1
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
3
|
Osikoya O, Ahmed H, Panahi S, Bourque SL, Goulopoulou S. Uterine perivascular adipose tissue is a novel mediator of uterine artery blood flow and reactivity in rat pregnancy. J Physiol 2019; 597:3833-3852. [PMID: 31165480 DOI: 10.1113/jp277643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS In vivo, uterine perivascular adipose tissue (PVAT) potentiates uterine artery blood flow in pregnant rats, although not in non-pregnant rats. In isolated preparations, uterine PVAT has pro-contractile and anti-dilatory effects on uterine arteries. Pregnancy induces changes in uterine arteries that makes them responsive to uterine PVAT signalling. ABSTRACT An increase in uterine artery blood flow (UtBF) is a common and necessary feature of a healthy pregnancy. In the present study, we tested the hypothesis that adipose tissue surrounding uterine arteries (uterine perivascular adipose tissue; PVAT) is a novel local mediator of UtBF and uterine artery tone during pregnancy. In vivo experiments in anaesthetized Sprague-Dawley rats showed that pregnant animals (gestational day 16, term = 22--23 days) had a three-fold higher UtBF compared to non-pregnant animals. Surgical removal of uterine PVAT reduced UtBF only in pregnant rats. In a series of ex vivo bioassays, we demonstrated that uterine PVAT had pro-contractile and anti-dilatory effects on rat uterine arteries. In the presence of PVAT-conditioned media, isolated uterine arteries from both pregnant and non-pregnant rats had reduced vasodilatory responses. In non-pregnant rats, these responses were mediated at the level of uterine vascular smooth muscle, whereas, in pregnant rats, PVAT-media reduced endothelium-dependent relaxation. Pregnancy increased adipocyte size in ovarian adipose tissue but had no effect on uterine PVAT adipocyte morphology. In addition, pregnancy down-regulated the gene expression of metabolic adipokines in uterine but not in aortic PVAT. In conclusion, this is the first study to demonstrate that uterine PVAT plays a regulatory role in UtBF, at least in part, as a result of its actions on uterine artery tone. We propose that the interaction between the uterine vascular wall and its adjacent adipose tissue may provide new insights for interventions in pregnancies with adipose tissue dysfunction and abnormal UtBF.
Collapse
Affiliation(s)
- Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hijab Ahmed
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sareh Panahi
- Departments of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Stephane L Bourque
- Departments of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
4
|
Landau E, Amar L. Primary aldosteronism and pregnancy. ANNALES D'ENDOCRINOLOGIE 2016; 77:148-60. [PMID: 27156905 DOI: 10.1016/j.ando.2016.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022]
Abstract
Hypertension (HT) is a complication of 8% of all pregnancies and 10% of HT cases are due to primary aldosteronism (PA). There is very little data on PA and pregnancy. Given the changes in the renin angiotensin system during pregnancy, the diagnosis of PA is difficult to establish during gestation. It may be suspected in hypertensive patients with hypokalemia. A comprehensive literature review identified reports covering 40 pregnancies in patients suffering from PA. Analysis of these cases shows them to be high-risk pregnancies leading to maternal and fetal complications. Pregnancy must be programmed, and if the patient has a unilateral form of PA, adrenalectomy should be performed prior to conception. It is customary to stop spironolactone prior to conception and introduce antihypertensive drugs that present no risk of teratogenicity. When conventional antihypertensive drugs used during pregnancy fail to control high blood pressure, diuretics, including potassium-sparing diuretics may be prescribed. Adrenalectomy can be considered during the second trimester of pregnancy exclusively in cases of refractory hypertension. A European retrospective study is currently underway to collect a larger number of cases.
Collapse
Affiliation(s)
- Ester Landau
- Université Paris-Descartes Faculty of Medicine, 75006 Paris, France
| | - Laurence Amar
- Hypertension Unit, Assistance Publique-Hôpitaux de Paris, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
5
|
Shukla P, Lemley C, Dubey N, Meyer A, O'Rourke S, Vonnahme K. Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries. Placenta 2014; 35:461-6. [DOI: 10.1016/j.placenta.2014.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
6
|
Zhu R, Huang X, Hu XQ, Xiao D, Zhang L. Gestational hypoxia increases reactive oxygen species and inhibits steroid hormone-mediated upregulation of Ca(2+)-activated K(+) channel function in uterine arteries. Hypertension 2014; 64:415-22. [PMID: 24866137 DOI: 10.1161/hypertensionaha.114.03555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gestational hypoxia inhibits steroid hormone-induced upregulation of Ca(2+)-activated K(+) (KCa) channel activities in uterine arteries. We tested the hypothesis that increased reactive oxygen species play an important role in hypoxia-mediated inhibition of KCa channel activities. Uterine arteries were isolated from nonpregnant (nonpregnant uterine artery) and near-term (≈142-145 day) pregnant (pregnant uterine artery) sheep maintained at either sea level or high altitude (3820 m, Pao2: 60 mm Hg) for 110 days. In pregnant uterine arteries, hypoxia significantly decreased large conductance channel opener NS1619- and small conductance channel opener NS309-induced relaxations, which were partially restored by reactive oxygen species inhibitor N-acetylcysteine (NAC). NAC significantly increased large conductance KCa but not small conductance KCa current densities in uterine arterial smooth muscle cells in pregnant animals acclimatized to high altitude. The NAC-sensitive component of small conductance KCa-induced relaxations was diminished in endothelium-denuded arteries. In nonpregnant uterine arteries, NS1619- and NS309-induced relaxations were diminished compared with those in pregnant uterine arteries. Treatment of nonpregnant uterine arteries with 17β-estradiol and progesterone for 48 hours increased small conductance KCa type 3 protein abundance and NS1619- and NS309-induced relaxations, which were inhibited by hypoxia. This hypoxia-mediated inhibition was reversed by NAC. Consistently, steroid hormone treatment had no significant effects on large conductance KCa current density in nonpregnant uterine arteries of hypoxic animals in the absence of NAC but significantly increased it in the presence of NAC. These results suggest an important role of hypoxia-mediated reactive oxygen species in negatively regulating steroid hormone-mediated upregulation of KCa channel activity and adaptation of uterine vascular reactivity in pregnancy, which may contribute to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia.
Collapse
Affiliation(s)
- Ronghui Zhu
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Xiaohui Huang
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Xiang-Qun Hu
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - DaLiao Xiao
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Lubo Zhang
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
7
|
Rosenfeld CR, Hynan LS, Liu XT, Roy T. Large conductance Ca2+-activated K+ channels modulate uterine α1-adrenergic sensitivity in ovine pregnancy. Reprod Sci 2013; 21:456-64. [PMID: 24026311 DOI: 10.1177/1933719113503409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The uteroplacental vasculature is refractory to α-adrenergic stimulation, and large conductance Ca(2+)-activated K(+) channels (BK(Ca)) may contribute. We examined the effects of uterine artery (UA) BK(Ca) inhibition with tetraethylammonium (TEA) on hemodynamic responses to phenylephrine (PE) at 101 to 117 days and 135 to 147 days of ovine gestation, obtaining dose responses for mean arterial pressure (MAP), heart rate (HR), and uteroplacental blood flow (UPBF) and vascular resistance (UPVR) before and during UA TEA infusions. The UA α(1)-adrenergic receptors (α1-ARs) were assessed. The PE increased MAP and UPVR and decreased HR and UPBF dose dependently at both gestations (P < .001, analysis of variance). The %▵MAP was less at 135 to 147 days before and during TEA infusions (P ≤ .008); however, responses during TEA were greater (P ≤ .002). The PE increased %▵UPVR>>%▵MAP, thus %▵UPBF fell. The TEA enhanced PE-mediated increases in %▵UPVR at 135 to 147 days (P ≤ .03). The UA α(1)-AR expression was unchanged in pregnancy. Uterine vascular responses to PE exceed systemic vascular responses throughout pregnancy and are attenuated by BK(Ca) activation, suggesting BK(Ca) protect UPBF.
Collapse
Affiliation(s)
- Charles R Rosenfeld
- 1Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
8
|
Xiao D, Huang X, Zhang L. Chronic hypoxia differentially up-regulates protein kinase C-mediated ovine uterine arterial contraction via actin polymerization signaling in pregnancy. Biol Reprod 2012; 87:142. [PMID: 23136295 DOI: 10.1095/biolreprod.112.104448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chronic hypoxia (CH) during pregnancy is associated with increased uterine vascular tone. The present study tested the hypothesis that CH up-regulates protein kinase C (PKC)-mediated actin polymerization, resulting in enhanced uterine vascular contraction in pregnancy. Uterine arteries were isolated from nonpregnant (NPUA) and near-term (∼140 days of gestation) pregnant (PUA) sheep that had been maintained at sea level (∼300 m) or exposed to high altitude (3801 m) hypoxia for 110 days. In normoxic animals, the induced contractions by the PKC activator phorbol 12,13-dibutyrate (PDBu) were greater in NPUA than in PUA, which was abrogated by an actin polymerization inhibitor cytochalasin B (Cyto B). In hypoxic animals, PDBu-induced contractions were significantly increased in PUA but not in NPUA, which was inhibited by Cyto B. In contrast, neither pregnancy nor hypoxia affected Cyto B-mediated inhibition of norepinephrine (NE)-induced contractions. Prolonged ex vivo treatment of NPUA with 17beta-estradiol and progesterone significantly attenuated PDBu-induced actin polymerization and contractions, and the hormonal treatment did not alter the inhibitory effect of Cyto B on PDBu- or NE-induced contractions in either normoxic or hypoxic animals. 2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one potentiated PDBu-mediated actin polymerization and enhanced PDBu-induced contractions of PUA in normoxic but not hypoxic animals, which was abrogated by Cyto B. The results suggest that chronic hypoxia during pregnancy causes attenuation of steroid hormone-mediated ERK1/2 signaling and results in increased actin polymerization and uterine vascular tone, linking gestational hypoxia to aberrant uteroplacental circulation.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|
9
|
Aberdeen GW, Bonagura TW, Harman CR, Pepe GJ, Albrecht ED. Suppression of trophoblast uterine spiral artery remodeling by estrogen during baboon pregnancy: impact on uterine and fetal blood flow dynamics. Am J Physiol Heart Circ Physiol 2012; 302:H1936-44. [PMID: 22427518 DOI: 10.1152/ajpheart.00590.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study was conducted to determine the impact of suppressing trophoblast remodeling of the uterine spiral arteries by prematurely elevating estrogen levels in the first trimester of baboon pregnancy on uterine and umbilical blood flow dynamics. Uteroplacental blood flow was assessed by Doppler ultrasonography after acute administration of saline (basal state) and serotonin on days 60, 100, and 160 of gestation (term: 184 days) to baboons in which uterine spiral artery remodeling had been suppressed by the administration of estradiol on days 25-59 of gestation. Maternal blood pressure in the basal state was increased (P < 0.01), and uterine artery diastolic notching and the umbilical artery pulsatility index and systolic-to-diastolic ratio, reflecting downstream flow impedance, were increased (P < 0.01) after serotonin administration on day 160, but not earlier, in baboons treated with estradiol in early gestation. These changes in uteroplacental flow dynamics in serotonin-infused, estradiol-treated animals were accompanied by a decrease (P < 0.05) in uterine and umbilical artery volume flow and fetal bradycardia. The results of this study show that suppression of uterine artery remodeling by advancing the rise in estrogen from the second trimester to the first trimester disrupted uteroplacental blood flow dynamics and fetal homeostasis after vasochallenge late in primate pregnancy.
Collapse
Affiliation(s)
- Graham W Aberdeen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
10
|
Rosenfeld CR, DeSpain K, Liu XT. Defining the differential sensitivity to norepinephrine and angiotensin II in the ovine uterine vasculature. Am J Physiol Regul Integr Comp Physiol 2011; 302:R59-67. [PMID: 22031783 DOI: 10.1152/ajpregu.00424.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intact ovine uterine vascular bed (UVB) is sensitive to α-agonists and refractory to angiotensin II (ANG II) during pregnancy; the converse occurs in the systemic circulation. The mechanism(s) responsible for these differences in uterine sensitivity are unclear and may reflect predominance of nonconstricting AT(2) receptors (AT(2)R) in uterine vascular smooth muscle (UVSM). The contribution of the placental vasculature also is unclear. Third generation and precaruncular/placental arteries from nonpregnant (n = 16) and term pregnant (n = 23) sheep were used to study contraction responses to KCl, norepinephrine (NE), and ANG II (with/without ATR specific inhibitors) and determine UVSM ATR subtype expression and contractile protein content. KCl and NE increased third generation and precaruncular/placental UVSM contractions in a dose- and pregnancy-dependent manner (P ≤ 0.001). ANG II only elicited modest contractions in third generation pregnant UVSM (P = 0.04) and none in precaruncular/placental UVSM. Moreover, compared with KCl and NE, ANG II contractions were diminished ≥ 5-fold. Whereas KCl and ANG II contracted third generation>>precaruncular/placental UVSM, NE-induced contractions were similar throughout the UVB. However, each agonist increased third generation contractions ≥ 2-fold at term, paralleling increased actin/myosin and cellular protein content (P ≤ 0.01). UVSM AT(1)R and AT(2)R expression was similar throughout the UVB and unchanged during pregnancy (P > 0.1). AT(1)R inhibition blocked ANG II-mediated contractions; AT(2)R blockade, however, did not enhance contractions. AT(2)R predominate throughout the UVB of nonpregnant and pregnant sheep, contributing to an inherent refractoriness to ANG II. In contrast, NE elicits enhanced contractility throughout the ovine UVB that exceeds ANG II and increases further at term pregnancy.
Collapse
Affiliation(s)
- Charles R Rosenfeld
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center at Dallas, 75390-9063, USA.
| | | | | |
Collapse
|
11
|
PKC regulates alpha(1)-adrenoceptor-mediated contractions and baseline Ca(2+) sensitivity in the uterine arteries of nonpregnant and pregnant sheep acclimatized to high altitude hypoxia. High Alt Med Biol 2010; 11:153-61. [PMID: 20586600 DOI: 10.1089/ham.2009.1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic hypoxia has a profound effect on uterine artery adaptation to pregnancy. The present studies tested the hypothesis that pregnant kinase C (PKC) differentially regulates alpha(1)-adrenoceptor-mediated contractions and Ca(2+) sensitivity in the uterine arteries of nonpregnant and pregnant sheep acclimatized to high altitude hypoxia. Uterine arteries were isolated from nonpregnant (NPUA) and near-term pregnant (PUA) ewes maintained at high altitude (3801 m, Pao(2) approximately 60 torr) for 110 days. Phorbol 12,13-dibutyrate (PDBu) decreased phenylephrine-induced contractions in PUA but not in NPUA, which was partly inhibited by the PKC inhibitor GF109203X. Additionally, GF109203X shifted the concentration-response curve of phenylephrine-induced contractions to the right in PUA. In beta-escin-permeabilized arteries, Ca(2+)-induced increases in 20-kDa myosin light chain phosphorylation (MLC(20)-P) were similar in NPUA and PUA. However, Ca(2+) produced a concentration-dependent increase in the ratio of tension to MLC(20)-P in PUA, as compared with NPUA. PKC inhibition decreased Ca(2+)-induced contractions in both NPUA and PUA. PDBu induced contractions of PUA in the absence of changes in MLC(20)-P, which was not affected by PD098059. There was a significant increase in the basal activity of PKCvarepsilon in PUA, but not in NPUA, in hypoxic sheep, as compared with normoxic animals. The results demonstrate that the inhibitory effect of PKC on alpha(1)-adrenoceptor-mediated contractions of uterine arteries is preserved in pregnant sheep at high altitude. However, the PKC-mediated thin-filament regulatory pathway is upregulated, resulting in increased baseline Ca(2+) sensitivity in the uterine artery during pregnancy at high altitude.
Collapse
|
12
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The inaccessibility of the human fetal brain to studies of perfusion and metabolism has impeded progress in the understanding of the normal and abnormal systems of oxygen substrate supply and demand. Consequently, current understanding is based on studies in fetal animals or in the premature infant (ex utero fetus), neither of which is ideal. Despite promising developments in fetal magnetic resonance imaging (MRI) and Doppler ultrasound, major advances in fetal neurodiagnostics will be required before rational and truly informed brainoriented care of the fetus becomes feasible.
Collapse
|
14
|
Rosenfeld CR, Liu XT, DeSpain K. Pregnancy modifies the large conductance Ca2+-activated K+ channel and cGMP-dependent signaling pathway in uterine vascular smooth muscle. Am J Physiol Heart Circ Physiol 2009; 296:H1878-87. [PMID: 19470517 DOI: 10.1152/ajpheart.01185.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of uteroplacental blood flow (UPBF) during pregnancy remains unclear. Large conductance, Ca(2+)-activated K(+) channels (BK(Ca)), consisting of alpha- and regulatory beta-subunits, are expressed in uterine vascular smooth muscle (UVSM) and contribute to the maintenance of UPBF in the last third of ovine pregnancy, but their expression pattern and activation pathways are unclear. We examined BK(Ca) subunit expression, the cGMP-dependent signaling pathway, and the functional role of BK(Ca) in uterine arteries (UA) from nonpregnant (n = 7), pregnant (n = 38; 56-145 days gestation; term, approximately 150 days), and postpartum (n = 15; 2-56 days) sheep. The alpha-subunit protein switched from 83-87 and 105 kDa forms in nonpregnant UVSM to 100 kDa throughout pregnancy, reversal occurring >30 days postpartum. The 39-kDa beta(1)-subunit was the primary regulatory subunit. Levels of 100-kDa alpha-subunit rose approximately 70% during placentation (P < 0.05) and were unchanged in the last two-thirds of pregnancy; in contrast, beta(1)-protein rose throughout pregnancy (R(2) = 0.996; P < 0.001; n = 13), increasing 50% during placentation and approximately twofold in the remainder of gestation. Although UVSM soluble guanylyl cyclase was unchanged, cGMP and protein kinase G(1alpha) increased (P < 0.02), paralleling the rise and fall in beta(1)-protein during pregnancy and the puerperium. BK(Ca) inhibition not only decreased UA nitric oxide (NO)-induced relaxation but also enhanced alpha-agonist-induced vasoconstriction. UVSM BK(Ca) modify relaxation-contraction responses in the last two-thirds of ovine pregnancy, and this is associated with alterations in alpha-subunit composition, alpha:beta(1)-subunit stoichiometry, and upregulation of the cGMP-dependent pathway, suggesting that BK(Ca) activation via NO-cGMP and beta(1) augmentation may contribute to the regulation of UPBF.
Collapse
Affiliation(s)
- Charles R Rosenfeld
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
15
|
Sullivan JA, Rupnow HL, Cale JM, Magness RR, Bird IM. Pregnancy and Ovarian Steroid Regulation of Angiotensin II Type 1 and Type 2 Receptor Expression in Ovine Uterine Artery Endothelium and Vascular Smooth Muscle. ACTA ACUST UNITED AC 2009; 12:41-56. [PMID: 16036315 DOI: 10.1080/10623320590933752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although pregnancy is clearly associated with refractoriness to infused angiotensin II (AII) in the uteroplacental unit, there is still dispute over the mechanism by which angiotensin type 1 and type 2 receptors (AT1R and AT2R) may mediate this response in the uterine artery. This is in large part due to incomplete knowledge of levels of AT1R and AT2R expression and function in uterine artery endothelium (UA Endo) in the nonpregnant (NP) and pregnant (P) states, combined with the disagreement on whether AII may act through release of adrenomedullary catecholamines. The authors have previously described an increase in AT1R in UA Endo but not UA vascular smooth muscle (VSM) during pregnancy as compared to the nonpregnant intact ewe. Herein they report that the pregnancy-associated increase in AT(1)R expression in UA Endo is regulated by ovarian steroids. Using a recently developed antibody to AT2R, the authors now show there is no change in AT2R in UA Endo or VSM associated with ovarian function, and although AT2R is not changed in UA Endo by pregnancy, there is a significant decrease observed in UA VSM at that time. The authors also examined changes in receptors in UA Endo and VSM in estrogen (E2beta)-primed ewes in view of the common use of this model as a control for physiologic studies. In contrast to their findings in nonprimed nonpregnant or pregnant animals, the authors observed a significant increase in both AT1R and AT2R in UA Endo in response to the supraphysiologic priming with E2beta. In order to address the possible functionality of AT1R or AT2R in UA Endo, the authors used the uterine artery endothelial cell (UAEC) model of UA endothelial cells maintained in culture to passage 4. Differences in expression of AT1R or AT2R were normalized at passage 4 in P-UAECs and NP-UAECs. Treatment with AII activated phospholipase C (PLC) in both NP- and P-UAECs but signaling through the extracellular signal-regulated kinase (ERK) pathway was dramatically enhanced in P-UAECs compared to NP-UAECs. Surprisingly, both phosphoinositol turnover and ERK2 phosphorylation responses failed to display the expected dose-responses. Inhibition of AII-stimulated ERK2 phosphorylation with antagonists DUP 753 (AT1R, 10 microM) and PD 123319 (AT2R, 10 microM) failed to selectively inhibit ERK2 phosphorylation. The authors conclude that (a) the net effect of pregnancy may be an increase in the AT1R/AT2R ratio in both UA Endo and VSM but through apparently distinct mechanisms, (b) the ovariectomized animal model is similar to the luteal state for AT1R and AT2R expression, while the E2beta-primed model does not resemble the nonpregnant or pregnant state, and (c) there is a real possibility that AII may mediate its effects either through a complex AT1R-AT2R interaction or via an as-yet unidentified non-AT1, non-AT2 receptor.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | |
Collapse
|
17
|
Gilbert JS, LaMarca BB, Granger JP. ACE2 and ANG-(1-7) in the gravid uterus: the new players on the block. Am J Physiol Regul Integr Comp Physiol 2008; 294:R915-6. [PMID: 18199593 DOI: 10.1152/ajpregu.00018.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zhang H, Zhang L. Role of protein kinase C isozymes in the regulation of alpha1-adrenergic receptor-mediated contractions in ovine uterine arteries. Biol Reprod 2008; 78:35-42. [PMID: 17901075 PMCID: PMC2391137 DOI: 10.1095/biolreprod.107.063479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously, we demonstrated that activation of protein kinase C (PRKC) enhanced alpha(1)-adrenergic receptor-induced contractions in nonpregnant ovine uterine arteries but inhibited the contractions in pregnant ovine uterine arteries. The present study tested the hypothesis that differential regulation of PRKC isozyme activities contributes to the different effects of phorbol 12, 13-dibutyrate (PDBu) on alpha(1)-adrenergic receptor-mediated contractions between the pregnant and nonpregnant ovine uterine arteries. Phenylephrine-induced contractions of ovine nonpregnant and pregnant uterine arteries were determined in the absence or presence of the PRKC activator PDBu and/or in combination with conventional and novel PRKC isozyme inhibitor GF109203X, PRKC isozyme-selective inhibitory peptides for conventional PRKC, PRKCB1, PRKCB2, and PRKCE. GF109203X produced a concentration-dependent inhibition of phenylephrine-induced contractions in both nonpregnant and pregnant uterine arteries, and it reversed the PDBu-mediated potentiation and inhibition of phenylephrine-induced contractions in nonpregnant and pregnant uterine artieries, respectively. In addition, PRKCB1, PRKCB2, and PRKCE inhibitory peptides blocked the PDBu-mediated responses in both nonpregnant and pregnant uterine arteries. Western blot analysis showed that PDBu induced a membrane translocation of PRKCA, PRKCB1, PRKCB2, and PRKCE in pregnant uterine arteries, and PRKCB1, PRKCB2, and PRKCE in nonpregnant uterine arteries. The results disprove the hypothesis that the dichotomy of PRKC mechanisms in the regulation of alpha(1)-adrenergic receptor-induced contractions in nonpregnant and pregnant uterine arteries is caused by the activation of different PRKC isozymes, and suggest downstream mechanisms of differential subcellular distributions for the distinct functional effects of PRKC isozymes in the adaptation of uterine arteries to pregnancy.
Collapse
Affiliation(s)
- Hongying Zhang
- Center for Perinatal Biology, Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350
| |
Collapse
|
19
|
Maduwegedera D, Kett MM, Flower RL, Lambert GW, Bertram JF, Wintour EM, Denton KM. Sex differences in postnatal growth and renal development in offspring of rabbit mothers with chronic secondary hypertension. Am J Physiol Regul Integr Comp Physiol 2006; 292:R706-14. [PMID: 17082352 DOI: 10.1152/ajpregu.00458.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that adult blood pressure was increased in offspring of rabbit mothers with chronic secondary renal hypertension. Our study identified sex-specific differences in the programming of hypertension, with female, not male, offspring, having increased blood pressure at 30 wk of age. The aim of this study was to characterize the maternal hypertension during pregnancy to determine potential programming stimuli. Further, we examined the impact of chronic maternal hypertension on offspring birth weight, nephron number, and renal noradrenaline content (as an index of renal innervation density). Three groups of mothers and their offspring were studied: two-kidney, one-wrap (2K-1W, n = 9 mothers) hypertensive, two-kidney, two-wrap (2K-2W, n = 8) hypertensive, and a sham-operated group (n = 9). Mean arterial blood pressure was increased by approximately 20 mmHg throughout pregnancy in both hypertensive groups compared with sham mothers (P(G) < 0.001). Plasma renin activity (PRA; P(G) < 0.05) and aldosterone (P(G) < 0.05) levels were increased during gestation in the 2K-1W, but not the 2K-2W mothers. Birth weight was increased by approximately 20% in offspring of both groups of hypertensive mothers (P(T) < 0.001), though this was associated with a reduction in litter size. Renal noradrenaline content was increased ( approximately 40%, P < 0.05) at 5 wk of age in female 2K-1W offspring compared with sham offspring. Glomerular number was not reduced in female offspring of either group of hypertensive mothers; however, glomerular tuft volume was reduced in female 2K-2W offspring (P < 0.05), indicative of a reduction in glomerular filtration surface area. In conclusion, the two models of renal hypertension produced differential effects on the offspring. The impact of a stimulated maternal renin-angiotensin system in the 2K-1W model of hypertension may influence development of the renal sympathetic nerves and contribute to programming of adult hypertension.
Collapse
Affiliation(s)
- D Maduwegedera
- Department of Physiology, Monash University, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang H, Xiao D, Longo LD, Zhang L. Regulation of alpha1-adrenoceptor-mediated contractions of uterine arteries by PKC: effect of pregnancy. Am J Physiol Heart Circ Physiol 2006; 291:H2282-9. [PMID: 16699075 DOI: 10.1152/ajpheart.00321.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.
Collapse
Affiliation(s)
- Hongying Zhang
- Center for Perinatal Biology, Dept. of Physiology and Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
21
|
Rosenfeld CR, Roy T, DeSpain K, Cox BE. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. ACTA ACUST UNITED AC 2006; 12:402-8. [PMID: 15979352 DOI: 10.1016/j.jsgi.2005.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The mechanisms regulating basal uteroplacental blood flow (UBF) and the greater than 30-fold increase observed in normal pregnancy remain unclear. Although vascular growth contributes in early gestation, vasodilation accounts for the exponential rise seen in the last third of pregnancy. Large conductance potassium channels (BK(Ca)) are expressed in uterine vascular smooth muscle (VSM), but the extent of their role in regulating UBF in pregnancy is unclear. Therefore, we determined if BK(Ca) regulate basal UBF during ovine pregnancy. METHODS Studies were performed at 113 to 127 days and 135 to 150 days of gestation in eight pregnant ewes instrumented with uterine artery flow probes and uterine arterial and venous catheters. Tetraethylammonium chloride (TEA), a BK(Ca)-specific inhibitor at less than 1.0 mM, was infused intra-arterially into the pregnant uterine horn over 60 minutes to achieve levels of 0.001-0.35 mM while continuously monitoring UBF, arterial pressure (MAP), and heart rate (HR). Uterine arterial and venous blood was collected simultaneously to measure uterine cyclic guanosine monophosphate (cGMP) synthesis. RESULTS Intra-arterial TEA dose-dependently decreased basal UBF in the early (R = 0.81, n = 36, P <.001) and late (R = 0.72, n = 31, P <.001) study periods without altering contralateral UBF, MAP, and HR. The IC(50) was 0.2 mM and basal UBF decreased >or=80% at 0.35 mM in both periods. Although UBF fell greater than 40% at estimated plasma TEA levels of 0.3 mM, uterine arterial cGMP was unchanged, uterine venous cGMP rose, and uterine cGMP synthesis was unchanged; therefore, upstream events associated with BK(Ca) activation were unaffected by blockade. CONCLUSIONS These are the first data demonstrating that BK(Ca) are essential in the maintenance of basal UBF in the last third of ovine pregnancy.
Collapse
Affiliation(s)
- Charles R Rosenfeld
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center at Dallas, USA.
| | | | | | | |
Collapse
|
22
|
Xiao D, Huang X, Longo LD, Pearce WJ, Zhang L. Regulation of baseline Ca2+ sensitivity in permeabilized uterine arteries: effect of pregnancy. Am J Physiol Heart Circ Physiol 2006; 291:H413-20. [PMID: 16501025 DOI: 10.1152/ajpheart.00103.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptation of contractile mechanisms of the uterine artery to pregnancy is not fully understood. The present study examined the effect of pregnancy on the uterine artery baseline Ca2+ sensitivity. In beta-escin-permeabilized arterial preparations, Ca2+ -induced concentration-dependent contractions were significantly decreased in uterine arteries from pregnant animals compared with those of nonpregnant animals. Time-course studies showed that Ca2+ increased phosphorylation of 20-kDa myosin light chain (MLC20), which preceded the tension development in vessels from both pregnant and nonpregnant animals. When compared with vessels from nonpregnant animals, there was a significant increase in the protein level of MLC20 and an accordance increase in the level of Ca2+ -induced phosphorylated MLC20 (MLC20-P) in uterine arteries during pregnancy. Simultaneous measurements of MCL20-P levels and contractions stimulated with Ca2+ in the same tissues demonstrated a significant attenuation in the tension-to-MLC20-P ratio in uterine arteries during pregnancy. Activation of PKC with phorbol 12,13-dibutyrate (PDBu) potentiated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. Accordingly, inhibition of PKC attenuated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. PDBu produced contractions in the presence or absence of Ca2+ in the beta-escin-permeabilized arteries, which were significantly decreased in uterine arteries from pregnant compared with nonpregnant animals. The results suggest that pregnancy upregulates the thick-filament regulatory pathway by increasing MLC20 phosphorylation but downregulates the thin-filament regulatory pathway by decreasing the contractile sensitivity of MLC20-P, resulting in attenuated baseline Ca2+ sensitivity in the uterine artery. In addition, PKC plays an important role in the regulation of basal Ca2+ sensitivity, which is downregulated during pregnancy.
Collapse
Affiliation(s)
- Daliao Xiao
- Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
23
|
St-Louis J, Sicotte B, Beauséjour A, Brochu M. Remodeling and angiotensin II responses of the uterine arcuate arteries of pregnant rats are altered by low- and high-sodium intake. Reproduction 2006; 131:331-9. [PMID: 16452726 DOI: 10.1530/rep.1.00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lowering and increasing sodium intake in pregnant rats evoke opposite changes in renin–angiotensin–aldosterone system (RAAS) activity and are associated with alterations of blood volume expansion. As augmented uterine blood flow during gestation is linked to increased circulatory volume, we wanted to determine if low- and high-sodium intakes affect the mechanical properties and angiotensin II (AngII) responses of the uterine vasculature. Non-pregnant and pregnant rats received a normal sodium (0.22% Na+) diet. On the 15th day of gestation some animals were moved to a low-sodium (0.03%) diet, whereas others were given NaCl supplementation as beverage (saline, 0.9% or 1.8%) for 7 days. All rats were killed after 7 days of treatment (eve of parturition). Uterine arcuate arteries (>100 μm) were set up in wire myographs under a tension equivalent to 50 mmHg transmural pressure. The pregnancy-associated increase in diameter of the uterine arteries was significantly attenuated on the low-sodium diet and 1.8% NaCl supplementation. The arcuate arteries of non-pregnant rats on the low-sodium diet showed markedly increased responses to AngII and phenylephrine (Phe). Pregnancy also resulted in heightened responses to AngII and Phe that were significantly reduced for the former agent in rats on the low-sodium diet. Sodium supplementation of non-pregnant rats did not affect the reactivity of the uterine arteries to AngII, but significantly reduced the effect of Phe (1 μmol/l). High salt also significantly diminished the elevated responses to AngII in the arteries of pregnant animals. It was observed that altered sodium intake affects the mechanical and reactive properties of the uterine arcuate arteries more importantly in pregnant than in non-pregnant rats. Low-salt intake similarly affected the reactivity of the uterine arcuate arteries to AngII and Phe, whereas high-salt intake more specifically affected AngII responses. These results showed that perturbations of sodium intake have major impacts on the structure and functions of the uterine arterial circulation, indicating RAAS involvement in uterine vascular remodeling and function during gestation.
Collapse
Affiliation(s)
- Jean St-Louis
- Laboratoire de Recherche Fondamentale en Obstétrique, Centre de Recherche, Département d'Obstétrique et Gynécologie, Hôpital Sainte-Justine, Université de Montréal, 175 Ch. Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| | | | | | | |
Collapse
|
24
|
Velaphi SC, Roy T, Despain K, Rosenfeld CR. Effects of systemic and local phenylephrine and arginine vasopressin infusions in conscious postnatal sheep. Pediatr Res 2005; 58:58-65. [PMID: 15879292 DOI: 10.1203/01.pdr.0000163395.07153.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mean arterial pressure (MAP) increases after birth, however, the mechanisms remain unclear. Systemic angiotensin II (ANG II) infusions increase MAP in newborn sheep, but the direct effects of ANG II on peripheral vascular resistance (PVR) are minimal. Thus, its systemic pressor effects may reflect release of other pressor agents, e.g. alpha-agonists and/or AVP, suggesting they contribute to postnatal regulation of MAP and PVR. To address this, we performed studies in conscious sheep at 7-14, 15-21, and 22-35 d postnatal, infusing phenylephrine (PE) or AVP systemically or intra-arterially into the hindlimb while measuring MAP, heart rate (HR), and femoral blood flow (FmBF). Basal MAP and FmBF rose, whereas HR and femoral vascular resistance (FmVR) fell (p < or = 0.03) during the first month postnatal. Although systemic PE and AVP dose dependently increased MAP and FmVR and decreased FmBF and HR (p < 0.001, ANOVA) at all ages, responses were not age dependent. Notably, increases in FmVR exceeded increases in MAP, and responses to PE appeared to exceed AVP (p < 0.05). Hindlimb infusions of both agents decreased FmBF and increased FmVR dose dependently (p < 0.001, ANOVA) at all ages without altering MAP or HR. These responses also were not age dependent. Unlike ANG II, PE and AVP directly increase PVR in newborn sheep. Moreover, FmVR increases more than MAP at all doses, suggesting these agonists may contribute to postnatal MAP regulation and could mediate the effects of systemic ANG II on postnatal MAP.
Collapse
Affiliation(s)
- Sithembiso C Velaphi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
25
|
Nagar D, Liu XT, Rosenfeld CR. Estrogen regulates {beta}1-subunit expression in Ca(2+)-activated K(+) channels in arteries from reproductive tissues. Am J Physiol Heart Circ Physiol 2005; 289:H1417-27. [PMID: 15923308 DOI: 10.1152/ajpheart.01174.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily estradiol-17beta (E(2)beta) increases basal uterine blood flow (UBF) and enhances acute E(2)beta-mediated increases in UBF in ovariectomized nonpregnant ewes. The acute E(2)beta-mediated rise in UBF involves vascular smooth muscle (VSM) large-conductance Ca(2+)-activated K(+) channels (BK(Ca)). BK(Ca) consist of pore-forming alpha-subunits and regulatory beta(1)-subunits that modulate channel function and E(2)beta responsiveness. It is unclear whether E(2)beta also alters subunit expression and thus channel density and/or function, thereby contributing to the rise in basal UBF and enhanced UBF responses that follow daily E(2)beta. Therefore, we examined BK(Ca) subunit expression by using reverse transcription-PCR and immunoblot analysis of arterial VSM from reproductive and nonreproductive tissues and myometrium from ovariectomized nonpregnant ewes after daily E(2)beta (1 microg/kg iv) or vehicle without or with acute E(2)beta (1 microg/kg). Tissue distribution was determined by immunohistochemistry. Acute E(2)beta did not alter alpha- or beta(1)-subunit expression in any tissue (P > 0.1). Daily E(2)beta also did not affect alpha-subunit mRNA or protein in any tissue (P > 0.1) or mesenteric arterial VSM beta(1)-subunit. However, daily E(2)beta increased uterine and mammary arterial VSM beta(1)-subunit mRNA by 32% and 83% (P < 0.05), uterine VSM protein by 30%, and myometrial beta(1)-subunit mRNA and protein by 74% (P < or = 0.005). Immunostaining of uterine arteries, myometrium, and intramyometrial arteries paralleled immunoblot analyses for both subunits. Although BK(Ca) density is unaffected by daily and acute E(2)beta, daily E(2)beta increases beta(1)-subunit in proximal and distal uterine arterial VSM. Thus prolonged E(2)beta exposure may alter BK(Ca) function, estrogen responsiveness, and basal vascular tone and reactivity in reproductive arteries by modifying alpha:beta(1) stoichiometry.
Collapse
Affiliation(s)
- Deepa Nagar
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| | | | | |
Collapse
|
26
|
Cox BE, Roy TA, Rosenfeld CR. Angiotensin II mediates uterine vasoconstriction through alpha-stimulation. Am J Physiol Heart Circ Physiol 2004; 287:H126-34. [PMID: 14975925 DOI: 10.1152/ajpheart.00046.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT(2)) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT(1)) receptor-mediated alpha-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine alpha-receptor blockade and in the absence or presence of AT(1) receptor blockade in pregnant and nonpregnant ewes. Systemic alpha-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine alpha-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine alpha-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT(1) receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT(1) receptor blockade + systemic alpha-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT(2) receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT(1) receptors, whereas increases in UVR reflect AT(1) receptor-mediated release of an alpha-agonist and uterine autoregulatory responses.
Collapse
Affiliation(s)
- Blair E Cox
- Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA.
| | | | | |
Collapse
|
27
|
Persson PB, Skalweit A, Mrowka R, Thiele BJ. Control of renin synthesis. Am J Physiol Regul Integr Comp Physiol 2003; 285:R491-7. [PMID: 12909573 DOI: 10.1152/ajpregu.00101.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies published recently have considerably enhanced our understanding of the mechanisms controlling renin production. With regard to the control of renin transcription, two enhancer regions have been identified that markedly augment renin synthesis in cell lines. In the absence of this enhancer activity, the basic promoter of the renin gene increases transcription only two- to threefold. The location of one (Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, and Gross KW. Mol Endocrinol 4: 375-383, 1990) transcription enhancer in the mouse gene is at about -2.7 kb and in humans at roughly -11 kb. A second important region has been identified in a chorionic cell line to be located approximately 5 kb upstream of the transcription start site in humans. Another potentially important regulatory region may lie within approximately 3.9 kb upstream of the -11 kb enhancer, as suggested by several conserved sequences among species in this region. In addition to the control of renin transcription, it seems that renin translation and the stability of renin mRNA are also effectively regulated. This occurs via the 3'-untranslated region, to which several proteins can bind. The binding proteins were identified as hnRNP K and E1, dynamin, nucleolin, MINT homologous protein, and Y-Box 1.
Collapse
|
28
|
Granger JP. Maternal and fetal adaptations during pregnancy: lessons in regulatory and integrative physiology. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1289-92. [PMID: 12429557 DOI: 10.1152/ajpregu.00562.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi, Jackson, Mississippi 39216, USA.
| |
Collapse
|
29
|
Abstract
Preeclampsia-eclampsia is still one of the leading causes of maternal and fetal morbidity and mortality. Despite active research for many years, the etiology of this disorder exclusive to human pregnancy is an enigma. Recent evidence suggests there may be several underlying causes or predispositions leading to the signs of hypertension, proteinuria, and edema, findings that allow us to make the diagnosis of the "syndrome" of preeclampsia. Despite improved prenatal care, severe preeclampsia and eclampsia still occur. Although understanding of the pathophysiology of these disorders has improved, treatment has not changed significantly in over 50 years. Although postponement of delivery in selected women with severe preeclampsia improves fetal outcome to a degree, this is not done without risk to the mother. In the United States, magnesium sulfate and hydralazine are the most commonly used medications for seizure prophylaxis and hypertension in the intrapartum period. The search for the underlying cause of this disorder and for a clinical marker to predict those women who will develop preeclampsia-eclampsia is ongoing, with its prevention the ultimate goal. This review began with the clinical and pathophysiologic aspects of preeclampsia-eclampsia (Part 1). Now, in Part 2, the experimental observations, the search for predictive factors, and the genetics of this disorder are reviewed.
Collapse
Affiliation(s)
- Gabriella Pridjian
- Department of Obstetrics & Gynecology, Tulane University Medical School, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|