1
|
Gustafson KL, Busi SB, McAdams ZL, McCorkle RE, Khodakivskyi P, Bivens NJ, Davis DJ, Raju M, Coghill LM, Goun EA, Amos-Landgraf J, Franklin CL, Wilmes P, Cortese R, Ericsson AC. Fetal programming by the parental microbiome of offspring behavior, and DNA methylation and gene expression within the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589237. [PMID: 39484583 PMCID: PMC11526851 DOI: 10.1101/2024.04.12.589237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence supporting an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects. Results Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associated with features of the maternal microbiome including bile salt hydrolase activity gene expression (bsh), abundance of certain bile acids, and hepatic expression of Slc10a1. In cross-foster experiments, offspring resembled their birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. Genome-wide methylation analysis of hippocampal DNA identified microbiome-associated differences in methylation of 196 loci in total, 176 of which show conserved profiles between mother and offspring. Further, single-cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed differences in expression of neuropeptides associated with satiety. Conclusions Collectively, these data provide proof-of-principle that the maternal gut microbiome has a dominant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selectively affects genome methylation and gene expression in the offspring CNS in conjunction with that neurodevelopment.
Collapse
Affiliation(s)
- Kevin L Gustafson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Zachary L McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Rachael E McCorkle
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Pavlo Khodakivskyi
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- University of Missouri Genomics Technology Core, University of Missouri, Columbia, MO, 65211, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Murugesan Raju
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Lyndon M Coghill
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Elena A Goun
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rene Cortese
- Department of Child Health & Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
2
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-Brain Crosstalk. Front Neuroanat 2021; 15:691777. [PMID: 34354571 PMCID: PMC8329585 DOI: 10.3389/fnana.2021.691777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, Fukuoka Hospital, National Hospital Organization, Fukuoka, Japan
| | - Damdindorj Boldbaatar
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
4
|
Sahlmann C, Gu J, Kortner TM, Lein I, Krogdahl Å, Bakke AM. Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding. PLoS One 2015; 10:e0124179. [PMID: 25923375 PMCID: PMC4414279 DOI: 10.1371/journal.pone.0124179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/26/2015] [Indexed: 01/27/2023] Open
Abstract
Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight.
Collapse
Affiliation(s)
- Christian Sahlmann
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M. Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
5
|
|
6
|
Whitcomb DC. Genetics and alcohol: a lethal combination in pancreatic disease? Alcohol Clin Exp Res 2011; 35:838-42. [PMID: 21303381 DOI: 10.1111/j.1530-0277.2010.01409.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An association between alcohol consumption and pancreatic diseases has been recognized for decades, but the absolute risk for pancreatic disease for individuals who drink alcohol is low. Other than smoking, few additional environmental factors have been identified, which suggests that genetic risk factors may be important. Studies in our laboratory using the Lieber-DeCarli feeding technique demonstrate that alcohol causes oxidative stress and mitochondrial damage and alters neruohormonal regulation of the pancreas after a threshold dose is exceeded, which makes the pancreas susceptible to withdrawal hypersensitivity and acute pancreatitis. Alcohol also shifts cell death from apoptosis to necrosis and promotes fibrosis through anti-inflammatory immune mechanisms. Others have demonstrated that alcohol lowers the threshold for trypsin activation in acinar cells, which increases sensitivity to triggering pancreatitis. In addition, we used the Lieber-DeCarli diet plus recurrent acute pancreatitis insults to develop the first animal model of chronic pancreatitis that mimics human disease. Finally, our North American Pancreatitis Study 2 (NAPS2), which was built on insights from animal studies, confirmed the threshold effect predicted by Charles Lieber (>5 drinks per day and >35 drinks/week). These studies and others also defined distinctive roles of alcohol and genetics in the etiology and progression of chronic pancreatitis.
Collapse
Affiliation(s)
- David C Whitcomb
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh & UPMC, Pennsylvania 15213, USA.
| |
Collapse
|
7
|
Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D. Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 2010; 32:826-39. [DOI: 10.1111/j.1460-9568.2010.07318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Abstract
Chronic alcohol use has been linked to chronic pancreatitis for over a century, but it has not been until the last decade that the role of alcohol in chronic pancreatitis has been elucidated in animals and, only in recent years, in human populations. Although a dose-dependent association between alcohol consumption and chronic pancreatitis may exist, a staistical association has been shown only with the consumption of >or=5 alcoholic drinks per day. Smoking also confers a strong, independent and dose-dependent risk of pancreatitis that may be additive or multiplicative when combined with alcohol. Alcohol increases the risk of acute pancreatitis in several ways and, most importantly, changes the immune response to injury. Genetic factors are also important and further studies are needed to clarify the role of gene-environment interactions in pancreatitis. In humans, aggressive interventional counseling against alcohol use may reduce the frequency of recurrent attacks of disease and smoking cessation may help to slow the progression of acute to chronic pancreatitis.
Collapse
|
9
|
Crespo MA, González Matías LC, Lozano MG, Paz SF, Pérez MR, Gago EV, Ferrer FM. [Gastrointestinal hormones in food intake control]. ACTA ACUST UNITED AC 2010; 56:317-30. [PMID: 19695513 DOI: 10.1016/s1575-0922(09)71946-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/25/2009] [Indexed: 12/17/2022]
Abstract
The discovery of gut hormones regulating the energy balance has aroused great interest in the scientific community. Some of these hormones modulate appetite and satiety, acting on the hypothalamus or the solitary tract nucleus in the brainstem. In general, the endocrine signals generated in the gut have direct or indirect (through the autonomous nervous system) anorexigenic effects. Only ghrelin, a gastric hormone, has been consistently associated with the initiation of food intake and is regarded as the main orexigenic signal both in animal models and humans. In this review, we provide a brief description of the major gastrointestinal hormones implicated in the regulation of food intake. Given the increased importance of food intake disturbances, especially obesity, a better understanding of the underlying mechanisms of action of the gastrointestinal hormones might contribute to the development of new molecules that could increase the therapeutic arsenal for treating obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Mayte Alvarez Crespo
- Laboratorio de Endocrinología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Biología, Universidad de Vigo, Vigo, Pontevedra, España
| | | | | | | | | | | | | |
Collapse
|
10
|
Price CJ, Hoyda TD, Ferguson AV. The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 2007; 14:182-94. [PMID: 18079557 DOI: 10.1177/1073858407311100] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The area postrema is a medullary structure lying at the base of the fourth ventricle. The area postrema's privileged location outside of the blood-brain barrier make this sensory circumventricular organ a vital player in the control of autonomic functions by the central nervous system. By virtue of its lack of tight junctions between endothelial cells in this densely vascularized structure and the presence of fenestrated capillaries, peptide and other physiological signals borne in the blood have direct access to neurons that project to brain areas with important roles in the autonomic control of many physiological systems, including the cardiovascular system and systems controlling feeding and metabolism. However, the area postrema is not simply a conduit through which signals flow into the brain, but it is now being recognized as the initial site of integration for these signals as they enter the circuitry of the central nervous system.
Collapse
|
11
|
Grudell ABM, Camilleri M. The role of peptide YY in integrative gut physiology and potential role in obesity. Curr Opin Endocrinol Diabetes Obes 2007; 14:52-7. [PMID: 17940420 DOI: 10.1097/med.0b013e3280123119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Obesity is an increasing global epidemic. Several central and peripheral hormones and neurotransmitters are involved in appetite control. Peptide YY (PYY) - one of the major anorexigenic (satiation-causing) gastrointestinal peptides - when administered peripherally, leads to decreased food intake and hunger scores. RECENT FINDINGS The vagus nerve, brainstem, and hypothalamus play an important role in PYY-mediated appetite control. In some studies, fasting and postprandial PYY levels are decreased in obese subjects. In others, levels are no different between obese and nonobese subjects. One study showed that obese subjects must consume more calories to increase PYY to levels seen in nonobese subjects. Surgical weight-loss procedures lead to increased fasting and postprandial PYY levels that are thought to contribute to weight loss achieved with these procedures. SUMMARY These findings lend some support for the association between PYY and obesity that could lead to possible new therapeutic options in obesity. PYY exerts anorexigenic effects; it is possible that surgical weight-loss procedures work synergistically with PYY to promote weight loss. Further investigation is needed to clarify whether PYY actually causes reduced calorie intake or whether the rate of food delivery to the ileo-colonic segment influences PYY levels, thus affecting satiation.
Collapse
|
12
|
Love JA, Yi E, Smith TG. Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci 2006; 133:19-34. [PMID: 17113358 DOI: 10.1016/j.autneu.2006.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 09/14/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
The parasympathetic (PNS) and sympathetic (SNS) and nervous systems densely innervate the exocrine pancreas. Efferent PNS pathways, consisting of central dorsal motor nucleus of the vagus (DMV) and peripheral pancreatic neurons, stimulate exocrine secretion. The DMV integrates cortical (olfactory, gustatory) and gastric, and intestinal vagal afferent input to determine central PNS outflow during cephalic, gastric and intestinal phases of exocrine secretion. Pancreatic neurons integrate DMV input with peripheral enteric, sympathetic, and, possibly, afferent axon reflexes to determine final PNS input to all exocrine effectors. Gut and islet hormones appear to modulate both central and peripheral PNS pathways. Preganglionic sympathetic neurons in the intermediolateral (IML) column of the spinal cord receive inputs from brain centers, some shared with the PNS, and innervate postganglionic neurons, mainly in prevertebral ganglia. Sympathetic innervation of the exocrine pancreas is primarily indirect, and inhibits secretion by decreasing blood flow and inhibiting transmission in pancreatic ganglia. Interactions between SNS and PNS pathways appear to occur in brain, spinal cord, pancreatic and prevertebral ganglia, and at neuroeffector synapses. Thus, the PNS and SNS pathways regulating the exocrine pancreas are directly or indirectly antagonistic at multiple sites: the state of exocrine secretion reflects the balance of these influences. Despite over a century of study, much remains to be understood about the connections of specific neurons forming pancreatic pathways, their processes of neurotransmission, and how disruption of these pathways contributes to pancreatic disease.
Collapse
Affiliation(s)
- Jeffrey A Love
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
13
|
Johnstone LE, Fong TM, Leng G. Neuronal activation in the hypothalamus and brainstem during feeding in rats. Cell Metab 2006; 4:313-21. [PMID: 17011504 DOI: 10.1016/j.cmet.2006.08.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/06/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
We trained rats to a regime of scheduled feeding, in which food was available for only 2 hr each day. After 10 days, rats were euthanized at defined times relative to food availability, and their brains were analyzed to map Fos expression in neuronal populations to test the hypothesis that some populations are activated by hunger whereas others are activated by satiety signals. Fos expression accompanied feeding in several hypothalamic and brainstem nuclei. Food ingestion was critical for Fos expression in noradrenergic and non-noradrenergic cells in the nucleus tractus solitarii and area postrema and in the supraoptic nucleus, as well as in melanocortin-containing cells of the arcuate nucleus. However, anticipation of food alone activated other neurons in the arcuate nucleus and in the lateral and ventromedial hypothalamus, including orexin neurons. Thus orexigenic populations are strongly and rapidly activated at the onset of food presentation, followed rapidly by activity in anorexigenic populations when food is ingested.
Collapse
Affiliation(s)
- Louise E Johnstone
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, United Kingdom.
| | | | | |
Collapse
|
14
|
Abstract
Alcohol-associated acute and chronic pancreatitis occur in a minority of alcohol users, suggesting that most drinkers are protected from pancreatic diseases while a subset is susceptible. Ongoing studies suggest that the pathophysiology is complex and can involve multiple genetic and environmental pathways and stochastic events. Both rat models and human genetic epidemiology studies have been used to understand susceptibility and modifying factors in humans. Rat studies suggest that different types of altered pancreatic physiology occur depending on dose, they occur rapidly and that alcohol changes the immune response to recurrent pancreatic injury. Human studies suggest that PRSS1 and SPINK1 mutation increase the pancreas' susceptibility to alcohol-associated pancreatitis, and that tobacco smoking, and some factors, affect disease progression.
Collapse
Affiliation(s)
- David C Whitcomb
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
15
|
Li Y, Wu X, Zhao Y, Chen S, Owyang C. Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1350-8. [PMID: 16469825 DOI: 10.1152/ajpgi.00493.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ghrelin receptors are present in the central nervous system. We hypothesized that ghrelin released from the stomach acts as an endocrine substance and stimulates brain stem vagovagal circuitry to evoke pancreatic secretion. In an in vivo anesthetized rat model, an intravenous infusion of ghrelin at doses of 5, 10, and 25 nmol increased pancreatic protein secretion from a basal level of 125 +/- 6 to 186 +/- 8, 295 +/- 12, and 356 +/- 11 mg/h, respectively. Pretreatment with atropine or hexamethonium or an acute vagotomy, but not a perivagal application of capsaicin, completely abolished pancreatic protein secretion responses to ghrelin. In conscious rats, an intravenous infusion of ghrelin at a dose of 10 nmol resulted in a 2.2-fold increase in pancreatic protein secretion over basal volume. Selective ablation of the area postrema abolished pancreatic protein secretion stimulated by intravenous infusion of ghrelin but did not alter the increase in pancreatic protein secretion evoked by diversion of bile-pancreatic juice. Immunohistochemical staining showed a marked increase in the number of c-Fos-expressing neurons in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus after an intravenous infusion of ghrelin in sham-lesioned rats; selective ablation of the area postrema eliminated this increase. In conclusion, ghrelin stimulates pancreatic secretion via a vagal cholinergic efferent pathway. Circulating ghrelin gains access to the brain stem vagovagal circuitry via the area postrema, which represents the primary target on which peripheral ghrelin may act as an endocrine substance to stimulate pancreatic secretion.
Collapse
Affiliation(s)
- Ying Li
- Gastroenterology Research Unit, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, 48109-0682, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
There is a growing worldwide epidemic of obesity. Obese people have a higher incidence of type 2 diabetes and cardiovascular disease, and hence present increasing social, financial and health burdens. Weight loss is always difficult to achieve through lifestyle changes alone, and currently licensed anti-obesity drug treatments, such as orlistat and sibutramine, if tolerated, only achieve modest weight loss. Therefore, there is a need to identify more potent pharmacological targets. In the last 10 years, discoveries of new hormones such as leptin and ghrelin, together with greater understanding of previously described hormones such as cholecystokinin (CCK), pancreatic polypeptide (PP), peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), have led to a rapid increase in our knowledge of the regulation of energy balance. Among the most important factors, controlling appetite and satiety are peptide hormones released from the gut. In this paper, we provide a full up-to-date overview of the current state of knowledge of this field, together with the potential of these peptides as drugs, or as other therapeutic targets, in the treatment of obesity. Finally, we propose an integrated model to describe the complex interplay of these hormones in the broader physiology of energy balance.
Collapse
Affiliation(s)
- M S B Huda
- Diabetes and Endocrinology Research Group, University Hospital Aintree, Longmoor Lane, Liverpool, UK.
| | | | | |
Collapse
|
17
|
Fortunato F, Deng X, Gates LK, McClain CJ, Bimmler D, Graf R, Whitcomb DC. Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis? Am J Physiol Gastrointest Liver Physiol 2006; 290:G232-41. [PMID: 15976389 DOI: 10.1152/ajpgi.00040.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic alcohol consumption is known to increase the susceptibility to acute and chronic pancreatitis, and it is likely that a cofactor is required to initiate the progression to alcoholic pancreatitis. The severity and complications of alcoholic and nonalcoholic acute pancreatitis may be influenced by a number of cofactors, including endotoxemia. To explore the effect of a possible cofactor, we used endotoxin [lipopolysaccharide (LPS)] as a tool to induce cellular injury in the alcoholic pancreas. Single, increasing doses of endotoxin were injected in rats fed an alcohol or control diet and killed 24 h after the injection. We examined the mechanism by which LPS exacerbates pancreatic injury in alcohol-fed rats and whether the injury is associated with apoptosis or necrosis. We showed that chronic alcohol exposure alone inhibits apoptosis through the intrinsic pathway and the downstream apoptosis executor caspase-3 compared with the controls. Pancreatic necrosis and inflammation increased after LPS injection in control and alcohol-fed rats in a dose-dependent fashion but with a significantly greater response in the alcohol-fed animals. Caspase activities and TdT-mediated dUTP nick-end labeling positivity were lower in the alcoholic pancreas injected with LPS, whereas the histopathology and inflammation were more severe compared with the control-fed animals. Assessment of a putative indicator of necrosis, the ratio of ADP to ATP, indicated that alcohol exposure accelerates pancreatic necrosis in response to endotoxin. These findings suggest that the pancreas exposed to alcohol is more sensitive to LPS-induced damage because of increased sensitivity to necrotic cell death rather than apoptotic cell death. Similar to the liver, the pancreas is capable of responding to LPS with a more severe response in alcohol-fed animals, favoring pancreatic necrosis rather than apoptosis. We speculate that this mechanism may occur in acute alcoholic pancreatitis patients.
Collapse
Affiliation(s)
- Franco Fortunato
- University Hospital Zurich, Department of Visceral and Transplantation Surgery, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Without doubt, alcohol consumption is one of the most important considerations in adults with acute or chronic pancreatitis. Understanding chronic pancreatitis as a complex disorder in which complimentary factors are required for recurrent acute and late chronic pancreatitis to develop in subsets of patients is critical for the early diagnosis and management of these individuals. Recent pathophysiological and genetic findings represent the beginning of major diagnostic and treatment breakthroughs that are likely to continue for the foreseeable future. The information provided in this article should provide the physician with a fresh perspective and remind the clinician of the importance of an accurate and complete history, and the need to document the actual alcohol consumption, pattern of drinking, and raise appropriate concerns if signs of alcoholism are detected. If alcohol-associated pancreatitis is detected, then limitation of pancreatic damage, limitation of progression, or preventative intervention should become the major concern.
Collapse
Affiliation(s)
- Christoph Hanck
- Department of Medicine, University of Pittsburgh, UPMC Presbyterian, Mezzanine Level-C Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
19
|
Oruc N, Whitcomb DC. Theories, mechanisms, and models of alcoholic chronic pancreatitis. Gastroenterol Clin North Am 2004; 33:733-50, v-vi. [PMID: 15528015 DOI: 10.1016/j.gtc.2004.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Alcoholic chronic pancreatitis is a severe, disabling, chronic inflammatory condition of the pancreas that is seen in fewer than 5% of alcoholics. The severity and unpredictability of this condition has lead to several theories on the mechanism causing chronic pancreatitis based on careful clinical observation. Hypothetical mechanisms were applied to various animal models. Finally, following multiple lines of evidence, there is a convergence of thought and development of some new models that are quite instructive. Taken together, chronic alcohol consumption by rats results in multiple effects on the pancreas that increase the risk of acute pancreatitis, including ongoing acinar cell injury that lowers the threshold for hyperstimulation-induced acute pancreatitis, neurohormonal injury, and adaptation that results in acinar cell hyperstimulation, increased susceptibility to viral mediated acute pancreatitis, and possibly other factors. After acute pancreatitis initiates the inflammatory process, the chronic inflammation and fibrosis of alcoholic chronic pancreatitis are driven by diet, the acinar cell stress response to continued alcohol that may be potentiated by toxic alcohol metabolites, hypoxia, hyperstimulation, and partial duct obstruction; plus the effects of proinflammatory immunocytes and cytokines; and by stellate cell-mediated fibrosis driven by anti-inflammatory cytokines, alcohol, and alcohol metabolites. The factors determining which alcoholic will develop alcoholic chronic pancreatitis likely involve genetic factors, dietary factors, and susceptibility to pancreatic injury through several mechanisms ranging from trauma to gallstones to viruses.
Collapse
Affiliation(s)
- Nevin Oruc
- Department of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
20
|
Pittner RA, Moore CX, Bhavsar SP, Gedulin BR, Smith PA, Jodka CM, Parkes DG, Paterniti JR, Srivastava VP, Young AA. Effects of PYY[3-36] in rodent models of diabetes and obesity. Int J Obes (Lond) 2004; 28:963-71. [PMID: 15197409 DOI: 10.1038/sj.ijo.0802696] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peptide YY (PYY) is a 36 amino-acid peptide secreted from ileal L cells following meals. The cleaved subpeptide PYY[3-36] is biologically active and may constitute the majority of circulating PYY-like immunoreactivity. The peptide family that includes PYY, pancreatic peptide and neuropeptide Y is noted for its orexigenic effect following intracerebroventricular administration. OBJECTIVE To investigate the effects of peripheral (intraperitoneal and chronic subcutaneous) infusions of PYY[3-36] on food intake, body weight and glycemic indices. DESIGN/RESULTS Food intake was measured in normal mice and in several rodent models of obesity and type II diabetes. In marked contrast to the reported central orexigenic effects, in the present study, PYY[3-36] acutely inhibited food intake by up to 45%, with an ED(50) of 12.5 microg/kg in fasted female NIH/Swiss mice. A 4-week infusion reduced weight gain in female ob/ob mice, without affecting the cumulative food intake. In diet-induced obese male mice, PYY[3-36] infusion reduced cumulative food intake, weight gain and epididymal fat weight (as a fraction of carcass) with similar ED(50)'s (466, 297 and 201 microg/kg/day, respectively) and prevented a diet-induced increase in HbA1c. Infusion at 100 microg/kg/day for 8 weeks in male fa/fa rats reduced the weight gain (288+/-11 vs 326+/-12 g in saline-infused controls; P<0.05), similar to effects in a pair-fed group. In female ob/ob and db/db mice, there was no acute effect of PYY[3-36] on plasma glucose concentrations. In male diabetic fatty Zucker rats, PYY[3-36] infused for 4 weeks reduced HbA1c and fructosamine (ED(50)'s 30 and 44 microg/kg/day). CONCLUSION Peripheral PYY[3-36] administration reduced the food intake, body weight gain and glycemic indices in diverse rodent models of metabolic disease of both sexes. These findings justify further exploration of the potential physiologic and therapeutic roles of PYY[3-36].
Collapse
Affiliation(s)
- R A Pittner
- Amylin Pharmaceuticals, Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The neurohormonal control of pancreatic exocrine secretion is a complex interaction of multiple pathways involving a large number of gut hormones, neurotransmitters, and neuropeptides. Recent studies have elucidated a role for cholecystokinin in the regulation of bicarbonate and fluid secretion from pancreatic duct cells and suggested that cholecystokinin stimulation of human pancreatic acinar cells is likely regulated by an indirect mechanism of stimulation of afferent neurons. Evidence supports the regulation of potassium channels in rat pancreatic acinar cells by the cyclic AMP-mediated agonist secretin. Mechanisms for the regulation of cholecystokinin and secretin release by releasing factors have also been elucidated. The area postrema has been implicated in the mediation of inhibition of pancreatic secretion by the gut hormones peptide YY and pancreatic polypeptide. The neurotransmitter serotonin has been demonstrated to play a role in acid-induced secretin release and in pancreatic secretion stimulated by luminal factors. The regulation of pancreatic exocrine secretion by purines, nitric oxide, and gamma-aminobutyric acid as well as by the neuropeptides pituitary adenylate cyclase-activating peptide, gastrin-releasing peptide, and substance P is reviewed. The role of the central nervous system in modulating pancreatic secretion is also described. This review highlights the recent advances in knowledge of the neurohormonal regulation of pancreatic exocrine secretion.
Collapse
Affiliation(s)
- Jaimie D Nathan
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
22
|
Deng X, Wood PG, Sved AF, Whitcomb DC. The area postrema lesions alter the inhibitory effects of peripherally infused pancreatic polypeptide on pancreatic secretion. Brain Res 2001; 902:18-29. [PMID: 11376591 DOI: 10.1016/s0006-8993(01)02273-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circulating PP binds to specific receptors in the DVC through the AP, but the mechanism through which these brain receptors affect pancreatic secretion is not clear. We hypothesize that the removal of the AP (APX) will alter the effects of PP on pancreatic secretion. APX or sham procedures were performed in anesthetized male Wistar rats. After a 1-month recovery, one group of rats were infused with either PP (30 or 100 pmol/kg per h) or vehicle under basal or 2-DG-stimulated (75 mg/kg, i.v. bolus) conditions for studying pancreatic exocrine secretion. A second parallel group was sacrificed for examination of PP receptor binding in the brain stem. A third group received an intraperitoneal injection of PP at the dose of 4.15x10(4) pmol/kg (200 microg/kg) and c-fos expression in the brain stem was examined. APX eliminated PP binding sites in the DVC as assessed by autoradiography. PP infusion caused a dose-dependent decrease in basal protein secretion. APX partially reversed PP inhibition of basal protein secretion when infused at 30 pmol/kg per h, and at 100 pmol/kg per h stimulated pancreatic fluid secretion and reversed the inhibition of protein secretion. During 2-DG stimulation the effects of PP and 2-DG on pancreatic fluid and protein secretion were parallel. PP dose-dependently inhibited 2-DG-stimulated secretion in sham rats. APX reduced the pancreatic fluid (54%) and protein (46%) secretory response to 2-DG. However, PP at 30 pmol/kg per h remained a potent inhibitor of 2-DG-stimulated pancreatic secretion in APX rats. This effect was blunted with PP at 100 pmol/kg per h in APX rats, possibly related to the stimulatory effect of high-dose PP in APX rats without 2-DG. Furthermore, i.p. PP induced significantly greater c-fos activation of NTS neurons in APX rats than sham rats, despite the apparent absence of PP binding sites in the DVC. We conclude that in awake rats, PP inhibits basal secretion, in part, through the AP. Furthermore, and unlike PYY, PP inhibits 2-DG-stimulated pancreatic secretion, and it does so through an AP-independent mechanism. The possibility that the mechanism may involve the DVC cannot be excluded since i.p. injection of PP activates c-fos expression in DVC neurons. Thus, PP and PYY may regulate different components of the pancreatic secretory control system through unique pathways.
Collapse
Affiliation(s)
- X Deng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Room 571, Scaife Hall, 3550 Terrace Street, , Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|