1
|
Thuzar M, Law WP, Ratnasingam J, Jang C, Dimeski G, Ho KKY. Glucocorticoids suppress brown adipose tissue function in humans: A double-blind placebo-controlled study. Diabetes Obes Metab 2018; 20:840-848. [PMID: 29119718 DOI: 10.1111/dom.13157] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/16/2017] [Accepted: 11/04/2017] [Indexed: 02/02/2023]
Abstract
AIM To investigate the effect of glucocorticoids on brown adipose tissue (BAT) function in humans. MATERIALS AND METHODS In a randomized double-blind cross-over design, 13 healthy adults underwent 1 week of oral prednisolone treatment (15 mg/d) and placebo with an intervening 2-week wash-out period. BAT function was assessed in response to cooling (19°C) and to a standardized meal, by measuring fluoro-deoxyglucose (FDG) uptake using positron emission tomography-computed tomography and skin temperatures overlying the supraclavicular (SCL) BAT depots using infrared thermography. Postprandial energy and substrate metabolism was assessed by indirect calorimetry. RESULTS During cooling, prednisolone significantly reduced BAT FDG uptake (standardized uptake value, SUVmax, 6.1 ± 2.2 vs 3.7 ± 1.2; P < .05) and SCL temperature (-0.45 ± 0.1 vs -1.0 ± 0.1°C; P < .01) compared to placebo. Postprandially, prednisolone significantly blunted the rise in SCL temperature (+0.2 ± 0.1 vs -0.3 ± 0.1°C; P < .05), enhanced energy production (+221 ± 17 vs +283 ± 27 kcal/d; P < .01) and lipid synthesis (+16.3 ± 3.2 vs +23.6 ± 4.9 mg/min; P < .05). The prednisolone-induced reduction in SCL temperature significantly correlated with the reduction in FDG uptake (r = 0.65, P < .05), while the increase in energy production significantly correlated with the increase in lipogenesis (r = 0.6, P < .05). CONCLUSION Prolonged exposure to glucocorticoid suppresses the function of human BAT. The enhancement of energy production and lipogenesis in the face of reduced dissipation of energy as heat suggests that glucocorticoids channel energy towards fat storage after nutrient intake. This is a novel mechanism of glucocorticoid-induced obesity.
Collapse
Affiliation(s)
- Moe Thuzar
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Weikiat Phillip Law
- Department of Molecular Imaging, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Jeyakantha Ratnasingam
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
| | - Christina Jang
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Goce Dimeski
- Chemical Pathology, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Ken K Y Ho
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Xu J, Zhou L, Wang S, Zhu J, Liu T, Jia Y, Sun D, Chen H, Wang Q, Xu F, Zhang Y, Liu H, Zhang T, Ye L. Di-(2-ethylhexyl)-phthalate induces glucose metabolic disorder in adolescent rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3596-3607. [PMID: 29164460 DOI: 10.1007/s11356-017-0738-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
As a plasticizer, di-(2-ethylhexyl)-phthalate (DEHP) is widely added in various commercial products. Some researchers had suggested that DEHP has adverse effects on the glucose metabolism, but the mechanisms remain unclear. Adolescent Wistar rats were divided into four groups and administered DEHP by gavage at 0, 5, 50, and 500 mg kg-1 d-1 for 28 days. ELISA was used to quantify the serum insulin and leptin levels; RT-PCR, immunohistochemistry, and Western blot were used to detect the mRNA and protein expressions of Janus-activated kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signaling 3 (SOCS3), leptin receptor (Ob-R), and insulin receptor (IR) in liver and pancreas In comparison to the control group, the DEHP-treated rats showed the following: (1) higher organ coefficient of liver; (2) higher fasting blood glucose levels, higher fasting serum insulin and leptin levels, higher insulin resistance index homeostasis model assessment; (3) lower protein levels of Ob-R and IR in the liver and pancreas; (4) higher protein levels of JAK2 and STAT3 in the liver; and (5) higher protein and mRNA levels of SOCS3 in the liver and pancreas. Exposure to DEHP induced glucose metabolic disorder in the adolescent rats, and the mechanism is that DEHP may interfere with the JAK2/STAT3/SOCS3 pathway, regulated the sensitivity of the insulin receptor and leptin receptor.
Collapse
Affiliation(s)
- Jin Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Te Liu
- Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiyang Jia
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Di Sun
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Huaiji Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Feng Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianrong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
3
|
Sckisel GD, Bouchlaka MN, Monjazeb AM, Crittenden M, Curti BD, Wilkins DEC, Alderson KA, Sungur CM, Ames E, Mirsoian A, Reddy A, Alexander W, Soulika A, Blazar BR, Longo DL, Wiltrout RH, Murphy WJ. Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity. Immunity 2015; 43:240-50. [PMID: 26231116 DOI: 10.1016/j.immuni.2015.06.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 06/29/2015] [Indexed: 01/20/2023]
Abstract
Primary T cell activation involves the integration of three distinct signals delivered in sequence: (1) antigen recognition, (2) costimulation, and (3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing "bystander" T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4(+) T-cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted naive CD4(+) but not CD8(+) T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4(+) T cell activation, affecting memory generation and induction of autoimmunity as well as impaired viral clearance. These data highlight the critical regulation of naive CD4(+) T cells during inflammatory conditions.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Myriam N Bouchlaka
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- Department of Radiation-Oncology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA; The Oregon Clinic, Portland, OR 97220, USA
| | - Brendan D Curti
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA; The Oregon Clinic, Portland, OR 97220, USA
| | - Danice E C Wilkins
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kory A Alderson
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Can M Sungur
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Abhinav Reddy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Warren Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050, Australia
| | - Athena Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriner's Hospitals for Children - Northern California, Sacramento, CA 95817, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and the University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Dan L Longo
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert H Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
Abstract
Clinical cases of glucocorticoid (GC) excess are characterized by increased fat mass and obesity through the accumulation of white adipocytes. The effects of GCs on growth and function of brown adipose tissue are unknown and may contribute to the negative energy balance observed clinically. This study aims to evaluate the effect of GCs on proliferation, differentiation, and metabolic function of brown adipocytes. Human brown adipocytes sourced from supraclavicular fat biopsies were grown in culture and differentiated to mature adipocytes. Human white adipocytes sourced from subcutaneous abdominal fat biopsies were cultured as controls. Effects of dexamethasone on growth, differentiation (UCP1, CIDEA, and PPARGC1A expression), and function (oxygen consumption rate (OCR)) of brown adipocytes were quantified. Dexamethasone (1 μM) significantly stimulated the proliferation of brown preadipocytes and reduced that of white preadipocytes. During differentiation, dexamethasone (at 0.1, 1, and 10 μM) stimulated the expression of UCP1, CIDEA, and PPARGC1A in a concentration-dependent manner and enhanced by fourfold to sixfold the OCR of brown adipocytes. Isoprenaline (100 nM) significantly increased (P<0.05) expression of UCP1 and OCR of brown adipocytes. These effects were significantly reduced (P<0.05) by dexamethasone. Thus, we show that dexamethasone stimulates the proliferation, differentiation, and function of human brown adipocytes but inhibits adrenergic stimulation of the functioning of brown adipocytes. We conclude that GCs exert complex effects on development and function of brown adipocytes. These findings provide strong evidence for an effect of GCs on the biology of human brown adipose tissue (BAT) and for the involvement of the BAT system in the metabolic manifestation of Cushing's syndrome.
Collapse
Affiliation(s)
- Johanna L Barclay
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| | - Hadiya Agada
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| | - Christina Jang
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| | - Micheal Ward
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| | - Neil Wetzig
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| | - Ken K Y Ho
- School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia School of MedicineUniversity of Queensland, Herston, Queensland, AustraliaMater Research InstituteThe University of Queensland at TRI, South Brisbane, Queensland, AustraliaThe Translational Research Institute37 Kent Street, Woolloongabba, Brisbane, Queensland, AustraliaPrincess Alexandra HospitalBrisbane, Queensland, Australia
| |
Collapse
|
5
|
Jaimes R, Rocco AG. Multiple epidural steroid injections and body mass index linked with occurrence of epidural lipomatosis: a case series. BMC Anesthesiol 2014; 14:70. [PMID: 25183952 PMCID: PMC4145583 DOI: 10.1186/1471-2253-14-70] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/05/2014] [Indexed: 12/17/2022] Open
Abstract
Background Epidural lipomatosis (EL) is an increase of adipose tissue, normally occurring in the epidural space, sufficient to distort the thecal sac and compress neural elements. There is a lack of knowledge of risk factors, impact on patient’s symptoms, and its possible association with epidural steroid injections. Methods History, physical examination, patient chart, and MRI were analyzed from 856 outpatients referred for epidural steroid injections. Seventy patients with signs of EL on MRI comprised the study group. Thirty-four randomly selected patients comprised the control group. The severity of EL was determined by the MRI assessment. The impact of EL was determined by the patient’s history and physical examination. Logistic regression was used to correlate the probability of developing EL with BMI and epidural steroid injections. Results EL was centered at L5 and S1 segments. The average BMI for patients with EL was significantly greater than that of control group (36.0 ± 0.9 vs. 29.2 ± 0.9, p <0.01). The probability of developing EL with increasing BMI was linear up to the BMI of 35 after which it plateaued. Triglycerides were significantly higher for the EL group as compared to controls (250 ± 30 vs. 186 ± 21 mg/dL p < 0.01). The odds of having EL were 60% after two epidural steroid injections, 90% after three epidural steroid injections and approached 100% with further injections, independent of BMI. Other risk factors considered included alcohol abuse, use of protease inhibitors, levels of stress, hypothyroidism and genetic predisposition. However there were insufficient quantities to determine statistical significance with a degree of confidence. The impact of EL on patient’s symptoms correlated with EL severity with Spearman correlation coefficient of 0.73 at p < 0.01 significance level. Conclusions The BMI and triglycerides levels were found to be significantly elevated for the EL group, pointing to an increased risk of EL occurrence in progressively more obese US population. The data also revealed a strong correlation between the number of subsequent epidural steroid injections and EL occurrence calling for caution with the use of corticosteroids.
Collapse
Affiliation(s)
- Rafael Jaimes
- The George Washington University, 2300 I St NW Ross Hall Room 456, Washington D.C 20037, USA
| | - Angelo G Rocco
- Department of Orthopedics, Harvard Vanguard Medical Associates, 133 Brookline Ave, Boston, MA 02215, USA
| |
Collapse
|
6
|
Sakuma E, Wada I, Soji T, Wakabayashi K, Otsuka T, Herbert DC. The changes of gap junctions between pituitary folliculo-stellate cells during the postnatal development of Zucker fatty and lean rats. Microsc Res Tech 2014; 77:31-6. [PMID: 24738148 DOI: 10.1002/jemt.22309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the effect of leptin on the postnatal development of gap junctions between folliculo-stellate cells by using Zucker fatty (fa/fa) rats that have defects of the functional leptin receptor. Male Zucker fatty rats (fa/fa) and male Zucker lean rats (+/+) were used at each of the following postnatal ages: 20, 30, 40, 50, 60, 70, 80, 90 days, and 1 year. On one of the aforementioned dates, the anterior pituitary glands were prepared for observation by transmission electron microscopy. We quantified the number of follicles and gap junctions, and calculated the rate of occurrence as the ratio of the number of gap junctions existing between folliculo-stellate cells per intersected follicular profile. In Zucker lean male rats, the number of gap junctions remained relatively constant from days 50 to 90 (0.44 ± 0.02 to 0.49 ± 0.03), and was similar in 1 year old rats (0.47 ± 0.03). These data were statistically higher compared to Zucker fatty male rats. In Zucker fatty male rats, very few gap junctions were observed in 30-day-old rats (0.04 ± 0.01: mean ± SE). This disruption of gap junction formation persisted, and the number of gap junctions remained constant and showed a low level from days 40 to 90 (0.11 ± 0.02 to 0.17 ± 0.02); this finding was similar in 1-year-old rats (0.17 ± 0.02). These observations indicate that the effect of leptin over the gap junction formation within the anterior pituitary glands was directly mediated by interaction with the functional leptin receptor present on the folliculo-stellate cells.
Collapse
|
7
|
Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity. Physiol Behav 2014; 130:157-69. [PMID: 24726399 DOI: 10.1016/j.physbeh.2014.04.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 02/09/2023]
Abstract
Obesity, which has developed into a global epidemic, is a risk factor in most chronic diseases and some forms of malignancy. The discovery of leptin in 1994 has opened a new field in obesity research. Currently, we know that leptin is the primary signal from energy stores and exerts negative feedback effects on energy intake. However, most individuals with diet-induced obesity (DIO) develop leptin resistance, which is characterized by elevated circulating leptin levels and decreased leptin sensitivity. To date, though various mechanisms have been proposed to explain leptin resistance, the exact mechanisms of leptin resistance in obesity are poorly understood. Consequently, it's an important issue worth discussing regarding what the exact interrelations between leptin resistance and obesity are. Here, we review the latest advancements in the molecular mechanisms of leptin resistance and the exact interrelations between leptin resistance, obesity, and obesity-related diseases, in order to supply new ideas for the study of obesity.
Collapse
Affiliation(s)
- Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Ishihara Y, White CL, Kageyama H, Kageyama A, York DA, Bray GA. Effects of Diet and Time of the Day on Serum and CSF Leptin Levels in Osborne-Mendel and S5B/Pl Rats. ACTA ACUST UNITED AC 2012; 12:1067-76. [PMID: 15292470 DOI: 10.1038/oby.2004.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To characterize the effects of dietary fat on the diurnal variation in serum and cerebrospinal fluid (CSF) leptin levels in Osborne-Mendel (OM) and S5B/Pl rats and quantitate the dose response to lower doses of leptin administered into the third cerebral ventricle. RESEARCH METHODS AND PROCEDURES Rats were fitted with implanted vascular ports or third ventricular cannulas and fed either laboratory chow or one of two semipurified high-fat or low-fat diets. Leptin and insulin were measured by immunoassay. RESULTS Serum leptin and insulin levels were positively correlated and had similar patterns of diurnal change. CSF leptin and insulin also had diurnal rhythms, with a peak at 7:00 am, but the diurnal oscillations of leptin and insulin were significantly lower in the S5B/Pl rats than the OM rats. Thus, the ratio of CSF to serum leptin was significantly higher in the S5B/Pl rats than in the OM rats. Dietary fat had no effect on these diurnal patterns. There was a right shift in the dose response to leptin in the OM rats compared with the S5B/P1 rats. S5B/P1 rats treated with leptin had higher signal transduction and translation (STAT-3) mRNA levels compared with pair-fed or saline injected S5B/P1 rats. Hypothalamic suppressors of cytokine signaling mRNA levels were not statistically different between the groups. DISCUSSION The higher CSF-to-serum leptin ratio in the S5B/P1 rats, the enhanced suppression of food intake and body weight with leptin injections, and the higher STAT-3 activity in these animals suggest that S5B/P1 rats are more sensitive to leptin than OM rats.
Collapse
Affiliation(s)
- Yuri Ishihara
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA
| | | | | | | | | | | |
Collapse
|
9
|
Burgos-Ramos E, Chowen JA, Argente J, Barrios V. Regional and temporal differences in leptin signaling in rat brain. Gen Comp Endocrinol 2010; 167:143-52. [PMID: 20138175 DOI: 10.1016/j.ygcen.2010.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/28/2009] [Accepted: 01/31/2010] [Indexed: 11/29/2022]
Abstract
Leptin regulates energy homeostasis through activation of different hypothalamic pathways. Evidence indicates that leptin is a pleiotropic hormone that acts on many brain areas, altering food intake, metabolism, and locomotion, among other functions. Because short-term effects of leptin infusion and intracellular pathways in other brain areas involved in food regulation have not been thoroughly analysed, we have studied the acute effect of intracerebroventricular leptin administration on the levels of the long form of leptin receptor (Ob-Rb), as well as on activation of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular regulated kinases (ERKs) and levels of suppressor of cytokine signaling-3 (SOCS3) in the hypothalamus, hippocampus, frontal cortex and cerebellum of adult male Wistar rats at 15min, 1 and 6h. The levels of Ob-Rb increased at 6h in hypothalamus only. Leptin activated the JAK2/STAT3 pathway in all areas, although in a temporally specific pattern. In contrast, this hormone decreased Akt activation in hypothalamus, hippocampus and cerebellum and ERK activation in frontal cortex, while it increased ERK activation in hypothalamus and hippocampus. These differences in modulation of Ob-Rb levels and signaling indicate that the rapid effects of leptin in non-hypothalamic areas are mediated, at least in part, through the intracellular pathways involved in hypothalamic energy balance, but in a temporally specific manner.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid E-28009, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.
Collapse
Affiliation(s)
- O. Ilnytska
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| | - G. Argyropoulos
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| |
Collapse
|
11
|
Miyanaka Y, Ueno Y, Tanaka S, Yoshioka K, Hatakeyama T, Shimamoto M, Sumii M, Chayama K. Clinical significance of mucosal suppressors of cytokine signaling 3 expression in ulcerative colitis. World J Gastroenterol 2007; 13:2939-44. [PMID: 17589943 PMCID: PMC4171145 DOI: 10.3748/wjg.v13.i21.2939] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of mucosal expression of suppressors of cytokine signaling 1 (SOCS1) and SOCS3 in human ulcerative colitis (UC).
METHODS: Biopsy specimens for histological analysis and mRNA detection were obtained endoscopically from the rectum of 62 patients with UC (36 men; age 13-76 years). The patients were classified endoscopically according to Matts’ grade (grade 1 to 4). Expression of SOCS1 and SOCS3 mRNAs was quantified in samples by competitive reverse transcription-polymerase chain reaction (RT-PCR). GAPDH was used as an internal control for efficiency of RT-PCR and amount of RNA.
RESULTS: SOCS3 mRNA expression was significantly higher in inflamed mucosa of UC than in inactive mucosa. The level of expression was well correlated with the degree of both endoscopic and histologic inflammation. Interestingly, among the patients in remission, the group with relatively low expression of SOCS3 showed a higher rate of remission maintenance over a 12-mo period. In contrast, SOCS1 mRNA was expressed in both inflamed and non-inflamed colonic mucosa and was not correlated with the activity of colonic mucosa or prognosis.
CONCLUSION: These observations suggest that increased expression of mucosal SOCS3, but not of SOCS1, may play a critical role in the development of the colonic inflammation of UC.
Collapse
Affiliation(s)
- Yoshihiro Miyanaka
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Hiroyuki Shimizu
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
13
|
la Fleur SE. The effects of glucocorticoids on feeding behavior in rats. Physiol Behav 2006; 89:110-4. [PMID: 16540130 DOI: 10.1016/j.physbeh.2006.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/16/2022]
Abstract
Glucocorticoids have major effects on food intake, however, the underlying mechanisms are poorly understood. This article highlights data on the changes that occur when glucocorticoids are removed by adrenalectomy, and the effects of central and systemic administered glucocorticoids on feeding behavior in rats. Next, animal data on the interaction of glucocorticoids with insulin on intake of comfort foods are addressed and the hypothesis that glucocorticoids modify feeding behavior, whereas insulin modifies the choice of food is discussed. Finally a view is presented that hormonal and vagal signals generated when (comfort) food is consumed will affect the corticotropin-releasing factor (CRF) brain network important for the response to stress and the regulation of feeding. With a society, where stress is experienced daily and comfort food is found at every street corner, it will be vital to understand the interactions between the systems that react to stress and regulate feeding behavior to fight the obesity epidemic.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 GC Utrecht, The Netherlands.
| |
Collapse
|
14
|
Nishida Y, Yoshioka M, St-Amand J. Regulation of hypothalamic gene expression by glucocorticoid: implications for energy homeostasis. Physiol Genomics 2005; 25:96-104. [PMID: 16368873 DOI: 10.1152/physiolgenomics.00232.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the hypothalamic gene expressions regulated by glucocorticoids (GC), key hormones in energy homeostasis. Using the serial analysis of gene expression (SAGE) method, we studied the effects of adrenalectomy (ADX) and GC on the transcriptomes of mouse hypothalamus. Approximately 180,000 SAGE tags, which correspond to 50,000 tag species, were isolated from each group of intact or adrenalectomized mice as well as 1, 3, and 24 h after GC injection. ADX upregulated diazepam binding inhibitor gene expression while downregulating vomeronasal 1 receptor D4, genes involved in mitochondrial phosphorylation (cytochrome-c oxidase 1 and NADH dehydrogenase 3), 3beta-hydroxysteroid dehydrogenase-1, and prostaglandin D2 synthase. GC increased the gene expression levels of dehydrogenase/reductase member 3, prostaglandin D2 synthase, solute carrier family 4 member 4, and five cytoskeletal proteins including myosin light chain phosphorylatable fast and troponin C2 fast. On the other hand, GC reduced the mRNA levels of calmodulin 1 and expressed sequence tag similar to calmodulin 2, ATP synthase F0 subunit 6, and solute carrier family 4 member 3. Moreover, 7 uncharacterized and 43 novel transcripts were modulated by ADX and GC. The present study has identified genes that may regulate hypothalamic systems governing energy balance in response to ADX and GC.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Quebec City, Quebec, Canada
| | | | | |
Collapse
|
15
|
Stütz AM, Morrison CD, Argyropoulos G. The agouti-related protein and its role in energy homeostasis. Peptides 2005; 26:1771-81. [PMID: 15961186 DOI: 10.1016/j.peptides.2004.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 12/01/2004] [Indexed: 12/30/2022]
Abstract
The melanocortin system plays an important role in the regulation of energy homeostasis. The Agouti-related protein (AGRP) is a natural antagonist of the action of alpha-melanocyte stimulating hormone (alpha-MSH) at the melanocortin receptors (MCR). AGRP is upregulated by fasting while intracerebroventricular injections of synthetic AGRP lead to increased appetite and food intake. Transgenic mice overexpressing AGRP are also hyperphagic and eventually become obese. AGRP is, therefore, a significant regulator of energy balance and a candidate gene for human fatness. Indeed, humans with common single nucleotide polymorphisms (SNPs) in the promoter or the coding region are leaner and resistant to late-onset obesity than wild-type individuals. AGRP is also expressed in the periphery. Recent studies show that AGRP in the adrenal gland is upregulated by fasting as much as it is in the hypothalamus. These data open up the possibility for a wider role by AGRP not only in food intake but also in the regulation of energy balance through its actions on peripheral tissues. This review summarizes recent advances in the biochemical and physiological properties of AGRP in an effort to enhance our understanding of the role this powerful neuropeptide plays in mammalian energy homeostasis.
Collapse
Affiliation(s)
- Adrian M Stütz
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
16
|
Coll AP, Challis BG, López M, Piper S, Yeo GSH, O'Rahilly S. Proopiomelanocortin-deficient mice are hypersensitive to the adverse metabolic effects of glucocorticoids. Diabetes 2005; 54:2269-76. [PMID: 16046291 DOI: 10.2337/diabetes.54.8.2269] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital lack of proopiomelanocortin (POMC) causes obesity and glucocorticoid deficiency. The responses of Pomc-/- and wild-type mice to the administration of corticosterone were compared. In study 1, mice were given corticosterone-supplemented water (CORT) for 10 days, resulting in plasma CORT levels within the physiological range, with partial suppression of hypothalamic corticotropin-releasing hormone expression to a similar degree between genotypes. Body weight, fat mass, and food intake increased in CORT-treated Pomc-/- but not wild-type mice. CORT increased plasma insulin levels 50-fold in Pomc-/- versus 14-fold in wild-type mice (P < 0.01) and increased hypothalamic agouti-related protein (AgRP) expression by more than 200% in Pomc-/- versus 40% in wild type (P < 0.05). In study 2, mice were given CORT from weaning, and Pomc-/- but not wild-type mice developed hyperglycemia, ketonuria, and hepatic steatosis by 8-12 weeks. Thus, Pomc-/- mice are hypersensitive to the adverse metabolic effects of glucocorticoids. Additionally, as the levels of plasma CORT achieved, especially in study 1, were not grossly supraphysiological, we conclude that glucocorticoid deficiency may afford Pomc-/- mice some protection from the full adverse consequences of melanocortin deficiency. This may occur through a mechanism involving the suppression of AgRP by the hypoadrenal state.
Collapse
Affiliation(s)
- Anthony P Coll
- University Department of Medicine,Addenbrooke's Hospital, Cambridge CB2 2QR, UK
| | | | | | | | | | | |
Collapse
|
17
|
Wisse BE, Ogimoto K, Morton GJ, Wilkinson CW, Frayo RS, Cummings DE, Schwartz MW. Physiological regulation of hypothalamic IL-1beta gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am J Physiol Endocrinol Metab 2004; 287:E1107-13. [PMID: 15304373 DOI: 10.1152/ajpendo.00038.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-1beta (IL-1beta) is synthesized in a variety of tissues, including the hypothalamus, where it is implicated in the control of food intake. The current studies were undertaken to investigate whether hypothalamic IL-1beta gene expression is subject to physiological regulation by leptin and glucocorticoids (GCs), key hormones involved in energy homeostasis. Adrenalectomy (ADX) increased hypothalamic IL-1beta mRNA levels twofold, measured by real-time PCR (P < 0.05 vs. sham-operated controls), and this effect was blocked by subcutaneous infusion of a physiological dose of corticosterone. Conversely, hypothalamic IL-1beta mRNA levels were reduced by 30% in fa/fa (Zucker) rats, a model of genetic obesity caused by leptin receptor mutation (P = 0.01 vs. lean littermates), and the effect of ADX to increase hypothalamic IL-1beta mRNA levels in fa/fa rats (P = 0.02) is similar to that seen in normal animals. Moreover, fasting for 48 h (which lowers leptin and raises corticosterone levels) reduced hypothalamic IL-1beta mRNA levels by 30% (P = 0.02), and this decrease was fully reversed by refeeding for 12 h. Thus leptin and GCs exert opposing effects on hypothalamic IL-1beta gene expression, and corticosterone plays a physiological role to limit expression of this cytokine in both the presence and absence of intact leptin signaling. Consistent with this hypothesis, systemic leptin administration to normal rats (2 mg/kg ip) increased hypothalamic IL-1beta mRNA levels twofold (P < 0.05 vs. vehicle), an effect similar to that of ADX. These data support a model in which expression of hypothalamic IL-1beta is subject to opposing physiological regulation by corticosterone and leptin.
Collapse
Affiliation(s)
- Brent E Wisse
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Harborview Medical Center, 325 Ninth Avenue, Box 359757, Seattle, WA 98104-2499, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Michel C, Dunn-Meynell A, Levin BE. Reduced brain CRH and GR mRNA expression precedes obesity in juvenile rats bred for diet-induced obesity. Behav Brain Res 2004; 154:511-7. [PMID: 15313040 DOI: 10.1016/j.bbr.2004.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/22/2004] [Accepted: 03/24/2004] [Indexed: 11/20/2022]
Abstract
To assess the role of endogenous peptides involved in stress responsivity in the development of diet-induced obesity (DIO), selectively bred DIO and diet-resistant (DR) male were weaned onto a low fat (4.5%) chow diet at 3 weeks of age and then fed either chow or a 31% fat by energy content (high energy (HE)) diet for 9 days beginning at 4 weeks of age. Regardless of diet, DIO rats gained more weight than DR rats but did not show the selective DIO weight gain trait characteristic of older DIO rats fed HE diet. At this early age, both DR and DIO rats on HE diet ate more and had higher leptin levels but gained less body weight and had lower feed efficiency (body weight gain (g)/food intake (kcal)) than their chow-fed controls. HE diet also prevented the decline in 24h urine corticosterone levels from the third to fifth week observed in chow-fed rats. Terminally, DIO rats had lower hippocampal glucocorticoid receptor (GR) and amygdalar central nucleus corticotrophin-releasing hormone (CRH) mRNA than DR rats, regardless of their diets. Taken together with prior studies in these rats, there appears to be a critical period between 3 and 5 weeks of age when DIO and DR rats are not phenotypically different and hypothalamo-pituitary-adrenal (HPA) function is rapidly changing. The reduced expression of brain GR and CRH expression at the end of this period might contribute to the propensity of DIO rats to become obese selectively on HE diet after 5 weeks of age.
Collapse
Affiliation(s)
- Chantal Michel
- Neurology Service (127C), VA Medical Center, 385 Tremont Avenue, E. Orange, NJ 07018, USA
| | | | | |
Collapse
|
19
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
20
|
Drazen DL, Wortman MD, Schwartz MW, Clegg DJ, van Dijk G, Woods SC, Seeley RJ. Adrenalectomy alters the sensitivity of the central nervous system melanocortin system. Diabetes 2003; 52:2928-34. [PMID: 14633853 DOI: 10.2337/diabetes.52.12.2928] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Removal of adrenal steroids by adrenalectomy (ADX) reduces food intake and body weight in rodents and prevents excessive weight gain in many genetic and dietary models of obesity. Thus, glucocorticoids appear to play a key role to promote positive energy balance in normal and pathological conditions. By comparison, central nervous system melanocortin signaling provides critical inhibitory tone to regulate energy balance. The present experiments sought to test whether glucocorticoids influence energy balance by altering the sensitivity to melanocortin receptor ligands. Because melanocortin-producing neurons are hypothesized to be downstream of leptin in a key weight-reducing circuit, we tested rats for their sensitivity to leptin and confirmed reports that the hypophagic response to third ventricular (i3vt) leptin is increased in ADX rats and is normalized by glucocorticoid replacement. Next we tested rats for their sensitivity to the melanocortin agonist melanotan II and found that, as for leptin, ADX enhanced the hypophagic response via a glucocorticoid-dependent mechanism. The central nervous system melanocortin system is unique in that it includes the endogenous melanocortin receptor antagonist, AgRP. The orexigenic effect of i3vt AgRP was absent in ADX rats and restored by glucocorticoid replacement. We conclude that the potent weight-reducing effects of ADX likely involve heightened responsiveness to melanocortin receptor stimulation.
Collapse
Affiliation(s)
- Deborah L Drazen
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Michel C, Levin BE, Dunn-Meynell AA. Stress facilitates body weight gain in genetically predisposed rats on medium-fat diet. Am J Physiol Regul Integr Comp Physiol 2003; 285:R791-9. [PMID: 12816743 DOI: 10.1152/ajpregu.00072.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To assess the interaction between stress and energy homeostasis, we immobilized male Sprague-Dawley rats prone to diet-induced obesity (DIO) or diet resistance (DR) once for 20 min and then fed them either low-fat (4.5%) chow or a medium-fat (31%), high-energy (HE) diet for 9 days. Stressed, chow-fed DIO rats gained less, while stressed DIO rats on HE diet gained more body weight and had higher feed efficiency and plasma leptin levels than unstressed controls. Neither stress nor diet affected DR body weight gain. While stress-induced plasma corticosterone levels did not differ between phenotypes, DIO rats were initially more active in an open field and had higher hippocampal dentate gyrus and CA1 glucocorticoid receptor (GR) mRNA than DR rats, regardless of prior stress or diet. HE diet intake was associated with raised dentate gyrus and CA1 GR and amygdalar central nucleus (CeA) corticotropin-releasing hormone (CRH) mRNA expression, while stress was associated with reduced hypothalamic dorsomedial nucleus Ob-R mRNA and CeA CRH specifically in DIO rats fed HE diet. Thus a single stress triggers a complex interaction among weight gain phenotype, diet, and stress responsivity, which determines the body weight and adiposity of a given individual.
Collapse
Affiliation(s)
- Chantal Michel
- Neurology Service, Veterans Affairs Medical Center, Orange, NJ 07018-1095, USA
| | | | | |
Collapse
|
22
|
Abstract
Here we explore the physiologic role of leptin as a liporegulatory hormone responsible for maintaining intracellular homeostasis in the face of wide variations in caloric intake. Normally, rats can tolerate a 60% fat diet because 96% of the surplus fat is deposited in adipocytes. In contrast, when leptin is congenitally absent or inactive, even on a normal diet, unutilized dietary fat is deposited in nonadipose tissues, causing dysfunction (lipotoxicity) and possible cell death (lipoapoptosis). We theorize that in diet-induced obesity, acquired leptin resistance may also develop as the result of increase in certain leptin resistance factors. Acquired leptin resistance occurs in aging, obesity, Cushing's syndrome, and acquired lipodystrophy, and preliminary evidence suggests that ectopic lipid deposition is increased. We speculate that the metabolic syndrome may be the human equivalent of the lipotoxic syndrome of rodents.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| |
Collapse
|
23
|
Affiliation(s)
- W A Cupples
- Lady Davis Institute, SMBD-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
24
|
Madiehe AM, Mitchell TD, Harris RBS. Hyperleptinemia and reduced TNF-alpha secretion cause resistance of db/db mice to endotoxin. Am J Physiol Regul Integr Comp Physiol 2003; 284:R763-70. [PMID: 12571077 DOI: 10.1152/ajpregu.00610.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin deficiency in ob/ob mice increases susceptibility to endotoxic shock, whereas leptin pretreatment protects them against LPS-induced lethality. Lack of the long-form leptin receptor (Ob-Rb) in db/db mice causes resistance. We tested the effects of LPS in C57BL/6J db(3J)/db(3J) (BL/3J) mice, which express only the circulating leptin receptors, compared with C57BL/6J db/db (BL/6J) mice, which express all short-form and circulating isoforms of the leptin receptor. Intraperitoneal injections of LPS significantly decreased rectal temperature and increased leptin, corticosterone, and free TNF-alpha in fed and fasted BL/3J and BL/6J mice. TNF-alpha was increased three- and fourfold in BL/3J and BL/6J, respectively. LPS (100 microg) caused 50% mortality of fasted BL/6J mice but caused no mortality in fasted BL/3J mice. Pretreatment of fasted BL/3J mice with 30 microg leptin prevented the drop in rectal temperature, blunted the increase in corticosterone, but had no effect on TNF-alpha induced by 100 microg LPS. Taken together, these data provide evidence that fasted BL/3J mice are more resistant than BL/6J mice to LPS toxicity, presumably due to the absence of leptin receptors in BL/3J mice. This resistance may be due to high levels of free leptin cross-reacting with other cytokine receptors.
Collapse
Affiliation(s)
- Abram M Madiehe
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|