1
|
Berg MVD, Heymans L, Toen D, Adhikari MA, Audekerke JV, Verschuuren M, Pintelon I, Vos WHD, Linden AVD, Verhoye M, Keliris GA. Partial normalization of hippocampal oscillatory activity during sleep in TgF344-AD rats coincides with increased cholinergic synapses at early-plaque stage of Alzheimer's disease. Acta Neuropathol Commun 2025; 13:96. [PMID: 40349073 PMCID: PMC12065161 DOI: 10.1186/s40478-025-02016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Sleep alterations are known to occur in Alzheimer's disease (AD), before cognitive symptoms become apparent, and are thought to play an important role in the pathophysiology of AD. However, knowledge on the extent of macro- and microstructural changes of sleep during early, presymptomatic stages of AD is limited. We hypothesize that Aβ-induced perturbations of neuronal activity disrupt this oscillatory activity during sleep at pre-plaque stages of AD. In this study, we aimed to assess hippocampal oscillatory activity during sleep at pre- and early-plaque stages of AD, by performing 24-hour hippocampal electrophysiological measurements in TgF344-AD rats and wildtype littermates at pre- and early-plaque stages of AD. To provide a mechanistic understanding, histological analysis was performed to quantify GABA-ergic, glutamatergic and cholinergic synapses. We observed a differential impact of AD on hippocampal activity during rapid eye movement (REM) and non-REM (NREM) sleep, in the absence of robust changes in circadian rhythm. TgF344-AD rats demonstrated increased duration of sharp wave-ripples during NREM sleep, irrespective of age. Interestingly, a significantly decreased theta-gamma coupling was observed in TgF344-AD rats, prior to amyloid plaque deposition, which was partially restored at the early-plaque stage. The partial recovery of hippocampal activity during REM sleep coincided with an increased number of cholinergic synapses in the hippocampus during the early-plaque stage in TgF344-AD rats, suggestive of basal forebrain cholinergic compensation mechanisms. The results from this study reveal early changes in hippocampal activity prior to Aβ plaque deposition in AD. In addition, the current findings imply an important role of the cholinergic system to compensate for AD-related network alterations, thereby partially restoring sleep architecture and hippocampal activity.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Loran Heymans
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit A Adhikari
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, Antwerp, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken - Building UC, Universiteitsplein 1, Wilrijk, 2610, Belgium.
- Department of Neurology - Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2025; 34:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
3
|
Hosamane NS, Didouchevski AM, Malci A, Gavornik JP, Sidorov MS. Sleep is necessary for experience-dependent sequence plasticity in mouse primary visual cortex. Sleep 2025; 48:zsae262. [PMID: 39530763 PMCID: PMC11893538 DOI: 10.1093/sleep/zsae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY OBJECTIVES Repeated exposure to familiar visual sequences drives experience-dependent and sequence-specific plasticity in mouse primary visual cortex (V1). Prior work demonstrated a critical role for sleep in consolidating a related but mechanistically distinct form of experience-dependent plasticity in V1. Here, we assessed the role of sleep in consolidation of spatiotemporal sequence learning (sequence plasticity) in mouse V1. METHODS Visually evoked potentials were recorded in awake, head-fixed mice viewing sequences of four visual stimuli. Each sequence was presented 200 times per session, across multiple sessions, to drive plasticity. The effects of sleep consolidation time and sleep deprivation on plasticity were assessed. RESULTS Sequence plasticity occurred in V1 following as little as 1 hour of ad libitum sleep and increased with longer periods of sleep. Sleep deprivation blocked sequence plasticity consolidation, which recovered following subsequent sleep. CONCLUSIONS Sleep is required for the consolidation of sequence plasticity in mouse V1.
Collapse
Affiliation(s)
- Nishitha S Hosamane
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, USA
| | - Adam M Didouchevski
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, USA
- University of Maryland, College Park, College Park, MD, USA
| | - Ayse Malci
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, USA
| | | | - Michael S Sidorov
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
5
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Galus W. Mind-brain identity theory confirmed? Cogn Neurodyn 2024; 18:1467-1487. [PMID: 39104703 PMCID: PMC11297862 DOI: 10.1007/s11571-023-09992-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2024] Open
Abstract
Presented here is a novel graphical, structural, and functional model of the embodied mind. Despite strictly adhering to a physicalistic and reductionist approach, this model successfully resolves the apparent contradiction between the thesis regarding the causal closure of the physical realm and the widely held common-sense belief that the mental realm can influence physical behavior. Furthermore, it substantiates the theory of mind-brain identity while shedding light on its neural foundation. Consciousness, viewed as an epiphenomenon in certain respects, simultaneously possesses causal potency. These two aspects operate concurrently through distinct brain processes. Within the paper, particular emphasis is placed on the significance of qualia and emotions, accompanied by an explanation of their phenomenal nature grounded in the perceptual theory of emotions. The proposed model elucidates how autonomous agents can deliberate on various action scenarios and consciously select the most optimal ones for themselves, considering their knowledge of the world, motivations, preferences, and emotions.
Collapse
|
7
|
Moguilner SG, Berezuk C, Bender AC, Pellerin KR, Gomperts SN, Cash SS, Sarkis RA, Lam AD. Sleep functional connectivity, hyperexcitability, and cognition in Alzheimer's disease. Alzheimers Dement 2024; 20:4234-4249. [PMID: 38764252 PMCID: PMC11180941 DOI: 10.1002/alz.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.
Collapse
Affiliation(s)
- Sebastian G. Moguilner
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Courtney Berezuk
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Alex C. Bender
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Kyle R. Pellerin
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Stephen N. Gomperts
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Sydney S. Cash
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Rani A. Sarkis
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Alice D. Lam
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
8
|
Oldoni AA, Bacchi AD, Mendes FR, Tiba PA, Mota-Rolim S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sci 2024; 14:426. [PMID: 38790404 PMCID: PMC11119155 DOI: 10.3390/brainsci14050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, we aim to review the literature on neuropsychopharmacological induction of LD. First, we describe the circadian and homeostatic processes of sleep regulation and the mechanisms that control REM sleep with a focus on neurotransmission systems. We then discuss the neurophysiology and phenomenology of LD to understand the main cortical oscillations and brain areas involved in the emergence of lucidity during REM sleep. Finally, we review possible exogenous substances-including natural plants and artificial drugs-that increase metacognition, REM sleep, and/or dream recall, thus with the potential to induce LD. We found that the main candidates are substances that increase cholinergic and/or dopaminergic transmission, such as galantamine. However, the main limitation of this technique is the complexity of these neurotransmitter systems, which challenges interpreting results in a simple way. We conclude that, despite these promising substances, more research is necessary to find a reliable way to pharmacologically induce LD.
Collapse
Affiliation(s)
- Abel A. Oldoni
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - André D. Bacchi
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, Brazil;
| | - Fúlvio R. Mendes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Paula A. Tiba
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - Sérgio Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
9
|
Bandarabadi M, Prouvot Bouvier PH, Corsi G, Tafti M. The paradox of REM sleep: Seven decades of evolution. Sleep Med Rev 2024; 74:101918. [PMID: 38457935 DOI: 10.1016/j.smrv.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | | | - Giorgio Corsi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
11
|
Ibrahim A, Cesari M, Heidbreder A, Defrancesco M, Brandauer E, Seppi K, Kiechl S, Högl B, Stefani A. Sleep features and long-term incident neurodegeneration: a polysomnographic study. Sleep 2024; 47:zsad304. [PMID: 38001022 PMCID: PMC10925953 DOI: 10.1093/sleep/zsad304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
STUDY OBJECTIVES Sleep is altered early in neurodegenerative diseases (NDDs) and may contribute to neurodegeneration. Long-term, large sample-size studies assessing NDDs association with objective sleep measures are scant. We aimed to investigate whether video-polysomnography (v-PSG)-based sleep features are associated with long-term NDDs incidence. METHODS Retrospective cohort study of patients referred 2004-2007 to the Sleep Disorders Unit, Neurology, Medical University Innsbruck, Austria. All patients ≥ 18 years undergoing v-PSG and without NDDs at baseline or within 5 years were included. Main outcome was NDDs diagnosis ≥5 years after v-PSG. RESULTS Of 1454 patients assessed for eligibility, 999 (68.7%) met inclusion criteria (68.3% men; median age 54.9 (IQR 33.9-62.7) years). Seventy-five patients (7.5%) developed NDDs and 924 (92.5%) remained disease-free after a median of 12.8 (IQR 9.9-14.6) years. After adjusting for demographic, sleep, and clinical covariates, a one-percentage decrease in sleep efficiency, N3-, or rapid-eye-movement (REM)-sleep was associated with 1.9%, 6.5%, or 5.2% increased risk of incident NDDs (HR 1.019, 1.065, and 1.052). One-percentage decrease in wake within sleep period time represented a 2.2% reduced risk of incident NDDs (HR 0.978). Random-forest analysis identified wake, followed by N3 and REM-sleep percentages, as the most important feature associated with NDDs diagnosis. Additionally, multiple sleep features combination improved discrimination of incident NDDs compared to individual sleep stages (concordance-index 0.72). CONCLUSIONS These findings support contribution of sleep changes to NDDs pathogenesis and provide insights into the temporal window during which these differences are detectable, pointing to sleep as early NDDs marker and potential target of neuroprotective strategies.
Collapse
Affiliation(s)
- Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Heidbreder
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Defrancesco
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Pelentritou A, Pfeiffer C, Schwartz S, De Lucia M. Cardio-audio synchronization elicits neural and cardiac surprise responses in human wakefulness and sleep. Commun Biol 2024; 7:226. [PMID: 38396068 PMCID: PMC10891147 DOI: 10.1038/s42003-024-05895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The human brain can encode auditory regularities with fixed sound-to-sound intervals and with sound onsets locked to cardiac inputs. Here, we investigated auditory and cardio-audio regularity encoding during sleep, when bodily and environmental stimulus processing may be altered. Using electroencephalography and electrocardiography in healthy volunteers (N = 26) during wakefulness and sleep, we measured the response to unexpected sound omissions within three regularity conditions: synchronous, where sound and heartbeat are temporally coupled, isochronous, with fixed sound-to-sound intervals, and a control condition without regularity. Cardio-audio regularity encoding manifested as a heartbeat deceleration upon omissions across vigilance states. The synchronous and isochronous sequences induced a modulation of the omission-evoked neural response in wakefulness and N2 sleep, the former accompanied by background oscillatory activity reorganization. The violation of cardio-audio and auditory regularity elicits cardiac and neural responses across vigilance states, laying the ground for similar investigations in altered consciousness states such as coma and anaesthesia.
Collapse
Affiliation(s)
- Andria Pelentritou
- Laboratoire de Recherche en Neuroimagerie (LREN), Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Christian Pfeiffer
- Robotics and Perception Group, University of Zurich, 8050, Zurich, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, 1202, Geneva, Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN), Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
14
|
Gott JA, Stücker S, Kanske P, Haaker J, Dresler M. Acetylcholine and metacognition during sleep. Conscious Cogn 2024; 117:103608. [PMID: 38042119 DOI: 10.1016/j.concog.2023.103608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Acetylcholine is a neurotransmitter and neuromodulator involved in a variety of cognitive functions. Additionally, acetylcholine is involved in the regulation of REM sleep: cholinergic neurons in the brainstem and basal forebrain project to and innervate wide areas of the cerebral cortex, and reciprocally interact with other neuromodulatory systems, to produce the sleep-wake cycle and different sleep stages. Consciousness and cognition vary considerably across and within sleep stages, with metacognitive capacity being strikingly reduced even during aesthetically and emotionally rich dream experiences. A notable exception is the phenomenon of lucid dreaming-a rare state whereby waking levels of metacognitive awareness are restored during sleep-resulting in individuals becoming aware of the fact that they are dreaming. The role of neurotransmitters in these fluctuations of consciousness and cognition during sleep is still poorly understood. While recent studies using acetylcholinesterase inhibitors suggest a potential role of acetylcholine in the occurrence of lucid dreaming, the underlying mechanisms by which this effect is produced remains un-modelled and unknown; with the causal link between cholinergic mechanisms and upstream psychological states being complex and elusive. Several theories and approaches targeting the association between acetylcholine and metacognition during wakefulness and sleep are highlighted in this review, moving through microscopic, mesoscopic and macroscopic levels of analysis to detail this phenomenon at several organisational scales. Several exploratory hypotheses will be developed to guide future research towards fully articulating how metacognition is affected by activity at the acetylcholine receptor.
Collapse
Affiliation(s)
- Jarrod A Gott
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sina Stücker
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Anthoney N, Tainton-Heap L, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. eLife 2023; 12:RP88198. [PMID: 37910019 PMCID: PMC10619980 DOI: 10.7554/elife.88198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow-wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Lucy Tainton-Heap
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Hang Luong
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Eleni Notaras
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Amber B Kewin
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Trent Perry
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Philip Batterham
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Paul J Shaw
- Department of Neuroscience, School of Medicine, Washington University in St. LouisSt LouisUnited States
| | | |
Collapse
|
16
|
Bittner N, Funk CSM, Schmidt A, Bermpohl F, Brandl EJ, Algharably EEA, Kreutz R, Riemer TG. Psychiatric Adverse Events of Acetylcholinesterase Inhibitors in Alzheimer's Disease and Parkinson's Dementia: Systematic Review and Meta-Analysis. Drugs Aging 2023; 40:953-964. [PMID: 37682445 PMCID: PMC10600312 DOI: 10.1007/s40266-023-01065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The acetylcholinesterase inhibitors (AChEIs) donepezil, galantamine, and rivastigmine are commonly used in the management of various forms of dementia. OBJECTIVES While these drugs are known to induce classic cholinergic adverse events such as diarrhea, their potential to cause psychiatric adverse events has yet to be thoroughly examined. METHODS We sought to determine the risk of psychiatric adverse events associated with the use of AChEIs through a systematic review and meta-analysis of double-blind randomized controlled trials involving patients with Alzheimer's dementia and Parkinson's dementia. RESULTS A total of 48 trials encompassing 22,845 patients were included in our analysis. Anorexia was the most commonly reported psychiatric adverse event, followed by agitation, insomnia, and depression. Individuals exposed to AChEIs had a greater risk of experiencing appetite disorders, insomnia, or depression compared with those who received placebo (anorexia: odds ratio [OR] 2.93, 95% confidence interval [CI] 2.29-3.75; p < 0.00001; decreased appetite: OR 1.93, 95% CI 1.33-2.82; p = 0.0006; insomnia: OR 1.55, 95% CI 1.25-1.93; p < 0.0001; and depression: OR 1.59, 95% CI 1.23-2.06, p = 0.0004). Appetite disorders were also more frequent with high-dose versus low-dose therapy. A subgroup analysis revealed that the risk of insomnia was higher for donepezil than for galantamine. CONCLUSIONS Our findings suggest that AChEI therapy may negatively impact psychological health, and careful monitoring of new psychiatric symptoms is warranted. Lowering the dose may resolve some psychiatric adverse events, as may switching to galantamine in the case of insomnia. CLINICAL TRIAL REGISTRATION The study was pre-registered on PROSPERO (CRD42021258376).
Collapse
Affiliation(s)
- Nadine Bittner
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Cleo S. M. Funk
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Alexander Schmidt
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eva J. Brandl
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Engi E. A. Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Thomas G. Riemer
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| |
Collapse
|
17
|
André C, Martineau-Dussault MÈ, Daneault V, Blais H, Frenette S, Lorrain D, Hudon C, Bastien C, Petit D, Lafrenière A, Thompson C, Montplaisir J, Gosselin N, Carrier J. REM sleep is associated with the volume of the cholinergic basal forebrain in aMCI individuals. Alzheimers Res Ther 2023; 15:151. [PMID: 37684650 PMCID: PMC10485959 DOI: 10.1186/s13195-023-01265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep highly depends on the activity of cholinergic basal forebrain (BF) neurons and is reduced in Alzheimer's disease. Here, we investigated the associations between the volume of BF nuclei and REM sleep characteristics, and the impact of cognitive status on these links, in late middle-aged and older participants. METHODS Thirty-one cognitively healthy controls (66.8 ± 7.2 years old, 13 women) and 31 participants with amnestic Mild Cognitive Impairment (aMCI) (68.3 ± 8.8 years old, 7 women) were included in this cross-sectional study. All participants underwent polysomnography, a comprehensive neuropsychological assessment and Magnetic Resonance Imaging examination. REM sleep characteristics (i.e., percentage, latency and efficiency) were derived from polysomnographic recordings. T1-weighted images were preprocessed using CAT12 and the DARTEL algorithm, and we extracted the gray matter volume of BF regions of interest using a probabilistic atlas implemented in the JuBrain Anatomy Toolbox. Multiple linear regressions were performed between the volume of BF nuclei and REM sleep characteristics controlling for age, sex and total intracranial volume, in the whole cohort and in subgroups stratified by cognitive status. RESULTS In the whole sample, lower REM sleep percentage was significantly associated to lower nucleus basalis of Meynert (Ch4) volume (β = 0.32, p = 0.009). When stratifying the cohort according to cognitive status, lower REM sleep percentage was significantly associated to both lower Ch4 (β = 0.48, p = 0.012) and total BF volumes (β = 0.44, p = 0.014) in aMCI individuals, but not in cognitively unimpaired participants. No significant associations were observed between the volume of the BF and wake after sleep onset or non-REM sleep variables. DISCUSSION These results suggest that REM sleep disturbances may be an early manifestation of the degeneration of the BF cholinergic system before the onset of dementia, especially in participants with mild memory deficits.
Collapse
Affiliation(s)
- Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565 Queen-Mary Road, Montreal, QC, H3W 1W5, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Sonia Frenette
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Dominique Lorrain
- Research Centre On Aging, University Institute of Geriatrics of Sherbrooke, CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
- Department of Psychology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carol Hudon
- CERVO Research Centre, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Célyne Bastien
- CERVO Research Centre, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada.
- Department of Psychology, Université de Montréal, Montreal, QC, Canada.
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565 Queen-Mary Road, Montreal, QC, H3W 1W5, Canada.
| |
Collapse
|
18
|
Lisgaras CP, Scharfman HE. Interictal Spikes in Alzheimer's Disease: Preclinical Evidence for Dominance of the Dentate Gyrus and Cholinergic Control by Medial Septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537999. [PMID: 37163065 PMCID: PMC10168266 DOI: 10.1101/2023.04.24.537999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
HIGHLIGHTS Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power. Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
|
19
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Nazari M, Karimi Abadchi J, Naghizadeh M, Bermudez-Contreras EJ, McNaughton BL, Tatsuno M, Mohajerani MH. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow waves during REM sleep in mice. Cell Rep 2023; 42:112450. [PMID: 37126447 DOI: 10.1016/j.celrep.2023.112450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Sleep consists of two basic stages: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is characterized by slow high-amplitude cortical electroencephalogram (EEG) signals, while REM sleep is characterized by desynchronized cortical rhythms. Despite this, recent electrophysiological studies have suggested the presence of slow waves (SWs) in local cortical areas during REM sleep. Electrophysiological techniques, however, have been unable to resolve the regional structure of these activities because of relatively sparse sampling. Here, we map functional gradients in cortical activity during REM sleep using mesoscale imaging in mice and show local SW patterns occurring mainly in somatomotor and auditory cortical regions with minimum presence within the default mode network. The role of the cholinergic system in local desynchronization during REM sleep is also explored by calcium imaging of cholinergic activity within the cortex and analyzing structural data. We demonstrate weaker cholinergic projections and terminal activity in regions exhibiting frequent SWs during REM sleep.
Collapse
Affiliation(s)
- Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Javad Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Milad Naghizadeh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Masami Tatsuno
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
21
|
Cruz-Aguilar MA, Ramírez-Salado I, Hernández-González M, Guevara MA, Rivera-García AP. EEG coherence and power spectra during REM sleep related to melatonin intake in mild-to-moderate Alzheimer's disease: a pilot study. Int J Neurosci 2023; 133:441-449. [PMID: 33970752 DOI: 10.1080/00207454.2021.1928115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It has been reported that melatonin diminishes rapid eye movement (REM) sleep latency in patients with Alzheimer's disease (AD). Pharmacological studies suggest that melatonin promotes prompt sleep installation through interaction with GABA receptors, and that it is associated with acute suppression of neural electrical activity. Nevertheless, melatonin's effects on electroencephalographic (EEG) activity related to REM sleep onset in AD patients have not been analyzed. Thus, in this pilot study we analyzed the effects of melatonin on EEG activity during the first episode of REM sleep in eight patients treated with 5-mg of fast-release melatonin. During a single-blind, placebo-controlled study, polysomnographic recordings were obtained from frontal, central, temporal, and occipital scalp derivations. REM sleep latency, as well as the relative power (RP) and EEG coherences of six EEG bands, were compared between the placebo and melatonin conditions. Results showed that melatonin intake in AD patients decreased REM sleep onset, and that this was associated with lower RP and coherence of the β and γ EEG bands. The possibility that the inhibitory GABAergic pathways related to REM sleep generation are well-preserved in mild-to-moderate AD is discussed. We conclude that the short REM sleep onset related to melatonin intake in AD patients is associated with a significant decrease in both RP and EEG coherence, mainly in the fast frequencies.
Collapse
Affiliation(s)
- Manuel Alejandro Cruz-Aguilar
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz,"Ciudad de México, CDMX, México
| | - Ignacio Ramírez-Salado
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz,"Ciudad de México, CDMX, México
| | - Marisela Hernández-González
- Laboratorio de Neurofisiología de la Conducta Reproductiva, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Miguel Angel Guevara
- Laboratorio de Correlación Electroencefalográfica y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Ana Paula Rivera-García
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz,"Ciudad de México, CDMX, México
| |
Collapse
|
22
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
23
|
Azami H, Moguilner S, Penagos H, Sarkis RA, Arnold SE, Gomperts SN, Lam AD. EEG Entropy in REM Sleep as a Physiologic Biomarker in Early Clinical Stages of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1557-1572. [PMID: 36641682 PMCID: PMC10039707 DOI: 10.3233/jad-221152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with EEG changes across the sleep-wake cycle. As the brain is a non-linear system, non-linear EEG features across behavioral states may provide an informative physiologic biomarker of AD. Multiscale fluctuation dispersion entropy (MFDE) provides a sensitive non-linear measure of EEG information content across a range of biologically relevant time-scales. OBJECTIVE To evaluate MFDE in awake and sleep EEGs as a potential biomarker for AD. METHODS We analyzed overnight scalp EEGs from 35 cognitively normal healthy controls, 23 participants with mild cognitive impairment (MCI), and 19 participants with mild dementia due to AD. We examined measures of entropy in wake and sleep states, including a slow-to-fast-activity ratio of entropy (SFAR-entropy). We compared SFAR-entropy to linear EEG measures including a slow-to-fast-activity ratio of power spectral density (SFAR-PSD) and relative alpha power, as well as to cognitive function. RESULTS SFAR-entropy differentiated dementia from MCI and controls. This effect was greatest in REM sleep, a state associated with high cholinergic activity. Differentiation was evident in the whole brain EEG and was most prominent in temporal and occipital regions. Five minutes of REM sleep was sufficient to distinguish dementia from MCI and controls. Higher SFAR-entropy during REM sleep was associated with worse performance on the Montreal Cognitive Assessment. Classifiers based on REM sleep SFAR-entropy distinguished dementia from MCI and controls with high accuracy, and outperformed classifiers based on SFAR-PSD and relative alpha power. CONCLUSION SFAR-entropy measured in REM sleep robustly discriminates dementia in AD from MCI and healthy controls.
Collapse
Affiliation(s)
- Hamed Azami
- Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sebastian Moguilner
- Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rani A. Sarkis
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Steven E. Arnold
- Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N. Gomperts
- Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alice D. Lam
- Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
24
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Wei Y, Xu J, Miao S, Wei K, Peng L, Wang Y, Wei X. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Crit Rev Food Sci Nutr 2022; 63:7598-7626. [PMID: 35266837 DOI: 10.1080/10408398.2022.2048291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.
Collapse
Affiliation(s)
- Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Siwei Miao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
26
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
27
|
Xie LQ, Yang BX, Liao YH, Gao GX, Jiang N, Zhou J, Richmond CJ. Sleep Disturbance in Older Adults With or Without Mild Cognitive Impairment and Its Associated Factors Residing in Rural Area, China. J Geriatr Psychiatry Neurol 2021; 34:632-641. [PMID: 33107376 DOI: 10.1177/0891988720964249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS To evaluate the prevalence of sleep disturbance in older adults with or without mild cognitive impairment (MCI) and associated factors among residents in rural central China. METHODS A cross-sectional survey was conducted in adults in rural areas of the Hunan province aged≥60 years. Study participants (N = 1213) included 479 individuals meeting the criteria for MCI and 734 with normal cognitive abilities. The participants completed the Athens Insomnia Scale, Stress Resilience Quotient Scale, Affect Balance Scale and Activities of Daily Living (ADL) Scale. Chi-square test, Wilcoxon rank sum analyses and multiple logistic regression were used in this study. RESULTS A total of 60.33% of participants with MCI demonstrated sleep disturbance (60.33%, 95% CI: 0.559-0.649), which was significantly higher than in the non-MCI group (43.73%, 95% CI: 0.759-0.838). Multiple logistic regression conducted separately in the populations of older adults with or without MCI showed that age, drinking habits, affect balance and activities of daily life were correlates of self-reported sleep disturbance in rural older adults with MCI (B = -5.469), whereas age, ADL, living arrangement and resilience were the main influencing factors in older adults without MCI (B = 2.991). CONCLUSION Sleep disturbance is more common in older adults with MCI than without MCI in rural areas of China. The factors influencing sleep disturbances vary between older adults with or without MCI, with age and ADL representing common factors influencing sleep disturbance in both groups. Interventions focusing on the age, drinking habits, affect balance and ADL may improve sleep quality in MCI older adults.
Collapse
Affiliation(s)
- Li Qin Xie
- Department of Academic affair, Changsha Social Work College, Changsha, China
| | - Bing Xiang Yang
- Faculty of School of Health Sciences, Wuhan University, Wuhan, China
| | - Yang Hui Liao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Gui Xian Gao
- Department of Labour Union, Changsha Social Work College, Changsha, China
| | - Na Jiang
- International Education College, Yueyang Vocational College, Yueyang, China
| | - Jun Zhou
- Medical School, Changsha Social Work College, Changsha, China
| | | |
Collapse
|
28
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
29
|
Lee S, Jung W, Eom S, Yeom HD, Park HD, Lee JH. Molecular Regulation of Betulinic Acid on α3β4 Nicotinic Acetylcholine Receptors. Molecules 2021; 26:2659. [PMID: 34062829 PMCID: PMC8125762 DOI: 10.3390/molecules26092659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor's ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.
Collapse
Affiliation(s)
- Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.L.); (S.E.)
| | - Woog Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.L.); (S.E.)
| | | | - Heui-Dong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.L.); (S.E.)
| |
Collapse
|
30
|
Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, Peng W, Qian T, Tan K, Zou J, Trinh S, Wu R, Zhang S, Pan S, Hires SA, Xu M, Li H, Saksida LM, Prado VF, Bussey TJ, Prado MAM, Chen L, Cheng H, Li Y. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods 2020; 17:1139-1146. [PMID: 32989318 PMCID: PMC7606762 DOI: 10.1038/s41592-020-0953-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.
Collapse
Affiliation(s)
- Miao Jing
- Chinese Institute for Brain Research, Beijing, China.
| | - Yuexuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Miguel Skirzewski
- BrainsCAN Rodent Cognition Core, The University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jing Zou
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Simon Trinh
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Runlong Wu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shichen Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Samuel A Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa M Saksida
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
31
|
Aru J, Siclari F, Phillips WA, Storm JF. Apical drive-A cellular mechanism of dreaming? Neurosci Biobehav Rev 2020; 119:440-455. [PMID: 33002561 DOI: 10.1016/j.neubiorev.2020.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
Dreams are internally generated experiences that occur independently of current sensory input. Here we argue, based on cortical anatomy and function, that dream experiences are tightly related to the workings of a specific part of cortical pyramidal neurons, the apical integration zone (AIZ). The AIZ receives and processes contextual information from diverse sources and could constitute a major switch point for transitioning from externally to internally generated experiences such as dreams. We propose that during dreams the output of certain pyramidal neurons is mainly driven by input into the AIZ. We call this mode of functioning "apical drive". Our hypothesis is based on the evidence that the cholinergic and adrenergic arousal systems, which show different dynamics between waking, slow wave sleep, and rapid eye movement sleep, have specific effects on the AIZ. We suggest that apical drive may also contribute to waking experiences, such as mental imagery. Future studies, investigating the different modes of apical function and their regulation during sleep and wakefulness are likely to be richly rewarded.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Estonia; Institute of Biology, Humboldt University Berlin, Germany.
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - William A Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - Johan F Storm
- Brain Signalling Group, Section for Physiology, Faculty of Medicine, Domus Medica, University of Oslo, PB 1104 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
32
|
Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci 2020; 43:550-564. [DOI: 10.1016/j.tins.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
|
33
|
Liguori C, Placidi F, Izzi F, Spanetta M, Mercuri NB, Di Pucchio A. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive functioning in Alzheimer's disease course. ALZHEIMERS RESEARCH & THERAPY 2020; 12:5. [PMID: 31901236 PMCID: PMC6942389 DOI: 10.1186/s13195-019-0571-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Background Alzheimer's disease (AD) is frequently accompanied by sleep impairment, which can induce AD-related neurodegeneration. We herein investigated the sleep architecture, cognition, and cerebrospinal fluid (CSF) biomarkers (tau proteins and β-amyloid42) during AD progression from subjective cognitive impairment (SCI) to mild cognitive impairment (MCI) and eventually to AD dementia, and compared the results with cognitively normal (CN) subjects. Methods We included patients affected by SCI, MCI, mild AD, and moderate-to-severe AD in our study along with CN subjects as controls. All the subjects underwent nocturnal polysomnography to investigate sleep, neuropsychological testing to evaluate cognition, and lumbar puncture for CSF AD biomarkers assessment. Results Sleep (both rapid eye movement (REM) and non-REM sleep) and memory function are both progressively impaired during the course of AD from SCI to mild and subsequently to moderate AD. Further, sleep dysregulation appears earlier than cognitive deterioration, with a reduction of CSF β-amyloid42 level. Conclusion Sleep, memory, and CSF AD biomarkers are closely interrelated in AD progression from the earliest asymptomatic and preclinical stages of the disease related in AD since the earliest and preclinical stages of the disease.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy. .,Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandra Di Pucchio
- Training Office, Italian National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| |
Collapse
|
34
|
Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer's disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 2020; 45:104-120. [PMID: 31408876 PMCID: PMC6879647 DOI: 10.1038/s41386-019-0478-5] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
As we age, we experience changes in our nighttime sleep and daytime wakefulness. Individuals afflicted with Alzheimer's disease (AD) can develop sleep problems even before memory and other cognitive deficits are reported. As the disease progresses and cognitive changes ensue, sleep disturbances become even more debilitating. Thus, it is imperative to gain a better understanding of the relationship between sleep and AD pathogenesis. We postulate a bidirectional relationship between sleep and the neuropathological hallmarks of AD; in particular, the accumulation of amyloid-β (Aβ) and tau. Our research group has shown that extracellular levels of both Aβ and tau fluctuate during the normal sleep-wake cycle. Disturbed sleep and increased wakefulness acutely lead to increased Aβ production and decreased Aβ clearance, whereas Aβ aggregation and deposition is enhanced by chronic increased wakefulness in animal models. Once Aβ accumulates, there is evidence in both mice and humans that this results in disturbed sleep. New findings from our group reveal that acute sleep deprivation increases levels of tau in mouse brain interstitial fluid (ISF) and human cerebrospinal fluid (CSF) and chronic sleep deprivation accelerates the spread of tau protein aggregates in neural networks. Finally, recent evidence also suggests that accumulation of tau aggregates in the brain correlates with decreased nonrapid eye movement (NREM) sleep slow wave activity. In this review, we first provide a brief overview of the AD and sleep literature and then highlight recent advances in the understanding of the relationship between sleep and AD pathogenesis. Importantly, the effects of the bidirectional relationship between the sleep-wake cycle and tau have not been previously discussed in other reviews on this topic. Lastly, we provide possible directions for future studies on the role of sleep in AD.
Collapse
Affiliation(s)
- Chanung Wang
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019; 128:726-736. [PMID: 30883418 DOI: 10.1213/ane.0000000000004006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Collapse
|
36
|
Williams RH, Vazquez-DeRose J, Thomas AM, Piquet J, Cauli B, Kilduff TS. Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain. Cereb Cortex 2019; 28:1959-1979. [PMID: 28472227 DOI: 10.1093/cercor/bhx102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/30/2022] Open
Abstract
Cholinergic (ACh) basal forebrain (BF) neurons are active during wakefulness and rapid eye movement (REM) sleep and are involved in sleep homeostasis. We have previously shown in adult animals that cortical neurons that express neuronal nitric oxide synthase (nNOS) and the receptor for Substance P (NK1R) are activated during non-REM (NREM) sleep in proportion to homeostatic sleep drive. Here, we show that BF neurons modulate cortical nNOS/NK1R cells. In vitro optogenetic stimulation of BF terminals both activated and inhibited nNOS/NK1R neurons. Pharmacological studies revealed cholinergic responses mediated by postsynaptic activation of muscarinic receptors (mAChRs; M3R > M2/4R > M1R) and that presynaptic M3R and M2R activation reduced glutamatergic input onto nNOS/NK1R neurons whereas nicotinic receptor (nAChR)-mediated responses of nNOS/NK1R neurons were mixed. Cholinergic responses of nNOS/NK1R neurons were largely unaffected by prolonged wakefulness. ACh release, including from BF cells, appears to largely excite cortical nNOS/NK1R cells while reducing glutamatergic inputs onto these neurons. We propose that cholinergic signaling onto cortical nNOS/NK1R neurons may contribute to the regulation of cortical activity across arousal states, but that this response is likely independent of the role of these neurons in sleep homeostasis.
Collapse
Affiliation(s)
- Rhîannan H Williams
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | | | - Alexia M Thomas
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Juliette Piquet
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Paris, FR 75005, France.,Sorbonne Universités, UPMC University Paris 06, UM 119, Neuroscience Paris Seine, Paris, FR 75005, France.,Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine, Paris, FR 75005, France
| | - Bruno Cauli
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Paris, FR 75005, France.,Sorbonne Universités, UPMC University Paris 06, UM 119, Neuroscience Paris Seine, Paris, FR 75005, France.,Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine, Paris, FR 75005, France
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
37
|
Modulation of Spontaneous and Light-Induced Activity in the Rat Dorsal Lateral Geniculate Nucleus by General Brain State Alterations under Urethane Anesthesia. Neuroscience 2019; 413:279-293. [DOI: 10.1016/j.neuroscience.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
|
38
|
Yufik YM. The Understanding Capacity and Information Dynamics in the Human Brain. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E308. [PMID: 33267023 PMCID: PMC7514789 DOI: 10.3390/e21030308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
This article proposes a theory of neuronal processes underlying cognition, focusing on the mechanisms of understanding in the human brain. Understanding is a product of mental modeling. The paper argues that mental modeling is a form of information production inside the neuronal system extending the reach of human cognition "beyond the information given" (Bruner, J.S., Beyond the Information Given, 1973). Mental modeling enables forms of learning and prediction (learning with understanding and prediction via explanation) that are unique to humans, allowing robust performance under unfamiliar conditions having no precedents in the past history. The proposed theory centers on the notions of self-organization and emergent properties of collective behavior in the neuronal substrate. The theory motivates new approaches in the design of intelligent artifacts (machine understanding) that are complementary to those underlying the technology of machine learning.
Collapse
Affiliation(s)
- Yan M Yufik
- Virtual Structures Research, Inc., Potomac, MD 20854, USA
| |
Collapse
|
39
|
Gagnon JF, Lafrenière A, Rauchs G, Petit D, Carrier J. Sleep in Normal Aging, Alzheimer's Disease, and Mild Cognitive Impairment. HANDBOOK OF SLEEP RESEARCH 2019. [DOI: 10.1016/b978-0-12-813743-7.00045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Krishnan GP, Rosen BQ, Chen JY, Muller L, Sejnowski TJ, Cash SS, Halgren E, Bazhenov M. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Comput Biol 2018; 14:e1006171. [PMID: 29949575 PMCID: PMC6039052 DOI: 10.1371/journal.pcbi.1006171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 07/10/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022] Open
Abstract
Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.
Collapse
Affiliation(s)
- Giri P. Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Burke Q. Rosen
- Departments of Radiology and Neurosciences, UCSD, San Diego, CA, United States of America
| | - Jen-Yung Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Lyle Muller
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, San Diego, CA, United States of America
| | - Terrence J. Sejnowski
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, San Diego, CA, United States of America
| | - Sydney S. Cash
- Dept. of Neurology, Massachusetts General Hospital and Harvard University, Boston, MA, United States of America
| | - Eric Halgren
- Departments of Radiology and Neurosciences, UCSD, San Diego, CA, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
41
|
Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease. eNeuro 2018; 5:eN-CFN-0426-17. [PMID: 29780880 PMCID: PMC5956746 DOI: 10.1523/eneuro.0426-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.
Collapse
|
42
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
43
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
44
|
Wollman LB, Levine RB, Fregosi RF. Developmental plasticity of GABAergic neurotransmission to brainstem motoneurons. J Physiol 2018; 596:5993-6008. [PMID: 29352468 DOI: 10.1113/jp274923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS Critical homeostatic behaviours such as suckling, swallowing and breathing depend on the precise control of tongue muscle activity. Perinatal nicotine exposure has multiple effects on baseline inhibitory GABAergic neurotransmission to hypoglossal motoneurons (XIIMNs), consistent with homeostatic compensations directed at maintaining normal motoneuron output. Developmental nicotine exposure (DNE) alters how GABAergic neurotransmission is modulated by acute activation of nicotinic acetylcholine receptors, which may provide insight into mechanisms by which nicotine exposure alters motor function under conditions that result in increased release of GABA, such as hypoxia, or endogenous acetylcholine, as occurs in the transition from NREM to REM sleep, or in response to exogenous nicotine. ABSTRACT Nicotinic acetylcholine receptor (nAChR) signalling regulates neuronal differentiation and synaptogenesis. Here we test the hypothesis that developmental nicotine exposure (DNE) disrupts the development of GABAergic synaptic transmission to hypoglossal motoneurons (XIIMNs). GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs/mIPSCs) were recorded from XIIMNs in brainstem slices from control and DNE rat pups of either sex, 1-5 days old, at baseline and following acute stimulation of nAChRs with nicotine. At baseline, sIPSCs were less frequent and smaller in DNE cells (consistent with decreased action potential-mediated GABA release), and mIPSCs were more frequent (consistent with increased vesicular GABA release from presynaptic terminals). Acute nicotine challenge increased sIPSC frequency in both groups, though the increase was greater in DNE cells. Acute nicotine challenge did not change the frequency of mIPSCs in either group, though mIPSC amplitude increased significantly in DNE cells, but not control cells. Stimulation of postsynaptic GABAA receptors with muscimol caused a significantly greater chloride current in DNE cells than in control cells. The increased quantal release of GABA, coupled with the rise in the strength of postsynaptic inhibition may be homeostatic adjustments to the decreased action-potential-mediated input from GABAergic interneurons. However, this will exaggerate synaptic inhibition under conditions where the release of GABA (e.g. hypoxia) or ACh (sleep-wake transitions) is increased. These findings reveal a mechanism that may explain why DNE is associated with deficits in the ability to respond appropriately to chemosensory stimuli or to changes in neuromodulation secondary to changes in central nervous system state.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
45
|
Wang YQ, Zhang MQ, Li R, Qu WM, Huang ZL. The Mutual Interaction Between Sleep and Epilepsy on the Neurobiological Basis and Therapy. Curr Neuropharmacol 2018; 16:5-16. [PMID: 28486925 PMCID: PMC5771383 DOI: 10.2174/1570159x15666170509101237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/11/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sleep and epilepsy are mutually related in a complex, bidirectional manner. However, our understanding of this relationship remains unclear. RESULTS The literatures of the neurobiological basis of the interactions between sleep and epilepsy indicate that non rapid eye movement sleep and idiopathic generalized epilepsy share the same thalamocortical networks. Most of neurotransmitters and neuromodulators such as adenosine, melatonin, prostaglandin D2, serotonin, and histamine are found to regulate the sleep-wake behavior and also considered to have antiepilepsy effects; antiepileptic drugs, in turn, also have effects on sleep. Furthermore, many drugs that regulate the sleep-wake cycle can also serve as potential antiseizure agents. The nonpharmacological management of epilepsy including ketogenic diet, epilepsy surgery, neurostimulation can also influence sleep. CONCLUSION In this paper, we address the issues involved in these phenomena and also discuss the various therapies used to modify them.
Collapse
Affiliation(s)
| | | | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| | - Wei-Min Qu
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| |
Collapse
|
46
|
Grossberg S. Acetylcholine Neuromodulation in Normal and Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism, Amnesia and Alzheimer's Disease. Front Neural Circuits 2017; 11:82. [PMID: 29163063 PMCID: PMC5673653 DOI: 10.3389/fncir.2017.00082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer's disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer's disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences and Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
47
|
Pase MP, Himali JJ, Grima NA, Beiser AS, Satizabal CL, Aparicio HJ, Thomas RJ, Gottlieb DJ, Auerbach SH, Seshadri S. Sleep architecture and the risk of incident dementia in the community. Neurology 2017; 89:1244-1250. [PMID: 28835407 PMCID: PMC5606917 DOI: 10.1212/wnl.0000000000004373] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Sleep disturbance is common in dementia, although it is unclear whether differences in sleep architecture precede dementia onset. We examined the associations between sleep architecture and the prospective risk of incident dementia in the community-based Framingham Heart Study (FHS). METHODS Our sample comprised a subset of 321 FHS Offspring participants who participated in the Sleep Heart Health Study between 1995 and 1998 and who were aged over 60 years at the time of sleep assessment (mean age 67 ± 5 years, 50% male). Stages of sleep were quantified using home-based polysomnography. Participants were followed for a maximum of 19 years for incident dementia (mean follow-up 12 ± 5 years). RESULTS We observed 32 cases of incident dementia; 24 were consistent with Alzheimer disease dementia. After adjustments for age and sex, lower REM sleep percentage and longer REM sleep latency were both associated with a higher risk of incident dementia. Each percentage reduction in REM sleep was associated with approximately a 9% increase in the risk of incident dementia (hazard ratio 0.91; 95% confidence interval 0.86, 0.97). The magnitude of association between REM sleep percentage and dementia was similar following adjustments for multiple covariates including vascular risk factors, depressive symptoms, and medication use, following exclusions for persons with mild cognitive impairment at baseline and following exclusions for early converters to dementia. Stages of non-REM sleep were not associated with dementia risk. CONCLUSIONS Despite contemporary interest in slow-wave sleep and dementia pathology, our findings implicate REM sleep mechanisms as predictors of clinical dementia.
Collapse
Affiliation(s)
- Matthew P Pase
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA.
| | - Jayandra J Himali
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Natalie A Grima
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Alexa S Beiser
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Claudia L Satizabal
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Hugo J Aparicio
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Robert J Thomas
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Daniel J Gottlieb
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Sandford H Auerbach
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| | - Sudha Seshadri
- From the Department of Neurology (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.L.S., H.J.A., S.H.A., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health; Cognitive Neurology Unit (N.A.G.) and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine (R.J.T.), Beth Israel Deaconess Medical Center; Harvard Medical School (N.A.G., D.J.G.); Division of Sleep and Circadian Disorders (D.J.G.), Brigham & Women's Hospital, Boston; and Medical Service (D.J.G.), VA Boston Healthcare System, MA
| |
Collapse
|
48
|
Brayet P, Petit D, Baril AA, Gosselin N, Gagnon JF, Soucy JP, Gauthier S, Kergoat MJ, Carrier J, Rouleau I, Montplaisir J. Brain perfusion during rapid-eye-movement sleep successfully identifies amnestic mild cognitive impairment. Sleep Med 2017; 34:134-140. [PMID: 28522082 DOI: 10.1016/j.sleep.2017.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Prodromal markers of Alzheimer's disease (AD) have been derived from wakefulness. However, brain perfusion during rapid-eye movement (REM) sleep could be a sensitive marker of amnestic mild cognitive impairment (aMCI), as activation of REM sleep relies more on the cholinergic system. METHODS Eight subjects with aMCI, and 16 controls, underwent two single-photon emission computed tomography (SPECT) scans with tracer injected during REM sleep then wakefulness. RESULTS Perfusion in the anterior cingulate cortex was significantly decreased in aMCI cases compared to controls for both conditions. That defect was much larger and more severe in REM sleep (1795 voxels) compared to wakefulness (398 voxels), and extended to the middle cingulate cortex and the olfactory cortex. Hypoperfusion in the anterior cingulate cortex during REM sleep allowed better classification than hypoperfusion found in wakefulness (93.8 vs 81.3%). CONCLUSION REM sleep imaging is a valuable tool with which to identify individuals at risk of developing AD.
Collapse
Affiliation(s)
- Pauline Brayet
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada; Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada; Department of Psychology, Université de Montréal, Montréal, Canada
| | - Jean-François Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montréal, Canada; PERFORM Centre, Concordia University, Montréal, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, Douglas Hospital, Verdun, Canada
| | - Marie-Jeanne Kergoat
- Faculty of Medicine, Université de Montréal, Montréal, Canada; Research Center, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada; Department of Psychology, Université de Montréal, Montréal, Canada
| | - Isabelle Rouleau
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada; Neurology Service, Hôpital Notre-Dame du CHUM, Montréal, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada; Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
49
|
Krishnan GP, Chauvette S, Shamie I, Soltani S, Timofeev I, Cash SS, Halgren E, Bazhenov M. Cellular and neurochemical basis of sleep stages in the thalamocortical network. eLife 2016; 5:e18607. [PMID: 27849520 PMCID: PMC5111887 DOI: 10.7554/elife.18607] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
Collapse
Affiliation(s)
- Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sylvain Chauvette
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
| | - Isaac Shamie
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Sara Soltani
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci 2016; 36:2057-67. [PMID: 26865627 DOI: 10.1523/jneurosci.3318-15.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior.
Collapse
|