1
|
Pereira ED, Zenatti AA, Menani JV, De Luca LA, Andrade CAF. Inhibition of salty taste and sodium appetite by estrogens in spontaneously hypertensive rats. Front Physiol 2023; 14:1163568. [PMID: 37284542 PMCID: PMC10240049 DOI: 10.3389/fphys.2023.1163568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Estrogen has a well-known effect of reducing salt intake in rats. This mini review focuses on recent findings regarding the interaction of estradiol with brain angiotensin II to control increased sodium palatability that occurs as a result of sodium appetite in spontaneously hypertensive rats.
Collapse
|
2
|
Neurobehavioral Mechanisms of Sodium Appetite. Nutrients 2023; 15:nu15030620. [PMID: 36771327 PMCID: PMC9919744 DOI: 10.3390/nu15030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The objectives of this paper are to first present physiological and ecological aspects of the unique motivational state of sodium appetite, then to focus on systemic physiology and brain mechanisms. I describe how laboratory protocols have been developed to allow the study of sodium appetite under controlled conditions, and focus on two such conditions specifically. The first of these is the presentation a sodium-deficient diet (SDD) for at least one week, and the second is accelerated sodium loss using SDD for 1-2 days coupled with the diuretic furosemide. The modality of consumption is also considered, ranging from a free intake of high concentration of sodium solution, to sodium-rich food or gels, and to operant protocols. I describe the pivotal role of angiotensin and aldosterone in these appetites and discuss whether the intakes or appetite are matched to the physiological need state. Several brain systems have been identified, most recently and microscopically using molecular biological methods. These include clusters in both the hindbrain and the forebrain. Satiation of sodium appetite is often studied using concentrated sodium solutions, but these can be consumed in apparent excess, and I suggest that future studies of satiation might emulate natural conditions in which excess consumption does not occur, using either SDD only as a stimulus, offering a sodium-rich food for the assessment of appetite, or a simple operant task.
Collapse
|
3
|
Dadam FM, Amigone JL, Vivas L, Macchione. Comparison of dipsogenic responses of adult rat offspring as a function of different perinatal programming models. Brain Res Bull 2022; 188:77-91. [PMID: 35882279 DOI: 10.1016/j.brainresbull.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
The perinatal environment interacts with the genotype of the developing organism resulting in a unique phenotype through a developmental or perinatal programming phenomenon. However, it remains unclear how this phenomenon differentially affects particular targets expressing specific drinking responses depending on the perinatal conditions. The main goal of the present study was to compare the dipsogenic responses induced by different thirst models as a function of two perinatal manipulation models, defined by the maternal free access to hypertonic sodium solution and a partial aortic ligation (PAL-W/Na) or a sham-ligation (Sham-W/Na). The programmed adult offspring of both perinatal manipulated models responded similarly when was challenged by overnight water dehydration or after a sodium depletion showing a reduced water intake in comparison to the non-programmed animals. However, when animals were evaluated after a body sodium overload, only adult Sham-W/Na offspring showed drinking differences compared to PAL and control offspring. By analyzing the central neurobiological substrates involved, a significant increase in the number of Fos + cells was found after sodium depletion in the subfornical organ of both programmed groups and an increase in the number of Fos + cells in the dorsal raphe nucleus was only observed in adult depleted PAL-W/Na. Our results suggest that perinatal programming is a phenomenon that differentially affects particular targets which induce specific dipsogenic responses depending on matching between perinatal programming conditions and the osmotic challenge in the latter environment. Probably, each programmed-drinking phenotype has a particular set point to elicit specific repertoires of mechanisms to reestablish fluid balance.
Collapse
Affiliation(s)
- F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Kim S, Park ES, Chen PR, Kim E. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Is Associated With Increased Inflammation and Worse Outcomes After Ischemic Stroke in Diabetic Mice. Front Immunol 2022; 13:864858. [PMID: 35784349 PMCID: PMC9243263 DOI: 10.3389/fimmu.2022.864858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients have larger infarcts, worse neurological deficits, and higher mortality rate after an ischemic stroke. Evidence shows that in diabetes, the hypothalamic–pituitary–adrenal (HPA) axis was dysregulated and levels of cortisol increased. Based on the role of the HPA axis in immunity, we hypothesized that diabetes-dysregulated stress response exacerbates stroke outcomes via regulation of inflammation. To test this hypothesis, we assessed the regulation of the HPA axis in diabetic mice before and after stroke and determined its relevance in the regulation of post-stroke injury and inflammation. Diabetes was induced in C57BL/6 mice by feeding a high-fat diet and intraperitoneal injection of streptozotocin (STZ), and then the mice were subjected to 30 min of middle cerebral artery occlusion (MCAO). Infarct volume and neurological scores were measured in the ischemic mice. The inflammatory cytokine and chemokine levels were also determined in the ischemic brain. To assess the effect of diabetes on the stroke-modulated HPA axis, we measured the expression of components in the HPA axis including corticotropin-releasing hormone (CRH) in the hypothalamus, proopiomelanocortin (POMC) in the pituitary, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Diabetic mice had larger infarcts and worse neurological scores after stroke. The exacerbated stroke outcomes in diabetic mice were accompanied by the upregulated expression of inflammatory factors (including IL-1β, TNF-α, IL-6, CCR2, and MCP-1) in the ischemic brain. We also confirmed increased levels of hypothalamic CRH, pituitary POMC, and plasma corticosterone in diabetic mice before and after stroke, suggesting the hyper-activated HPA axis in diabetic conditions. Finally, we confirmed that post-stroke treatment of metyrapone (an inhibitor of glucocorticoid synthesis) reduced IL-6 expression and the infarct size in the ischemic brain of diabetic mice. These results elucidate the mechanisms in which the HPA axis in diabetes exacerbates ischemic stroke. Maintaining an optimal level of the stress response by regulating the HPA axis may be an effective approach to improving stroke outcomes in patients with diabetes.
Collapse
|
5
|
Park S, Sohn JW. Protocol for sodium depletion and measurement of sodium appetite in mice. STAR Protoc 2021; 2:101026. [PMID: 34950894 PMCID: PMC8671748 DOI: 10.1016/j.xpro.2021.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sodium appetite is a state that motivates animals to consume normally unappetizing concentrations of sodium. Here we describe a protocol to induce sodium appetite in mice by furosemide-induced diuresis and measure sodium intake using volumetric drinking tubes. This protocol induces sodium appetite rapidly and can be used to assess the effect of various treatments on sodium appetite. This protocol does not require electronic equipment and can be implemented easily. For complete details on the use and execution of this protocol, please refer to Park et al. (2020). Protocol describes easy and affordable approaches to study sodium appetite in mice Sodium appetite is induced by sodium-losing diuretics and sodium-deficient diet Sodium appetite is assessed by two-bottle assay using volumetric drinking tubes Protocol can be used to assess effects of various treatments on sodium appetite
Collapse
Affiliation(s)
- Seahyung Park
- Department of Biological Sciences, Korea Advanced Institution of Science and Technology, 34141 Daejeon, Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institution of Science and Technology, 34141 Daejeon, Korea
| |
Collapse
|
6
|
Santos BM, de Andrade CA, Menani JV, De Luca LA. Short-term cross-sensitizion of need-free sugar intake by combining sodium depletion and hypertonic NaCl intake. Appetite 2016; 107:79-85. [DOI: 10.1016/j.appet.2016.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 02/01/2023]
|
7
|
Stricker EM, Grigson PS, Norgren R. Variable effects of parabrachial nucleus lesions on salt appetite in rats depending upon experimental paradigm and saline concentration. Behav Neurosci 2013; 127:275-84. [PMID: 23398436 DOI: 10.1037/a0031716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have demonstrated that bilateral lesions of the gustatory (medial) zone of the parabrachial nucleus (PBN) in the pons eliminate the salt (sodium chloride; NaCl) appetite induced in rats by treatment with the diuretic drug, furosemide. The present studies reexamined NaCl intake of rats with PBN lesions induced by ibotenic acid, using multiple models of salt appetite. The impairment of a conditioned taste aversion, an established consequence of PBN damage, was used as an initial screen with which to assess the effectiveness of the lesions. Rats with PBN lesions did not drink either 0.3 of a molar (M) solution of NaCl or 0.5 M NaCl in response to daily treatment with desoxycorticosterone acetate. These findings suggest that the excitatory stimulus of salt appetite mediated by mineralocorticoids is abolished by PBN lesions. In contrast, rats with PBN lesions drank some 0.5 M NaCl and more 0.3 M NaCl, in addition to water, in response to hypovolemia induced by subcutaneous injection of 30% polyethylene glycol solution. Those findings suggest that an excitatory stimulus of salt appetite, presumably mediated by Angiotensin II, is not abolished by PBN lesions. These and other observations indicate that lesions of the gustatory PBN in rats may or may not eliminate salt appetite, depending on which model is used and which concentration of NaCl solution is available.
Collapse
Affiliation(s)
- Edward M Stricker
- Department of Neuroscience, 210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
8
|
Formenti S, Bassi M, Nakamura NB, Schoorlemmer GHM, Menani JV, Colombari E. Hindbrain mineralocorticoid mechanisms on sodium appetite. Am J Physiol Regul Integr Comp Physiol 2013. [DOI: 10.1152/ajpregu.00385.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280–350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite.
Collapse
Affiliation(s)
- Silmara Formenti
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Natália B. Nakamura
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Guus H. M. Schoorlemmer
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Almeida RL, David RB, Constancio J, Fracasso JF, Menani JV, De Luca LA. Inhibition of sodium appetite by lipopolysaccharide: involvement of alpha2-adrenoceptors. Am J Physiol Regul Integr Comp Physiol 2011; 301:R185-92. [PMID: 21474430 DOI: 10.1152/ajpregu.00555.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS), an endotoxin from the wall of Escherichia coli, produces a general behavioral inhibition and affects several aspects of fluid-electrolyte balance. LPS inhibits thirst; however, it is not clear if it also inhibits sodium appetite. The present results show that LPS (0.3-2.5 mg/kg body wt) injected intraperitoneally produces a dose-dependent reduction of sodium appetite expressed as 0.3 M NaCl intake induced by sodium depletion (furosemide plus removal of ambient sodium for 24 h). The high doses of LPS (1.2-2.5 mg/kg) also produced transient hypothermia at the beginning of the sodium appetite test; however, no dose produced hyperthermia. LPS also increased the stomach liquid content (an index of gastric emptying) after a load of 0.3 M NaCl given intragastrically by gavage to sodium-depleted rats. The α(2)-adrenoceptor antagonist yohimbine (5 mg/kg ip) abolished the effect of LPS on 0.3 M NaCl intake, without changing the effect of LPS on gastric emptying. Injection of RX-821002 (160 nmol), another α(2)-adrenoceptor antagonist, in the lateral cerebral ventricle (LV) also reversed the inhibition of sodium appetite produced by LPS. Yohimbine intraperitoneally or RX-821002 in the LV alone had no effect on sodium intake. Although yohimbine plus LPS produced a slight hypotension, RX-821002 plus LPS produced no change in arterial pressure, suggesting that the blockade of the effects of LPS on sodium intake by the α(2)-adrenoceptor antagonists is independent from changes in arterial pressure. The results suggest an inhibitory role for LPS in sodium appetite that is mediated by central α(2)-adrenoceptors.
Collapse
Affiliation(s)
- R L Almeida
- Dept. of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Rua Humaitá, 1680, Araraquara, São Paulo, 14801-903, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Central angiotensin II induces sodium bicarbonate intake in the rat. Appetite 2008; 51:82-9. [DOI: 10.1016/j.appet.2007.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/23/2022]
|
11
|
Ahmed A, Young JB, Love TE, Levesque R, Pitt B. A propensity-matched study of the effects of chronic diuretic therapy on mortality and hospitalization in older adults with heart failure. Int J Cardiol 2008; 125:246-53. [PMID: 17706809 PMCID: PMC2708078 DOI: 10.1016/j.ijcard.2007.05.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 05/14/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND Non-potassium-sparing diuretics may increase mortality and hospitalizations in heart failure patients. Most heart failure patients are older adults, yet the effect of diuretics on cause-specific mortality and hospitalizations in older adults with heart failure is unknown. The objective of this propensity-matched study was to determine the effect of diuretics on mortality and hospitalizations in heart failure patients >or=65 years. METHODS Of the 7788 Digitalis Investigation Group participants, 4036 were >or=65 years and 3271 (81%) were receiving diuretics. Propensity scores for diuretic use for each of the 4036 patients were calculated using a non-parsimonious multivariable logistic regression model incorporating all measured baseline covariates, and were used to match 651 (85%) patients not receiving diuretics with 651 patients receiving diuretics. Effects of diuretics on mortality and hospitalization at 37 months of median follow-up were assessed using matched Cox regression models. RESULTS All-cause mortality occurred in 173 patients not receiving diuretics and 208 patients receiving diuretics respectively during 2056 and 1943 person-years of follow-up (hazard ratio {HR}=1.36; 95% confidence interval {CI}=1.08-1.71; p=0.009). All-cause hospitalizations occurred in 413 patients not receiving and 438 patients receiving diuretics respectively during 1255 and 1144 person-years of follow-up (HR=1.18; 95% CI=0.99-1.39; p=0.063). Diuretic use was associated with significant increased risk of cardiovascular mortality (HR=1.50; 95% CI=1.15-1.96; p=0.003).and heart failure hospitalization (HR=1.48; 95% CI=1.13-1.94; p=0.005). CONCLUSIONS Chronic diuretic use was associated with significant increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics.
Collapse
Affiliation(s)
- Ali Ahmed
- University of Alabama at Birmingham, and Veterans Affairs Medical Center, Birmingham, 1530 3rd Avenue South, CH19-219, Birmingham, Alabama 35294-2041, USA.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Thunhorst RL, Beltz TG, Johnson AK. Glucocorticoids increase salt appetite by promoting water and sodium excretion. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1444-51. [PMID: 17596327 PMCID: PMC2922067 DOI: 10.1152/ajpregu.00294.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids [e.g., corticosterone and dexamethasone (Dex)], when administered systemically, greatly increase water drinking elicited by angiotensin and sodium ingestion in response to mineralocorticoids [e.g., aldosterone and deoxycorticosterone acetate (DOCA)], possibly by acting in the brain. In addition, glucocorticoids exert powerful renal actions that could influence water and sodium ingestion by promoting their excretion. To test this, we determined water and sodium intakes, excretions, and balances during injections of Dex and DOCA and their coadministration (DOCA+Dex) at doses commonly employed to stimulate ingestion of water and sodium. In animals having only water to drink, Dex treatment greatly increased water and sodium excretion without affecting water intake, thereby producing negative water and sodium balances. Similar results were observed when Dex was administered together with DOCA. In animals having water and saline solution (0.3 M NaCl) to drink, Dex treatment increased water and sodium excretion, had minimal effects on water and sodium intakes, and was associated with negative water and sodium balances. DOCA treatment progressively increased sodium ingestion, and both water and sodium intakes exceeded their urinary excretion, resulting in positive water and sodium balances. The combination of DOCA+Dex stimulated rapid, large increases in sodium ingestion and positive sodium balances. However, water excretion outpaced total fluid intake, resulting in large, negative water balances. Plasma volume increased during DOCA treatment and did not change during treatment with Dex or DOCA+Dex. We conclude that increased urinary excretion, especially of water, during glucocorticoid treatment may explain the increased ingestion of water and sodium that occurs during coadministration with mineralocorticoids.
Collapse
Affiliation(s)
- Robert L Thunhorst
- Department of Psychology, University of Iowa, 11 Seashore Hall E., Iowa City, IA 52242-1407, USA.
| | | | | |
Collapse
|
14
|
Geerling JC, Loewy AD. Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1338-48. [PMID: 17068161 DOI: 10.1152/ajpregu.00391.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirst and sodium appetite are both critical for restoring blood volume. Because these two behavioral drives can arise under similar physiological conditions, some of the brain sensory sites that stimulate thirst may also drive sodium appetite. However, the physiological and temporal dynamics of these two appetites exhibit clear differences, suggesting that they involve separate brain circuits. Unlike thirst-associated sensory neurons in the hypothalamus, the 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2) neurons in the rat nucleus tractus solitarius (NTS) are activated in close association with sodium appetite (16). Here, we tested whether the HSD2 neurons are also activated in response to either of the two physiological stimuli for thirst: hyperosmolarity and hypovolemia. Hyperosmolarity, produced by intraperitoneal injection of hypertonic saline, stimulated a large increase in water intake and a substantial increase in immunoreactivity for the neuronal activity marker c-Fos within the medial NTS, but not in the HSD2 neurons. Hypovolemia, produced by subcutaneous injection of hyperoncotic polyethylene glycol (PEG), stimulated an increase in water intake within 1-4 h without elevating c-Fos expression in the HSD2 neurons. The HSD2 neurons were, however, activated by prolonged hypovolemia, which also stimulated sodium appetite. Twelve hours after PEG was injected in rats that had been sodium deprived for 4 days, the HSD2 neurons showed a consistent increase in c-Fos immunoreactivity. In summary, the HSD2 neurons are activated specifically in association with sodium appetite and appear not to function in thirst.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
15
|
Ahmed A, Husain A, Love TE, Gambassi G, Dell'Italia LJ, Francis GS, Gheorghiade M, Allman RM, Meleth S, Bourge RC. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J 2006; 27:1431-9. [PMID: 16709595 PMCID: PMC2443408 DOI: 10.1093/eurheartj/ehi890] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS Non-potassium-sparing diuretics are commonly used in heart failure (HF). They activate the neurohormonal system, and are potentially harmful. Yet, the long-term effects of chronic diuretic use in HF are largely unknown. We retrospectively analysed the Digitalis Investigation Group (DIG) data to determine the effects of diuretics on HF outcomes. METHODS AND RESULTS Propensity scores for diuretic use were calculated for each of the 7788 DIG participants using a non-parsimonious multivariable logistic regression model, and were used to match 1391 (81%) no-diuretic patients with 1391 diuretic patients. Effects of diuretics on mortality and hospitalization at 40 months of median follow-up were assessed using matched Cox regression models. All-cause mortality was 21% for no-diuretic patients and 29% for diuretic patients [hazard ratio (HR) 1.31; 95% confidence interval (CI) 1.11-1.55; P = 0.002]. HF hospitalizations occurred in 18% of no-diuretic patients and 23% of diuretic patients (HR 1.37; 95% CI 1.13-1.65; P = 0.001). CONCLUSION Chronic diuretic use was associated with increased long-term mortality and hospitalizations in a wide spectrum of ambulatory chronic systolic and diastolic HF patients. The findings of the current study challenge the wisdom of routine chronic use of diuretics in HF patients who are asymptomatic or minimally symptomatic without fluid retention, and are on complete neurohormonal blockade. These findings, based on a non-randomized design, need to be further studied in randomized trials.
Collapse
Affiliation(s)
- Ali Ahmed
- Department of Medicine, School of Medicine, and Department of Epidemiology, School of Public Health, and Center for Heart Failure Research, University of Alabama at Birmingham and VA Medical Center, 35294-2041, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci 2006; 26:411-7. [PMID: 16407537 PMCID: PMC6674421 DOI: 10.1523/jneurosci.3115-05.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sodium appetite can be enhanced by the adrenal steroid aldosterone via an unknown brain mechanism. A novel group of neurons in the nucleus tractus solitarius expresses the enzyme 11-beta-hydroxysteroid dehydrogenase type 2, which makes them selectively responsive to aldosterone. Their activation parallels sodium appetite in different paradigms of salt loss even in the absence of aldosterone. These unique aldosterone target neurons may represent a previously unrecognized central convergence point at which hormonal and neural signals can be integrated to drive sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
17
|
Rowland NE, Farnbauch LJ, Crews EC. Sodium deficiency and salt appetite in ICR: CD1 mice. Physiol Behav 2004; 80:629-35. [PMID: 14984796 DOI: 10.1016/j.physbeh.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 11/24/2022]
Abstract
Using an outbred strain of mouse, we examined several characteristics of sodium appetite induced by depletion. We found that an appetite for 0.15 M NaCl solution was stimulated 24 h after injection of furosemide and access to a low-sodium diet, but not by low-sodium diet alone. When the duration of exposure to low-sodium diet was increased from 1 to 7 days, there was no additional effect on either the appetite or the blood plasma changes including elevated hematocrit ratio, protein and aldosterone concentrations, and plasma renin activity (PRA). Mice also showed an appetite for hypertonic (0.5 M) NaCl in solutions or in a gel matrix; the intakes of these two were comparable but the gel measurement was gravimetric so maybe more accurate. In the same study, we showed that single injections of either 10 or 40 mg/kg furosemide followed by a 24-h low-sodium diet produced similar appetites, but that 2.5 mg/kg had a submaximal effect. Lastly, we further validated the use of the gel matrix by showing in chronically depleted mice that intake was inversely related to NaCl concentration in the range 0.5-1.5 M, and that appetite was selective for sodium but not the anion with which it was paired.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, PO Box 112250, Gainesville, FL 32611-2250, USA.
| | | | | |
Collapse
|
18
|
Cho YK, Smith ME, Norgren R. Low-dose furosemide modulates taste responses in the nucleus of the solitary tract of the rat. Am J Physiol Regul Integr Comp Physiol 2004; 287:R706-14. [PMID: 15155275 DOI: 10.1152/ajpregu.00090.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Taste-evoked neural responses in the nucleus of the solitary tract (NST) are subject to both excitatory and inhibitory modulation by physiological conditions that influence ingestion. Treatments that induce sodium appetite predominantly reduce NST gustatory responsiveness to sapid stimuli. When sodium appetite is aroused with 10 mg of the diuretic furosemide (Furo), however, NST gustatory neurons exhibit an enhanced responsiveness to NaCl. In addition to inducing a sodium appetite, 10 mg Furo supports a conditioned taste aversion (CTA). A lower, 2-mg dose of Furo induces an equivalent sodium appetite, but not a CTA. To determine whether the anomalous electrophysiological results reflected the adverse effects of the 10-mg dose, we replicated the original experiment but instead used 2 mg of Furo. In chronically prepared, lightly anesthetized rats, the responses of 49 single NST neurons to 12 taste stimuli were recorded after subcutaneous injections of either 2 mg Furo or saline. There was no effect of treatment on NST neural responses to the four standard taste stimuli. In the NaCl concentration series, however, 2 mg Furo evoked significantly higher responses to the two highest concentrations of NaCl. There was no effect of treatment in the sucrose concentration series. Thus, unlike other methods that induce a sodium appetite, Furo increases NST neural responsiveness to NaCl. At least as far as the first central relay, sodium appetite apparently does not depend on specific changes in the sensory neural code for taste.
Collapse
Affiliation(s)
- Young K Cho
- College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | | | | |
Collapse
|
19
|
Rowland NE, Goldstein BE, Robertson KL. Role of angiotensin in body fluid homeostasis of mice: fluid intake, plasma hormones, and brain Fos. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1586-94. [PMID: 12595280 DOI: 10.1152/ajpregu.00730.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD1 mice injected peripherally with either ANG I or ANG II failed to drink substantial amounts of water or NaCl, yet showed strong Fos immunoreactivity (ir) in subfornical organ (SFO). Mice injected with furosemide showed modest stimulation of NaCl intake either 3 or 24 h later, were hypovolemic, and showed elevated plasma renin activity (PRA). The pattern of Fos-ir in the brain after furosemide was similar to that seen after peripheral injection of ANG II. Mice became hypovolemic after subcutaneous injection of polyethylene glycol (PEG), showed large increases in PRA, aldosterone, and water intake, but did not show sodium appetite. PEG-treated mice had strong activation of SFO as well as other brain regions previously shown to be related to ANG-associated drinking in rats. ANG II appears to have a modified role in the behavioral response to fluid loss in mice compared with rats.
Collapse
Affiliation(s)
- Neil E Rowland
- University of Florida, Department of Psychology, Gainesville, Florida 32611-2250, USA.
| | | | | |
Collapse
|