1
|
Lee H, Amatya B, Villar VAM, Asico LD, Jeong JK, Feranil J, Moore SC, Zheng X, Bishop M, Gomes JP, Polzin J, Smeriglio N, de Castro PASV, Armando I, Felder RA, Hao L, Jose PA. Renal autocrine neuropeptide FF (NPFF) signaling regulates blood pressure. Sci Rep 2024; 14:15407. [PMID: 38965251 PMCID: PMC11224344 DOI: 10.1038/s41598-024-64484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.
Collapse
Affiliation(s)
- Hewang Lee
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Bibhas Amatya
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Jun Feranil
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shaun C Moore
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Michael Bishop
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Jerald P Gomes
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacob Polzin
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Noah Smeriglio
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A S Vaz de Castro
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Ines Armando
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, 22908.5, USA
| | - Ling Hao
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| |
Collapse
|
2
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Barati MT, Ketchem CJ, Merchant ML, Kusiak WB, Jose PA, Weinman EJ, LeBlanc AJ, Lederer ED, Khundmiri SJ. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats. Am J Physiol Cell Physiol 2017; 313:C197-C206. [PMID: 28515088 DOI: 10.1152/ajpcell.00219.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.
Collapse
Affiliation(s)
- Michelle T Barati
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Michael L Merchant
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Walter B Kusiak
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, and Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amanda J LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Eleanor D Lederer
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky.,Department of Physiology, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky; and
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, District of Columbia
| |
Collapse
|
4
|
Chen K, Deng K, Wang X, Wang Z, Zheng S, Ren H, He D, Han Y, Asico LD, Jose PA, Zeng C. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Hypertension 2014; 65:153-60. [PMID: 25368031 DOI: 10.1161/hypertensionaha.114.04038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.
Collapse
Affiliation(s)
- Ken Chen
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Kun Deng
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Xiaoyan Wang
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Zhen Wang
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Shuo Zheng
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Hongmei Ren
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Duofen He
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Yu Han
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Laureano D Asico
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Pedro A Jose
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.)
| | - Chunyu Zeng
- From the Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); Chongqing Institute of Cardiology, Chongqing, People's Republic of China (K.C., K.D., Z.W., S.Z., H.R., D.H., Y.H., C.Z.); and Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (X.W., L.D.A., P.A.J.).
| |
Collapse
|
5
|
Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int 2013; 85:561-9. [PMID: 24132210 PMCID: PMC3943540 DOI: 10.1038/ki.2013.397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023]
Abstract
Renal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, ATP synthesis-linked oxygen consumption rates, and maximum and reserve respiration. These bioenergetic parameters indicated increased mitochondrial function in renal proximal tubule cells from SHR compared with WKY. Pyruvate dehydrogenase complex activity was consistently higher in both renal proximal tubule cells and cortical homogenates from SHR than WKY. Treatment for 6 days with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase, significantly increased renal pyruvate dehydrogenase complex activity and systolic blood pressure in 3-week old WKY and SHR. Therefore, mitochondrial oxidative phosphorylation is higher in renal proximal tubule cells from SHR compared with WKY. Thus the pyruvate dehydrogenase complex is a determinant of increased mitochondrial metabolism that could be a causal contributor to the hypertension in SHR.
Collapse
|
6
|
Liu J, Xie ZJ. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1237-45. [PMID: 20144708 PMCID: PMC5375027 DOI: 10.1016/j.bbadis.2010.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 12/12/2022]
Abstract
The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na(+) excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca(2+) signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na(+) excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor-effector coupling would reduce the ability of renal proximal tubular cells to excrete Na(+), thus culminating/resulting in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, University of Toledo College of Medicine
| | - Zi-jian Xie
- Department of Physiology and Pharmacology, University of Toledo College of Medicine
| |
Collapse
|
7
|
Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 2010; 299:F872-81. [DOI: 10.1152/ajprenal.00654.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na+/H+ exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 ± 0.10 vs. 0.41 ± 0.04 nmol/cm2×s), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 ± 0.05 vs. 1.26 ± 0.11 nmol/cm2×s). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.
Collapse
Affiliation(s)
| | - Lucília M. A. Lessa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | | | - Ana Paula C. Davel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | | | - Luciana V. Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | | |
Collapse
|
8
|
Gildea JJ, Israel JA, Johnson AK, Zhang J, Jose PA, Felder RA. Caveolin-1 and dopamine-mediated internalization of NaKATPase in human renal proximal tubule cells. Hypertension 2009; 54:1070-6. [PMID: 19752292 DOI: 10.1161/hypertensionaha.109.134338] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In moderate sodium-replete states, dopamine 1-like receptors (D1R/D5R) are responsible for regulating >50% of renal sodium excretion. This is partly mediated by internalization and inactivation of NaKATPase, when associated with adapter protein 2. We used dopaminergic stimulation via fenoldopam (D1-like receptor agonist) to study the interaction among D1-like receptors, caveolin-1 (CAV1), and the G protein-coupled receptor kinase type 4 in cultured human renal proximal tubule cells (RPTCs). We compared 2 groups of RPTCs, 1 of cell lines that were isolated from normal subjects (nRPTCs) and a second group of cell lines that have D1-like receptors that are uncoupled (uncoupled RPTCs) from adenylyl cyclase second messengers. In nRPTCs, fenoldopam increased the plasma membrane expression of D1R (10.0-fold) and CAV1 (1.3-fold) and markedly decreased G protein-coupled receptor kinase type 4 by 94+/-8%; no effects were seen in uncoupled RPTCs. Fenoldopam also increased the association of adapter protein 2 and NaKATPase by 53+/-9% in nRPTCs but not in uncoupled RPTCs. When CAV1 expression was reduced by 86.0+/-8.5% using small interfering RNA, restimulation of the D1-like receptors with fenoldopam in nRPTCs resulted in only a 7+/-9% increase in association between adapter protein 2 and NaKATPase. Basal CAV1 expression and association with G protein-coupled receptor kinase type 4 was decreased in uncoupled RPTCs (58+/-5% decrease in association) relative to nRPTCs. We conclude that the scaffolding protein CAV1 is necessary for the association of D1-like receptors with G protein-coupled receptor kinase type 4 and the adapter protein 2-associated reduction in plasma membrane NaKATPase.
Collapse
Affiliation(s)
- John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
9
|
Amaral JS, Pinho MJ, Soares-da-Silva P. Regulation of amino acid transporters in the rat remnant kidney. Nephrol Dial Transplant 2009; 24:2058-67. [PMID: 19155532 DOI: 10.1093/ndt/gfn752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Partial renal ablation is associated with compensatory renal growth, significant azotaemia, a significant increase in fractional excretion of sodium and changes in solute transport. The present study evaluated the occurrence of adaptations in the remnant kidney, especially in renal amino acid transporters and sodium transporters and their putative role in sodium handling in the early stages (24 h and 1 week) after uninephrectomy. METHODS Wistar rats aged 8 weeks old were submitted to renal ablation of the right kidney--Unx rats (n = 10). 24 hours (n = 5) and 1 week (n = 5) after surgery, rats were anesthetized and the left kidney was removed. Urinary and plasmatic levels of catecholamines, sodium, urea and creatinine were measured. Gene expression of the amino acid and sodium transporters was determined by Real-time reverse transcription PCR. Protein expression was evaluated by Western blot using specific antibodies for the amino acid and sodium transporters. RESULTS Uninephrectomized (Unx) rats for 24 h showed a lower urinary excretion of L-DOPA, dopamine and DOPAC than the corresponding Sham rats, accompanied by an increase in the expression of the Na(+)-K(+)-ATPase protein (64% increase). Unx rats for 1 week presented a hypertrophied remnant kidney, higher urine outflow and a approximately 2-fold increase in the fractional excretion of sodium. The NHE3 mRNA expression was significantly decreased in Unx rats throughout the study (approximately 20% decrease). LAT1 transcript and protein were consistently overexpressed at both 24 h and 1 week after uninephrectomy. In contrast, 4F2hc and LAT2 transcript abundance was lower in 24-h Unx rats than in Sham rats (a 36% decrease in both cases). CONCLUSIONS These results provide evidence that the renal expression of the amino acid transporters LAT1, LAT2 and 4F2hc and the sodium transporters Na(+)-K(+)-ATPase and NHE3 is differently regulated following unilateral nephrectomy. In conclusion, this study allowed us to characterize the renal adaptations in the early stages after uninephrectomy, which showed a combined interaction of multiple mechanisms regulating sodium homeostasis including the renal dopaminergic system, and the abundance of amino acid transporters and sodium transporters.
Collapse
Affiliation(s)
- João S Amaral
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
10
|
|
11
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
12
|
Zeng C, Villar VAM, Eisner GM, Williams SM, Felder RA, Jose PA. G protein-coupled receptor kinase 4: role in blood pressure regulation. Hypertension 2008; 51:1449-55. [PMID: 18347232 DOI: 10.1161/hypertensionaha.107.096487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing City, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Pinho MJ, Serrão MP, José PA, Soares-da-Silva P. Organ specific underexpression renal of Na+-dependent B0AT1 in the SHR correlates positively with overexpression of NHE3 and salt intake. Mol Cell Biochem 2007; 306:9-18. [PMID: 17646927 DOI: 10.1007/s11010-007-9548-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 06/21/2007] [Indexed: 01/11/2023]
Abstract
The present study examines the renal and intestinal expression of Na(+)-dependent amino acid transporter B(0)AT1 during the development of hypertension in the spontaneous hypertensive rats (SHR) and its normotensive control (Wistar-Kyoto rat; WKY), and evaluates whether the expression of renal B(0)AT1 correlates with changes in the expression of Na(+) transporters, type 3 Na(+)/H(+) exchanger (NHE3) and Na(+)-K(+)-ATPase, known to occur in the SHR. The effect of high salt (HS) intake on the expression of renal and intestinal B(0)AT1 transcript abundance was also evaluated. For this purpose, the cloning of rat homolog of B(0)AT1 was performed. Rat B(0)AT1 shows high sequence homology to the mouse ortholog. Renal B(0)AT1 transcript abundance was lower in SHR than WKY at both 4 and 12 weeks of age. No significant differences between strains were observed in terms of intestinal expression of B(0)AT1. The decreased B(0)AT1 expression in SHR kidney was accompanied with an increase in NHE3 expression, suggesting an impaired Na(+) uptake. HS intake decreased renal B(0)AT1 mRNA in SHR and WKY at 4 weeks of age. In 12-week-old SHR, HS intake increased renal B(0)AT1 transcript abundance. Intestinal B(0)AT1 transcript was significantly increased by HS intake, though the effect was considerably more pronounced in the SHR. It is concluded, that underexpression of B(0)AT1 in the SHR kidney is organ specific, precedes the onset of hypertension and correlates negatively with the renal tubular transport of Na(+). The regulation of B(0)AT1 gene transcription appears to be under the influence of Na(+) delivery, being organ specific.
Collapse
Affiliation(s)
- Maria João Pinho
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200 Porto, Portugal
| | | | | | | |
Collapse
|
15
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
16
|
Pinho MJ, Serrão MP, Soares-da-Silva P. High-salt intake and the renal expression of amino acid transporters in spontaneously hypertensive rats. Am J Physiol Renal Physiol 2007; 292:F1452-63. [PMID: 17264310 DOI: 10.1152/ajprenal.00465.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study evaluated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) the response to salt loading of the renal dopaminergic system and transcript abundance of Na+-independent (LAT1 and LAT2) and Na+-dependent (ASCT2 and B0AT1) amino acid transporters potentially involved in renal tubular uptake of l-DOPA. Rats were fed normal (NS)- or high (HS; 1% saline as drinking water)-salt intake for 24 h. Transcript abundance of amino acid transporters was age dependent, differently regulated in WKY and SHR and responded differently to salt intake. HS intake similarly increased urinary dopamine in 4-wk-old SHR and WKY. At 12 wk of age, HS intake increased urinary dopamine in SHR, but not in WKY. Changes in urinary dopamine paralleled changes in the uptake of l-DOPA in isolated renal tubules from 4- and 12-wk-old WKY and SHR on NS and HS intake. At 12 wk of age, HS intake was accompanied by decreases in LAT1 and LAT2 transcript abundance in WKY and SHR. ASCT2 and B0AT1 expression was significantly decreased in both 4- and 12-wk-old WKY and in 4-wk-old SHR on HS intake. By contrast, HS intake increased ASCT2 and B0AT1 expression in 12-wk-old SHR. It is concluded that salt-sensitive mechanisms influence LAT1, LAT2, ASCT2, and B0AT1 gene transcription. Differences in urinary dopamine and tubular uptake of l-DOPA between WKY and SHR during HS intake, namely in 12-wk-old animals, may result from increases in the ASCT2 and B0AT1 mRNA levels and less pronounced decreases in LAT2 expression.
Collapse
MESH Headings
- Aging/metabolism
- Amino Acid Transport System ASC/genetics
- Amino Acid Transport System ASC/metabolism
- Amino Acid Transport System y+/genetics
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems/metabolism
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Animals
- Dopamine/urine
- Dose-Response Relationship, Drug
- Fusion Regulatory Protein 1, Light Chains/genetics
- Fusion Regulatory Protein 1, Light Chains/metabolism
- Hypertension/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Kidney Tubules/metabolism
- Large Neutral Amino Acid-Transporter 1/genetics
- Large Neutral Amino Acid-Transporter 1/metabolism
- Levodopa/metabolism
- Minor Histocompatibility Antigens
- Neurotransmitter Agents/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sodium Chloride, Dietary/administration & dosage
- Sodium Chloride, Dietary/pharmacology
Collapse
Affiliation(s)
- Maria João Pinho
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | | | | |
Collapse
|
17
|
Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. ACTA ACUST UNITED AC 2006; 2:637-50. [PMID: 17066056 DOI: 10.1038/ncpneph0301] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 07/03/2006] [Indexed: 12/15/2022]
Abstract
Hypertension and salt sensitivity of blood pressure are two conditions the etiologies of which are still elusive because of the complex influences of genes, environment, and behavior. Recent understanding of the molecular mechanisms that govern sodium homeostasis is shedding new light on how genes, their protein products, and interacting metabolic pathways contribute to disease. Sodium transport is increased in the proximal tubule and thick ascending limb of Henle of the kidney in human essential hypertension. This Review focuses on the counter-regulation between the dopaminergic and renin-angiotensin systems in the renal proximal tubule, which is the site of about 70% of total renal sodium reabsorption. The inhibitory effect of dopamine is most evident under conditions of moderate sodium excess, whereas the stimulatory effect of angiotensin II is most evident under conditions of sodium deficit. Dopamine and angiotensin II exert their actions via G protein-coupled receptors, which are in turn regulated by G protein-coupled receptor kinases (GRKs). Polymorphisms that lead to aberrant action of GRKs cause a number of conditions, including hypertension and salt sensitivity. Polymorphisms in one particular member of this family-GRK4-have been shown to cause hyperphosphorylation, desensitization and internalization of a member of the dopamine receptor family, the dopamine 1 receptor, while increasing the expression of a key receptor of the renin-angiotensin system, the angiotensin II type 1 receptor. Novel diagnostic and therapeutic approaches for identifying at-risk subjects, followed by selective treatment of hypertension and salt sensitivity, might center on restoring normal receptor function through blocking the effects of GRK4 polymorphisms.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, Post Office Box 800403, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
18
|
Silva E, Gomes P, Soares-da-Silva P. Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent L-DOPA transport in renal OK cells. Life Sci 2006; 79:723-9. [PMID: 16600308 DOI: 10.1016/j.lfs.2006.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/15/2022]
Abstract
The present study evaluated the hypothesis of whether increases in vectorial Na+ transport translate into facilitation of Na+-dependent L-DOPA uptake in cultured renal epithelial tubular cells. Increases in vectorial Na+ transport were obtained in opossum kidney (OK) cells engineered to overexpress Na+-K+-ATPase after transfection of wild type OK cells with the rodent Na+-K+-ATPase alpha1 subunit. The most impressive differences between wild type and transfected OK cells are that the latter overexpressed Na+-K+-ATPase accompanied by an increased activity of the transporter. Non-linear analysis of the saturation curve for l-DOPA uptake revealed a Vmax value (in nmol mg protein/6 min) of 62 and 80 in wild type and transfected cells, respectively. The uptake of a non-saturating concentration (0.25 microM) of [14C]-L-DOPA in OK-WT cells was not affected by Na+ removal, whereas in OK-alpha1 cells accumulation of [14C]-L-DOPA was clearly dependent on the presence of extracellular Na+. When Na+ was replaced by choline, the inhibitory profile of neutral l-amino acids, but not of basic and acidic amino acids, upon [14C]-L-DOPA uptake in both cell types, was significantly greater than that observed in the presence of extracellular Na+. It is concluded that enhanced ability of OK cells overexpressing Na+-K+-ATPase to translocate Na+ from the apical to the basal cell side correlates positively with their ability to accumulate L-DOPA, which is in agreement with the role of Na+ in taking up the precursor of renal dopamine.
Collapse
Affiliation(s)
- E Silva
- Institute of Pharmacology and Therapeutics, Faculty of Medicine 4200-319 Porto, Portugal
| | | | | |
Collapse
|
19
|
Zeng C, Wang Z, Li H, Yu P, Zheng S, Wu L, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 2006; 47:573-9. [PMID: 16401764 DOI: 10.1161/01.hyp.0000199983.24674.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D3 receptors act synergistically with D1 receptors to inhibit sodium transport in renal proximal tubules; however, the mechanism by which this occurs is not known. Because dopamine receptor subtypes can regulate and interact with each other, we studied the interaction of D3 and D1 receptors in rat renal proximal tubule (RPT) cells. The D3 agonist PD128907 increased the immunoreactive expression of D1 receptors in a concentration- and time-dependent manner; these effects were blocked by the D3 antagonist U99194A. PD128907 also transiently (15 minutes) increased the amount of cell surface membrane D1 receptors. Laser confocal immunofluorescence microscopy showed that D3 receptor and D1 receptor colocalized in RPT cells more distinctly in Wistar-Kyoto rats than in spontaneously hypertensive rats (SHRs). In addition, D3 and D1 receptors could be coimmunoprecipitated, and this interaction was increased after D3 receptor agonist stimulation for 24 hours in Wistar-Kyoto rats but not in SHRs. We propose that the synergistic effects of D3 and D1 receptors may be caused by a D3 receptor-mediated increase in total, as well as cell surface membrane D1 receptor expression, and direct D3 and D1 receptor interaction, both of which are impaired in SHRs.
Collapse
MESH Headings
- Animals
- Benzopyrans/pharmacology
- Cell Line, Transformed
- Cell Membrane/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Interactions
- Hypertension/metabolism
- Immunoprecipitation
- Indans/pharmacology
- Kidney Tubules, Proximal/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Oxazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gomes P, Soares-da-Silva P. Upregulation of apical NHE3 in renal OK cells overexpressing the rodent alpha(1)-subunit of the Na(+) pump. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1142-50. [PMID: 16293683 DOI: 10.1152/ajpregu.00102.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | |
Collapse
|
21
|
Kim SW, Wang W, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2005; 289:F957-68. [PMID: 15956775 DOI: 10.1152/ajprenal.00413.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In models of genetic hypertension, renal tubular dysfunction could be involved in the increased sodium and water reabsorption. However, the molecular basis for the increased renal sodium and water retention remains largely undefined in spontaneously hypertensive rats (SHR). We hypothesized that dysregulation of renal epithelial sodium channels (ENaC), sodium (co)transporters, or aquaporin-2 (AQP2) could be involved in the pathogenesis of hypertension in SHR. Six-week-old or twelve-week-old SHR and corresponding age-matched Wistar-Kyoto control rats (WKY) were studied. In both SHR groups, systolic blood pressure was markedly increased, whereas urine output, creatinine clearance, and urinary sodium excretion were decreased compared with corresponding WKY. Moreover, urine osmolality and urine-to-plasma osmolality ratio were increased compared with WKY. Semiquantitative immunoblotting demonstrated that the protein abundance of β- and γ-subunits of ENaC was increased in the cortex and outer stripe of the outer medulla and inner stripe of the outer medulla (ISOM) in SHR, whereas α-ENaC abundance was increased in ISOM. Immunoperoxidase microscopy confirmed the increased labeling of β-ENaC and γ-ENaC subunits in the late distal convoluted tubule, connecting tubule, and cortical and outer medullary collecting duct segments. In contrast, subcellular localization of α-ENaC, β-ENaC, and γ-ENaC was not changed. Expression of sodium/hydrogen exchanger type 3, bumetanide-sensitive Na-K-2Cl cotransporter, and thiazide-sensitive Na-Cl cotransporter was not altered in SHR. AQP2 levels were increased in the ISOM in SHR, and immunoperoxidase microscopy demonstrated an increased apical labeling of AQP2 in the inner medullary collecting duct in SHR. These results suggest that the increased protein abundance of ENaC subunits as well as the increased apical targeting of AQP2 may contribute to renal sodium and water retention observed during the development of hypertension in SHR.
Collapse
Affiliation(s)
- Soo Wan Kim
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2005; 19:233-46. [PMID: 15548830 DOI: 10.1152/physiolgenomics.00127.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex. The uncoupling is receptor specific, organ selective, nephron-segment specific, precedes the onset of hypertension, and cosegregates with the hypertensive phenotype. The defective transduction of the renal dopaminergic signal is caused by activating variants of G protein-coupled receptor kinase type 4 (GRK4: R65L, A142V, A486V). The GRK4 locus is linked to and GRK4 gene variants are associated with human essential hypertension, especially in salt-sensitive hypertensive subjects. Indeed, the presence of three or more GRK4 variants impairs the natriuretic response to dopaminergic stimulation in humans. In genetically hypertensive rats, renal inhibition of GRK4 expression ameliorates the hypertension. In mice, overexpression of GRK4 variants causes hypertension either with or without salt sensitivity according to the variant. GRK4 gene variants, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic factors (e.g., angiotensin II type 1 receptor) to predominate, may be responsible for salt sensitivity. Subclasses of hypertension may occur because of additional perturbations caused by variants of other genes, the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Yang Z, Sibley DR, Jose PA. D5 dopamine receptor knockout mice and hypertension. J Recept Signal Transduct Res 2005; 24:149-64. [PMID: 15521360 DOI: 10.1081/rrs-200029971] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined.
Collapse
Affiliation(s)
- Zhiwei Yang
- Georgetown University Medical Center, Washington, District of Columbia, USA.
| | | | | |
Collapse
|
24
|
Kobayashi K, Monkawa T, Hayashi M, Saruta T. Expression of the Na+/H+ exchanger regulatory protein family in genetically hypertensive rats. J Hypertens 2005; 22:1723-30. [PMID: 15311100 DOI: 10.1097/00004872-200409000-00016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine a possible involvement of a regulatory protein of Na+/H+ exchanger (NHE) in the increased renal NHE activity in spontaneously hypertensive rats (SHR), we investigated mRNA expression of inhibitory members of the NHE regulatory protein family, NHERF1 and NHERF2, in the kidney. DESIGN Prehypertensive 4-week-old and hypertensive 11-week-old SHR and age-matched Wistar-Kyoto (WKY) rats were used to determine the changes in NHE activity and NHERF family expression in the kidney. Dahl salt sensitive (DS) and resistant rats were also used to examine whether these changes are specific for SHR. METHODS mRNA expression in the kidney was quantified by RNase protection assay. The NHE activity in primary cultured proximal tubular cells was measured as Na-dependent pHi recovery rate by the NH4Cl prepulse technique with 2'7'-bis-(2-carboxyethyl)-5.6-carboxyfluorescein (BCECF). RESULTS NHERF1 mRNA expression was significantly decreased in both prehypertensive and hypertensive SHR in comparison with age-matched WKY rats, whereas NHERF2 mRNA expression was significantly increased in SHR only in the hypertensive period. Antihypertensive treatment did not abolish these changes seen in control SHR. On the other hand, hypertensive DS rats fed a high-salt diet showed significant decreases in NHE activity and NHE3 mRNA expression compared with normotensive DS rats fed a low-salt diet, without significant changes in NHERF1 and NHERF2 mRNA expression. CONCLUSION These results suggest that decreased expression of NHERF1 may be related to the enhanced NHE activity in SHR and that these changes are likely to be genetically determined, whereas the increased NHERF2 expression may be induced as a compensatory mechanism.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
25
|
Pedrosa R, Gomes P, Zeng C, Hopfer U, Jose PA, Soares-da-Silva P. Dopamine D3 receptor-mediated inhibition of Na+/H+ exchanger activity in normotensive and spontaneously hypertensive rat proximal tubular epithelial cells. Br J Pharmacol 2004; 142:1343-53. [PMID: 15265811 PMCID: PMC1575199 DOI: 10.1038/sj.bjp.0705893] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the response of the Na(+)/H(+) exchanger (NHE) to dopamine D(1)- and D(2)-like receptor stimulation in immortalized renal proximal tubular epithelial cells and freshly isolated renal proximal tubules from the spontaneously hypertensive rat (SHR) and their normotensive controls (Wistar Kyoto rats; WKY). Stimulation of D(1)-like receptors with SKF 38393 attenuated NHE activity in WKY cells (IC(50)=151 nM), but not in SHR cells. Stimulation of D(2)-like receptors with quinerolane (IC(50)=120 nM) attenuated NHE activity in SHR cells, but not in WKY cells. Forskolin was equipotent in SHR and WKY cells in inhibiting NHE activity. The effect of SKF 38393 was abolished by overnight treatment of WKY cells with cholera toxin (CTX, 500 ng ml(-1)), but not with pertussis toxin (PTX, 100 ng ml(-1)). The effect of quinerolane (1 microm) was abolished by overnight treatment of SHR cells with PTX, but not with CTX. The D(3) receptor agonist 7-OH-DPAT (IC(50)=0.8 microM) attenuated NHE activity in SHR cells only. This effect was abolished by S-sulpiride and by overnight treatment with PTX. The D(4) receptor agonist RBI 257 did not affect NHE activity. The 7-OH-DPAT inhibited NHE activity in freshly isolated renal proximal tubules from 4- and 12-week-old SHR and 12-week-old WKY, but not in freshly isolated renal proximal tubules from 4-week-old WKY. It is concluded that D(3) receptors coupled to a G(i/o) protein play a role in the handling of tubular Na(+), namely through inhibition of the NHE activity, this being of particular relevance in the SHR, which fail to respond to D(1)-like dopamine receptor stimulation.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cell Line, Transformed
- Cells, Cultured
- Dopamine/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Hypertension/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3
- Sodium-Hydrogen Exchangers/antagonists & inhibitors
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
| | - Chunyu Zeng
- Departments of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, U.S.A
| | - Ulrich Hopfer
- Department of Physiology, Case Western Reserve Medical School, Cleveland, OH, U.S.A
| | - Pedro A Jose
- Departments of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, U.S.A
| | - Patrício Soares-da-Silva
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto 4200-319, Portugal
- Author for correspondence:
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Defective transduction of the dopamine receptor signal in the kidney has been shown to be important in the pathogenesis of hypertension This review will discuss the genetic mechanism for the defective renal dopaminergic function and the interaction with other gene variant products in the pathogenesis of salt sensitivity and essential hypertension. RECENT FINDINGS Single nucleotide polymorphisms of G protein-coupled receptor kinase type 4 (GRK4) phosphorylate, desensitize, and diminish the inhibitory action of D receptors on sodium transport in the kidney. Inhibition of GRK4 expression normalizes renal proximal tubule D receptor function in humans and rodents and ameliorates the hypertension in genetically hypertensive rats. Expression of the GRK4 variant, GRK4gammaA142V, produces hypertension and impairs the natriuretic effect of D receptor stimulation in mice. In humans, GRK4 single nucleotide polymorphisms are associated with essential hypertension, particularly salt sensitive hypertension. The prediction of the hypertensive phenotype is most accurate when elements of the renin-angiotensin system and GRK4 are included in the analysis. SUMMARY GRK4 single nucleotide polymorphisms, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic function of angiotensin II type 1 receptors to predominate, may be responsible for salt sensitivity. Hypertension develops with additional perturbations caused by the variants of other genes (e.g., alpha-adducin, angiotensin converting enzyme, angiotensinogen, angiotensin II type 1 receptor, aldosterone synthase, 11beta-hydroxysteroid dehydrogenase type 2), the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Pedro A Jose
- Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|
27
|
|
28
|
Gomes P, Xu J, Serrão P, Dória S, Jose PA, Soares-da-Silva P. Expression and function of sodium transporters in two opossum kidney cell clonal sublines. Am J Physiol Renal Physiol 2002; 283:F73-85. [PMID: 12060589 DOI: 10.1152/ajprenal.00340.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study describes characteristic features of two clonal subpopulations of opossum kidney (OK) cells (OK(LC) and OK(HC)) that are functionally different but morphologically identical. The most impressive differences between OK(HC) and OK(LC) cells are the overexpression of Na+-K+-ATPase and type 3 Na+/H+ exchanger by the former, accompanied by an increased Na+-K+-ATPase activity (57.6 +/- 5.6 vs. 30.0 +/- 0.1 nmol P(i). mg protein(-1). min(-1)); the increased ability to translocate Na+ from the apical to the basolateral surface; and the increased Na+-dependent pH(i) recovery (0.254 +/- 0.016 vs. 0.094 +/- 0.011 pH units/s). Vmax values (in pH units/s) for Na+-dependent pHi recovery in OK(HC) cells (0.00521 +/- 0.0004) were twice (P < 0.05) those in OK(LC) (0.00202 +/- 0.0001), with similar Km values (in mM) for Na+ (OK(LC), 21.0 +/- 5.5; OK(HC), 14.0 +/- 5.6). In addition, we measured the activities of transporters (organic ions, alpha-methyl-D-glucoside, L-type amino acids, and Na+ and enzymes (adenylyl cyclase, aromatic L-amino acid decarboxylase, and catechol-O-methyltransferase). The cells were also characterized morphologically by optical and scanning electron microscopy and karyotyped. It is suggested that OK(LC) and OK(HC) cells constitute an interesting cell model for the study of renal epithelial physiology and pathophysiology, namely, hypertension.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dopamine synthesized in non-neural tissues, eg, renal proximal tubule, functions in an autocrine or paracrine manner. The effects of dopamine are transduced by two classes of receptors (D1- and D2-like) that belong to the superfamily of G protein-coupled receptors. In genetic hypertension, the D1 receptor, a member of the D1-like receptor family, is uncoupled from its G protein complex, resulting in a decreased ability to regulate renal sodium transport. The impaired D1 receptor/G protein coupling in renal proximal tubules in genetic hypertension is secondary to abnormal phosphorylation and desensitization of the D1 receptor caused by activating single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK type 4.
Collapse
Affiliation(s)
- Pedro A Jose
- Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
30
|
Lao YS, Hendley ED, Felder RA, Jose PA. Elevated renal cortical calmodulin-dependent protein kinase activity and blood pressure. Clin Exp Hypertens 2002; 24:289-300. [PMID: 12069359 DOI: 10.1081/ceh-120004232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The spontaneously hypertensive rat (SHR) exhibits not only hypertension but also behavioral hyperactivity which are not genetically linked. Two strains of rats, one hypertensive but normoactive (WKHT) and another, hyperactive but normotensive (WKHA), have been generated from SHR. We have reported that in renal proximal tubules, the linkage between D1-like receptors an adenylyl cyclase was impaired in SHR and WKHT but intact in WKHA. The impaired renal D1-like receptor function in the SHR was associated with increased phosphorylation of the D1 receptor, presumably caused by increased phosphorylation by G protein-coupled receptor kinases (GRK) or decreased dephosphorylation by protein phosphatase 2A. Because calmodulin kinase (CaMK) can regulate GRK activity, CaMK activity in renal cortical membranes of WKHA and WKHT were studied. We found that CaMK-dependent phosphorylation was two-fold higher in WKHA than in WKHT. In addition, serine phosphorylation of a 36 KDa and a 24 KDa protein was 5-fold and 3-fold greater in WKHA than in WKHT. We hypothesize that the increased CaMK activity in the renal cortical membrane may serve to inhibit GRK activity in WKHA and prevent the development of hypertension.
Collapse
Affiliation(s)
- Yuen-Sum Lao
- School of Pharmacy, University of Missouri-Kansas City, USA
| | | | | | | |
Collapse
|
31
|
G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A 2002. [PMID: 11904438 DOI: 10.1073/pnas.06269459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Essential hypertension has a heritability as high as 30-50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and D(1)-like agonists to increase urinary sodium excretion is impaired. A defective coupling between the D(1) dopamine receptor and the G protein/effector enzyme complex in the proximal tubule of the kidney is the cause of the impaired renal dopaminergic action in genetic rodent and human essential hypertension. We now report that, in human essential hypertension, single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK4gamma, increase G protein-coupled receptor kinase (GRK) activity and cause the serine phosphorylation and uncoupling of the D(1) receptor from its G protein/effector enzyme complex in the renal proximal tubule and in transfected Chinese hamster ovary cells. Moreover, expressing GRK4gammaA142V but not the wild-type gene in transgenic mice produces hypertension and impairs the diuretic and natriuretic but not the hypotensive effects of D(1)-like agonist stimulation. These findings provide a mechanism for the D(1) receptor coupling defect in the kidney and may explain the inability of the kidney to properly excrete sodium in genetic hypertension.
Collapse
|
32
|
Felder RA, Sanada H, Xu J, Yu PY, Wang Z, Watanabe H, Asico LD, Wang W, Zheng S, Yamaguchi I, Williams SM, Gainer J, Brown NJ, Hazen-Martin D, Wong LJC, Robillard JE, Carey RM, Eisner GM, Jose PA. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A 2002; 99:3872-7. [PMID: 11904438 PMCID: PMC122616 DOI: 10.1073/pnas.062694599] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Essential hypertension has a heritability as high as 30-50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and D(1)-like agonists to increase urinary sodium excretion is impaired. A defective coupling between the D(1) dopamine receptor and the G protein/effector enzyme complex in the proximal tubule of the kidney is the cause of the impaired renal dopaminergic action in genetic rodent and human essential hypertension. We now report that, in human essential hypertension, single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK4gamma, increase G protein-coupled receptor kinase (GRK) activity and cause the serine phosphorylation and uncoupling of the D(1) receptor from its G protein/effector enzyme complex in the renal proximal tubule and in transfected Chinese hamster ovary cells. Moreover, expressing GRK4gammaA142V but not the wild-type gene in transgenic mice produces hypertension and impairs the diuretic and natriuretic but not the hypotensive effects of D(1)-like agonist stimulation. These findings provide a mechanism for the D(1) receptor coupling defect in the kidney and may explain the inability of the kidney to properly excrete sodium in genetic hypertension.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jose PA, Eisner GM, Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens 2002; 11:87-92. [PMID: 11753092 DOI: 10.1097/00041552-200201000-00013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Regulation by dopamine of cardiovascular function, renal function and systemic blood pressure regulation is multifaceted. Each of the five dopamine receptor subtypes participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors regulate blood pressure by influencing the central or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. The D1, D3, and D4 receptors interact with the renin-angiotensin system, while the D2 and D5 receptors interact with the sympathetic nervous system to regulate blood pressure.
Collapse
Affiliation(s)
- Pedro A Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|