1
|
Courtney Jones SK, Munn AJ, Byrne PG. Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172470. [PMID: 29892434 PMCID: PMC5990819 DOI: 10.1098/rsos.172470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse (Mus musculus) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.
Collapse
Affiliation(s)
- Stephanie K. Courtney Jones
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J. Munn
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney New South Wales 2052, Australia
| | - Phillip G. Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
2
|
Smith GD, Neuman-Lee LA, Webb AC, Angilletta MJ, DeNardo DF, French SS. Metabolic responses to different immune challenges and varying resource availability in the side-blotched lizard (Uta stansburiana). J Comp Physiol B 2017; 187:1173-1182. [DOI: 10.1007/s00360-017-1095-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/15/2017] [Accepted: 04/06/2017] [Indexed: 02/01/2023]
|
3
|
The Relationships between Parasite Intensity, Locomotor Performance, and Body Condition in Adult Toads (Rhinella icterica) from the Wild. J HERPETOL 2014. [DOI: 10.1670/10-339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue. Comp Biochem Physiol A Mol Integr Physiol 2014; 168:96-109. [DOI: 10.1016/j.cbpa.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/24/2022]
|
5
|
Order of Inoculation during Heligmosomoides bakeri and Hymenolepis microstoma Coinfection Alters Parasite Life History and Host Responses. Pathogens 2013; 2:130-52. [PMID: 25436885 PMCID: PMC4235709 DOI: 10.3390/pathogens2010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 11/24/2022] Open
Abstract
Parasite life history may differ during coinfection compared to single infections, and the order of infection may be an important predictor of life history traits. We subjected laboratory mice (Mus musculus) to single and coinfections with Heligmosomoides bakeri and Hymenolepis microstoma and measured life history traits of worms and also hepatobiliary and morphological responses by the host. We found that fewer H. bakeri larvae established, and adult worms were shorter and produced fewer eggs during a coinfection where H. microstoma occurred first. H. microstoma grew more and released more eggs after simultaneous inoculation of both parasites compared to a single H. microstoma infection, despite similar worm numbers. Mouse small intestine mass, but not length, varied with coinfection and bile duct mass was largest when H. microstoma was given alone or first. Mouse serum alkaline phosphatase levels were greatest for mice infected with H. microstoma only but did not vary with number of scolices; no change in mouse serum alanine transaminase levels was observed. Overall, the order of coinfection influenced life history traits of both H. bakeri and H. microstoma, but changes in survival, growth, and reproduction with order of inoculation were not consistent between the two parasites.
Collapse
|
6
|
Lutermann H, Bennett NC, Speakman JR, Scantlebury M. Energetic benefits of sociality offset the costs of parasitism in a cooperative mammal. PLoS One 2013; 8:e57969. [PMID: 23451285 PMCID: PMC3581474 DOI: 10.1371/journal.pone.0057969] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/29/2013] [Indexed: 12/04/2022] Open
Abstract
Sociality and particularly advanced forms of sociality such as cooperative breeding (living in permanent groups with reproductive division of labour) is relatively rare among vertebrates. A suggested constraint on the evolution of sociality is the elevated transmission rate of parasites between group members. Despite such apparent costs, sociality has evolved independently in a number of vertebrate taxa including humans. However, how the costs of parasitism are overcome in such cases remains uncertain. We evaluated the potential role of parasites in the evolution of sociality in a member of the African mole-rats, the only mammal family that exhibits the entire range of social systems from solitary to eusocial. Here we show that resting metabolic rates decrease whilst daily energy expenditure and energy stores (i.e. body fat) increase with group size in social Natal mole rats (Cryptomys hottentotus natalensis). Critically, larger groups also had reduced parasite abundance and infested individuals only showed measurable increases in energy metabolism at high parasite abundance. Thus, in some circumstances, sociality appears to provide energetic benefits that may be diverted into parasite defence. This mechanism is likely to be self-reinforcing and an important factor in the evolution of sociality.
Collapse
Affiliation(s)
- Heike Lutermann
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- * E-mail: (HL); (MS)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Aberdeen, United Kingdom
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Michael Scantlebury
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
- * E-mail: (HL); (MS)
| |
Collapse
|
7
|
Coltherd JC, Babayan SA, Bünger L, Kyriazakis I, Allen JE, Houdijk JGM. Interactive effects of protein nutrition, genetic growth potential and Heligmosomoides bakeri infection pressure on resilience and resistance in mice. Parasitology 2011; 138:1305-15. [PMID: 21767435 DOI: 10.1017/s0031182011000990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of animals to cope with an increasing parasite load, in terms of resilience and resistance, may be affected by both nutrient supply and demand. Here, we hypothesized that host nutrition and growth potential interact and influence the ability of mice to cope with different parasite doses. Mice selected for high (ROH) or low (ROL) body weight were fed a low (40 g/kg; LP) or high (230 g/kg; HP) protein diet and infected with 0, 50, 100, 150, 200 or 250 L3 infective Heligmosomoides bakeri larvae. ROH-LP mice grew less at doses of 150 L3 and above, whilst growth of ROH-HP and of ROL mice was not affected by infection pressure. Total worm burdens reached a plateau at doses of 150L3, whilst ROH mice excreted fewer worm eggs than ROL mice. Serum antibodies increased with infection dose and ROH mice were found to have higher parasite-specific IgG1 titres than ROL mice. In contrast, ROL had higher total IgE titres than ROH mice, only on HP diets. The interaction between host nutrition and growth potential appears to differentially affect resilience and resistance in mice. However, the results support the view that parasitism penalises performance in animals selected for higher growth.
Collapse
|
8
|
Cameron KM, Golightly A, Miwa S, Speakman J, Boys R, von Zglinicki T. Gross energy metabolism in mice under late onset, short term caloric restriction. Mech Ageing Dev 2011; 132:202-9. [PMID: 21507329 DOI: 10.1016/j.mad.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/02/2011] [Accepted: 04/02/2011] [Indexed: 02/02/2023]
Abstract
Late onset, short-term moderate caloric restriction (CR) may have beneficial health effects. A 26% CR regime induced at 14 months of age for 70 days in male C57Bl/6 (ICRFa) mice resulted in a reduction in body mass of 17%. A decrease in daily energy expenditure was associated with decreased body mass in CR mice. There was no difference in total levels of physical activity between the CR and ad libitum (AL) groups; however, activity patterns were different. We developed a Bayesian model to dissect the impact of food anticipation activity (FAA) and feeding on physical activity. FAA was stronger in CR mice and remaining basal activity was higher in AL mice, but CR mice displayed larger diurnal variations as well as a phase shift in their diurnal activity. CR mice displayed lower body temperature, especially late during the dark phase. This was due to lower basal (activity-independent) temperature at all times of the day, coupled to a phase shift in the diurnal rhythm. The correlation between body temperature and physical activity was independent of feeding regimen and light/dark cycles. Reduction of body mass and basal temperature were major compensatory mechanisms to reduced food availability during late-onset, short-term CR.
Collapse
Affiliation(s)
- Kerry M Cameron
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Odiere MR, Scott ME, Weiler HA, Koski KG. Protein deficiency and nematode infection during pregnancy and lactation reduce maternal bone mineralization and neonatal linear growth in mice. J Nutr 2010; 140:1638-45. [PMID: 20660285 DOI: 10.3945/jn.110.125013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a 2 x 2 factorial design, we investigated the combined impact of protein deficiency (PD) and gastrointestinal nematode infection during late pregnancy and lactation on resting metabolic rate (RMR), body composition and bone mineralization, neonatal growth, and the regulatory hormones [corticosterone, leptin, and insulin-like growth factor-1 (IGF-1)] and proinflammatory cytokines [interleukin (IL)-1 beta and IL-6] that may drive these processes. Pregnant CD1 mice, fed either a protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isocaloric diet, were infected 4 times with either 0 (sham) or 100 Heligmosomoides bakeri larvae beginning on d 14 of pregnancy. Dams were killed on d 20 postpartum and pups on d 2, 7, 14, and 21. Diet and infection had largely independent effects. The PD diet elevated corticosterone and upregulated leptin concentration in maternal serum, which was associated with reduced food intake leading to lower body mass, RMR, and body temperature. Infection reduced food intake but elevated maternal serum IL-1 beta and IL-6 and did not affect corticosterone, leptin, RMR, or body temperature. The PD diet decreased maternal bone area and bone mineral content. Infection lowered maternal bone mineral density, consistent with elevated IL-1 beta and IL-6. The elevated serum IL-1 beta and lower IGF-1 in pups of PD dams and lower serum leptin and IGF-1 in pups of infected dams were both consistent with the lower pup body mass and shorter crown-rump length. This mouse model provides a novel framework to study the impact of diet and nematode infection on bone.
Collapse
Affiliation(s)
- Maurice R Odiere
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | | | | | | |
Collapse
|
10
|
Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus. Parasitology 2009; 137:991-1002. [DOI: 10.1017/s0031182009991764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThis study examined concurrent stresses of nematode infection and pregnancy using pregnant and non-pregnant CD1 mice infected 3 times with 0, 50 or 100 Heligmosomoides bakeri larvae. Physiological, energetic, immunological and skeletal responses were measured in maternal and foetal compartments. Resting metabolic rate (RMR) was elevated by pregnancy, but not by the trickle infection. Energy demands during pregnancy were met through increased food intake and fat utilization whereas mice lowered their body temperature during infection. Both infection and pregnancy increased visceral organ mass and both altered regional bone area and mineralization. During pregnancy, lumbar mineralization was lower but femur area and mineralization were higher. On the other hand, infection lowered maternal femur bone area and this was associated with higher IFN-γ in maternal serum of heavily infected pregnant mice. Infection also reduced foetal crown-rump length which was associated with higher amniotic fluid IL-1β.
Collapse
|
11
|
Genetic growth potential interacts with nutrition on the ability of mice to cope with Heligmosomoides bakeri infection. Parasitology 2009; 136:1043-55. [PMID: 19523257 DOI: 10.1017/s0031182009006428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Artificial selection for improved productivity may reduce an animal's ability to cope with pathogens. Here, we used Roslin mice, uniquely divergently selected for high (ROH) and low (ROL) body weight, to assess interactive effects of differing growth potential and protein nutrition on host resilience and resistance. In a 2 x 2 x 6 factorial design, ROH and ROL mice were either sham-infected or infected with 250 L(3)Heligmosomoides bakeri and fed diets with 30, 80, 130, 180, 230 and 280 g crude protein per kg. The infected ROL-30 treatment resulted in clinical disease and was discontinued. In the remaining ROL mice, infection and feeding treatments did not affect growth but infection reduced weight gain in ROH-30, ROH-80 and ROH-130 mice. Although infection resulted in temporarily reduced food intake (anorexia) in both mouse lines, mean food intake over the whole experiment was reduced in ROH mice only. ROH mice excreted more worm eggs and had higher worm burdens, with relatively fewer female worms, than ROL mice. However, these resistance traits were not sensitive to dietary protein. These results support the view that selection for high growth may reduce the ability to cope with pathogens, and that improved protein nutrition may to some extent ameliorate this penalty.
Collapse
|
12
|
Devevey G, Niculita-Hirzel H, Biollaz F, Yvon C, Chapuisat M, Christe P. Developmental, metabolic and immunological costs of flea infestation in the common vole. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01493.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Camberis M, Le Gros G, Urban J. Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 19:Unit 19.12. [PMID: 18432905 DOI: 10.1002/0471142735.im1912s55] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of Nippostrongylus brasiliensis and Heligmosomoides polygyrus infection are powerful tools for the investigation of the basic biology of immune responses and protective immunity. In particular, they model the induction and maintenance of Th2 type immune responses and exhibit all the requisite hallmarks of CD4 T cell-dependent IgE production, eosinophilia, mastocytosis, and mucus production. This chapter describes simple, cost-effective techniques for using and maintaining these easy-to-work-with parasites in the context of a modern laboratory.
Collapse
Affiliation(s)
- Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | |
Collapse
|
14
|
Wong T, Hildebrandt M, Thrasher SM, Appleton JA, Ahima RS, Wu GD. Divergent metabolic adaptations to intestinal parasitic nematode infection in mice susceptible or resistant to obesity. Gastroenterology 2007; 133:1979-88. [PMID: 18054569 PMCID: PMC2180166 DOI: 10.1053/j.gastro.2007.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/22/2007] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Diet-induced obesity results from increased ingestion of energy-dense food and sedentary lifestyle in genetically susceptible individuals. An environmental factor that may have shaped our energy homeostasis throughout evolution is parasitic nematode infection. METHODS To test the hypothesis that a metabolically "thrifty phenotype" is advantageous during intestinal nematode infection, we compared the responses to Heligmosomoides polygyrus infection between 2 mouse strains: obesity-prone C57Bl/6J vs obesity-resistant SWR/J. Metabolic phenotyping was performed using indirect calorimetry, dual energy x-ray absorptiometry, and magnetic resonance imaging scanning. Gene expression was assessed by quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. RESULTS Body weight was maintained in both strains during nematode infection via different mechanisms. There was no apparent change in energy expenditure between the strains; however, SWR/J mice exhibited a marked hyperphagia (calorie intake 60% higher than C57Bl/6J) to maintain body weight. The importance of hyperphagia was confirmed by severe weight loss in a group of infected SWR/J mice whose food intake was restricted to that of naïve mice. Furthermore, SWR/J mice expelled nematodes more rapidly than C57Bl/6J mice, an effect related to a T helper cell 2 immune response. CONCLUSIONS C57Bl/6J mice are more energy efficient during parasitic nematode infection, which may explain their ability to tolerate the infection. SWR/J mice, on the other hand, require an increase in food intake to maintain energy stores during nematode infection. In addition, a strong T helper cell 2-mediated immune response that facilitates a prompt clearance of nematode infection in SWR/J mice may have evolved to conserve energy in this strain.
Collapse
Affiliation(s)
- Tracie Wong
- Division of Gastroenterology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marie Hildebrandt
- Division of Gastroenterology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Seana M. Thrasher
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Judith A. Appleton
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Gary D. Wu
- Division of Gastroenterology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
15
|
Püttker T, Meyer-Lucht Y, Sommer S. Effects of fragmentation on parasite burden (nematodes) of generalist and specialist small mammal species in secondary forest fragments of the coastal Atlantic Forest, Brazil. Ecol Res 2007. [DOI: 10.1007/s11284-007-0366-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Schwanz LE. Schistosome infection in deer mice (Peromyscus maniculatus):impacts on host physiology, behavior and energetics. J Exp Biol 2006; 209:5029-37. [PMID: 17142691 DOI: 10.1242/jeb.02601] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
SUMMARY
Animals routinely encounter environmental stressors and may employ phenotypic plasticity to compensate for the costs of these perturbations. Parasites represent an ecologically important stressor for animals, which may induce host plasticity. The present study examined the effects of a trematode parasite, Schistosomatium douthitti, on deer mouse (Peromyscus maniculatus) physiology, behavior and energetics. Measures were taken to assess direct parasite pathology as well as potential host plasticity used to reduce the costs of these pathologies. Parasitized mice had increased liver and spleen masses, as well as decreased liver protein synthesis. Parasitism also led to increased gastrointestinal (GI) mass, either directly due to parasite presence or as host compensation for decreased GI function. No additional plasticity was recorded - infected animals did not consume more food, decrease in body mass or reduce their activity. Parasitism led to reduced thermoregulation during short-term cold exposure, indicating that there may be fitness costs of parasitism. There were no changes in the other measures of energetics taken here, namely basal metabolic rate (BMR) and cold-induced maximal metabolic rate (MRmax). Together, the results suggest that many costs of parasite infection are largely ameliorated through physiological or morphological compensatory mechanisms.
Collapse
Affiliation(s)
- Lisa E Schwanz
- Department of Biology, University of New Mexico, Albuquerque, NM 87109, USA.
| |
Collapse
|
17
|
Magnanou E, Fons R, Feliu C, Morand S. Physiological responses of insular wild black rat (Rattus rattus) to natural infection by the digenean trematode Fasciola hepatica. Parasitol Res 2006; 99:97-101. [PMID: 16470416 DOI: 10.1007/s00436-005-0063-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 11/29/2022]
Abstract
Wild black rat Rattus rattus is regularly infected by the liver fluke Fasciola hepatica on Corsica. This report constitutes the only example of a murid rodent that plays an important epidemiological role for the Fasciolosis. We investigated the influence of such unusual parasite infection on black rat physiology by measuring its oxygen consumption at different ambient temperatures. Black rat energy requirements are influenced by body mass, temperature of the experiment and parasite infestation. The influence of the presence of F. hepatica was more pronounced for cold temperatures. The mean increase of 56% in oxygen requirements for infected rats is extremely high, indeed unexpected, according to previous knowledge. These high physiological constraints may be explained by the recent confrontation of the digenean and the rodent.
Collapse
Affiliation(s)
- E Magnanou
- Centre d'Ecologie Evolutive, UMR 7628 CNRS-Université Pierre et Marie Curie Observatoire Océanologique de Banyuls sur Mer-Laboratoire Arago BP 44, 66 651, Banyuls sur mer Cedex, France.
| | | | | | | |
Collapse
|
18
|
Kristan DM, Hammond KA. Effects of three simultaneous demands on glucose transport, resting metabolism and morphology of laboratory mice. J Comp Physiol B 2006; 176:139-51. [PMID: 16416287 DOI: 10.1007/s00360-005-0036-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/11/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
In nature, animals must successfully respond to many simultaneous demands from their environment in order to survive and reproduce. We examined physiological and morphological responses of mice given three demands: intestinal parasite infection with Heligmosomoides polygyrus followed by caloric restriction (70% of ad libitum food intake versus ad libitum for 10 days) and/or cold exposure (5 degrees C vs. 23 degrees C for 10 days). We found significant interactions between these demands as well as independent effects. Small intestine structure and function changed with demands in both independent and interactive ways. Body mass decreased during caloric restriction and this decrease was greater for cold-exposed than warm-exposed mice. In ad libitum fed mice, body mass did not change with either cold exposure or parasite infection but body composition (fat versus lean mass of whole body or organs) changed with both demands. Generally, organ masses decreased with caloric restriction (even after accounting for body mass effects) and increased with cold exposure and parasite infection whereas fat mass decreased with both caloric restriction and parasite infection. Mass adjusted resting metabolic rate (RMR) increased with cold exposure, decreased with caloric restriction but, unlike previous studies with laboratory mice, did not change with parasite infection. Our results demonstrate that the ability of mice to respond to a demand is influenced by other concurrent demands and that mice show phenotypic plasticity of morphological and physiological features ranging from the tissue level to the level of the whole organism when given three simultaneous demands.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
19
|
Kristan DM, Hammond KA. Morphological plasticity varies with duration of infection: evidence from lactating and virgin wild-derived house mice (Mus musculus) infected with an intestinal parasite (Heligmosomoides polygyrus; Nematoda). ACTA ACUST UNITED AC 2004; 207:2351-60. [PMID: 15159439 DOI: 10.1242/jeb.01020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With chronic parasite infection, host response to the parasite may change throughout the duration of the infection as the host progresses from the acute to the chronic phase. We investigated the effects of parasite infection ranging in duration from 30 to 120 days on host morphology both alone and in combination with lactation by using captive wild-derived house mice (Mus musculus) experimentally infected with a naturally occurring intestinal nematode (Heligmosomoides polygyrus). We found that some changes in host morphology were greatest at 30-60 days post-infection (e.g. spleen mass) followed by a decline towards the control state whereas other morphological changes were greatest at 90-120 days post-infection (e.g. small intestine mass) after a relatively steady increase with infection duration. For all infection durations, the morphological responses to parasite infection were similar for virgin and lactating mice (except for lean body mass). After accounting for changes in body mass with lactation, lactating mice increased organs of the gastrointestinal tract as well as liver and kidney but had less body fat than virgin mice. This is the first study to demonstrate that morphological plasticity of mice parasitized by H. polygyrus varies with infection duration and that this variation is generally similar for lactating and virgin mice.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
20
|
Kristan DM, Hammond KA. Aerobic Performance of Wild‐Derived House Mice Does Not Change with Cold Exposure or Intestinal Parasite Infection. Physiol Biochem Zool 2004; 77:440-9. [PMID: 15286917 DOI: 10.1086/383513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2003] [Indexed: 11/03/2022]
Abstract
Aerobic performance is affected by numerous endogenous and exogenous factors. We investigated the effects of ambient temperature and parasite infection on resting metabolism and maximal exercise-induced oxygen consumption in wild-derived house mice (Mus musculus). We also collected preliminary data for effects of lactation on these measures of aerobic performance. Mice were experimentally infected with a naturally occurring intestinal nematode (Heligmosomoides polygyrus) and then exposed to cold temperatures for 10 d or allowed to mate and reproduce. Wild-derived house mice did not change their resting metabolism with H. polygyrus infection or cold exposure, which is in stark contrast to similar studies with laboratory mice. Preliminary data also showed no effect of lactation on aerobic performance. Similarly, maximal exercise-induced oxygen consumption and hematocrit and hemoglobin were unaffected by all experimental treatments. We conclude that resting metabolism, maximal oxygen consumption, and hematology of wild-derived house mice are unaffected by exogenous (temperature) and endogenous (H. polygyrus) demands and, therefore, wild-derived mice respond to these demands without incurring potential costs associated with changes in aerobic performance.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
21
|
Kristan DM. Effects of intestinal nematodes during lactation: consequences for host morphology, physiology and offspring mass. J Exp Biol 2002; 205:3955-65. [PMID: 12432017 DOI: 10.1242/jeb.205.24.3955] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSublethal parasites are often assumed to have no detrimental effects on their host. However, the sublethal intestinal nematode Heligmosomoides polygyrus affects both the morphology and the physiology of its laboratory mouse (Mus musculus) host and therefore has the potential to affect host life history. The objectives of the present study were to determine (1) whether lactating and non-lactating mice responded similarly to experimental infection with H. polygyrus and (2) whether the changes in morphology and physiology that occurred with parasite infection affected host reproductive performance. Parasitized mice had greater whole body mass as a result of greater lean mass compared with unparasitized mice. Parasitized mice had larger organs (spleen, stomach, cecum and small intestine) and a diminished rate of glucose transport by the small intestine compared with unparasitized mice. Lactating mice had larger organs (liver, kidney, spleen,heart, stomach, large intestine, cecum and small intestine), lean mass and whole body mass, but a similar rate of glucose transport compared with virgin mice. Resting metabolism increased with lactation but not with parasitism. Lactating and non-lactating mice responded similarly to parasite infection for most measured variables. Production of large litters was followed by production of small litters for parasitized but not unparasitized females. After adjusting for parity and litter size, parasitized mothers produced female pups that were 6% smaller at weaning than female pups from unparasitized mothers, but there was no effect of maternal parasite infection on mass at weaning for male pups. Other measures of reproductive output were not affected by parasite infection.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside 92521, USA.
| |
Collapse
|
22
|
Kristan DM. Maternal and direct effects of the intestinal nematode Heligmosomoides polygyrus on offspring growth and susceptibility to infection. J Exp Biol 2002; 205:3967-77. [PMID: 12432018 DOI: 10.1242/jeb.205.24.3967] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The laboratory mouse (Mus musculus) has a naturally occurring intestinal nematode (Heligmosomoides polygyrus) that induces an immune response, causes phenotypic plasticity in metabolism and in organ structure and function, and results in changes in host reproductive output. The objectives of the present study were to determine (1) whether pups infected with parasites at weaning grew differently and had a different body composition at adulthood compared with uninfected pups, (2) whether offspring from parasitized mothers grew differently and had a different body composition at adulthood compared with offspring from unparasitized mothers, (3) whether parasite effects on body composition of pups varied under different infection intensities and (4) whether maternal parasite infection affected susceptibility, duration and intensity of offspring parasite infection. H. polygyrus had direct and maternal effects on offspring growth, but final adult mass was not affected by parasites. Parasite infection in offspring had no effect on overall fat mass, but mass changes for some organs were greater for mice that had a high infection intensity compared with mice that had a low infection intensity. Only offspring from parasitized mothers cleared their parasite infection; however, if the infection was not cleared, the final infection intensity was greater for offspring born to parasitized mothers than to unparasitized mothers. This study shows that chronic, sublethal parasite infection with H. polygyrus has both maternal and direct effects that induce physiological changes in growing mice sufficient to alter host growth trajectories, morphology and susceptibility to parasite infection.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biology, University of California, Riverside 92521, USA.
| |
Collapse
|