1
|
Park CB, Lee CH, Cho KW, Shin S, Jang WH, Byeon J, Oh YR, Kim SJ, Park JW, Kang GM, Min SH, Kim S, Yu R, Kim MS. Extracellular Cleavage of Microglia-Derived Progranulin Promotes Diet-Induced Obesity. Diabetes 2024; 73:2009-2021. [PMID: 39302854 DOI: 10.2337/db24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily conserved secretory protein containing seven and a half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, which encodes PGRN. Mice with microglia-specific Grn depletion displayed diet-dependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn depletion produced adverse outcomes, such as fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high-fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appeared to be linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating diet-induced obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sunghun Shin
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junyeong Byeon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Park H, Lee CH. The contribution of the nervous system in the cancer progression. BMB Rep 2024; 57:167-175. [PMID: 38523371 PMCID: PMC11058356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies. [BMB Reports 2024; 57(4): 167-175].
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster D-48149, Germany, Chuncheon 24252, Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
3
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
4
|
Meng W, Lin Z, Bian T, Chen X, Meng L, Yuan T, Niu L, Zheng H. Ultrasound Deep Brain Stimulation Regulates Food Intake and Body Weight in Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:366-377. [PMID: 38194393 DOI: 10.1109/tnsre.2024.3351312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.
Collapse
|
5
|
Yanik T, Durhan ST. Neuroendocrinological and Clinical Aspects of Leptin. Mini Rev Med Chem 2024; 24:886-894. [PMID: 37622709 DOI: 10.2174/1389557523666230825100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Obesity is characterized by an abnormal increase in adipose tissue mass and is regarded as a neurobehavioral as well as a metabolic disorder. Increases in body fat are caused by even slight, long-term discrepancies between energy intake and energy expenditure. It is a chronic condition linked to the metabolic syndrome, a spectrum of risky conditions, such as diabetes, high blood pressure, and heart disease. With a swiftly rising prevalence, obesity has emerged as a significant global health concern. Leptin influences the brain's neuroendocrine and metabolic processes, which is important for maintaining energy homeostasis. White adipose tissue secretes the majority of leptin, and there is a positive correlation between leptin levels in the blood and body fat percentages. The central nervous system is also modulated by leptin levels to modify energy intake and usage. The idea of an obesity cure sparked excitement after it was discovered more than 25 years ago. However, the leptin medication only effectively reduces weight in patients with congenital leptin insufficiency and not in patients with typical obesity who may also have leptin resistance. Recent research has focused on the role of leptin in managing weight reduction and preventing "yo-yo dieting". This review concentrates on the neurological effects of leptin with a focus on therapeutic and diagnostic applications, particularly for childhood obesity.
Collapse
Affiliation(s)
- Tulin Yanik
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Seyda Tugce Durhan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
6
|
Wekwejt P, Wojda U, Kiryk A. Melanotan-II reverses memory impairment induced by a short-term HF diet. Biomed Pharmacother 2023; 165:115129. [PMID: 37478579 DOI: 10.1016/j.biopha.2023.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023] Open
Abstract
A high-fat (HF) diet has been shown to increase the risk of neurological impairments and neurodegenerative disorders. The melanotropins used in this study have been associated with diet-related disorders; however, there is an absence of studies on their effect on diet-induced neurobehavioral conditions. Here, we investigated the possible relationship among diet, Melanotan-II (MT-II) targeting melanotropin receptors, and the behavior of zebrafish (Danio rerio). Surprisingly, even a short-term HF diet lasting for ∼ 1 % of the zebrafish's life had a strong developmental effect. Zebrafish fed the HF diet showed an impairment in recognition memory, elevated anxiety levels, and reduced exploratory propensity after just three weeks compared to zebrafish fed the control diet. These HF diet-induced abnormalities were reversed by MT-II. Animals fed a HF diet and treated with MT-II demonstrated recognition memory, anxiety, and exploratory behavior similar to the control group. This study provides evidence that even a short-term HF diet has an impact on memory and emotions and is the first study to show that MT-II reverses these changes.
Collapse
Affiliation(s)
- Patryk Wekwejt
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Kiryk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Li H, Xu Y, Jiang Y, Jiang Z, Otiz-Guzman J, Morrill JC, Cai J, Mao Z, Xu Y, Arenkiel BR, Huang C, Tong Q. The melanocortin action is biased toward protection from weight loss in mice. Nat Commun 2023; 14:2200. [PMID: 37069175 PMCID: PMC10110624 DOI: 10.1038/s41467-023-37912-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.
Collapse
Affiliation(s)
- Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Zhengmei Mao
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Hypothalamic CREB Regulates the Expression of Pomc-Processing Enzyme Pcsk2. Cells 2022; 11:cells11131996. [PMID: 35805082 PMCID: PMC9265861 DOI: 10.3390/cells11131996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The hypothalamic proopiomelanocortin (Pomc) neurons act as first-order sensors of systemic energy stores, providing signals that regulate caloric intake and energy expenditure. In experimental obesity, dietary saturated fatty acids affect Pomc endopeptidases (PCs), resulting in the abnormal production of the neurotransmitters α-melanocyte-stimulating hormone (α-MSH) and β-endorphin, thus impacting energy balance. The cAMP response element-binding protein (CREB) is one of the transcription factors that control the expression of Pomc endopeptidases; however, it was previously unknown if dietary fats could affect CREB and consequently the expression of Pomc endopeptidases. Methods: Here, we used single-cell RNA sequencing analysis, PCR, immunoblot, ELISA and immunofluorescence histological assays to determine the impact of a high-fat diet (HFD) on the expression and function of hypothalamic CREB and its impact on the melanocortinergic system. Results: The results indicate that CREB is expressed in arcuate nucleus Pomc neurons and is activated as early as nine hours after the introduction of a high-fat diet. The inhibition of hypothalamic CREB using a short-hairpin RNA lentiviral vector resulted in increased diet-induced body-mass gain and reduced energy expenditure. This was accompanied by reduced expression of the Pomc endopeptidases, protein convertase 2, which are encoded by Pcsk2, and by the loss of the high-fat-diet-induced effect to inhibit the production of α-MSH. Conclusions: This study provides the first evidence for the involvement of CREB in the abnormal regulation of the hypothalamic Pomc endopeptidase system in experimental obesity.
Collapse
|
9
|
Copperi F, Kim JD, Diano S. Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biol Psychiatry 2022; 91:879-887. [PMID: 34344535 PMCID: PMC8643363 DOI: 10.1016/j.biopsych.2021.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/02/2022]
Abstract
Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
10
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
11
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Metz MJ, Daimon CM, King CM, Rau AR, Hentges ST. Individual arcuate nucleus proopiomelanocortin neurons project to select target sites. Am J Physiol Regul Integr Comp Physiol 2021; 321:R982-R989. [PMID: 34755553 PMCID: PMC8714814 DOI: 10.1152/ajpregu.00169.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) are a diverse group of neurons that project widely to different brain regions. It is unknown how this small population of neurons organizes its efferent projections. In this study, we hypothesized that individual ARH POMC neurons exclusively innervate select target regions. To investigate this hypothesis, we first verified that only a fraction of ARH POMC neurons innervate the lateral hypothalamus (LH), the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray (PAG), or the ventral tegmental area (VTA) using the retrograde tracer cholera toxin B (CTB). Next, two versions of CTB conjugated to distinct fluorophores were injected bilaterally into two of the regions such that PVN and VTA, PAG and VTA, or LH and PVN received tracers simultaneously. These pairs of target sites were chosen based on function and location. Few individual ARH POMC neurons projected to two brain regions at once, suggesting that there are ARH POMC neuron subpopulations organized by their efferent projections. We also investigated whether increasing the activity of POMC neurons could increase the number of ARH POMC neurons labeled with CTB, implying an increase in new synaptic connections to downstream regions. However, chemogenetic enhancement of POMC neuron activity did not increase retrograde tracing of CTB back to ARH POMC neurons from either the LH, PVN, or VTA. Overall, subpopulations of ARH POMC neurons with distinct efferent projections may serve as a way for the POMC population to organize its many functions.
Collapse
Affiliation(s)
- Marissa J Metz
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
13
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
14
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
15
|
Hsieh YW, Tsai YW, Lai HH, Lai CY, Lin CY, Her GM. Depletion of Alpha-Melanocyte-Stimulating Hormone Induces Insatiable Appetite and Gains in Energy Reserves and Body Weight in Zebrafish. Biomedicines 2021; 9:941. [PMID: 34440144 PMCID: PMC8392443 DOI: 10.3390/biomedicines9080941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The functions of anorexigenic neurons secreting proopiomelanocortin (POMC)/alpha-melanocyte-stimulating hormone (α-MSH) of the melanocortin system in the hypothalamus in vertebrates are energy homeostasis, food intake, and body weight regulation. However, the mechanisms remain elusive. This article reports on zebrafish that have been genetically engineered to produce α-MSH mutants, α-MSH-7aa and α-MSH-8aa, selectively lacking 7 and 8 amino acids within the α-MSH region, but retaining most of the other normal melanocortin-signaling (Pomc-derived) peptides. The α-MSH mutants exhibited hyperphagic phenotypes leading to body weight gain, as observed in human patients and mammalian models. The actions of several genes regulating appetite in zebrafish are similar to those in mammals when analyzed using gene expression analysis. These include four selected orexigenic genes: Promelanin-concentrating hormone (pmch), agouti-related protein 2 (agrp2), neuropeptide Y (npy), and hypothalamic hypocretin/orexin (hcrt). We also study five selected anorexigenic genes: Brain-derived neurotrophic factor (bdnf), single-minded homolog 1-a (sim1a), corticotropin-releasing hormone b (crhb), thyrotropin-releasing hormone (trh), and prohormone convertase 2 (pcsk2). The orexigenic actions of α-MSH mutants are rescued completely after hindbrain ventricle injection with a synthetic analog of α-MSH and a melanocortin receptor agonist, Melanotan II. We evaluate the adverse effects of MSH depletion on energy balance using the Alamar Blue metabolic rate assay. Our results show that α-MSH is a key regulator of POMC signaling in appetite regulation and energy expenditure, suggesting that it might be a potential therapeutic target for treating human obesity.
Collapse
Affiliation(s)
- Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| |
Collapse
|
16
|
Maejima Y, Horita S, Otsuka A, Hidema S, Nishimori K, Shimomura K. Oral oxytocin delivery with proton pump inhibitor pretreatment decreases food intake. Peptides 2020; 128:170312. [PMID: 32298773 DOI: 10.1016/j.peptides.2020.170312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Oxytocin (Oxt) is considered as a potential agent to treat multiple neuropsychiatric disorders, obesity and metabolic syndrome. Although the mechanisms underlying these effects remain unclear, nasal administration is considered to be a potential way to deliver Oxt into blood vessels. The development of an easier, more stable and efficient way is expected. A recent study demonstrated that orally administered Oxt can be transmitted into blood if it is prevented from degradation in stomach and reaches the intestinal tract. In this study, we pretreated mice with a proton pump inhibitor (PPI), omeprazole (20 mg/kg), and administered capsulized Oxt (0.25 mg), so that the Oxt can be prevented from degradation by pepsin due to the low pH in stomach and reach the intestinal tract. Functionally, these mice showed a similar decrease in food intake to those who underwent intraperitoneal administration. We also confirmed that this method dramatically increased plasma Oxt levels and the expression of neural activation marker c-Fos protein in the paraventricular and suprachiasmatic nucleus. Our study showed that by pretreating mice with PPI, Oxt in a gelatin-coated capsule can prevent Oxt from degradation by pepsin in stomach, and reach the bloodstream in an effective concentration. These results indicate that our method is a promising oral delivery of Oxt and should be investigated further for other peptide agents based on peripheral injection or nasal administration.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan.
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan
| | - Ayano Otsuka
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Shizu Hidema
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University Sendai-shi, 981-8555, Miyagi, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 960-1295, Fukushima, Japan
| |
Collapse
|
17
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
18
|
Relationship of α-MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons. Brain Res 2019; 1717:136-146. [DOI: 10.1016/j.brainres.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
19
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
20
|
Pilitsi E, Farr OM, Polyzos SA, Perakakis N, Nolen-Doerr E, Papathanasiou AE, Mantzoros CS. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism 2019; 92:170-192. [PMID: 30391259 DOI: 10.1016/j.metabol.2018.10.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a chronic disease with a continuously rising prevalence that currently affects more than half a billion people worldwide. Energy balance and appetite are highly regulated via central and peripheral mechanisms, and weight loss triggers a homeostatic response leading to weight regain. Lifestyle and behavioral modifications are the cornerstones of obesity management; however, they often fail to achieve or sustain long-term weight loss. Pharmacotherapy added onto lifestyle modifications results in an additional, albeit limited, weight reduction. Regardless, this weight reduction of 5-10% conveys multiple cardiovascular and metabolic benefits. In this review, evidence on the food and drug administration (FDA)-approved medications, i.e., orlistat, lorcaserin, phentermine/topiramate, liraglutide and naltrexone/bupropion, is summarized. Furthermore, anti-obesity agents in the pipeline for potential future therapeutic use are presented.
Collapse
Affiliation(s)
- Eleni Pilitsi
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Eric Nolen-Doerr
- Department of Medicine, Boston Medical Center, Boston, MA, 02118, United States of America
| | - Aimilia-Eirini Papathanasiou
- Division of Pediatric Newborn Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02215, United States of America
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Minakova E, Lang J, Medel-Matus JS, Gould GG, Reynolds A, Shin D, Mazarati A, Sankar R. Melanotan-II reverses autistic features in a maternal immune activation mouse model of autism. PLoS One 2019; 14:e0210389. [PMID: 30629642 PMCID: PMC6328175 DOI: 10.1371/journal.pone.0210389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social interactions, difficulty with communication, and repetitive behavior patterns. In humans affected by ASD, there is a male pre-disposition towards the condition with a male to female ratio of 4:1. In part due to the complex etiology of ASD including genetic and environmental interplay, there are currently no available medical therapies to improve the social deficits of ASD. Studies in rodent models and humans have shown promising therapeutic effects of oxytocin in modulating social adaptation. One pharmacological approach to stimulating oxytocinergic activity is the melanocortin receptor 4 agonist Melanotan-II (MT-II). Notably the effects of oxytocin on environmental rodent autism models has not been investigated to date. We used a maternal immune activation (MIA) mouse model of autism to assess the therapeutic potential of MT-II on autism-like features in adult male mice. The male MIA mice exhibited autism-like features including impaired social behavioral metrics, diminished vocal communication, and increased repetitive behaviors. Continuous administration of MT-II to male MIA mice over a seven-day course resulted in rescue of social behavioral metrics. Normal background C57 male mice treated with MT-II showed no significant alteration in social behavioral metrics. Additionally, there was no change in anxiety-like or repetitive behaviors following MT-II treatment of normal C57 mice, though there was significant weight loss following subacute treatment. These data demonstrate MT-II as an effective agent for improving autism-like behavioral deficits in the adult male MIA mouse model of autism.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jordan Lang
- Department of Internal Medicine, Huntington Memorial Hospital, Pasadena, California, United States of America
| | - Jesus-Servando Medel-Matus
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Georgianna G. Gould
- University of Texas Health Science Center at San Antonio, Department of Cellular and Integrative Physiology, San Antonio, Texas, United States of America
| | - Ashley Reynolds
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Don Shin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Andrey Mazarati
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Children's Discovery and Innovation Institute at UCLA, Los Angeles, California, United States of America
| | - Raman Sankar
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Children's Discovery and Innovation Institute at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
22
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
23
|
Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. J Mol Neurosci 2018; 66:390-402. [PMID: 30284225 DOI: 10.1007/s12031-018-1185-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
|
24
|
Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3628121. [PMID: 29789785 PMCID: PMC5896338 DOI: 10.1155/2018/3628121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Nonnutritive sweetener use is a common practice worldwide. Although considered safe for human consumption, accumulating evidence suggests these compounds may affect metabolic homeostasis; however, there is no consensus on the role of frequent sweetener intake in appetite and weight loss. We sought to determine whether frequent intake of commercial sweeteners induces changes in the JAK2/STAT3 signaling pathway in the brain of mice, as it is involved in the regulation of appetite and body composition. We supplemented adult BALB/c mice with sucrose, steviol glycosides (SG), or sucralose, daily, for 6 weeks. After supplementation, we evaluated body composition and expression of total and phosphorylated JAK2, STAT3, and Akt, as well as SOCS3 and ObRb, in brain tissue. Our results show that frequent intake of commercial SG decreases energy intake, adiposity, and weight gain in male animals, while increasing the expression of pJAK2 and pSTAT3 in the brain, whereas sucralose increases weight gain and pJAK2 expression in females. Our results suggest that chronic intake of commercial sweeteners elicits changes in signaling pathways that have been related to the control of appetite and energy balance in vivo, which may have relevant consequences for the nutritional state and long term health of the organism.
Collapse
|
25
|
The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res 2018; 43:821-837. [PMID: 29397535 DOI: 10.1007/s11064-018-2485-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.
Collapse
|
26
|
α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2034691. [PMID: 29318141 PMCID: PMC5727559 DOI: 10.1155/2017/2034691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/07/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) is processed from proopiomelanocortin (POMC) and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC) of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD) sensitive neurons. In the lateral hypothalamus (LHA), α-MSH inhibited 75.0% of the glucose-inhibited (GI) neurons. In the ventromedial nucleus (VMN), most glucose-sensitive neurons were glucose-excited (GE) neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN), α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC) and 19 were inhibited (GD-INH). Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.
Collapse
|
27
|
Mountjoy KG, Caron A, Hubbard K, Shome A, Grey AC, Sun B, Bould S, Middleditch M, Pontré B, McGregor A, Harris PWR, Kowalczyk R, Brimble MA, Botha R, Tan KML, Piper SJ, Buchanan C, Lee S, Coll AP, Elmquist JK. Desacetyl-α-melanocyte stimulating hormone and α-melanocyte stimulating hormone are required to regulate energy balance. Mol Metab 2017; 9:207-216. [PMID: 29226825 PMCID: PMC5869732 DOI: 10.1016/j.molmet.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Objective Regulation of energy balance depends on pro-opiomelanocortin (POMC)-derived peptides and melanocortin-4 receptor (MC4R). Alpha-melanocyte stimulating hormone (α-MSH) is the predicted natural POMC-derived peptide that regulates energy balance. Desacetyl-α-MSH, the precursor for α-MSH, is present in brain and blood. Desacetyl-α-MSH is considered to be unimportant for regulating energy balance despite being more potent (compared with α-MSH) at activating the appetite-regulating MC4R in vitro. Thus, the physiological role for desacetyl-α-MSH is still unclear. Methods We created a novel mouse model to determine whether desacetyl-α-MSH plays a role in regulating energy balance. We engineered a knock in targeted QKQR mutation in the POMC protein cleavage site that blocks the production of both desacetyl-α-MSH and α-MSH from adrenocorticotropin (ACTH1-39). Results The mutant ACTH1-39 (ACTHQKQR) functions similar to native ACTH1-39 (ACTHKKRR) at the melanocortin 2 receptor (MC2R) in vivo and MC4R in vitro. Male and female homozygous mutant ACTH1-39 (Pomctm1/tm1) mice develop the characteristic melanocortin obesity phenotype. Replacement of either desacetyl-α-MSH or α-MSH over 14 days into Pomctm1/tm1 mouse brain significantly reverses excess body weight and fat mass gained compared to wild type (WT) (Pomcwt/wt) mice. Here, we identify both desacetyl-α-MSH and α-MSH peptides as regulators of energy balance and highlight a previously unappreciated physiological role for desacetyl-α-MSH. Conclusions Based on these data we propose that there is potential to exploit the naturally occurring POMC-derived peptides to treat obesity but this relies on first understanding the specific function(s) for desacetyl-α-MSH and α-MSH. KKRR → QKQR mutation in the cleavage site of POMC prevents the production of desacetyl-α-MSH and α-MSH in mice. Male and female mutant mice develop characteristic melanocortin obesity. Central administration of α-MSH is more potent at reducing body weight in female mutant mice. Central administration of desacetyl-α-MSH and α-MSH are similarly potent at reducing body weight in male mutant mice.
Collapse
Affiliation(s)
- Kathleen G Mountjoy
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristina Hubbard
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Avik Shome
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Angus C Grey
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Bo Sun
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah Bould
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Martin Middleditch
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Beau Pontré
- Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ailsa McGregor
- Department of Pharmacy, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Paul W R Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Renata Kowalczyk
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Rikus Botha
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Karen M L Tan
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Sarah J Piper
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Christina Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Syann Lee
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony P Coll
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom; University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Joel K Elmquist
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Matthews D, Diskin MG, Kenny DA, Creevey CJ, Keogh K, Waters SM. Effect of short term diet restriction on gene expression in the bovine hypothalamus using next generation RNA sequencing technology. BMC Genomics 2017; 18:857. [PMID: 29121875 PMCID: PMC5680758 DOI: 10.1186/s12864-017-4265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Negative energy balance (NEB) is an imbalance between energy intake and energy requirements for lactation and body maintenance affecting high-yielding dairy cows and is of considerable economic importance due to its negative impact on fertility and health in dairy herds. It is anticipated that the cow hypothalamus experiences extensive biochemical changes during the early post partum period in an effort to re-establish metabolic homeostasis. However, there is variation in the tolerance to NEB between individual cows. In order to understand the genomic regulation of ovulation in hypothalamic tissue during NEB, mRNA transcriptional patterns between tolerant and sensitive animals were examined. A short term dietary restriction heifer model was developed which induced abrupt onset of anoestrus in some animals (Restricted Anovulatory; RA) while others maintained oestrous cyclicity (Restricted Ovulatory; RO). A third control group (C) received a higher level of normal feeding. RESULTS A total of 15,295 genes were expressed in hypothalamic tissue. Between RA and C groups 137 genes were differentially expressed, whereas between RO and C, 32 genes were differentially expressed. Differentially expressed genes were involved in the immune response and cellular motility in RA and RO groups, respectively, compared to C group. The largest difference between groups was observed in the comparison between RA and RO heifers, with 1094 genes shown to be significantly differentially expressed (SDE). Pathway analysis showed that these SDE genes were associated with 6 canonical pathways (P < 0.01), of which neuroactive ligand-receptor interaction was the most significant. Within the comparisons the main over-represented pathway functions were immune response including neuroprotection (CXCL10, Q1KLR3, IFIH1, IL1 and IL8; RA v C and RA v RO); energy homeostasis (AgRP and NPY; RA v RO); cell motility (CADH1, DSP and TSP4; RO v C) and prevention of GnRH release (NTSR1 IL1α, IL1β, NPY and PACA; RA v RO). CONCLUSIONS This information will assist in understanding the genomic factors regulating the influence of diet restriction on fertility and may assist in optimising nutritional and management systems for the improvement in reproductive performance.
Collapse
Affiliation(s)
- Daragh Matthews
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael G Diskin
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
29
|
Lear T, Liu L, O'Donnell M, McConn BR, Denbow DM, Cline MA, Gilbert ER. Alpha-melanocyte stimulating hormone-induced anorexia in Japanese quail (Coturnix japonica) likely involves the ventromedial hypothalamus and paraventricular nucleus of the hypothalamus. Gen Comp Endocrinol 2017; 252:97-102. [PMID: 28782535 DOI: 10.1016/j.ygcen.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) reduces food intake in birds and mammals. The objective of this experiment was to determine effects of α-MSH on food and water intake, and hypothalamic c-Fos immunoreactivity and appetite-associated factor mRNA in Japanese quail (Coturnix japonica), a species that has not undergone the same artificial selection for growth-related traits as the chicken. At 7days post-hatch, 3-h-fasted quail were intracerebroventricularly (ICV) injected into the lateral ventricle with 0 (vehicle), 0.5, 5, or 50pmol of α-MSH and food and water intake were recorded at 30min intervals for 180min. In the second and third experiment, quail were injected with 50pmol α-MSH and hypothalami were collected at 1h to determine c-Fos immunoreactivity and mRNA abundance, respectively. At 30min, quail injected with 5 or 50pmol of α-MSH ate and drank less than vehicle-injected quail. Quail injected with 50pmol ate less for the entire duration of the experiment and drank less than vehicle-injected quail for 120min post-injection. Hypothalamic expression of agouti-related peptide and DOPA decarboxylase were greater in vehicle- than α-MSH-injected quail, whereas melanocortin receptor 4 (MC4R) mRNA was greater in α-MSH- than vehicle-injected birds. Alpha-MSH injection was associated with more c-Fos immunoreactive cells in the ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN) of the hypothalamus. Results suggest that the anorexigenic effect of α-MSH is conserved among avians and that effects in quail are associated with the VMH and PVN and involve MC4R.
Collapse
Affiliation(s)
- Taylor Lear
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lingbin Liu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madison O'Donnell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D Michael Denbow
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
30
|
Delp MS, Cline MA, Gilbert ER. The central effects of alpha-melanocyte stimulating hormone (α-MSH) in chicks involve changes in gene expression of neuropeptide Y and other factors in distinct hypothalamic nuclei. Neurosci Lett 2017; 651:52-56. [DOI: 10.1016/j.neulet.2017.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
|
31
|
Ladyman SR, Augustine RA, Scherf E, Phillipps HR, Brown CH, Grattan DR. Attenuated hypothalamic responses to α-melanocyte stimulating hormone during pregnancy in the rat. J Physiol 2016; 594:1087-101. [PMID: 26613967 DOI: 10.1113/jp271605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increased appetite and weight gain occurs during pregnancy, associated with development of leptin resistance, and satiety responses to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) are suppressed. This study investigated hypothalamic responses to α-MSH during pregnancy, using c-fos expression in specific hypothalamic nuclei as a marker of neuronal signalling, and in vivo electrophysiology in supraoptic nucleus (SON) oxytocin neurons, as a representative α-MSH-responsive neuronal population that shows a well-characterised α-MSH-induced inhibition of firing. While icv injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, supraoptic, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, this response was suppressed in pregnant rats. Similarly, SON oxytocin neurons in pregnant rats did not demonstrate characteristic α-MSH-induced inhibition of firing that was observed in non-pregnant animals. Given the known functions of α-MSH in the hypothalamus, the attenuated responses are likely to facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy. ABSTRACT During pregnancy, a state of positive energy balance develops to support the growing fetus and to deposit fat in preparation for the subsequent metabolic demands of lactation. As part of this maternal adaptation, the satiety response to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) is suppressed. To investigate whether pregnancy is associated with changes in the response of hypothalamic α-MSH target neurons, non-pregnant and pregnant rats were treated with α-MSH or vehicle and c-fos expression in hypothalamic nuclei was then examined. Furthermore, the firing rate of supraoptic nucleus (SON) oxytocin neurons, a known α-MSH responsive neuronal population, was examined in non-pregnant and pregnant rats following α-MSH treatment. Intracerebroventricular injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, but no significant increase was observed in any of these regions in pregnant rats. In the SON, α-MSH did induce expression of c-fos during pregnancy, but this was significantly reduced compared to that observed in the non-pregnant group. Furthermore, during pregnancy, SON oxytocin neurons did not demonstrate the characteristic α-MSH-induced inhibition of firing rate that was observed in non-pregnant animals. Melanocortin receptor mRNA levels during pregnancy were similar to non-pregnant animals, suggesting that receptor down-regulation is unlikely to be a mechanism underlying the attenuated responses to α-MSH during pregnancy. Given the known functions of α-MSH in the hypothalamus, the attenuated responses will facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy.
Collapse
Affiliation(s)
- S R Ladyman
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - R A Augustine
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - E Scherf
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - H R Phillipps
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - C H Brown
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Bonnefond A, Keller R, Meyre D, Stutzmann F, Thuillier D, Stefanov DG, Froguel P, Horber FF, Kral JG. Eating Behavior, Low-Frequency Functional Mutations in the Melanocortin-4 Receptor (MC4R) Gene, and Outcomes of Bariatric Operations: A 6-Year Prospective Study. Diabetes Care 2016; 39:1384-92. [PMID: 27222505 DOI: 10.2337/dc16-0115] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Data on the effects of eating behavior and genetics on outcomes of gastrointestinal surgery for diabesity have been sparse, often flawed, and controversial. We aimed to assess long-term outcomes of bariatric operations in patients characterized for eating behavior and rare mutations in the melanocortin-4 receptor (MC4R) gene, which is strongly implicated in energy balance. RESEARCH DESIGN AND METHODS Between 1996 and 2005, 1,264 severely obese Swiss patients underwent current laparoscopic adjustable gastric banding, gastroduodenal bypass, or a hybrid operation. Of these, 872 patients were followed for a minimum of 6 years and were screened for MC4R mutations. Using regression models, we studied relationships between eating behavior and MC4R mutations and postoperative weight loss, complications, and reoperations after 6 years. RESULTS At baseline, rare functional MC4R mutation carriers exhibited a significantly higher prevalence of binge eating disorder (BED) or loss-of-control eating independent of age, sex, and BMI. Six years after bariatric surgery, the mutation carriers had more major complications than wild-type subjects independent of age, baseline BMI, sex, operation type, and weight loss. Furthermore, high baseline BMI, male sex, BED, and functional MC4R mutations were independent predictors of higher reoperation rates. CONCLUSIONS Sequencing of MC4R and eating typology, combined with stratification for sex and baseline BMI, might significantly improve patient allocation to banding or bypass operations for diabesity as well as reduce both complication and reoperation rates.
Collapse
Affiliation(s)
- Amélie Bonnefond
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genome Institute for Diabetes, FR 3508, Lille, France Department of Genomics of Common Disease, School of Public Health, Hammersmith Hospital, Imperial College London, London, U.K
| | - Ramsi Keller
- Department of Internal Medicine, Landesspital Liechtenstein, Vaduz, Liechtenstein Dr. Horber Adipositas Stiftung, Zurich, Switzerland
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fanny Stutzmann
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genome Institute for Diabetes, FR 3508, Lille, France
| | - Dorothée Thuillier
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genome Institute for Diabetes, FR 3508, Lille, France
| | - Dimitre G Stefanov
- Scientific Computing Center and Departments of Surgery, Medicine, and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Philippe Froguel
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genome Institute for Diabetes, FR 3508, Lille, France Department of Genomics of Common Disease, School of Public Health, Hammersmith Hospital, Imperial College London, London, U.K.
| | - Fritz F Horber
- Department of Internal Medicine, Landesspital Liechtenstein, Vaduz, Liechtenstein Dr. Horber Adipositas Stiftung, Zurich, Switzerland University of Bern, Bern, Switzerland
| | - John G Kral
- Scientific Computing Center and Departments of Surgery, Medicine, and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
33
|
Singh O, Kumar S, Singh U, Kumar V, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch,Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. J Comp Neurol 2016; 524:3014-41. [DOI: 10.1002/cne.24004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Vinod Kumar
- DST-IRHPA Centre for Excellence in Biological Rhythms Research and Indo-US Centre for Biological Timing, Department of Zoology; University of Delhi; Delhi India
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute; Tufts Medical Center; Boston Massachusetts USA
- Department of Neuroscience; Tufts University School of Medicine; Boston Massachusetts USA
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| |
Collapse
|
34
|
Clemmensen C, Finan B, Fischer K, Tom RZ, Legutko B, Sehrer L, Heine D, Grassl N, Meyer CW, Henderson B, Hofmann SM, Tschöp MH, Van der Ploeg LHT, Müller TD. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol Med 2015; 7:288-98. [PMID: 25652173 PMCID: PMC4364946 DOI: 10.15252/emmm.201404508] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Christoffer Clemmensen
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Brian Finan
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Katrin Fischer
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Robby Zachariah Tom
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Laura Sehrer
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Daniela Heine
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Niklas Grassl
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Carola W Meyer
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | | | - Susanna M Hofmann
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | | | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Neuherberg, Germany Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Ramírez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 2015; 411:28-37. [PMID: 25892444 DOI: 10.1016/j.mce.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.
Collapse
Affiliation(s)
- D Ramírez
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Saba
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Carniglia
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D Durand
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - M Lasaga
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - C Caruso
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Lucas N, Legrand R, Breton J, Déchelotte P, Edwards-Lévy F, Fetissov SO. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight. Neuroscience 2015; 290:445-53. [PMID: 25637491 DOI: 10.1016/j.neuroscience.2015.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 02/08/2023]
Abstract
Chronic delivery of neuropeptides in the brain is a useful experimental approach to study their long-term effects on various biological parameters. In this work, we tested albumin-alginate microparticles, as a potential delivery system, to study if continuous release in the hypothalamus of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, may result in a long-term decrease in food intake and body weight. The 2-week release of α-MSH from peptide-loaded particles was confirmed by an in vitro assay. Then, daily food intake and body weight were studied for 18 days in rats injected bilaterally into the paraventricular hypothalamic nucleus with particles loaded or not with α-MSH. A decrease in body weight gain, persisting throughout the study, was found in rats injected with α-MSH-charged particles as compared with rats receiving non-charged particles and with rats injected with the same dose of α-MSH in solution. Food intake was significantly decreased for 3 days in rats receiving α-MSH-loaded particles and it was not followed by the feeding rebound effect which appears after food restriction. The presence of α-MSH-loaded particles in the hypothalamus was confirmed by immunohistochemistry. In conclusion, our study validates albumin-alginate microparticles as a new carrier system for long-term delivery of neuropeptides in the brain and demonstrates that chronic delivery of α-MSH in the hypothalamus results in a prolonged suppression of food intake and a decrease of body weight gain in rats.
Collapse
Affiliation(s)
- N Lucas
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - R Legrand
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - J Breton
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France
| | - P Déchelotte
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France; Rouen University Hospital, CHU Charles Nicolle, Rouen 76183, France
| | - F Edwards-Lévy
- Institute of Molecular Chemistry of Reims (ICMR), UMR CNRS 7312, University of Reims Champagne-Ardenne, 51100, France
| | - S O Fetissov
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, Rouen 76183, France; Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76000, France.
| |
Collapse
|
37
|
Abstract
The ability of an organism to convert organic molecules from the environment into energy is essential for the development of cellular structures, cell differentiation and growth. Mitochondria have a fundamental role in regulating metabolic pathways, and tight control of mitochondrial functions and dynamics is critical to maintaining adequate energy balance. In complex organisms, such as mammals, it is also essential that the metabolic demands of various tissues are coordinated to ensure that the energy needs of the whole body are effectively met. Within the arcuate nucleus of the hypothalamus, the NPY-AgRP and POMC neurons have a crucial role in orchestrating the regulation of hunger and satiety. Emerging findings from animal studies have revealed an important function for mitochondrial dynamics within these two neuronal populations, which facilitates the correct adaptive responses of the whole body to changes in the metabolic milieu. The main proteins implicated in these studies are the mitofusins, Mfn1 and Mfn2, which are regulators of mitochondrial dynamics. In this Review, we provide an overview of the mechanisms by which mitochondria are involved in the central regulation of energy balance and discuss the implications of mitochondrial dysfunction for metabolic disorders.
Collapse
Affiliation(s)
- Carole M Nasrallah
- Program in Integrative Cell Signalling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, SHM L-200, PO Box 208074, New Haven, CT 06520-8074, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signalling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, SHM L-200, PO Box 208074, New Haven, CT 06520-8074, USA
| |
Collapse
|
38
|
The neuroanatomical function of leptin in the hypothalamus. J Chem Neuroanat 2014; 61-62:207-20. [PMID: 25007719 DOI: 10.1016/j.jchemneu.2014.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
The anorexigenic hormone leptin plays an important role in the control of food intake and feeding-related behavior, for an important part through its action in the hypothalamus. The adipose-derived hormone modulates a complex network of several intercommunicating orexigenic and anorexigenic neuropeptides in the hypothalamus to reduce food intake and increase energy expenditure. In this review we present an updated overview of the functional role of leptin in respect to feeding and feeding-related behavior per distinct hypothalamic nuclei. In addition to the arcuate nucleus, which is a major leptin sensitive hub, leptin-responsive neurons in other hypothalamic nuclei, including the, dorsomedial-, ventromedial- and paraventricular nucleus and the lateral hypothalamic area, are direct targets of leptin. However, leptin also modulates hypothalamic neurons in an indirect manner, such as via the melanocortin system. The dissection of the complexity of leptin's action on the networks involved in energy balance is subject of recent and future studies. A full understanding of the role of hypothalamic leptin in the regulation of energy balance requires cell-specific manipulation using of conditional deletion and expression of leptin receptors. In addition, optogenetic and pharmacogenetic tools in combination with other pharmacological (such as the recent discovery of a leptin receptor antagonist) and neuronal tracing techniques to map the circuit, will be helpful to understand the role of leptin receptor expressing neurons. Better understanding of these circuits and the involvement of leptin could provide potential sites for therapeutic interventions in obesity and metabolic diseases characterized by dysregulation of energy balance.
Collapse
|
39
|
Eerola K, Rinne P, Penttinen AM, Vähätalo L, Savontaus M, Savontaus E. α-MSH overexpression in the nucleus tractus solitarius decreases fat mass and elevates heart rate. J Endocrinol 2014; 222:123-36. [PMID: 24829220 DOI: 10.1530/joe-14-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POMC pathway is involved in the regulation of energy and cardiovascular homeostasis in the hypothalamus and the brain stem. Although the acute effects of POMC-derived peptides in different brain locations have been elucidated, the chronic site-specific effects of distinct peptides remain to be studied. To this end, we used a lentiviral gene delivery vector to study the long-term effects of α-MSH in the nucleus tractus solitarius (NTS) of the brain stem. The α-MSH vector (LVi-α-MSH-EGFP) based on the N-terminal POMC sequence and a control vector (LVi-EGFP) were delivered into the NTS of C57BL/6N male mice fed on a western diet. Effects on body weight and composition, feeding, glucose metabolism, and hemodynamics by telemetric analyses were studied during the 12-week follow-up. The LVi-α-MSH-EGFP-treated mice had a significantly smaller gain in the fat mass compared with LVi-EGFP-injected mice. There was a small initial decrease in food intake and no differences in the physical activity. Glucose metabolism was not changed compared with the control. LVi-α-MSH-EGFP increased the heart rate (HR), which was attenuated by adrenergic blockade suggesting an increased sympathetic activity. Reduced response to muscarinic blockade suggested a decreased parasympathetic activity. Fitting with sympathetic activation, LVi-α-MSH-EGFP treatment reduced urine secretion. Thus, the results demonstrate that long-term α-MSH overexpression in the NTS attenuates diet-induced obesity. Modulation of autonomic nervous system tone increased the HR and most probably contributed to an anti-obesity effect. The results underline the key role of NTS in the α-MSH-induced long-term effects on adiposity and in regulation of sympathetic and parasympathetic activities.
Collapse
Affiliation(s)
- K Eerola
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - P Rinne
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - A M Penttinen
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - L Vähätalo
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - M Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - E Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| |
Collapse
|
40
|
Skowronski AA, Morabito MV, Mueller BR, Lee S, Hjorth S, Lehmann A, Watanabe K, Zeltser LM, Ravussin Y, Rosenbaum M, LeDuc CA, Leibel RL. Effects of a novel MC4R agonist on maintenance of reduced body weight in diet-induced obese mice. Obesity (Silver Spring) 2014; 22:1287-95. [PMID: 24318934 PMCID: PMC4008720 DOI: 10.1002/oby.20678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The physiology of the weight-reduced (WR) state suggests that pharmacologic agents affecting energy homeostasis may have greater efficacy in WR individuals. Our aim was to establish a protocol that allows for evaluation of efficacy of weight maintenance agents and to assess the effectiveness of AZD2820, a novel melanocortin 4 receptor (MC4R) agonist in such a paradigm. METHODS MC4R agonist was administered in stratified doses to mice who were either fed high-fat diet ad libitum (AL) throughout the study; or stabilized at a 20% reduced body weight (BW), administered the drug for 4 weeks, and thereafter released from caloric restriction while continuing to receive the drug (WR). RESULTS After release of WR mice to AL feeding, the high-dose group (53.4 nmol/day) regained 12.4% less BW than their vehicle-treated controls since the beginning of drug treatment. In WR mice, 10.8 nmol/day of the agonist was sufficient to maintain these animals at 95.1% of initial BW versus 53.4 nmol/day required to maintain the BW of AL animals (94.5%). CONCLUSIONS In the WR state, the MC4R agonist was comparably efficacious to a five-fold higher dose in the AL state. This protocol provides a model for evaluating the mechanisms and quantitative efficacy of weight-maintenance strategies and agents.
Collapse
Affiliation(s)
- Alicja A. Skowronski
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Michael V. Morabito
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Bridget R. Mueller
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Samuel Lee
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Stephan Hjorth
- AstraZeneca, R&D Disease Area Diabetes/Obesity, Mölndal, Sweden
| | - Anders Lehmann
- AstraZeneca, R&D Disease Area Diabetes/Obesity, Mölndal, Sweden
| | - Kazuhisa Watanabe
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Lori M. Zeltser
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Yann Ravussin
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
- Corresponding author: Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032,
| |
Collapse
|
41
|
Mercer AJ, Stuart RC, Attard CA, Otero-Corchon V, Nillni EA, Low MJ. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice. Am J Physiol Endocrinol Metab 2014; 306:E904-15. [PMID: 24518677 PMCID: PMC3989737 DOI: 10.1152/ajpendo.00540.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.
Collapse
Affiliation(s)
- Aaron J Mercer
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF THE REVIEW Although rodent models provide insight into the mechanisms underlying type 2 diabetes mellitus (T2DM), they are limited in their translatability to humans. The nonhuman primate (NHP) shares important metabolic similarities with the human, making it an ideal model for the investigation of type 2 diabetes and use in preclinical trials. This review highlights the key contributions in the field over the last year using the NHP model. RECENT FINDINGS The NHP has not only provided novel insight into the normal and pathological processes that occur within the islet, but has also allowed for the preclinical testing of novel pharmaceutical targets for obesity and T2DM. Particularly, administration of fibroblast growth factor-21 in the NHP resulted in weight loss and improvements in metabolic health, supporting rodent studies and recent clinical trials. In addition, the NHP was used to demonstrate that a novel melanocortin-4 receptor agonist did not cause adverse cardiovascular effects. Finally, this model has been used to provide evidence that glucagon-like peptide-1-based therapies do not induce pancreatitis in the healthy NHP. SUMMARY The insight gained from studies using the NHP model has allowed for a better understanding of the processes driving T2DM and has promoted the development of well tolerated and effective treatments.
Collapse
Affiliation(s)
- Lynley D Pound
- aDivision of Diabetes, Obesity, & Metabolism bDivision of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | |
Collapse
|
43
|
Kaneko K, Mizushige T, Miyazaki Y, Lazarus M, Urade Y, Yoshikawa M, Kanamoto R, Ohinata K. δ-Opioid receptor activation stimulates normal diet intake but conversely suppresses high-fat diet intake in mice. Am J Physiol Regul Integr Comp Physiol 2014; 306:R265-72. [PMID: 24401991 DOI: 10.1152/ajpregu.00405.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central opioid system is involved in a broadly distributed neural network that regulates food intake. Here, we show that activation of central δ-opioid receptor not only stimulated normal diet intake but conversely suppressed high-fat diet intake as well. [D-Pen(2,5)]-enkephalin (DPDPE), an agonist selective for the δ-receptor, increased normal diet intake after central administration to nonfasted male mice. The orexigenic activity of DPDPE was inhibited by blockade of cyclooxygenase (COX)-2, lipocalin-type prostaglandin D synthase (L-PGDS), D-type prostanoid receptor 1 (DP(1)), and neuropeptide Y (NPY) receptor type 1 (Y1) for PGD(2) and NPY, respectively, suggesting that this was mediated by the PGD(2)-NPY system. In contrast, DPDPE decreased high-fat diet intake in mice fed a high-fat diet. DPDPE-induced suppression of high-fat diet intake was blocked by antagonists of melanocortin 4 (MC(4)) and corticotropin-releasing factor (CRF) receptors but not by knockout of the L-PGDS gene. These results suggest that central δ-opioid receptor activation suppresses high-fat diet intake via the MC-CRF system, independent of the orexigenic PGD(2) system. Furthermore, orally administered rubiscolin-6, an opioid peptide derived from spinach Rubisco, suppressed high-fat diet intake. This suppression was also blocked by centrally administered naltrindole, an antagonist for the δ-receptor, suggesting that rubiscolin-6 suppressed high-fat diet intake via activation of central δ-opioid receptor.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Solomon A, De Fanti BA, Martínez JA. Peripheral Ghrelin participates in glucostatic feeding mechanisms and in the anorexigenic signalling mediated by CART and CRF neurons. Nutr Neurosci 2013; 8:287-95. [PMID: 16669599 DOI: 10.1080/10284150500502546] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ghrelin is upregulated under negative energy balance conditions, including starvation and hypoglycemia, while it is downregulated under situations of positive energy balance, such as feeding, hyperglycemia and obesity. The aims of this study were to assess potential ghrelin interactions with glucose levels in appetite control and to identify potential mechanisms involving orexigenic and anorexigenic ghrelin mediated signals by using a specific anti-ghrelin antibody. Our results confirm that peripheral ghrelin is an important signal in meal initiation and food intake stimulation. C-fos positive neurons in the PVN increased after insulin or 2-deoxyglucose administration. Moreover, we also demonstrate that peripheral ghrelin blockade with a specific anti-ghrelin antibody reduces, in part, the orexigenic signal induced by insulin and 2-DG administration. Furthermore, when we blocked peripheral ghrelin, c-fos positive CRF neurons and CART expression increased in the PVN, both under hypoglycemia or cytoglycopenia conditions, suggesting a neuronal activation (anorexigenic signalling) in this hypothalamic region. In summary, our findings imply that peripheral ghrelin plays an important role in regulatory "glucostatic" feeding mechanisms due to its role as a "hunger" signal affecting the PVN area, which may contribute to energy homeostasis through both orexigenic/anorexigenic pathways.
Collapse
Affiliation(s)
- Andrew Solomon
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | | |
Collapse
|
45
|
Eerola K, Nordlund W, Virtanen S, Dickens AM, Mattila M, Ruohonen ST, Chua SC, Wardlaw SL, Savontaus M, Savontaus E. Lentivirus-mediated α-melanocyte-stimulating hormone overexpression in the hypothalamus decreases diet induced obesity in mice. J Neuroendocrinol 2013; 25:1298-1307. [PMID: 24118213 DOI: 10.1111/jne.12109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/29/2022]
Abstract
Melanocyte stimulating hormone (MSH) derived from the pro-hormone pro-opiomelanocortin (POMC) has potent effects on metabolism and feeding that lead to reduced body weight in the long-term. To determine the individual roles of POMC derived peptides and their sites of action, we created a method for the delivery of single MSH peptides using lentiviral vectors and studied the long-term anti-obesity effects of hypothalamic α-MSH overexpression in mice. An α-MSH lentivirus (LVi-α-MSH-EGFP) vector carrying the N'-terminal part of POMC and the α-MSH sequence was generated and shown to produce bioactive peptide in an in vitro melanin synthesis assay. Stereotaxis was used to deliver the LVi-α-MSH-EGFP or control LVi-EGFP vector to the arcuate nucleus (ARC) of the hypothalamus of male C57Bl/6N mice fed on a high-fat diet. The effects of 6-week-treatment on body weight, food intake, glucose tolerance and organ weights were determined. Additionally, a 14-day pairfeeding study was conducted to assess whether the weight decreasing effect of the LVi-α-MSH-EGFP treatment is dependent on decreased food intake. The 6-week LVi-α-MSH-EGFP treatment reduced weight gain (8.4 ± 0.4 g versus 12.3 ± 0.6 g; P < 0.05), which was statistically significant starting from 1 week after the injections. The weight of mesenteric fat was decreased and glucose tolerance was improved compared to LVi-EGFP treated mice. Food intake was decreased during the first week in the LVi-α-MSH-EGFP treated mice but subsequently increased to the level of LVi-EGFP treated mice. The LVi-EGFP injected control mice gained more weight even when pairfed to the level of food intake by LVi-α-MSH-EGFP treated mice. We demonstrate that gene transfer of α-MSH, a single peptide product of POMC, into the ARC of the hypothalamus, reduces obesity and improves glucose tolerance, and that factors other than decreased food intake also influence the weight decreasing effects of α-MSH overexpression in the ARC. Furthermore, viral MSH vectors delivered stereotaxically provide a novel tool for further exploration of chronic site-specific effects of POMC peptides.
Collapse
Affiliation(s)
- K Eerola
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- FinPharma Doctoral Program, Drug Discovery Section, Turku, Finland
| | - W Nordlund
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S Virtanen
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - A M Dickens
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, Medicity/PET Preclinical Imaging, University of Turku, Turku, Finland
| | - M Mattila
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - S T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S C Chua
- Albert Einstein College of Medicine, New York, NY, USA
| | - S L Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - M Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Turku Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - E Savontaus
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
46
|
Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS One 2013; 8:e65317. [PMID: 23762342 PMCID: PMC3675096 DOI: 10.1371/journal.pone.0065317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/28/2013] [Indexed: 12/15/2022] Open
Abstract
Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.
Collapse
|
47
|
Renquist BJ, Zhang C, Williams SY, Cone RD. Development of an assay for high-throughput energy expenditure monitoring in the zebrafish. Zebrafish 2013; 10:343-52. [PMID: 23705823 DOI: 10.1089/zeb.2012.0841] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Energy homeostasis is maintained by balancing energy intake and expenditure. Many signals regulating energy intake are conserved between the human and teleost. However, before this work, there was no sensitive high-throughput system to monitor energy expenditure in the teleost. We exploit the nonfluorescent and fluorescent properties of resazurin and its reduced form resorufin (alamarBlue(®)) to monitor energy expenditure responses to drug application and genetic manipulation. We show that leptin, insulin, and alpha-melanocyte-stimulating hormone (α-MSH) increase energy expenditure dose dependently in the larval zebrafish. As previously established in the mouse, etomoxir, a carnitine palmitoyl transferase I inhibitor, blocks leptin-induced energy expenditure in the zebrafish. Metformin, the most commonly prescribed insulin sensitizer, increases the insulin-induced metabolic rate. Using genetic knockdown, we observed that α-MSH treatment increases the metabolic rate, as does knockdown of the melanocortin antagonist, agouti-related protein. The agouti-related protein and multiple melanocortin receptors are shown to be involved in these effects. These studies confirm that aspects of hormonal regulation of energy expenditure are conserved in the teleost, and suggest that this assay may provide a unique tool to perform in vivo screens for drugs or genes that affect the metabolic rate, including insulin or leptin sensitizers.
Collapse
|
48
|
Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 2013; 33:3624-32. [PMID: 23426689 DOI: 10.1523/jneurosci.2742-12.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
POMC-derived melanocortins inhibit food intake. In the adult rodent brain, POMC-expressing neurons are located in the arcuate nucleus (ARC) and the nucleus tractus solitarius (NTS), but it remains unclear how POMC neurons in these two brain nuclei regulate feeding behavior and metabolism differentially. Using pharmacogenetic methods to activate or deplete neuron groups in separate brain areas, in the present study, we show that POMC neurons in the ARC and NTS suppress feeding behavior at different time scales. Neurons were activated using the DREADD (designer receptors exclusively activated by designer drugs) method. The evolved human M3-muscarinic receptor was expressed in a selective population of POMC neurons by stereotaxic infusion of Cre-recombinase-dependent, adeno-associated virus vectors into the ARC or NTS of POMC-Cre mice. After injection of the human M3-muscarinic receptor ligand clozapine-N-oxide (1 mg/kg, i.p.), acute activation of NTS POMC neurons produced an immediate inhibition of feeding behavior. In contrast, chronic stimulation was required for ARC POMC neurons to suppress food intake. Using adeno-associated virus delivery of the diphtheria toxin receptor gene, we found that diphtheria toxin-induced ablation of POMC neurons in the ARC but not the NTS, increased food intake, reduced energy expenditure, and ultimately resulted in obesity and metabolic and endocrine disorders. Our results reveal different behavioral functions of POMC neurons in the ARC and NTS, suggesting that POMC neurons regulate feeding and energy homeostasis by integrating long-term adiposity signals from the hypothalamus and short-term satiety signals from the brainstem.
Collapse
|
49
|
Helwig M, Herwig A, Heldmaier G, Barrett P, Mercer JG, Klingenspor M. Photoperiod-dependent regulation of carboxypeptidase E affects the selective processing of neuropeptides in the seasonal Siberian hamster (Phodopus sungorus). J Neuroendocrinol 2013; 25:190-7. [PMID: 22967033 DOI: 10.1111/j.1365-2826.2012.02384.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
The production of bioactive peptides from biologically inactive precursors involves extensive post-translational processing, including enzymatic cleavage by proteolytic peptidases. Endoproteolytic prohormone-convertases initially cleave the precursors of many neuropeptides at specific amino acid sequences to generate intermediates with basic amino acid extensions on their C-termini. Subsequently, the related exopeptidases, carboxypeptidases D and E (CPD and CPE), are responsible for removing these amino acids before the peptides achieve biological activity. We investigated the effect of photoperiod on the processing of the neuropeptide precursor pro-opiomelanocortin (POMC) and its derived neuropeptides, α-melanocyte-stimulating hormone (MSH) and β-endorphin (END), within the hypothalamus of the seasonal Siberian hamster (Phodopus sungorus). We thus compared hypothalamic distribution of CPD, CPE, α-MSH and β-END using immunohistochemistry and measured the enzyme activity of CPE and concentrations of C-terminally cleaved α-MSH in short-day (SD; 8 : 16 h light/dark) and long-day (LD; 16 : 8 h light/dark) acclimatised hamsters. Increased immunoreactivity (-IR) of CPE, as well as higher CPE activity, was observed in SD. This increase was accompanied by more β-END-IR cells and substantially higher levels of C- terminally cleaved α-MSH, as determined by radioimmunoassay. Our results suggest that exoproteolytic cleavage of POMC-derived neuropeptides is tightly regulated by photoperiod in the Siberian hamster. Higher levels of biological active α-MSH- and β-END in SD are consistent with the hypothesis that post-translational processing is a key event in the regulation of seasonal energy balance.
Collapse
Affiliation(s)
- M Helwig
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P, Pranger L, Cowley MA, Grove KL, Culler MD. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013; 62:490-7. [PMID: 23048186 PMCID: PMC3554387 DOI: 10.2337/db12-0598] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The melanocortin-4 receptor (MC4R) is well recognized as an important mediator of body weight homeostasis. Activation of MC4R causes dramatic weight loss in rodent models, and mutations in human are associated with obesity. This makes MC4R a logical target for pharmacological therapy for the treatment of obesity. However, previous studies in rodents and humans have observed a broad array of side effects caused by acute treatment with MC4R agonists, including increased heart rate and blood pressure. We demonstrate that treatment with a highly-selective novel MC4R agonist (BIM-22493 or RM-493) resulted in transient decreases in food intake (35%), with persistent weight loss over 8 weeks of treatment (13.5%) in a diet-induced obese nonhuman primate model. Consistent with weight loss, these animals significantly decreased adiposity and improved glucose tolerance. Importantly, we observed no increases in blood pressure or heart rate with BIM-22493 treatment. In contrast, treatment with LY2112688, an MC4R agonist previously shown to increase blood pressure and heart rate in humans, caused increases in blood pressure and heart rate, while modestly decreasing food intake. These studies demonstrate that distinct melanocortin peptide drugs can have widely different efficacies and side effects.
Collapse
Affiliation(s)
- Paul Kievit
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Heather Halem
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Daniel L. Marks
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Jesse Z. Dong
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Maria M. Glavas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Puspha Sinnayah
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Lindsay Pranger
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael A. Cowley
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| | - Michael D. Culler
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| |
Collapse
|