1
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
2
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
3
|
Hosseini L, Babaie S, Shahabi P, Fekri K, Shafiee-Kandjani AR, Mafikandi V, Maghsoumi-Norouzabad L, Abolhasanpour N. Klotho: molecular mechanisms and emerging therapeutics in central nervous system diseases. Mol Biol Rep 2024; 51:913. [PMID: 39153108 DOI: 10.1007/s11033-024-09862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Klotho is recognized as an aging-suppressor protein that is implicated in a variety of processes and signaling pathways. The anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-tumor bioactivities of klotho have extended its application in neurosciences and made the protein popular for its lifespan-extending capacity. Furthermore, it has been demonstrated that klotho levels would reduce with aging and numerous pathologies, particularly those related to the central nervous system (CNS). Evidence supports the idea that klotho can be a key therapeutic target in CNS diseases such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and Alzheimer's disease. Reviewing the literature suggests that the upregulation of klotho expression regulates various signaling pathways related to autophagy, oxidative stress, inflammation, cognition, and ferroptosis in neurological disorders. Therefore, it has been of great interest to develop drugs or agents that boost or restore klotho levels. In this regard, the present review was designed and aimed to gather the delegated documents regarding the therapeutic potential of Klotho in CNS diseases focusing on the molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Faculty of Medicine, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kiarash Fekri
- Department of Paramedicine, Amol School of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
- Preclinical Department, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasrin Abolhasanpour
- Research Center for Evidence‑Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:1126. [PMID: 37237992 PMCID: PMC10215600 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia;
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA;
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia;
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| |
Collapse
|
6
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Xu M, Lichtenberger FB, Erdoǧan C, Lai E, Persson PB, Patzak A, Khedkar PH. Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation. Int J Mol Sci 2022; 23:7016. [PMID: 35806018 PMCID: PMC9266395 DOI: 10.3390/ijms23137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow. We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions. The phosphodiesterase 5 (PDE5) inhibitor sildenafil (10-6 mol/L) impaired cGMP degradation and dilated DVR pre-constricted with angiotensin II (Ang II, 10-6 mol/L). Dilations by the soluble guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside (SNP, 10-3 mol/L) were equally effective. Hypoxia (0.1% O2) augmented DVR constriction by Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In conclusion, H/R renders PDE5 inhibition ineffective in dilating the crucial vessels supplying the area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to this vulnerable area of the kidney.
Collapse
Affiliation(s)
- Minze Xu
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Falk-Bach Lichtenberger
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Cem Erdoǧan
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Pontus B. Persson
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Pratik H. Khedkar
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| |
Collapse
|
8
|
Vendrov AE, Stevenson MD, Lozhkin A, Hayami T, Holland NA, Yang X, Moss N, Pan H, Wickline SA, Stockand JD, Runge MS, Madamanchi NR, Arendshorst WJ. Renal NOXA1/NOX1 Signaling Regulates Epithelial Sodium Channel and Sodium Retention in Angiotensin II-induced Hypertension. Antioxid Redox Signal 2022; 36:550-566. [PMID: 34714114 PMCID: PMC8978567 DOI: 10.1089/ars.2021.0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are implicated in the pathophysiology of hypertension in chronic kidney disease patients. Genetic deletion of NOX activator 1 (Noxa1) subunit of NOX1 decreases ROS under pathophysiological conditions. Here, we investigated the role of NOXA1-dependent NOX1 activity in the pathogenesis of angiotensin II (Ang II)-induced hypertension (AIH) and possible involvement of abnormal renal function. Results: NOXA1 is present in epithelial cells of Henle's thick ascending limb and distal nephron. Telemetry showed lower basal systolic blood pressure (BP) in Noxa1-/-versus wild-type mice. Ang II infusion for 1 and 14 days increased NOXA1/NOX1 expression and ROS in kidney of male but not female wild-type mice. Mean BP increased 30 mmHg in wild-type males, with smaller increases in Noxa1-deficient males and wild-type or Noxa1-/- females. In response to an acute salt load, Na+ excretion was similar in wild-type and Noxa1-/- mice before and 14 days after Ang II infusion. However, Na+ excretion was delayed after 1-2 days of Ang II in male wild-type versus Noxa1-/- mice. Ang II increased epithelial Na+ channel (ENaC) levels and activation in the collecting duct principal epithelial cells of wild-type but not Noxa1-/- mice. Aldosterone induced ROS levels and Noxa1 and Scnn1a expression and ENaC activity in a mouse renal epithelial cell line, responses abolished by Noxa1 small-interfering RNA. Innovation and Conclusion: Ang II activation of renal NOXA1/NOX1-dependent ROS enhances tubular ENaC expression and Na+ reabsorption, leading to increased BP. Attenuation of AIH in females is attributed to weaker NOXA1/NOX1-dependent ROS signaling and efficient natriuresis. Antioxid. Redox Signal. 36, 550-566.
Collapse
Affiliation(s)
- Aleksandr E Vendrov
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark D Stevenson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrey Lozhkin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Takayuki Hayami
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan A Holland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xi Yang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas Moss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida, Tampa, Florida, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida, Tampa, Florida, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, Texas, USA
| | - Marschall S Runge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nageswara R Madamanchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
10
|
Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel) 2020; 9:925. [PMID: 32992565 PMCID: PMC7600946 DOI: 10.3390/antiox9100925] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes prevalence is increasing worldwide, especially through the increase of type 2 diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause of end-stage renal disease. Various factors affect the development and progression of diabetic nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation, protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy have been found. This review summarises current evidence of oxidative stress biomarkers in patients with diabetic nephropathy. Although some of them are promising, they cannot replace currently used clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| |
Collapse
|
11
|
Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf) 2020; 229:e13477. [PMID: 32311827 DOI: 10.1111/apha.13477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are produced by the aerobic metabolism. The imbalance between production of ROS and antioxidant defence in any cell compartment is associated with cell damage and may play an important role in the pathogenesis of renal disease. NADPH oxidase (NOX) family is the major ROS source in the vasculature and modulates renal perfusion. Upregulation of Ang II and adenosine activates NOX via AT1R and A1R in renal microvessels, leading to superoxide production. Oxidative stress in the kidney prompts renal vascular remodelling and increases preglomerular resistance. These are key elements in hypertension, acute and chronic kidney injury, as well as diabetic nephropathy. Renal afferent arterioles (Af), the primary resistance vessel in the kidney, fine tune renal hemodynamics and impact on blood pressure. Vice versa, ROS increase hypertension and diabetes, resulting in upregulation of Af vasoconstriction, enhancement of myogenic responses and change of tubuloglomerular feedback (TGF), which further promotes hypertension and diabetic nephropathy. In the following, we highlight oxidative stress in the function and dysfunction of renal hemodynamics. The renal microcirculatory alterations brought about by ROS importantly contribute to the pathophysiology of kidney injury, hypertension and diabetes.
Collapse
Affiliation(s)
- Nan Xu
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Pontus B. Persson
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | | | - En Yin Lai
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
12
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
13
|
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019; 20:ijms20153711. [PMID: 31362427 PMCID: PMC6695865 DOI: 10.3390/ijms20153711] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Amplification of oxidative stress is present since the early stages of chronic kidney disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation. Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
14
|
Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med 2019; 285:2-18. [PMID: 30039620 DOI: 10.1111/joim.12818] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disorders including hypertension and associated renal disease are major health problems affecting more than 1.5 billion people worldwide. Apart from nonmodifiable factors such as ageing, family history and gender, both sedentary lifestyle and unhealthy dietary habits are considered as major risk factors. The disorders are interrelated suggesting common pathological pathways. Mechanistically, oxidative stress and compromised function of the nitric oxide synthase (NOS) system leading to endothelial dysfunction and reduction in nitric oxide (NO) bioavailability have been widely implicated and associated with development and progression of disease. New strategies that correct this redox imbalance and increase NO bioactivity may have major clinical implications. The inorganic anions, nitrate and nitrite, are endogenously formed by oxidization of NOS-derived NO, but there are also high amounts of nitrate in our daily diet. In this regard, accumulated evidence over the past two decades demonstrates that these anions can be recycled back to NO and other bioactive nitrogen oxides, thus offering an attractive alternative strategy for therapeutic exploitation. In this review, we describe how dietary stimulation of the nitrate-nitrite-NO pathway affects cardiovascular and renal functions in health and disease via modulation of oxidative stress and NO bioavailability. Clinical studies addressing potential effects on the renal system are still limited, but blood pressure-lowering effects of nitrate supplementation have been demonstrated in healthy and hypertensive subjects as well as in patients with chronic kidney disease. However, larger clinical studies are warranted to reveal whether chronic nitrate treatment can slow-down the progression of cardiorenal disease and associated complications.
Collapse
Affiliation(s)
- M Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Muñoz M, Martínez MP, López-Oliva ME, Rodríguez C, Corbacho C, Carballido J, García-Sacristán A, Hernández M, Rivera L, Sáenz-Medina J, Prieto D. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. Redox Biol 2018; 19:92-104. [PMID: 30125808 PMCID: PMC6105769 DOI: 10.1016/j.redox.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
Abstract
The role of NADPH oxidase (Nox)-derived reactive oxygen species in kidney vascular function has extensively been investigated in the harmful context of oxidative stress in diabetes and obesity-associated kidney disease. Since hydrogen peroxide (H2O2) has recently been involved in the non-nitric oxide (NO) non-prostanoid relaxations of intrarenal arteries, the present study was sought to investigate whether NADPH oxidases may be functional sources of vasodilator H2O2 in the kidney and to assess their role in the endothelium-dependent relaxations of human and rat intrarenal arteries. Renal interlobar arteries isolated from the kidney of renal tumor patients who underwent nephrectomy, and from the kidney of Wistar rats, were mounted in microvascular myographs to assess function. Superoxide (O2.-) and H2O2 production was measured by chemiluminescence and Amplex Red fluorescence, and Nox2 and Nox4 enzymes were detected by Western blotting and by double inmunolabeling along with eNOS. Nox2 and Nox4 proteins were expressed in the endothelium of renal arterioles and glomeruli co-localized with eNOS, levels of expression of both enzymes being higher in the cortex than in isolated arteries. Pharmacological inhibition of Nox with apocynin and of CYP 2C epoxygenases with sulfaphenazol, but not of the NO synthase (NOS), reduced renal NADPH-stimulated O2.- and H2O2 production. Under conditions of cyclooxygenase and NOS blockade, acetylcholine induced endothelium-dependent relaxations that were blunted by the non-selective Nox inhibitor apocynin and by the Nox2 or the Nox1/4 inhibitors gp91ds-tat and GKT136901, respectively. Acetylcholine stimulated H2O2 production that was reduced by gp91ds-tat and by GKT136901. These results suggest the specific involvement of Nox4 and Nox2 subunits as physiologically relevant endothelial sources of H2O2 generation that contribute to the endothelium-dependent vasodilatation of renal arteries and therefore have a protective role in kidney vasculature.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
17
|
Ando M, Matsumoto T, Taguchi K, Kobayashi T. Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries. Free Radic Biol Med 2017; 112:553-566. [PMID: 28870522 DOI: 10.1016/j.freeradbiomed.2017.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30μg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
18
|
Pahlitzsch T, Liu ZZ, Al-Masri A, Braun D, Dietze S, Persson PB, Schunck WH, Blum M, Kupsch E, Ludwig M, Patzak A. Hypoxia-reoxygenation enhances murine afferent arteriolar vasoconstriction by angiotensin II. Am J Physiol Renal Physiol 2017; 314:F430-F438. [PMID: 29070570 DOI: 10.1152/ajprenal.00252.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the hypothesis that hypoxia-reoxygenation (H/R) augments vasoreactivity to angiotensin II (ANG II). In particular, we compared an in situ live kidney slice model with isolated afferent arterioles (C57Bl6 mice) to assess the impact of tubules on microvessel response. Hematoxylin and eosin staining was used to estimate slice viability. Arterioles in the slices were located by differential interference contrast microscopy, and responses to vasoactive substances were assessed. Cytosolic calcium transients and NADPH oxidase (NOX) mRNA expression were studied in isolated afferent arterioles. SOD activity was measured in live slices. Both experimental models were subjected to control and H/R treatment (60 min). Slices were further analyzed after 30-, 60-, and 90-min hypoxia followed by 10- or 20-min reoxygenation (H/R). H/R resulted in enhanced necrotic tissue damage compared with control conditions. To characterize the slice model, we applied ANG II (10-7 M), norepinephrine (NE; 10-5 M), endothelin-1 (ET-1; 10-7 M), and ATP (10-4 M), reducing the initial diameter to 44.5 ± 2.8, 50.0 ± 2.2, 45.3 ± 2.6, and 74.1 ± 1.8%, respectively. H/R significantly increased the ANG II response compared with control in live slices and in isolated afferent arterioles, although calcium transients remained similar. TEMPOL incubation prevented the H/R effect on ANG II responses. H/R significantly increased NOX2 mRNA expression in isolated arterioles. SOD activity was significantly decreased after H/R. Enhanced arteriolar responses after H/R occurred independently from the surrounding tissue, indicating no influence of tubules on vascular function in this model. The mechanism of increased ANG II response after H/R might be increased oxidative stress and increased calcium sensitivity of the contractile apparatus.
Collapse
Affiliation(s)
- Tamara Pahlitzsch
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Zhi Zhao Liu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Amira Al-Masri
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Diana Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Stefanie Dietze
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | | | - Maximilian Blum
- Max-Delbrück Center for Molecular Medicine , Berlin , Germany
| | - Eckehardt Kupsch
- PHZ Institut für Pathologie, Hannover Zentrum, Hannover , Germany
| | - Marion Ludwig
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
19
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Liu ZZ, Mathia S, Pahlitzsch T, Wennysia IC, Persson PB, Lai EY, Högner A, Xu MZ, Schubert R, Rosenberger C, Patzak A. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles. Am J Physiol Renal Physiol 2017; 312:F908-F916. [DOI: 10.1152/ajprenal.00394.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 01/04/2023] Open
Abstract
Vasoconstriction plays an important role in the development of acute kidney injury in rhabdomyolysis. We hypothesized that myoglobin enhances the angiotensin II (ANG II) response in afferent arterioles by increasing superoxide and reducing nitric oxide (NO) bioavailability. Afferent arterioles of C57Bl6 mice were isolated perfused, and vasoreactivity was analyzed using video microscopy. NO bioavailability, superoxide concentration in the vessel wall, and changes in cytosolic calcium were measured using fluorescence techniques. Myoglobin treatment (10−5 M) did not change the basal arteriolar diameter during a 20-min period compared with control conditions. NG-nitro-l-arginine methyl ester (l-NAME, 10−4 M) and l-NAME + myoglobin reduced diameters to 94.7 and 97.9% of the initial diameter, respectively. Myoglobin or l-NAME enhanced the ANG II-induced constriction of arterioles compared with control (36.6 and 34.2%, respectively, vs. 65.9%). Norepinephrine responses were not influenced by myoglobin. Combined application of myoglobin and l-NAME further facilitated the ANG II response (7.0%). Myoglobin or l-NAME decreased the NO-related fluorescence in arterioles similarly. Myoglobin enhanced the superoxide-related fluorescence, and tempol prevented this enhancement. Tempol also partly prevented the myoglobin effect on the ANG II response. Myoglobin increased the fura 2 fluorescence ratio (cytosolic calcium) during ANG II application (10−12 to 10−6 M). The results suggest that the enhanced afferent arteriolar reactivity to ANG II is mainly due to a myoglobin-induced increase in superoxide and associated reduction in the NO bioavailability. Signaling pathways for the augmented ANG II response include enhanced cytosolic calcium transients. In conclusion, myoglobin may contribute to the afferent arteriolar vasoconstriction in this rhabdomyolysis model.
Collapse
Affiliation(s)
- Z. Z. Liu
- Institute of Vegetative Physiology, Berlin, Germany
| | - S. Mathia
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - E. Y. Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China; and
| | - A. Högner
- Institute of Vegetative Physiology, Berlin, Germany
| | - M. Z. Xu
- Institute of Vegetative Physiology, Berlin, Germany
| | - R. Schubert
- Medical Faculty Mannheim, Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - C. Rosenberger
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A. Patzak
- Institute of Vegetative Physiology, Berlin, Germany
| |
Collapse
|
21
|
Forte M, Nocella C, De Falco E, Palmerio S, Schirone L, Valenti V, Frati G, Carnevale R, Sciarretta S. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High Blood Press Cardiovasc Prev 2017; 23:355-364. [PMID: 27915400 DOI: 10.1007/s40292-016-0175-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOXs) represent one of the major sources of reactive oxygen species in the vascular district. Reactive oxygen species are responsible for vascular damage that leads to several cardiovascular pathological conditions. Among NOX isoforms, NOX2 is widely expressed in many cells types, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells, confirming its pivotal role in vascular pathophysiology. Studies in mice models with systemic deletion of NOX2, as well as in transgenic mice overexpressing NOX2, have demonstrated the undeniable involvement of NOX2 in the development of hypertension, atherosclerosis, diabetes mellitus, cardiac hypertrophy, platelet aggregation, and aging. Of note, the inhibition of NOX2 has been found to be protective for cardiovascular homeostasis. Here, we review the evidence demonstrating that the modulation of NOX2 activity is able to improve vascular physiology, suggesting that NOX2 may be a potential target for therapeutic applications.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Cristina Nocella
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Silvia Palmerio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Valentina Valenti
- Department of Imaging, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giacomo Frati
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Roberto Carnevale
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy. .,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy.
| |
Collapse
|
22
|
Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng XL, Sun L, Lv XF, Du YH, Wang GL, Zhou JG, Guan YY. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension. Hypertension 2017; 69:892-901. [PMID: 28320851 DOI: 10.1161/hypertensionaha.116.08874] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/28/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Ca2+-activated Cl- channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca2+-activated Cl- channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Ming-Ming Ma
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.).
| | - Min Gao
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Kai-Min Guo
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Mi Wang
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xiang-Yu Li
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xue-Lin Zeng
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Lu Sun
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xiao-Fei Lv
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Yan-Hua Du
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Guan-Lei Wang
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Jia-Guo Zhou
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Yong-Yuan Guan
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| |
Collapse
|
23
|
Abdelrahman RS. Protective effect of apocynin against gentamicin-induced nephrotoxicity in rats. Hum Exp Toxicol 2017; 37:27-37. [DOI: 10.1177/0960327116689716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- RS Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Thibodeau JF, Holterman CE, He Y, Carter A, Cron GO, Boisvert NC, Abd-Elrahman KS, Hsu KJ, Ferguson SSG, Kennedy CRJ. Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury. Antioxid Redox Signal 2016; 25:642-656. [PMID: 27245461 DOI: 10.1089/ars.2015.6592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. RESULTS EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4VSMC-/- but not in EP4VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4-/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. INNOVATION These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. CONCLUSION EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.
Collapse
Affiliation(s)
- Jean-Francois Thibodeau
- 1 Chronic Disease Program, Department of Medicine, Kidney Research Centre, The Ottawa Hospital , Ottawa, Ontario, Canada .,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Chet E Holterman
- 1 Chronic Disease Program, Department of Medicine, Kidney Research Centre, The Ottawa Hospital , Ottawa, Ontario, Canada
| | - Ying He
- 1 Chronic Disease Program, Department of Medicine, Kidney Research Centre, The Ottawa Hospital , Ottawa, Ontario, Canada
| | - Anthony Carter
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | | | - Naomi C Boisvert
- 1 Chronic Disease Program, Department of Medicine, Kidney Research Centre, The Ottawa Hospital , Ottawa, Ontario, Canada .,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Khaled S Abd-Elrahman
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Karolynn J Hsu
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Stephen S G Ferguson
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Christopher R J Kennedy
- 1 Chronic Disease Program, Department of Medicine, Kidney Research Centre, The Ottawa Hospital , Ottawa, Ontario, Canada .,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada .,3 The Ottawa Hospital , Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Huang Q, Wang Q, Zhang S, Jiang S, Zhao L, Yu L, Hultström M, Patzak A, Li L, Wilcox CS, Lai EY. Increased hydrogen peroxide impairs angiotensin II contractions of afferent arterioles in mice after renal ischaemia-reperfusion injury. Acta Physiol (Oxf) 2016; 218:136-45. [PMID: 27362287 DOI: 10.1111/apha.12745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
AIM Renal ischaemia-reperfusion injury (IRI) increases angiotensin II (Ang II) and reactive oxygen species (ROS) that are potent modulators of vascular function. However, the roles of individual ROS and their interaction with Ang II are not clear. Here we tested the hypothesis that IRI modulates renal afferent arteriolar responses to Ang II via increasing superoxide (O2-) or hydrogen peroxide (H2 O2 ). METHODS Renal afferent arterioles were isolated and perfused from C57BL/6 mice 24 h after IRI or sham surgery. Responses to Ang II or noradrenaline were assessed by measuring arteriolar diameter. Production of H2 O2 and O2- was assessed in afferent arterioles and renal cortex. Activity of SOD and catalase, and mRNA expressions of Ang II receptors were assessed in pre-glomerular arterioles and renal cortex. RESULTS Afferent arterioles from mice after IRI had a reduced maximal contraction to Ang II (-27±2 vs. -42±1%, P < 0.001), but retained a normal contraction to noradrenaline. Arterioles after IRI had a 38% increase in H2 O2 (P < 0.001) and a 45% decrease in catalase activity (P < 0.01). Contractions were reduced in normal arterioles after incubation with H2 O2 (-22±2 vs. -42±1%, P < 0.05) similar to the effects of IRI. However, the impaired contractions were normalized by incubation with PEG catalase despite a reduced AT1 R expression. CONCLUSIONS Renal IRI in mice selectively impairs afferent arteriolar responses to Ang II because of H2 O2 accumulation that is caused by a reduced catalase activity. This could serve to buffer the effect of Ang II after IRI and may be a protective mechanism.
Collapse
Affiliation(s)
- Q. Huang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - Q. Wang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Zhang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - S. Jiang
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Zhao
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| | - L. Yu
- College of Life Sciences; Zhejiang University; Hangzhou China
| | - M. Hultström
- Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Anesthesia and Intensive Care Medicine; Department of Surgical Sciences; Uppsala University; Uppsala Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - L. Li
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - C. S. Wilcox
- Department of Medicine; Division of Nephrology and Hypertension; Hypertension, Kidney and Vascular Research Center; Georgetown University; Washington DC USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
26
|
Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E, Carlström M. Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med 2016; 99:87-98. [PMID: 27474450 DOI: 10.1016/j.freeradbiomed.2016.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Advanced age is associated with increased risk for cardiovascular disease and type 2 diabetes. A proposed central event is diminished amounts of nitric oxide (NO) due to reduced generation by endothelial NO synthase (eNOS) and increased oxidative stress. In addition, it is widely accepted that increased angiotensin II (ANG II) signaling is also implicated in the pathogenesis of endothelial dysfunction and hypertension by accelerating formation of reactive oxygen species. This study was designed to test the hypothesis that dietary nitrate supplementation could reduce blood pressure and improve glucose tolerance in aged rats, via attenuation of NADPH oxidase activity and ANG II receptor signaling. Dietary nitrate supplementation for two weeks reduced blood pressure (10-15mmHg) and improved glucose clearance in old, but not in young rats. These favorable effects were associated with increased insulin responses, reduced plasma creatinine as well as improved endothelial relaxation to acetylcholine and attenuated contractility to ANG II in resistance arteries. Mechanistically, nitrate reduced NADPH oxidase-mediated oxidative stress in the cardiovascular system and increased cGMP signaling. Finally, nitrate treatment in aged rats normalized the gene expression profile of ANG II receptors (AT1A, AT2, AT1A/AT2 ratio) in the renal and cardiovascular systems without altering plasma levels of renin or ANG II. Our results show that boosting the nitrate-nitrite-NO pathway can partly compensate for age-related disturbances in endogenous NO generation via inhibition of NADPH oxidase and modulation of ANG II receptor expression. These novel findings may have implications for nutrition-based preventive and therapeutic strategies against cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | - Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Ming Liu
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alessia Giulietti
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
27
|
Tamma G, Valenti G. Evaluating the Oxidative Stress in Renal Diseases: What Is the Role for S-Glutathionylation? Antioxid Redox Signal 2016; 25:147-64. [PMID: 26972776 DOI: 10.1089/ars.2016.6656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) have long been considered as toxic derivatives of aerobic metabolism displaying a harmful effect to living cells. Deregulation of redox homeostasis and production of excessive free radicals may contribute to the pathogenesis of kidney diseases. In line, oxidative stress increases in patients with renal dysfunctions due to a general increase of ROS paralleled by impaired antioxidant ability. RECENT ADVANCES Emerging evidence revealed that physiologically, ROS can act as signaling molecules interplaying with several transduction pathways such as proliferation, differentiation, and apoptosis. ROS can exert signaling functions by modulating, at different layers, protein oxidation since proteins have "cysteine switches" that can be reversibly reduced or oxidized, supporting the dynamic signaling regulation function. In this scenario, S-glutathionylation is a posttranslational modification involved in oxidative cellular response. CRITICAL ISSUES Although it is widely accepted that renal dysfunctions are often associated with altered redox signaling, the relative role of S-glutathionylation on the pathogenesis of specific renal diseases remains unclear and needs further investigations. In this review, we discuss the impact of ROS in renal health and diseases and the role of selective S-glutathionylation proteins potentially relevant to renal physiology. FUTURE DIRECTIONS The paucity of studies linking the reversible protein glutathionylation with specific renal disorders remains unmet. The growing number of S-glutathionylated proteins indicates that this is a fascinating area of research. In this respect, further studies on the association of reversible glutathionylation with renal diseases, characterized by oxidative stress, may be useful to develop new pharmacological molecules targeting protein S-glutathionylation. Antioxid. Redox Signal. 25, 147-164.
Collapse
Affiliation(s)
- Grazia Tamma
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy
| | - Giovanna Valenti
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy .,3 Centro di Eccellenza di Genomica in campo Biomedico ed Agrario (CEGBA) , Bari, Italy
| |
Collapse
|
28
|
Porpino SKP, Zollbrecht C, Peleli M, Montenegro MF, Brandão MCR, Athayde-Filho PF, França-Silva MS, Larsson E, Lundberg JO, Weitzberg E, Persson EG, Braga VA, Carlström M. Nitric oxide generation by the organic nitrate NDBP attenuates oxidative stress and angiotensin II-mediated hypertension. Br J Pharmacol 2016; 173:2290-302. [PMID: 27160064 DOI: 10.1111/bph.13511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE NO deficiency and oxidative stress are crucially involved in the development or progression of cardiovascular disease, including hypertension and stroke. We have previously demonstrated that acute treatment with the newly discovered organic nitrate, 2-nitrate-1,3-dibuthoxypropan (NDBP), is associated with NO-like effects in the vasculature. This study aimed to further characterize the mechanism(s) and to elucidate the therapeutic potential in a model of hypertension and oxidative stress. EXPERIMENTAL APPROACH A combination of ex vivo, in vitro and in vivo approaches was used to assess the effects of NDBP on vascular reactivity, NO release, NADPH oxidase activity and in a model of hypertension. KEY RESULTS Ex vivo vascular studies demonstrated NDBP-mediated vasorelaxation in mesenteric resistance arteries, which was devoid of tolerance. In vitro studies using liver and kidney homogenates revealed dose-dependent and sustained NO generation by NDBP, which was attenuated by the xanthine oxidase inhibitor febuxostat. In addition, NDBP reduced NADPH oxidase activity in the liver and prevented angiotensin II-induced activation of NADPH oxidase in the kidney. In vivo studies showed that NDBP halted the progression of hypertension in mice with chronic angiotensin II infusion. This was associated with attenuated cardiac hypertrophy, and reduced NADPH oxidase-derived oxidative stress and fibrosis in the kidney and heart. CONCLUSION AND IMPLICATIONS The novel organic nitrate NDBP halts the progression of angiotensin II-mediated hypertension. Mechanistically, our findings suggest that NDBP treatment is associated with sustained NO release and attenuated activity of NADPH oxidase, which to some extent requires functional xanthine oxidase.
Collapse
Affiliation(s)
- Suênia K P Porpino
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Dept. of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Christa Zollbrecht
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Peleli
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria C R Brandão
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | - Erik Larsson
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Persson
- Dept. of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Coughlan MT, Sharma K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 2016; 90:272-279. [PMID: 27217197 DOI: 10.1016/j.kint.2016.02.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023]
Abstract
The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Baker International Diabetes Institute (IDI) Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Institute of Metabolomic Medicine, University of California-San Diego, La Jolla, California, USA; Division of Medical Genetics, Department of Medicine, University of California-San Diego, La Jolla, California, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, California, USA.
| |
Collapse
|
30
|
Brower JB, Doyle-Eisele M, Moeller B, Stirdivant S, McDonald JD, Campen MJ. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions. Inhal Toxicol 2016; 28:241-50. [PMID: 27017952 DOI: 10.3109/08958378.2016.1155003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The adverse health effects of environmental exposure to gaseous and particulate components of vehicular emissions are a major concern among urban populations. A link has been established between respiratory exposure to vehicular emissions and the development of cardiovascular disease (CVD), but the mechanisms driving this interaction remain unknown. Chronic inhalation exposure to mixed vehicle emissions has been linked to CVD in animal models. This study evaluated the temporal effects of acute exposure to mixed vehicle emissions (MVE; mixed gasoline and diesel emissions) on potentially active metabolites in the serum of exposed mice. C57Bl/6 mice were exposed to a single 6-hour exposure to filtered air (FA) or MVE (100 or 300 μg/m(3)) by whole body inhalation. Immediately after and 18 hours after the end of the exposure period, animals were sacrificed for serum and tissue collection. Serum was analyzed for metabolites that were differentially present between treatment groups and time points. Changes in metabolite levels suggestive of increased oxidative stress (oxidized glutathione, cysteine disulfide, taurine), lipid peroxidation (13-HODE, 9-HODE), energy metabolism (lactate, glycerate, branched chain amino acid catabolites, butrylcarnitine, fatty acids), and inflammation (DiHOME, palmitoyl ethanolamide) were observed immediately after the end of exposure in the serum of animals exposed to MVE relative to those exposed to FA. By 18 hours post exposure, serum metabolite differences between animals exposed to MVE versus those exposed to FA were less pronounced. These findings highlight complex metabolomics alterations in the circulation following inhalation exposure to a common source of combustion emissions.
Collapse
Affiliation(s)
- Jeremy B Brower
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Benjamin Moeller
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Jacob D McDonald
- a Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Matthew J Campen
- c College of Pharmacy, University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
31
|
Declèves AÉ, Jadot I, Colombaro V, Martin B, Voisin V, Nortier J, Caron N. Protective effect of nitric oxide in aristolochic acid-induced toxic acute kidney injury: an old friend with new assets. Exp Physiol 2015; 101:193-206. [PMID: 26442795 DOI: 10.1113/ep085333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Aristolochic acid (AA) nephropathy (AAN), a progressive tubulointerstitial injury of toxic origin, is characterized by early and transient acute tubular necrosis. This process has been demonstrated to be associated with reduced nitric oxide (NO) production, which can disrupt the regulation of renal function. In this study, we tested the hypothesis that L-arginine (L-Arg) supplementation could restore renal function and reduce renal injury after AA intoxication. C57BL/6 J male mice were randomly subjected to daily i.p. injection of either sterile saline solution or AA (2.5 mg kg(-1)) for 4 days. To determine whether AA-induced renal injuries were linked to reduced NO production, L-Arg, a substrate for NO synthase, was supplemented (5%) in drinking water. Mice intoxicated with AA exhibited features of rapid-onset acute kidney injury, including polyuria, significantly increased plasma creatinine concentrations, proteinuria and fractional excretion of sodium (P < 0.05), along with severe proximal tubular cell injury and increased NADPH oxidase 2 (Nox2)-derived oxidative stress (P < 0.05). This was associated with a significant reduction in NO bioavailability. L-Arg supplementation in AA-treated mice significantly increased NO bioavailability, which in turn improved renal function (creatininaemia, polyuria, proteinuria, fractional excreted sodium and N-acetyl-β-D-glucosaminidase enzymuria) and renal structure (tubular necrosis and tubular cell apoptosis). These changes were associated with significant reductions in Nox2 expression and in production of reactive oxygen species and with an increase in antioxidant concentrations. Our results demonstrate that preservation of NO bioavailability leads to renal protection in AA-induced acute kidney injury by reducing oxidative stress and maintaining renal function.
Collapse
Affiliation(s)
- Anne-Émilie Declèves
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium.,Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), B-1070, Brussels, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Vanessa Colombaro
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Virginie Voisin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| | - Joëlle Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), B-1070, Brussels, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), B-5000, Namur, Belgium
| |
Collapse
|
32
|
Peleli M, Al-Mashhadi A, Yang T, Larsson E, Wåhlin N, Jensen BL, G Persson AE, Carlström M. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis. Am J Physiol Renal Physiol 2015; 310:F43-56. [PMID: 26538440 DOI: 10.1152/ajprenal.00345.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ammar Al-Mashhadi
- Division of Pediatric Surgery, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Nils Wåhlin
- Department of Pediatric Surgery, Astrid Lindgren Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Boye L Jensen
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | - A Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|
33
|
Zhou Z, Rajamani U, Labazi H, Tilley SL, Ledent C, Teng B, Mustafa SJ. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal 2015; 11:263-73. [DOI: 10.1007/s11302-015-9451-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
|
34
|
Abstract
Since the first demonstration of Nox enzyme expression in the kidney in the early 1990s and the subsequent identification of Nox4, or RENOX, a decade later, it has become apparent that the Nox family of reactive oxygen species (ROS) generating enzymes plays an integral role in the normal physiological function of the kidney. As our knowledge of Nox expression patterns and functions in various structures and specialized cell types within the kidney grows, so does the realization that Nox-derived oxidative stress contributes significantly to a wide variety of renal pathologies through their ability to modify lipids and proteins, damage DNA and activate transcriptional programmes. Diverse studies demonstrate key roles for Nox-derived ROS in kidney fibrosis, particularly in settings of chronic renal disease such as diabetic nephropathy. As the most abundant Nox family member in the kidney, much emphasis has been placed on the role of Nox4 in this setting. However, an ever growing body of work continues to uncover key roles for other Nox family members, not only in diabetic kidney disease, but in a diverse array of renal pathological conditions. The objective of the present review is to highlight the latest novel developments in renal Nox biology with an emphasis not only on diabetic nephropathy but many of the other renal disease contexts where oxidative stress is implicated.
Collapse
|
35
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
36
|
Sun QA, Runge MS, Madamanchi NR. Oxidative stress, NADPH oxidases, and arteries. Hamostaseologie 2015; 36:77-88. [PMID: 25649240 DOI: 10.5482/hamo-14-11-0076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD.
Collapse
Affiliation(s)
| | - Marschall S Runge
- Marschall S. Runge, MD PhD, Department of Medicine, 125 MacNider Hall, University of North Carolina, Chapel Hill, NC 27599-7005, USA, E-mail:
| | | |
Collapse
|
37
|
Gao X, Yang T, Liu M, Peleli M, Zollbrecht C, Weitzberg E, Lundberg JO, Persson AEG, Carlström M. NADPH Oxidase in the Renal Microvasculature Is a Primary Target for Blood Pressure–Lowering Effects by Inorganic Nitrate and Nitrite. Hypertension 2015; 65:161-70. [DOI: 10.1161/hypertensionaha.114.04222] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate–nitrite–NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) by modulating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NO bioavailability. Nitrite in the physiological range (10
−7
–10
−5
mol/L) dilated isolated perfused renal afferent arterioles, which were associated with increased NO. Contractions to ANG II (34%) and simultaneous NO synthase inhibition (56%) were attenuated by nitrite (18% and 26%). In a model of oxidative stress (superoxide dismutase-1 knockouts), abnormal ANG II–mediated arteriolar contractions (90%) were normalized by nitrite (44%). Mechanistically, effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, but only partially attenuated by inhibiting soluble guanylyl cyclase. Inhibition of NADPH oxidase with apocynin attenuated ANG II–induced contractility (35%) similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In preglomerular vascular smooth muscle cells and kidney cortex, nitrite reduced both basal and ANG II–induced NADPH oxidase activity. These effects of nitrite were also abolished by xanthine oxidase inhibition. Moreover, supplementation with dietary nitrate (10
−2
mol/L) reduced renal NADPH oxidase activity and attenuated ANG II–mediated arteriolar contractions and hypertension (99±2–146±2 mm Hg) compared with placebo (100±3–168±3 mm Hg). In conclusion, these novel findings position NADPH oxidase in the renal microvasculature as a prime target for blood pressure–lowering effects of inorganic nitrate and nitrite.
Collapse
Affiliation(s)
- Xiang Gao
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ting Yang
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ming Liu
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Maria Peleli
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Christa Zollbrecht
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Eddie Weitzberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Jon O. Lundberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Mattias Carlström
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| |
Collapse
|
38
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
39
|
Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab 2014; 25:452-63. [PMID: 25066192 DOI: 10.1016/j.tem.2014.06.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 02/03/2023]
Abstract
NADPH oxidases (NOXs) are reactive oxygen species (ROS)-generating enzymes implicated in the pathophysiology of vascular diseases such as hypertension and stroke. Endothelial cells express four NOX isoforms including the superoxide-generating enzymes NOX1, NOX2, and NOX5 and the hydrogen peroxide-generating enzyme NOX4. Studies on arteries from patients with coronary artery disease, and in animals with experimentally induced hypertension, diabetes, or atherosclerosis, suggest that NOX1, NOX2, and NOX5 promote endothelial dysfunction, inflammation, and apoptosis in the vessel wall, whereas NOX4 is by contrast vasoprotective in increasing nitric oxide bioavailability and suppressing cell death pathways. Based on these findings and promising preclinical studies with the NOX1/NOX2 antagonist, apocynin, we suggest that the field is poised for clinical evaluation of NOX inhibitors as therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia.
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Nox1 upregulates the function of vascular T-type calcium channels following chronic nitric oxide deficit. Pflugers Arch 2014; 467:727-35. [PMID: 24923576 DOI: 10.1007/s00424-014-1548-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is characterised by reduced nitric oxide bioavailability resulting from oxidative stress. Our previous studies have shown that nitric oxide deficit per se increases the contribution of T-type calcium channels to vascular tone through increased superoxide from NADPH oxidase (Nox). The aim of the present study was therefore to identify the Nox isoform responsible for modulating T-type channel function, as T-type channels are implicated in several pathophysiological conditions involving oxidative stress. We evaluated T-channel function in skeletal muscle arterioles in vivo, using a novel T-channel blocker, TTA-A2 (3 μmol/L), which demonstrated no cross reactivity with L-type channels. Wild-type and Nox2 knockout (Nox2ko) mice were treated with the nitric oxide synthase inhibitor L-NAME (40 mg/kg/day) for 2 weeks. L-NAME treatment significantly increased systolic blood pressure and the contribution of T-type calcium channels to arteriolar tone in wild-type mice, and this was not prevented by Nox2 deletion. In Nox2ko mice, pharmacological inhibition of Nox1 (10 μmol/L ML171), Nox4 (10 μmol/L VAS2870) and Nox4-derived hydrogen peroxide (500 U/mL catalase) significantly reduced the effect of chronic nitric oxide inhibition on T-type channel function. In contrast, in wild-type mice, ML171 and VAS2870, but not catalase, reduced the contribution of T-type channels to vascular tone, suggesting a role for Nox1 and non-selective actions of VAS2870. We conclude that Nox1, but not Nox2 or Nox4, is responsible for the upregulation of T-type calcium channels elicited by chronic nitric oxide deficit. These data point to an important role for this isoform in increasing T-type channel function during oxidative stress.
Collapse
|
41
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
42
|
El-Awady MS, Rajamani U, Teng B, Tilley SL, Mustafa SJ. Evidence for the involvement of NADPH oxidase in adenosine receptors-mediated control of coronary flow using A 1 and A 3 knockout mice. Physiol Rep 2013; 1:e00070. [PMID: 24159377 PMCID: PMC3804374 DOI: 10.1002/phy2.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox) and 4 are the major sources for reactive oxygen species (ROS) in cardiovascular system. In conditions such as ischemia-reperfusion injury and hypoxia, both ROS and adenosine are released suggesting a possible interaction. We hypothesized that ROS generated through Nox is involved in adenosine-induced coronary flow (CF) responses. Adenosine (10-8-10-5.5 M) increased CF in isolated hearts from wild type (WT; C57/BL6), A1 adenosine receptor (AR) knockout (A1KO), A3AR KO (A3KO) and A1 and A3AR double KO (A1/A3DKO) mice. The Nox inhibitors apocynin (10-5 M) and gp91 ds-tat (10-6 M) or the SOD and catalase-mimicking agent EUK134 (50 μM) decreased the adenosine-enhanced CF in the WT and all the KOs. Additionally, adenosine increased phosphorylation of p47-phox subunit and ERK 1/2 without changing protein expression of Nox isoforms in WT. Moreover, intracellular superoxide production was increased by adenosine and CGS-21680 (a selective A2A agonist), but not BAY 60-6583 (a selective A2B agonist), in mouse coronary artery smooth muscle cells (CASMCs) and endothelial cells (CAECs). This superoxide increase was inhibited by the gp91 ds-tat and ERK 1/2 inhibitor (PD98059). In conclusion, adenosine-induced increase in CF in isolated heart involves Nox2-generated superoxide, possibly through ERK 1/2 phosphorylation with subsequent p47-phox subunit phosphorylation. This adenosine/Nox/ROS interaction occurs in both CASMCs and CAECs, and involves neither A1 nor A3 ARs, but possibly A2A ARs in mouse.
Collapse
Affiliation(s)
- Mohammed S El-Awady
- Department of Physiology and Pharmacology,Center for Cardiovascular and Respiratory Sciences and Clinical & Translational Science Institute, West Virginia University, Morgantown, WV 26505, USA ; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | | | | | | | | |
Collapse
|
43
|
Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013; 24:1512-8. [PMID: 23970124 DOI: 10.1681/asn.2012111112] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in normal cellular physiology. They regulate different biologic processes such as cell defense, hormone synthesis and signaling, activation of G protein-coupled receptors, and ion channels and kinases/phosphatases. ROS are also important regulators of transcription factors and gene expression. On the other hand, in pathologic conditions, a surplus of ROS in tissue results in oxidative stress with various injurious consequences such as inflammation and fibrosis. NADPH oxidases are one of the many sources of ROS in biologic systems, and there are seven isoforms (Nox1-5, Duox1, Duox2). Nox4 is the predominant form in the kidney, although Nox2 is also expressed. Nox4 has been implicated in the basal production of ROS in the kidney and in pathologic conditions such as diabetic nephropathy and CKD; upregulation of Nox4 may be important in renal oxidative stress and kidney injury. Although there is growing evidence indicating the involvement of NADPH oxidase in renal pathology, there is a paucity of information on the role of NADPH oxidase in the regulation of normal renal function. Here we provide an update on the role of NADPH oxidases and ROS in renal physiology and pathology.
Collapse
Affiliation(s)
- Mona Sedeek
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 2012; 11:410-7. [PMID: 22260450 DOI: 10.1111/j.1474-9726.2012.00796.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Klotho is a recently discovered anti-aging gene. The purpose of this study was to investigate whether klotho gene transfer attenuates superoxide production and oxidative stress in rat aorta smooth muscle (RASM) cells. RASM cells were transfected with AAV plasmids carrying mouse klotho full-length cDNA (mKL) or LacZ as a control. Klotho gene transfer increased klotho expression in RASM cells. Notably, klotho gene expression decreased Nox2 NADPH oxidase protein expression but did not affect Nox2 mRNA expression, suggesting that the inhibition may occur at the posttranscriptional level. Klotho gene transfer decreased intracellular superoxide production and oxidative stress in RASM cells. Klotho gene expression also significantly attenuated the angiotensin II (AngII)-induced superoxide production, oxidative damage, and apoptosis. Interestingly, klotho gene delivery dose dependently increased the intracellular cAMP level and PKA activity in RASM cells. Rp-cAMP, a competitive inhibitor of cAMP, abolished the klotho-induced increase in PKA activity, indicating that klotho activated PKA via cAMP. Notably, inhibition of cAMP-dependent PKA activity by RP-cAMP abolished klotho-induced inhibition of Nox2 protein expression, suggesting an important role of cAMP-dependent PKA in this process. This finding revealed a previously unidentified role of klotho in regulating Nox2 protein expression in RASM cells. Klotho not only downregulated Nox2 protein expression and intracellular superoxide production but also attenuated AngII-induced superoxide production, oxidative damage, and apoptosis. The klotho-induced suppression of Nox2 protein expression may be mediated by the cAMP-PKA pathway.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
45
|
Takac I, Schröder K, Brandes RP. The Nox family of NADPH oxidases: friend or foe of the vascular system? Curr Hypertens Rep 2012; 14:70-8. [PMID: 22071588 DOI: 10.1007/s11906-011-0238-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH (nicotinamide adenine dinucleotide phosphate) oxidases are important sources of reactive oxygen species (ROS). In the vascular system, ROS can have both beneficial and detrimental effects. Under physiologic conditions, ROS are involved in signaling pathways that regulate vascular tone as well as cellular processes like proliferation, migration and differentiation. However, high doses of ROS, which are produced after induction or activation of NADPH oxidases in response to cardiovascular risk factors and inflammation, contribute to the development of endothelial dysfunction and vascular disease. In vascular cells, the NADPH oxidase isoforms Nox1, Nox2, Nox4, and Nox5 are expressed, which differ in their activity, response to stimuli, and the type of ROS released. This review focuses on the specific role of different NADPH oxidase isoforms in vascular physiology and their potential contributions to vascular diseases.
Collapse
Affiliation(s)
- Ina Takac
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | |
Collapse
|
46
|
Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 2012. [PMID: 22260450 DOI: 10.1111/j.1474-9726.2012.00796.x.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Klotho is a recently discovered anti-aging gene. The purpose of this study was to investigate whether klotho gene transfer attenuates superoxide production and oxidative stress in rat aorta smooth muscle (RASM) cells. RASM cells were transfected with AAV plasmids carrying mouse klotho full-length cDNA (mKL) or LacZ as a control. Klotho gene transfer increased klotho expression in RASM cells. Notably, klotho gene expression decreased Nox2 NADPH oxidase protein expression but did not affect Nox2 mRNA expression, suggesting that the inhibition may occur at the posttranscriptional level. Klotho gene transfer decreased intracellular superoxide production and oxidative stress in RASM cells. Klotho gene expression also significantly attenuated the angiotensin II (AngII)-induced superoxide production, oxidative damage, and apoptosis. Interestingly, klotho gene delivery dose dependently increased the intracellular cAMP level and PKA activity in RASM cells. Rp-cAMP, a competitive inhibitor of cAMP, abolished the klotho-induced increase in PKA activity, indicating that klotho activated PKA via cAMP. Notably, inhibition of cAMP-dependent PKA activity by RP-cAMP abolished klotho-induced inhibition of Nox2 protein expression, suggesting an important role of cAMP-dependent PKA in this process. This finding revealed a previously unidentified role of klotho in regulating Nox2 protein expression in RASM cells. Klotho not only downregulated Nox2 protein expression and intracellular superoxide production but also attenuated AngII-induced superoxide production, oxidative damage, and apoptosis. The klotho-induced suppression of Nox2 protein expression may be mediated by the cAMP-PKA pathway.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
47
|
Gao X, Patzak A, Sendeski M, Scheffer PG, Teerlink T, Sällström J, Fredholm BB, Persson AEG, Carlström M. Adenosine A1-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1669-81. [DOI: 10.1152/ajpregu.00268.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine mediates tubuloglomerular feedback responses via activation of A1-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A1-receptor knockout (A1−/−) and wild-type (A1+/+) mice we investigated the hypothesis that A1-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) or ANG II treatment. The hypertensive responses to l-NAME and ANG II were clearly attenuated in A1−/− mice. Arteriolar contractions to l-NAME (10−4 mol/l; 15 min) and cumulative ANG II application (10−12 to 10−6 mol/l) were lower in A1−/− mice. Simultaneous treatment with tempol (10−4 mol/l; 15 min) attenuated arteriolar responses in A1+/+ but not in A1−/− mice, suggesting differences in ROS formation. Chronic treatment with l-NAME or ANG II did not alter arteriolar responses in A1−/− mice, but enhanced maximal contractions in A1+/+ mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A1+/+ mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A1-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A1-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Mauricio Sendeski
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Peter G. Scheffer
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
El-Awady MS, Ansari HR, Fil D, Tilley SL, Mustafa SJ. NADPH oxidase pathway is involved in aortic contraction induced by A3 adenosine receptor in mice. J Pharmacol Exp Ther 2011; 338:711-7. [PMID: 21606175 PMCID: PMC3141902 DOI: 10.1124/jpet.111.180828] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox), and 4 are the major sources for reactive oxygen species (ROS) in vascular tissues. In conditions such as ischemia-reperfusion and hypoxia, both ROS and adenosine are released, suggesting a possible interaction. Our aim in this study was to examine the A(3) adenosine receptor (A(3)AR)-induced vascular effects and its relation to ROS and Nox1, 2, and 4 using aortic tissues from wild-type (WT) and A(3)AR knockout (A(3)KO) mice. The selective A(3)AR agonist 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IBMECA) (10(-10)-10(-5) M) induced contraction of the aorta from WT but not from A(3)KO mice, and this contraction was inhibited by the Nox inhibitor apocynin (10(-5) M) and the ROS scavengers superoxide dismutase-polyethylene glycol and catalase-polyethylene glycol (100 U/ml each). Cl-IBMECA-induced contraction was not affected by the mast cell degranulator compound 48/80 (100 μg/ml) or the stabilizer cromolyn sodium (10(-4) M). In addition, Cl-IBMECA (10(-7) M) increased intracellular ROS generation by 35 ± 14% in WT but not in A(3)KO aorta, and this increase was inhibited by apocynin (10(-5) M), diphenyleneiodonium chloride (10(-5) M), and the A(3)AR antagonist 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate (MRS1523) (10(-5) M). Furthermore, Cl-IBMECA selectively increased the protein expression of the Nox2 subunit by 150 ± 15% in WT but not in A(3)KO mice without affecting either Nox1 or 4, and this increase was inhibited by apocynin. The mRNA of Nox2 was unchanged by Cl-IBMECA in either WT or A(3)KO aortas. In conclusion, A(3)AR enhances ROS generation, possibly through activation of Nox2, with subsequent contraction of the mouse aorta.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Female
- Fluoresceins/pharmacology
- Male
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- NADPH Oxidase 2
- NADPH Oxidases/metabolism
- NADPH Oxidases/physiology
- Reactive Oxygen Species/metabolism
- Receptor, Adenosine A3/deficiency
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Mohammed S El-Awady
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | |
Collapse
|
49
|
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10:453-71. [PMID: 21629295 PMCID: PMC3361719 DOI: 10.1038/nrd3403] [Citation(s) in RCA: 713] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology & Immunopharmacology Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
50
|
Carlström M, Wilcox CS, Welch WJ. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2010; 300:F457-64. [PMID: 21106859 DOI: 10.1152/ajprenal.00567.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(2) receptors have been suggested to modulate tubuloglomerular feedback (TGF) responses by counteracting adenosine A(1) receptor-mediated vasoconstriction, but the mechanisms are unclear. We tested the hypothesis that A(2A) receptor activation blunts TGF by release of nitric oxide in the juxtaglomerular apparatus (JGA). Maximal TGF responses were measured in male Sprague-Dawley rats as changes in proximal stop-flow pressure (ΔP(SF)) in response to increased perfusion of the loop of Henle (0 to 40 nl/min) with artificial tubular fluid (ATF). The maximal TGF response was studied after 5 min intratubular perfusion (10 nl/min) with ATF or ATF + A(2A) receptor agonist (CGS-21680; 10(-7) mol/l). The interaction with nitric oxide synthase (NOS) isoforms was tested by perfusion with a nonselective NOS inhibitor [N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME); 10(-3) mol/l] or a selective neuronal NOS (nNOS) inhibitor [N(ω)-propyl-L-arginine (L-NPA); 10(-6) mol/l] alone, and with the A(2A) agonist. Blood pressure, urine flow, and P(SF) at 0 nl/min were similar among the groups. The maximal TGF response (ΔP(SF)) with ATF alone (12.3 ± 0.6 mmHg) was attenuated by selective A(2A) stimulation (9.5 ± 0.4 mmHg). L-NAME enhanced maximal TGF responses (18.9 ± 0.4 mmHg) significantly more than L-NPA (15.2 ± 0.7 mmHg). Stimulation of A(2A) receptors did not influence maximal TGF response during nonselective NOS inhibition (19.0 ± 0.4) but attenuated responses during nNOS inhibition (10.3 ± 0.4 mmHg). In conclusion, adenosine A(2A) receptor activation attenuated TGF responses by stimulation of endothelial NOS (eNOS), presumably in the afferent arteriole. Moreover, NO derived from both eNOS and nNOS in the JGA may blunt TGF responses.
Collapse
Affiliation(s)
- Mattias Carlström
- Division of Nephrology and Hypertension, and Hypertension, Kidney & Vascular Research Center, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|