8 versus 6.5+/-0.5 microm, and 2.9+/-0.8 versus 6.6+/-1.1 microm, respectively). When combined, they completely blocked CTGF (-0.4+/-0.3 versus 6.6+/-1.1 microm). We confirmed these findings by using the epoxyeicosatrienoic acid antagonist 14,15-EEZE. The combination of indomethacin plus 14,15-EEZE completely abolished CTGF (-0.3+/-0.2 versus 8.0+/-1.0 microm). We conclude that increasing Na concentrations in the CNT stimulate release of prostaglandins and epoxyeicosatrienoic acids, which mediate CTGF.
Collapse
Affiliation(s)
- YiLin Ren
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
43
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008; 295:F789-802. [PMID: 18579701 PMCID: PMC2536870 DOI: 10.1152/ajprenal.90227.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/17/2008] [Indexed: 11/22/2022] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hanner F, von Maltzahn J, Maxeiner S, Toma I, Sipos A, Krüger O, Willecke K, Peti-Peterdi J. Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure. Am J Physiol Regul Integr Comp Physiol 2008; 295:R371-80. [PMID: 18579650 DOI: 10.1152/ajpregu.00468.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexin (Cx) proteins are known to play a role in cell-to-cell communication via intercellular gap junction channels or transiently open hemichannels. Previous studies have identified several connexin isoforms in the juxtaglomerular apparatus (JGA), but the vascular connexin isoform Cx45 has not yet been studied in this region. The present work aimed to identify in detail the localization of Cx45 in the JGA and to suggest a functional role for Cx45 in the kidney using conditions where Cx45 expression or function was altered. Using mice that express lacZ coding DNA under the control of the Cx45 promoter, we observed beta-galactosidase staining in cortical vasculature and glomeruli, with specific localization to the JGA region. Renal vascular localization of Cx45 was further confirmed with the use of conditional Cx45-deficient (Cx45fl/fl:Nestin-Cre) mice, which express enhanced green fluorescence protein (EGFP) instead of Cx45 only in cells that, during development, expressed the intermediate filament nestin. EGFP fluorescence was found in the afferent and efferent arteriole smooth muscle cells, in the renin-producing juxtaglomerular cells, and in the extra- and intraglomerular mesangium. Cx45fl/fl:Nestin-Cre mice exhibited increased renin expression and activity, as well as higher systemic blood pressure. The propagation of mechanically induced calcium waves was slower in cultured vascular smooth muscle cells (VSMCs) from Cx45fl/fl:Nestin-Cre mice and in control VSMC treated with a Cx45 gap mimetic peptide that inhibits Cx45 gap junctional communication. VSMCs allowed the cell-to-cell passage of the gap junction permeable dye Lucifer yellow, and calcium wave propagation was not altered by addition of the ATP receptor blocker suramin, suggesting that Cx45 regulates calcium wave propagation via direct gap junction coupling. In conclusion, the localization of Cx45 to the JGA and functional data from Cx45fl/fl:Nestin-Cre mice suggest that Cx45 is involved in the propagation of JGA vascular signals and in the regulation of renin release and blood pressure.
Collapse
Affiliation(s)
- Fiona Hanner
- Department of Physiology, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo St., ZNI 335, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H, Blottner D, Ponce-Coria J, Gamba G, Bachmann S. Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 2008. [PMID: 18579701 DOI: 10.1152/ajprenal.90227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
Collapse
Affiliation(s)
- Pia Welker
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hanner F, Chambrey R, Bourgeois S, Meer E, Mucsi I, Rosivall L, Shull GE, Lorenz JN, Eladari D, Peti-Peterdi J. Increased renal renin content in mice lacking the Na+/H+ exchanger NHE2. Am J Physiol Renal Physiol 2008; 294:F937-44. [PMID: 18287398 DOI: 10.1152/ajprenal.00591.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macula densa (MD) cells express the Na(+)/H(+) exchanger (NHE) isoform NHE2 at the apical membrane, which may play an important role in tubular salt sensing through the regulation of cell volume and intracellular pH. These studies aimed to determine whether NHE2 participates in the MD control of renin synthesis. Renal renin content and activity and elements of the MD signaling pathway were analyzed using wild-type (NHE2(+/+)) and NHE2 knockout (NHE2(-/-)) mice. Immunofluorescence studies indicated that NHE2(-/-) mice lack NHE3 at the MD apical membrane, so the other apical NHE isoform has not compensated for the lack of NHE2. Importantly, the number of renin-expressing cells in the afferent arteriole in NHE2(-/-) mice was increased approximately 2.5-fold using renin immunohistochemistry. Western blotting confirmed approximately 20% higher renal cortical renin content in NHE2(-/-) mice compared with wild type. No-salt diet for 1 wk significantly increased renin content and activity in NHE2(+/+) mice, but the response was blunted in NHE2(-/-) mice. Renal tissue renin activity and plasma renin concentration were elevated three- and twofold, respectively, in NHE2(-/-) mice compared with wild type. NHE2(-/-) mice also exhibited a significantly increased renal cortical cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase (mPGES) expression, indicating MD-specific mechanisms responsible for the increased renin content. Significant and chronic activation of ERK1/2 was observed in MD cells of NHE2(-/-) kidneys. Removal of salt or addition of NHE inhibitors to cultured mouse MD-derived (MMDD1) cells caused a time-dependent activation of ERK1/2. In conclusion, the NHE2 isoform appears to be important in the MD feedback control of renin secretion, and the signaling pathway likely involves MD cell shrinkage and activation of ERK1/2, COX-2, and mPGES, all well-established elements of the MD-PGE(2)-renin release pathway.
Collapse
Affiliation(s)
- Fiona Hanner
- Department of Physiology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wagner C, de Wit C, Gerl M, Kurtz A, Höcherl K. Increased expression of cyclooxygenase 2 contributes to aberrant renin production in connexin 40-deficient kidneys. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1781-6. [PMID: 17855490 DOI: 10.1152/ajpregu.00439.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.
Collapse
Affiliation(s)
- Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located in the walls of renal afferent arterioles at the entrance of the glomerular capillary network. It has been known for a long time that renin synthesis and secretion are stimulated by the sympathetic nerves and the prostaglandins and are inhibited in negative feedback loops by angiotensin II, high blood pressure, salt, and volume overload. In contrast, the events controlling the function of renin-secreting cells at the organ and cellular level are markedly less clear and remain mysterious in certain aspects. The unravelling of these mysteries has led to new and interesting insights into the process of renin release.
Collapse
Affiliation(s)
- Frank Schweda
- Institute of Physiology, University of Regensburg, Germany; and
| | - Ulla Friis
- Department of Physiology and Pharmacology, Southern Denmark University at Odense, Odense, Denmark
| | | | - Ole Skott
- Department of Physiology and Pharmacology, Southern Denmark University at Odense, Odense, Denmark
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Germany; and
| |
Collapse
|
49
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
50
|
Matzdorf C, Kurtz A, Höcherl K. COX-2 activity determines the level of renin expression but is dispensable for acute upregulation of renin expression in rat kidneys. Am J Physiol Renal Physiol 2007; 292:F1782-90. [PMID: 17376760 DOI: 10.1152/ajprenal.00513.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of cyclooxygenase 2 (COX-2) in the control of renin is still a matter of debate, since studies with COX-2-deficient mice or with COX-2 inhibitors produced conflicting findings. Therefore, we studied the effect of the COX-2 inhibitor SC-58236 on the regulation of the renin system in adult rat kidneys. Renocortical tissue levels and urinary excretion of PGE(2) were reduced to 65 and 40% of control values, respectively, after a single gavage of SC-58236 and did not further decrease on prolonged treatment. Plasma renin activity (PRA) and renin mRNA levels began to decrease after 3 days and reached a constant level of approximately 60% of control values after 5 days of treatment. Isoproterenol or left renal artery clipping for 2 days increased PRA and renin mRNA to similar levels in both vehicle- and SC-58236-treated rats after 2 days. Pretreatment with SC-58236 for 5 days, however, reduced the absolute increase in PRA and renin mRNA levels. Notably, the relative increases were not different between vehicle- and SC-58236-treated rats. Similar findings were observed for the stimulation of the renin system by angiotensin II inhibition and low salt intake. These findings indicate that COX-2 inhibition attenuates renin secretion and renin gene expression stimulated by a variety of parameters in proportion to the lowering of basal renin activity, while it does not interfere with the different stimulatory mechanism per se. As a consequence, it appears as if COX-2 activity relevantly determines the set point of the activity of the renin system in rat kidneys.
Collapse
Affiliation(s)
- Corina Matzdorf
- Institute für Pharmakologie, Universität Regensburg, Regensburg, Germany
| | | | | |
Collapse
|