1
|
Stagikas D, Simos YV, Lakkas L, Filis P, Peschos D, Tsamis KI. The role of the hypothalamus in the development of cancer cachexia. Physiol Behav 2025; 295:114909. [PMID: 40194732 DOI: 10.1016/j.physbeh.2025.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Cachexia is a complex multiorgan syndrome associated with various chronic diseases, characterized by anorexia and increased tissue wasting in the context of chronic inflammation. A specific form of this syndrome, known as cancer cachexia (CC), occurs alongside different types of tumors. The pathogenesis of CC is multifactorial. Inflammatory mediators and hormones released by both tumor and host cells have a relevant role in driving the peripheral catabolic process through several direct mechanisms. Accumulating evidence indicates that the central nervous system (CNS) plays an integral role in the pathogenesis of CC. The hypothalamus has emerged as a critical brain region that senses and amplifies peripheral stimuli, generating inappropriate neuronal signaling and leading to the dysregulation of energy homeostasis under cachexia conditions. Circulating cytokines may act in concert with hormones and neurotransmitters and perturb critical hypothalamic neurocircuits shifting their activity towards the anorexigenic pathway and increase of energy expenditure. This review discusses the mechanisms mediating the hypothalamic homeostatic imbalance in the context of anorexia and cachexia associated with cancer.
Collapse
Affiliation(s)
- Dimitrios Stagikas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Yannis Vasileios Simos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Lampros Lakkas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Panagiotis Filis
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110, Ioannina, Greece; Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Konstantinos Ioannis Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
2
|
Badeńska M, Badeński A, Janek A, Szczepańska M. The role of nesfatin-1 in kidney diseases. Pediatr Nephrol 2025; 40:901-907. [PMID: 39480586 PMCID: PMC11885357 DOI: 10.1007/s00467-024-06569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Nesfatin-1 is a recently discovered protein with a pleiotropic function on various organs, including kidneys. This molecule presents antiapoptotic, antihyperglycemic, antioxidative, and anorectic features. Available data regarding the role of nesfatin-1 in kidney function and diseases focuses on chronic kidney disease, acute kidney injury, blood pressure, and renal cell carcinoma. Various studies have shown that the levels of nesfatin-1 were increased in patients with diabetic kidney disease (DKD); therefore, it was suggested that nesfatin-1 might act as an early DKD marker. Furthermore, the potential protective function of nesfatin-1 against inflammation, oxidative stress, fibrosis, and apoptosis in kidney tissues was described in several studies. Alternatively, as reported in the literature, a positive correlation between blood pressure elevation and nesfatin-1 levels was noted. Moreover, nesfatin-1 might exert influence on renal cell carcinoma progression and invasion of cancerous cells. Nesfatin-1 shows considerable potential for acting as a prognostic marker or a defensive factor for kidney diseases; however, further investigation, especially in the pediatric population, is still required.
Collapse
Affiliation(s)
- Marta Badeńska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800, Zabrze, Poland.
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800, Zabrze, Poland
| | - Artur Janek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800, Zabrze, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800, Zabrze, Poland
| |
Collapse
|
3
|
Steffen TL, Stafford JD, Samson WK, Yosten GLC. Nesfatin-1 is a regulator of inflammation with implications during obesity and metabolic syndrome. Appetite 2024; 203:107669. [PMID: 39251090 DOI: 10.1016/j.appet.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.
Collapse
Affiliation(s)
- Tara L Steffen
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA.
| | - Joshua D Stafford
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Willis K Samson
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Gina L C Yosten
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| |
Collapse
|
4
|
Wang S, Gu J, Bian J, He Y, Xu X, Wang C, Li G, Zhang H, Ni B, Chen S, Shao Y, Jiang Y. Nesfatin-1 mitigates calcific aortic valve disease via suppressing ferroptosis mediated by GSH/GPX4 and ZIP8/SOD2 axes. Free Radic Biol Med 2024; 222:149-164. [PMID: 38851518 DOI: 10.1016/j.freeradbiomed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) predominantly affects the elderly and currently lacks effective medical treatments. Nesfatin-1, a peptide derived from the cleavage of Nucleobindin 2, has been implicated in various calcification processes, both physiological and pathological. This study explores the impact of Nesfatin-1 on the transformation of aortic valve interstitial cells (AVICs) in CAVD. METHODS AND RESULTS In vitro experiments showed that Nesfatin-1 treatment mitigated the osteogenic differentiation of AVICs. Corresponding in vivo studies demonstrated a deceleration in the progression of CAVD. RNA-sequencing of AVICs treated with and without Nesfatin-1 highlighted an enrichment of the Ferroptosis pathway among the top pathways identified by the Kyoto Encyclopedia of Genes and Genomes analysis. Further examination confirmed increased ferroptosis in both calcified valves and osteoblast-like AVICs, with a reduction in ferroptosis following Nesfatin-1 treatment. Within the Ferroptosis pathway, ZIP8 showed the most notable modulation by Nesfatin-1. Silencing ZIP8 in AVICs increased ferroptosis and osteogenic differentiation, decreased intracellular Mn2+ concentration, and reduced the expression and activity of superoxide dismutase (SOD2). Furthermore, the silencing of SOD2 exacerbated ferroptosis and osteogenic differentiation. Nesfatin-1 treatment was found to elevate the expression of glutathione peroxidase 4 (GPX4) and levels of glutathione (GSH), as confirmed by Western blotting and GSH concentration assays. CONCLUSION In summary, Nesfatin-1 effectively inhibits the osteogenic differentiation of AVICs by attenuating ferroptosis, primarily through the GSH/GPX4 and ZIP8/SOD2 pathways.
Collapse
Affiliation(s)
- Song Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Yuqiu He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xiufan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Chen Wang
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Geng Li
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Hui Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Buqing Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Si Chen
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China.
| | - Yefan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
5
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
6
|
Panditrao Lahane G, Dhar A. Renoprotective effect of Nesfatin-1 in Adenine-Induced Chronic kidney Disease: An in vitro and in vivo study. Biochem Pharmacol 2024; 225:116284. [PMID: 38750903 DOI: 10.1016/j.bcp.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells. Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated. Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1β, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-β, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells. In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
7
|
Lenda R, Zhukova L, Ożyhar A, Bystranowska D. Deciphering the dual nature of nesfatin-1: a tale of zinc ion's Janus-faced influence. Cell Commun Signal 2024; 22:298. [PMID: 38812013 PMCID: PMC11134965 DOI: 10.1186/s12964-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Nucleobindin-2 (Nucb2) and nesfatin-1 (N1) are widely distributed hormones that regulate numerous physiological processes, from energy homeostasis to carcinogenesis. However, the role of nesfatin-2 (N2), the second product of Nucb2 proteolytic processing, remains elusive. To elucidate the relationship between the structure and function of nesfatins, we investigated the properties of chicken and human homologs of N1, as well as a fragment of Nucb2 consisting of N1 and N2 conjoined in a head-to-tail manner (N1/2). RESULTS Our findings indicate that Zn(II) sensing, in the case of N1, is conserved between chicken and human species. However, the data presented here reveal significant differences in the molecular features of the analyzed peptides, particularly in the presence of Zn(II). We demonstrated that Zn(II) has a Janus effect on the M30 region (a crucial anorexigenic core) of N1 and N1/2. In N1 homologs, Zn(II) binding results in the concealment of the M30 region driven by a disorder-to-order transition and adoption of the amyloid fold. In contrast, in N1/2 molecules, Zn(II) binding causes the exposure of the M30 region and its destabilization, resulting in strong exposure of the region recognized by prohormone convertases within the N1/2 molecule. CONCLUSIONS In conclusion, we found that Zn(II) binding is conserved between chicken and human N1. However, despite the high homology of chicken and human N1, their interaction modes with Zn(II) appear to differ. Furthermore, Zn(II) binding might be essential for regulating the function of nesfatins by spatiotemporally hindering the N1 anorexigenic M30 core and concomitantly facilitating N1 release from Nucb2.
Collapse
Affiliation(s)
- Rafał Lenda
- Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
| |
Collapse
|
8
|
GÜVENÇ BAYRAM G, YALÇIN M. Central thromboxane A2, prostaglandin F2α, prostaglandin E, and prostaglandin D contribute to the cardiovascular effects elicited by nesfatin-1. Turk J Med Sci 2024; 54:598-606. [PMID: 39049997 PMCID: PMC11265843 DOI: 10.55730/1300-0144.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/12/2024] [Accepted: 03/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Our recent study revealed that the expression of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in the hypothalamus is activated by nesfatin-1, leading to the liberation of leukotrienes and prostaglandins (PG), respectively. Moreover, our prior report explained that intracerebroventricular (ICV) nesfatin-1 treatment triggers cardiovascular responses mediated by central LOX and COX enzymes. Building upon our prior reports, the present investigation sought to clarify the role of cardiovascularly active central COX products, such as thromboxane (TX) A2, PGF2α, PGE, and PGD, in orchestrating nesfatin-1-evoked reactions in mean arterial pressure (MAP) and heart rate (HR). Materials and methods The Sprague Dawley rats, which had guide cannula in the lateral ventricle for intracerebroventricular (ICV) injections and catheter in arteria femoralis for monitoring MAP and HR, were underwent central pretreatment with furegrelate (the TXA2 synthase inhibitor), PGF2α-dimethylamine (PGF2α-DA, the PGF2α receptor antagonist), or AH6809 (the PGE and PGD receptor antagonist), 5 min prior to ICV nesfatin-1 administration. The cardiovascular parameters were observed and recorded for 60 min posttreatment. Results Nesfatin-1 induced cardiovascular responses in rats leading to pressor effect in MAP, and tachycardia following bradycardia in HR. Interestingly, ICV furegrelate, PGF2α-DA, or AH6809 pretreatment partially mitigated the cardiovascular effects revealed by nesfatin-1. Conclusion The findings illuminate the role of nesfatin-1 in modulating MAP and HR through the central activation of specifically TXA2, PGF2α, PGE, and PGD from COX metabolites. Additionally, the study may also suggest the potential involvement of other central COX or LOX metabolites beyond these COX metabolites in mediating the cardiovascular effects produced by nesfatin-1.
Collapse
Affiliation(s)
- Gökçen GÜVENÇ BAYRAM
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa,
Turkiye
- Department of Physiology, Faculty of Veterinary Medicine, Dokuz Eylül University, Kiraz, İzmir,
Turkiye
| | - Murat YALÇIN
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa,
Turkiye
| |
Collapse
|
9
|
Aghayeva A, Gok Yurtseven D, Hasanoglu Akbulut N, Eyigor O. Immunohistochemical determination of the excitatory and inhibitory axonal endings contacting NUCB2/nesfatin-1 neurons. Neuropeptides 2024; 103:102401. [PMID: 38157780 DOI: 10.1016/j.npep.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters. In double labeling applied on floating sections, the NUCB2/nesfatin-1 reaction was determined in brown color with diaminobenzidine, while vesicular carrier proteins were marked in black. Slides were analyzed to determine the ratio of nesfatin-1 neurons in the three hypothalamic nucleus in contact with a relevant vesicular carrier protein. The ratios of NUCB2/nesfatin-1 neurons with the innervation were compared among neurotransmitters. In addition, possible gender differences between males and females were examined. The difference in the number of VGLUT2-contacting NUCB2/nesfatin-1 neurons was significantly higher in males when compared to females. When both genders were compared in different nuclei, it was seen that there was no statistical significance in terms of the percentage of NUCB2/nesfatin-1 neuron apposition with VGLUT3. The statistical evaluation showed that number of NUCB2/nesfatin-1 neurons receiving GABAergic innervation is higher in males when compared to females (*p ≤ 0.05; p = 0.045). When the axonal contact of vesicular neurotransmitter transporter proteins was compared between the neurotransmitters, it was determined that the most prominent innervation is GABAergic. In the supraoptic region, no contacts of VAChT-containing axons were found on NUCB2/nesfatin-1 neurons in both female and male subjects. In conclusion, it is understood that both excitatory and inhibitory neurons can innervate the NUCB2/nesfatin-1 neurons and the glutamatergic system is effective in the excitatory innervation while the GABAergic system plays a role in the inhibitory mechanism.
Collapse
Affiliation(s)
- Aynura Aghayeva
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Duygu Gok Yurtseven
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye.
| |
Collapse
|
10
|
Zheng J, Han J, Wang Y, Tian Z. Role of brain NUCB2/nesfatin-1 in stress and stress-related gastrointestinal disorders. Peptides 2023:171043. [PMID: 37311488 DOI: 10.1016/j.peptides.2023.171043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Since the discovery of NUCB2/nesfatin-1 as a novel anorexigenic factor, the expanding function of this peptide has been elucidated in recent years. Increasing evidence suggests that NUCB2/nesfatin-1 is also involved in the regulation of stress and stress-related gastrointestinal disorders. Therefore, we investigated the relationship between NUCB2/nesfatin-1, stress and stress-related gastrointestinal disorders and summarized the results of these studies. Different stressors and duration of stress activate different NUCB2/nesfatin-1-associated brain regions and have different effects on serum corticosterone levels. Central and peripheral NUCB2/nesfatin-1 mediates stress-related gastrointestinal disorders but appears to be protective against inflammatory bowel disease. NUCB2/nesfatin-1 plays an important role in mediating the brain-gut crosstalk, but precise clarification is still needed to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Jing Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Madadi S, Hasasnpour S, Zendehdel M, Vazir B, Jahandideh A. Role of central Adiponectin and its interactions with NPY and GABAergic systems on food intake in neonatal layer chicken. Neurosci Lett 2023; 808:137283. [PMID: 37142113 DOI: 10.1016/j.neulet.2023.137283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND & AIM Adiponectin is a member of the adipokine family and contributes to regulating energy homeostasis, reproduction, and various biological functions, such as insulin receptor signaling pathway sensitivity, mitochondrial biogenesis, oxidative metabolism, neurogenesis, and suppression of inflammation. This study aimed to investigate the effects of intracerebroventricular (ICV) injection of adiponectin and its interaction with the neuropeptide Y (NPY) and GABAergic systems on central appetite regulation in neonatal layer-type chickens. MATERIALS & METHODS In this study, 6 experiments were conducted, each of which included 4 experimental groups. In the first experiment, the chickens were injected with saline and adiponectin (20.73, 41.45, and 62.18 nmol). In the second experiment, saline, adiponectin (62.18 nmol), B5063 (NPY1 receptor antagonist, 2.12 nmol), and simultaneous injections of adiponectin and B5063 were performed. Experiments 3 to 6 were done in the same way to experiment 1, but the chickens were injected with SF22 (NPY2 receptor antagonist, 2.66 nmol), SML0891 (NPY5 receptor antagonist, 2.89 nmol), picrotoxin (GABAA receptor antagonist, 0.89 nmol), CGP54626 (GABAB receptor antagonist, 0.047 nmol) instead of B5063. Feed consumption was measured 120 min after the injection. RESULTS A dose-dependent increase in appetite was observed after the injection of adiponectin (20.73, 41.45, and 62.18 nmol) (P<0.05). The injection of B5063 + adiponectin attenuated the hyperphagic effect of adiponectin (P< 0.05). In addition, co-injection of picrotoxin and adiponectin significantly decreased adiponectin-induced hyperphagia (P<0.05). In addition, adiponectin significantly increased the number of steps, jumps, exploratory food, pecks, and standing time, while decreasing sitting time and rest time (P<0.05). CONCLUSION These results suggest that the hyperphagic effects of adiponectin are probably mediated through NPY1 and GABAA receptors in neonatal layer-type chickens.
Collapse
Affiliation(s)
- Sedigheh Madadi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hasasnpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Naseroleslami M, Sharifi M, Rakhshan K, Mokhtari B, Aboutaleb N. Nesfatin-1 attenuates injury in a rat model of myocardial infarction by targeting autophagy, inflammation, and apoptosis. Arch Physiol Biochem 2023; 129:122-130. [PMID: 32762481 DOI: 10.1080/13813455.2020.1802486] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 plays an important role in the modulation of heart performance. However, it remains unclear how nesfatin-1 contributes to cell survival in acute myocardial infarction (MI). A rat model of MI was established via ligation of left anterior descending coronary artery (LAD) for 30 min and 20 µg/kg concentration of nesfatin-1 was intraperitoneally infused prior to reperfusion. At 24 h after reperfusion, oxidative stress markers, the expression of caspase3, beclin-1, pro-inflammatory cytokines, and the mRNA levels of Bax and Bcl-2 were evaluated. Results showed that nesfatin-1 markedly restored GSH content and SOD activity as well as reduced MDA levels compared to only the MI group (p < .05). Likewise, nesfatin-1 contributed to cell survival by inhibiting autophagy and apoptosis markers such as caspase3 and Bax (p < .05). Collectively, these findings support the idea that nasfatin-1 can be used as a good candidate to treat MI by targeting oxidative stress, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masuomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Mokhtari
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Demirci Ş, Gün C. Zinc Supplementation Improved Neuropeptide Y, Nesfatin-1, Leptin, C-reactive protein, and HOMA-IR of Diet-Induced Obese Rats. Biol Trace Elem Res 2022; 200:3996-4006. [PMID: 34708332 DOI: 10.1007/s12011-021-02987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Obesity is a mild chronic inflammation that causes many metabolic diseases. It was aimed to investigate some parameters affective on the energy metabolism by adding zinc (Zn, ZnSO4) to drinking water of diet-induced obese rats. Five-week aged, male Sprague Dawley rats divided into as control group, consuming standard rat diet, and high-fat diet (HFD) group. After obesity induced by feeding HFD for 8 weeks, the obese rats were divided into Zn-supplemented obese group (HFD + obese + Zn; 150 mg Zn/L (for 6 weeks), 235 mg Zn/L (7th week), 250 mg Zn/L (8th week) in drinking water) and obese group (HFD + obese). Mean body weight, serum concentrations of C-reactive protein, neuropeptide-Y, leptin, insulin fasting blood glucose, and HOMA-IR were statistically decreased by given Zn in HFD + obese + Zn group compared to HFD + obese rats. It was observed that the total cholesterol, LDL, and HDL cholesterol levels of HFD + obese + Zn group became closer to the control group level, and Zn supplementation caused a statistically significant decrease in cholesterol profile than HFD + obese rats. Also, increased mean serum nesfatin-1 level, an effective protein for the formation of satiety, was analyzed in HFD + obese + Zn group when compared to HFD + obese ones. Serum triglyceride concentration tended to decrease with the effect of Zn in obese rats. In conclusion, it can be said that oral use of Zn could improve energy balance and prevent the occurrence of metabolic diseases related to obesity depending on the anti-inflammatory effect of Zn.
Collapse
Affiliation(s)
- Şule Demirci
- Physiology Department, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Campus, Burdur, Turkey.
| | | |
Collapse
|
15
|
Rakhshan K, Dalouchi F, Sharifiaghdam Z, Safaei A, Jahanshahi F, Azizi Y. Modulation of Apoptosis and Oxidative Stress with Nesfatin-1 in Doxorubicin Induced Cardiotoxicity in Male Rat. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lu Z, Cui D, Liu JYH, Jiang B, Ngan MP, Sakata I, Takemi S, Sakai T, Lin G, Chan SW, Rudd JA. The Actions of Centrally Administered Nesfatin-1 on Emesis, Feeding, and Locomotor Activity in Suncus murinus (House Musk Shrew). Front Pharmacol 2022; 13:858522. [PMID: 35462894 PMCID: PMC9019301 DOI: 10.3389/fphar.2022.858522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas involved in the regulation of feeding, emotion and emesis. The aim of the present study is to characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake, and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was detected throughout the entire brain and in the gastrointestinal tract, including the stomach and gut. Western blot analysis and immunohistochemistry confirmed the expression of nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus, hippocampus and brainstem were significantly decreased, whereas that in the striatum were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In in vitro studies, nesfatin-1 (0.3–1,000 pM) failed to contract or relax the isolated gastric antrum and intestinal segments. In conscious, freely moving animals, intracerebroventricular administration of nesfatin-1 (1–50 pmol) induced emesis (p < 0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-1 to forebrain system.
Collapse
Affiliation(s)
- Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Julia Yuen Hang Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Man Piu Ngan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ichiro Sakata
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shota Takemi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takafumi Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ge Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
- *Correspondence: Sze Wa Chan,
| | - John A. Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Durst M, Könczöl K, Ocskay K, Sípos K, Várnai P, Szilvásy-Szabó A, Fekete C, Tóth ZE. Hypothalamic Nesfatin-1 Resistance May Underlie the Development of Type 2 Diabetes Mellitus in Maternally Undernourished Non-obese Rats. Front Neurosci 2022; 16:828571. [PMID: 35386592 PMCID: PMC8978526 DOI: 10.3389/fnins.2022.828571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth retardation (IUGR) poses a high risk for developing late-onset, non-obese type 2 diabetes (T2DM). The exact mechanism underlying this phenomenon is unknown, although the contribution of the central nervous system is recognized. The main hypothalamic nuclei involved in the homeostatic regulation express nesfatin-1, an anorexigenic neuropeptide and identified regulator of blood glucose level. Using intrauterine protein restricted rat model (PR) of IUGR, we investigated, whether IUGR alters the function of nesfatin-1. We show that PR rats develop fat preference and impaired glucose homeostasis by adulthood, while the body composition and caloric intake of normal nourished (NN) and PR rats are similar. Plasma nesfatin-1 levels are unaffected by IUGR in both neonates and adults, but pro-nesfatin-1 mRNA expression is upregulated in the hypothalamus of adult PR animals. We find that centrally injected nesfatin-1 inhibits the fasting induced neuronal activation in the hypothalamic arcuate nucleus in adult NN rats. This effect of nesfatin-1 is not seen in PR rats. The anorexigenic effect of centrally injected nesfatin-1 is also reduced in adult PR rats. Moreover, chronic central nesfatin-1 administration improves the glucose tolerance and insulin sensitivity in NN rats but not in PR animals. Birth dating of nesfatin-1 cells by bromodeoxyuridine (BrDU) reveals that formation of nesfatin-1 cells in the hypothalamus of PR rats is disturbed. Our results suggest that adult PR rats acquire hypothalamic nesfatin-1-resistance, probably due to the altered development of the hypothalamic nesfatin-1 cells. Hypothalamic nesfatin-1-resistance, in turn, may contribute to the development of non-obese type T2DM.
Collapse
Affiliation(s)
- Máté Durst
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Klementina Ocskay
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- *Correspondence: Zsuzsanna E. Tóth,
| |
Collapse
|
18
|
Rupp SK, Stengel A. Interactions between nesfatin-1 and the autonomic nervous system-An overview. Peptides 2022; 149:170719. [PMID: 34953946 DOI: 10.1016/j.peptides.2021.170719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, an 82-amino acid polypeptide derived from the precursor protein nucleobindin-2 (NUCB2), was first discovered in 2006 in the rat hypothalamus. The effects and distribution of nesfatin-1 immunopositive neurons in the brain and spinal cord point towards a role of NUCB2/nesfatin-1 in autonomic regulation. Therefore, studies which have been conducted to investigate the interplay between nesfatin-1 and the autonomic nervous system were examined, and the outcomes of this research were summarized. NUCB2/nesfatin-1 immunoreactivity is widely distributed in autonomic centers of the brain and spinal cord in both rodents and humans. In several regions of the hypothalamus, midbrain and brainstem, nesfatin-1 modulates autonomic functions. On the other hand, the autonomic nervous system also influences the activity of nesfatin-1 neurons. Here, the vagus nerve seems to be a crucial factor in the regulation of nesfatin-1. In summary, although data here is still sparse, there is a clear interplay between nesfatin-1 and the autonomic nervous system, the precise clarification of which still requires further research to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
19
|
Tezcan N, Özdemir-Kumral ZN, Yenal NÖ, Çilingir-Kaya ÖT, Virlan AT, Özbeyli D, Çetinel Ş, Yeğen BÇ, Koç M. Nesfatin-1 treatment preserves antioxidant status and attenuates renal fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 2022; 37:1238-1248. [PMID: 35218196 DOI: 10.1093/ndt/gfac053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nesfatin-1 (NES-1), an anorexigenic peptide, was reported to have anti-inflammatory and anti-apoptotic actions in several inflammation models. METHODS To elucidate potential renoprotective effects of NES-1, unilateral ureteral obstruction (UUO) was induced in male Sprague Dawley rats by ligating left ureters. The rats were injected intraperitoneally with either saline (SL) or NES-1 (10 μg/kg/day) for 7 or 14 days (n = 8 in each group). On the 7th or 14th day, obstructed kidneys were removed for the isolation of leukocytes for flow-cytometric analysis and for the assessments of biochemical and histopathological changes. RESULTS Opposite to glutathione levels, renal myeloperoxidase activity in the SL-treated UUO group was significantly increased compared to sham-operated group, while NES-1 treatment abolished the elevation. The percentages of CD8+/CD4+ T-lymphocytes infiltrating the obstructed kidneys were increased in SL-treated groups but treatment with NES-1 did not prevent lymphocyte infiltration. Elevated TNF-a levels in SL-treated UUO group was decreased with NES-1. Although total degeneration scores were similarly increased in all UUO groups, tubular dilatation scores were significantly increased in UUO groups and lowered by NES-1 only in the 7-day treated group. Elevated interstitial fibrosis scores in the SL-treated groups were decreased in both 7- and 14-day NES-1 treated groups, while alpha smooth muscle actin (α-SMA) and apoptosis scores were depressed in both NES-1 treated groups. CONCLUSION The present data demonstrate that UUO-induced renal fibrosis is ameliorated by NES-1, which appears to involve the inhibition of neutrophil infiltration and thereby amelioration of oxidative stress and inflammation. These data suggest that NES-1 may have a regulatory role in protecting the kidneys against obstruction-induced renal injury.
Collapse
Affiliation(s)
- Neslihan Tezcan
- Marmara University School of Medicine, Department of Internal Medicine, Turkey
| | | | - Naziye Özkan Yenal
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | | | | | - Dilek Özbeyli
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | - Şule Çetinel
- Marmara University School of Medicine, Department of Histology & Embryology, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Mehmet Koç
- Marmara University School of Medicine, Department of Physiology, Turkey.,Marmara University School of Medicine, Division of Nephrology, Turkey
| |
Collapse
|
20
|
Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. Gen Comp Endocrinol 2022; 315:113930. [PMID: 34673032 DOI: 10.1016/j.ygcen.2021.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Animal research indicates the neuropeptide Y (NPY), corticotrophin and melanocortin systems have a mediatory role in reward, however, how these substances interact with phenytoin-14 (PNX-14) induced food intake in birds remains to be identified. Accordingly, in this research eight tests were carried out to investigate the potential interactions of the NPY, melanocortin, as well as corticotrophin systems with PNX-14 on food consumption in neonatal chickens. In the first experiment, chickens were intracerebroventricular (ICV) injected with phosphate-buffered saline (PBS) and PNX-14 (0.8, 0.16, and 3.2 nmol). In second experiment, PBS, the antagonist of CRF1/CRF2 receptors (astressin-B, 30 μg) and PNX-14 + astressin-B were injected. In the rest of the experiments chicken received astressin2-B (CRF2 receptor antagonist; 30 µg), SHU9119 (MCR3/MCR4 receptor antagonist, 0.5nomol), MCL0020 (MCR4 receptor agonist, 0.5 nmol), B5063 (NPY1 receptor antagonist, 1.25 μg), SF22 (NPY2 receptor antagonist, 1.25 μg) and SML0891 (NPY5 receptor antagonist, 1.25 μg) rather than astressin-B. Then, cumulative intake of food was recorded for 2 h. Based on the findings, PNX-14 (0.16 and 3.2 nmol) led to increment in food consumption compared with the control (P < 0.05). Co-administration of the PNX-14 and astressin-B promoted PNX-14-induced hyperphagia (P < 0.05). Co-injection of the PNX-14 + astressin2-B potentiated hyperphagia PNX-14 (P < 0.05). Co-injection of PNX-14 + B5063 inhibited the effects of the PNX-14 (P < 0.05). The co-administration of the PNX-14 and SML0891 potentiated hypophagic effects of the PNX-14 (P < 0.05). The results showed that PNX-14-induced hyperphagia mediates via NPY1, NPY5, and CRF1/CRF2 receptors in neonatal chickens.
Collapse
Affiliation(s)
- Sahar Rajaei
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
21
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
22
|
Sundarrajan L, Jayakumar Rajeswari J, Weber LP, Unniappan S. Nesfatin-1-like peptide is a negative regulator of cardiovascular functions in zebrafish and goldfish. Gen Comp Endocrinol 2021; 313:113892. [PMID: 34453930 DOI: 10.1016/j.ygcen.2021.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Nucleobindins (NUCB1 and NUCB2) were originally identified as calcium and DNA binding proteins. Nesfatin-1 (NEFA/nucleobindin-2-Encoded Satiety and Fat-Influencing proteiN-1) is an 82 amino acid anorexigenic peptide encoded in the N-terminal region of NUCB2. We have shown that nesfatin-1 is a cardiosuppressor in zebrafish. Both NUCB1 and NUCB2 possess a -very highly conserved bioactive core. It was found that a nesfatin-1-like peptide (NLP) encoded in NUCB1 suppresses food intake in fish. In this research, we investigated whether NLP has nesfatin-1-like effects on cardiovascular functions. NUCB1/NLP-like immunoreactivity was found in the atrium and ventricle of the heart and skeletal muscle of zebrafish. Intraperitoneal injection (IP) of either zebrafish NLP or rat NLP suppressed cardiac functions in both zebrafish and goldfish. Irisin and RyR1b mRNA expression was downregulated by NLP in zebrafish cardiac and skeletal muscles. However, cardiac ATP2a2 mRNA expression was elevated after NLP injection. Administration of scrambled NLP did not affect irisin, RyR1b or ATP2a2 mRNA expression in zebrafish. Together, these results implicate NLP as a suppressor of cardiovascular physiology in zebrafish and goldfish.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Lynn P Weber
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
23
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
24
|
Bystranowska D, Skorupska A, Sołtys K, Padjasek M, Krężel A, Żak A, Kaus-Drobek M, Taube M, Kozak M, Ożyhar A. Nucleobindin-2 consists of two structural components: The Zn 2+-sensitive N-terminal half, consisting of nesfatin-1 and -2, and the Ca 2+-sensitive C-terminal half, consisting of nesfatin-3. Comput Struct Biotechnol J 2021; 19:4300-4318. [PMID: 34429849 PMCID: PMC8361300 DOI: 10.1016/j.csbj.2021.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022] Open
Abstract
Nucleobindin-2 (Nucb2) is a protein that has been suggested to play roles in a variety of biological processes. Nucb2 contains two Ca2+/Mg2+-binding EF-hand domains separated by an acidic amino acid residue-rich region and a leucine zipper. All of these domains are located within the C-terminal half of the protein. At the N-terminal half, Nucb2 also possesses a putative Zn2+-binding motif. In our recent studies, we observed that Nucb2 underwent Ca2+-dependent compaction and formed a mosaic-like structure consisting of intertwined disordered and ordered regions at its C-terminal half. The aim of this study was to investigate the impact of two other potential ligands: Mg2+, which possesses chemical properties similar to those of Ca2+, and Zn2+, for which a putative binding motif was identified. In this study, we demonstrated that the binding of Mg2+ led to oligomerization state changes with no significant secondary or tertiary structural alterations of Nucb2. In contrast, Zn2+ binding had a more pronounced effect on the structure of Nucb2, leading to the local destabilization of its N-terminal half while also inducing changes within its C-terminal half. These structural rearrangements resulted in the oligomerization and/or aggregation of Nucb2 molecules. Taken together, the results of our previous and current research help to elucidate the structure of the Nucb2, which can be divided into two parts: the Zn2+-sensitive N-terminal half (consisting of nesfatin-1 and -2) and the Ca2+-sensitive C-terminal half (consisting of nesfatin-3). These results may also help to open a new discussion regarding the diverse roles that metal cations play in regulating the structure of Nucb2 and the various physiological functions of this protein.
Collapse
Affiliation(s)
- Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Skorupska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Żak
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
25
|
Yosten GLC, Kolar GR, Salvemini D, Samson WK. The Deductive Reasoning Strategy Enables Biomedical Breakthroughs. MISSOURI MEDICINE 2021; 118:352-357. [PMID: 34373671 PMCID: PMC8343643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit the signals of a variety of hormones and neurotransmitters and are targets of more than 30% of all FDA-approved drugs. We developed an approach for identifying the endogenous ligands for a family of orphan GPCRs that enables the development of novel therapeutics for the potential treatment of a wide variety of disorders including pain, diabetes, appetitive behaviors, infertility and obesity. With this approach, we have deorphanized five previously orphaned GPCRs.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Grant R Kolar
- Department of Pathology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Guvenc-Bayram G, Yalcin M. The intermediary role of the central cyclooxygenase / lipoxygenase enzymes in intracerebroventricular injected nesfatin-1-evoked cardiovascular effects in rats. Neurosci Lett 2021; 756:135961. [PMID: 34022265 DOI: 10.1016/j.neulet.2021.135961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023]
Abstract
That nesfatin-1 is a neuromodulatory peptide for the cardiovascular system is well documented. Several central receptors have been shown to mediate the cardiovascular effects of nesfatin-1. Immunohistochemistry and Western blot studies showed that nesfatin-1 activated the expression of the central cyclooxygenase (COX) -1, -2 and lipoxygenase (LOX). In addition, microdialysis study showed that nesfatin-1 increased the release of total prostaglandins and leukotrienes from the hypothalamus. The present study investigated whether the central COX and LOX enzymes have a direct mediating role in the MAP and HR responses of nesfatin-1. Intracerebroventricularly administered nesfatin-1 produced dose-dependent pressor and phasic HR responses in normotensive conscious rats Sprague Dawley. Central pretreatment with a COX1/2 inhibitor, ibuprofen, completely blocked the nesfatin-1-induced responses. However, central pretreatment with a nonselective LOX inhibitor, nordihydroguaiaretic acid, partially attenuated the cardiovascular responses induced by nesfatin-1. The results suggest that centrally administered nesfatin-1 activates the central enzymes COX and LOX, which may be involved in the cardiovascular responses as a novel central mechanism for nesfatin-1.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey.
| |
Collapse
|
27
|
Chen H, Li X, Ma H, Zheng W, Shen X. Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Front Neurosci 2021; 15:621173. [PMID: 33613183 PMCID: PMC7890421 DOI: 10.3389/fnins.2021.621173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin-1 is one of several brain-gut peptides that have a close relationship with the central dopaminergic system. Our previous studies have shown that nesfatin-1 is capable of protecting nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. A recent study also revealed a reduced blood level of nesfatin-1 in patients with Parkinson’s disease (PD). The current study was designed to investigate whether reduced nesfatin-1 in cerebrospinal fluid (CSF) induces nigrostriatal system degeneration. An intra-cerebroventricular (ICV) injection technique was used to administer anti-nesfatin-1 antibody directly into the lateral ventricle of the brain. Enzyme-linked immunosorbent assay (ELISA) results showed that ICV injection of anti-nesfatin-1 antibody into the lateral ventricle of the brain once daily for 2 weeks caused a significant reduction in nesfatin-1 levels in the CSF (93.1%). Treatment with anti-nesfatin-1 antibody resulted in a substantial loss (23%) of TH-positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc), as shown by immunofluorescence staining, a depletion in dopamine and its metabolites in the striatum detected by high-performance liquid chromatography (HPLC), and obvious nuclear shrinkage and mitochondrial lesions in dopaminergic neurons in the SNpc detected by transmission electron microscopy (TEM). Furthermore, the results from our Western blot and ELISA experiments demonstrated that anti-nesfatin-1 antibody injection induced an upregulation of caspase-3 activation, increased the expression of p-ERK, and elevated brain-derived neurotrophic factor (BDNF) levels in the SNpc. Taken together, these observations suggest that reduced nesfatin-1 in the brain may induce nigrostriatal dopaminergic system degeneration; this effect may be mediated via mitochondrial dysfunction-related apoptosis. Our data support a role of nesfatin-1 in maintaining the normal physiological function of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Xuelian Li
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China.,School of Health Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
29
|
Wilz AM, Wernecke K, Appel L, Kahrs J, Dore R, Jöhren O, Lehnert H, Schulz C. Endogenous NUCB2/Nesfatin-1 Regulates Energy Homeostasis Under Physiological Conditions in Male Rats. Horm Metab Res 2020; 52:676-684. [PMID: 32722818 DOI: 10.1055/a-1196-2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.
Collapse
Affiliation(s)
- Anna-Maria Wilz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kerstin Wernecke
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Lena Appel
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Johanna Kahrs
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Guvenc-Bayram G, Altinbas B, Iqbal A, Cerci E, Udum D, Yilmaz MS, Erdost H, Yalcin-Ulger E, Ilhan T, Ersoy F, Uz E, Yalcin M. Intracerebroventricularly injected nesfatin-1 activates central cyclooxygenase and lipoxygenase pathways. Auton Neurosci 2020; 226:102670. [PMID: 32334147 DOI: 10.1016/j.autneu.2020.102670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 is a multifunctional neuropeptide having crucial autonomic roles. It is well known that nesfatin-1 collaborates with other central neuromodulatory systems, such as central corticotropin-releasing hormone, melanocortin, oxytocin, and cholinergic systems to show its autonomic effects. Central arachidonic acid cascade plays an important role to provide the homeostasis by exhibiting similar autonomic effects to nesfatin-1. Based on these similarities, the current study was designed to show the effects of intracerebroventricularly (ICV) injected nesfatin-1 on the hypothalamic arachidonic acid (AA) cascade. Immunochemistry and western blot approaches demonstrated that ICV administration of nesfatin-1 provokes an increase in the hypothalamic cyclooxygenase (COX) -1, -2 and lipoxygenase (LOX) protein expression. Moreover, the microdialysis study demonstrated that centrally injected nesfatin-1 increased the posterior hypothalamic extracellular AA products. In conclusion, these findings report that while nesfatin-1 is generating its autonomic effects, it also might be using central prostaglandins and leukotrienes by activating central COX and LOX pathways.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey; Department of Physiology, Faculty of Veterinary Medicine\, Dokuz Eylul University, Kiraz, Izmir 35890, Turkey
| | - Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey; Department of Physiology, Faculty of Medicine, Sanko University, Gaziantep 27090, Turkey
| | - Awais Iqbal
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Ece Cerci
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Duygu Udum
- Department of Biochemistry, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Mustafa Sertac Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Hatice Erdost
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Ebru Yalcin-Ulger
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Tuncay Ilhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Figen Ersoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Elif Uz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey.
| |
Collapse
|
31
|
Matuska R, Zelena D, Könczöl K, Papp RS, Durst M, Guba D, Török B, Varnai P, Tóth ZE. Colocalized neurotransmitters in the hindbrain cooperate in adaptation to chronic hypernatremia. Brain Struct Funct 2020; 225:969-984. [PMID: 32200401 PMCID: PMC7166202 DOI: 10.1007/s00429-020-02049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
Abstract
Chronic hypernatremia activates the central osmoregulatory mechanisms and inhibits the function of the hypothalamic-pituitary-adrenal (HPA) axis. Noradrenaline (NE) release into the periventricular anteroventral third ventricle region (AV3V), the supraoptic (SON) and hypothalamic paraventricular nuclei (PVN) from efferents of the caudal ventrolateral (cVLM) and dorsomedial (cDMM) medulla has been shown to be essential for the hypernatremia-evoked responses and for the HPA response to acute restraint. Notably, the medullary NE cell groups highly coexpress prolactin-releasing peptide (PrRP) and nesfatin-1/NUCB2 (nesfatin), therefore, we assumed they contributed to the reactions to chronic hypernatremia. To investigate this, we compared two models: homozygous Brattleboro rats with hereditary diabetes insipidus (DI) and Wistar rats subjected to chronic high salt solution (HS) intake. HS rats had higher plasma osmolality than DI rats. PrRP and nesfatin mRNA levels were higher in both models, in both medullary regions compared to controls. Elevated basal tyrosine hydroxylase (TH) expression and impaired restraint-induced TH, PrRP and nesfatin expression elevations in the cVLM were, however, detected only in HS, but not in DI rats. Simultaneously, only HS rats exhibited classical signs of chronic stress and severely blunted hormonal reactions to acute restraint. Data suggest that HPA axis responsiveness to restraint depends on the type of hypernatremia, and on NE capacity in the cVLM. Additionally, NE and PrRP signalization primarily of medullary origin is increased in the SON, PVN and AV3V in HS rats. This suggests a cooperative action in the adaptation responses and designates the AV3V as a new site for PrRP's action in hypernatremia.
Collapse
Affiliation(s)
- Rita Matuska
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Könczöl
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rege Sugárka Papp
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Máté Durst
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dorina Guba
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bibiana Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Peter Varnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna E Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
32
|
Angelone T, Rocca C, Pasqua T. Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacol Res 2020; 156:104766. [PMID: 32201244 DOI: 10.1016/j.phrs.2020.104766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.
Collapse
Affiliation(s)
- Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy; National Institute of Cardiovascular Research I.N.R.C., Bologna, Italy.
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
33
|
Güneş H, Alkan Baylan F, Güneş H, Temiz F. Can Nesfatin-1 Predict Hypertension in Obese Children? J Clin Res Pediatr Endocrinol 2020; 12:29-36. [PMID: 31339256 PMCID: PMC7127895 DOI: 10.4274/jcrpe.galenos.2019.2019.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/01/2022] Open
Abstract
Objective The prevalence of childhood obesity is increasing and leads to co-morbidities such as hypertension. However, it is still not clear why some obese individuals are hypertensive and others not. Nesfatin-1 is a recently discovered anorexigenic peptide which also has effects on blood pressure (BP). Our aim was to evaluate the relationship between obesity-related hypertension and Nesfatin-1. Methods This cross-sectional study comprised 87 obese children. The patients were divided into two groups; hypertensive (n=30) and normotensive (n=57) obese. The American Academy of Pediatrics guidelines were used to diagnose hypertension. Blood samples were collected after 12 hours of fasting to investigate Nesfatin-1 concentrations. We also evaluated serum trace elements in addition to the routine blood tests. Results Body mass index (BMI), weight and serum Nesfatin-1 concentrations were higher in the hypertensive group (p=0.002, p=0.001, and p=0.007, respectively). There was no difference between serum zinc levels, but Copper (Cu) levels were significantly lower in the hypertensive group (p=0.248, p=0.007, respectively). There were positive correlations between BP and BMI and weight Z-scores and a negative correlation with Cu. The optimal cut-off value of Nesfatin-1 to predict hypertension was found to be >1.8 ng/mL, with a specificity of 71.9% and a sensitivity of 96.7% [area under the curve=0.703, 95% confidence interval (CI): 0.577-0.809; p=0.002]. In multiple logistic regression analysis Nesfatin-1 [Odds ratio (OR)=1.103, 95% CI: 1.039-1.171; p=0.001], Cu (OR=0.947, 95% CI: 0.915-0.979; p=0.001) and BMI for age Z-score (OR=56.277, 95% CI: 5.791-546.907; p=0.001) still remained significant predictors of hypertension. Conclusion Nesfatin-1 levels are higher and are an independent predictor of hypertension in obese subjects.
Collapse
Affiliation(s)
- Hatice Güneş
- Sütçü İmam University Faculty of Medicine, Department of Pediatrics, Kahramanmaraş, Turkey
| | - Filiz Alkan Baylan
- Sütçü İmam University Faculty of Medicine, Department of Biochemistry, Kahramanmaraş, Turkey
| | - Hakan Güneş
- Sütçü İmam University Faculty of Medicine, Department of Cardiology, Kahramanmaraş, Turkey
| | - Fatih Temiz
- Sütçü İmam University Faculty of Medicine, Department of Pediatric Endocrinology and Metabolism, Kahramanmaraş, Turkey
| |
Collapse
|
34
|
Imbrogno S, Filice M, Cerra MC. Exploring cardiac plasticity in teleost: the role of humoral modulation. Gen Comp Endocrinol 2019; 283:113236. [PMID: 31369729 DOI: 10.1016/j.ygcen.2019.113236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022]
Abstract
The fish heart represents an established natural model for evaluating basic mechanisms of the coordinated physiological reactions which maintain cardiac steady-state. This is due to its relatively simple design, but also to its multilevel morpho-functional flexibility which allows adequate responses to a variety of intrinsic (body size and shape, swimming performance, etc.), and extrinsic (temperature, salinity, oxygen level, water chemistry, etc.) factors related to the animal life style. Nowadays, although many gaps are still present, a huge literature is available about the mechanisms that fine-tune fish cardiac performance, particularly in relation to the influence exerted by substances possessing cardio-modulatory properties. Based on these premises, this review will provide an overview of the existing current knowledge regarding the humoral control of cardiac performance in fish. The role of both classic (i.e. catecholamines, angiotensin II and natriuretic peptides), and emerging cardioactive substances (i.e. the chromogranin-A-derived peptides vasostatins, catestatin and serpinin) will be illustrated and discussed. Moreover, an example of cardiomodulation elicited by peptides (e.g., nesfatin-1) associated to the regulation of feeding and metabolism will be provided. The picture will hopefully emphasize the complex circuits that sustain fish cardiac performance, also highliting the power of the teleost heart as an experimental model to deciphering mechanisms that could be difficult to explore in more elaborated cardiac morpho-functional designs.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Mariacristina Filice
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, 87030, Arcavacata di Rende, CS, Italy
| |
Collapse
|
35
|
Katsurada K, Nakata M, Saito T, Zhang B, Maejima Y, Nandi SS, Sharma NM, Patel KP, Kario K, Yada T. Central Glucagon-like Peptide-1 Receptor Signaling via Brainstem Catecholamine Neurons Counteracts Hypertension in Spontaneously Hypertensive Rats. Sci Rep 2019; 9:12986. [PMID: 31537818 PMCID: PMC6753091 DOI: 10.1038/s41598-019-49364-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used to treat type 2 diabetes, reduce blood pressure (BP) in hypertensive patients. Whether this action involves central mechanisms is unknown. We here report that repeated lateral ventricular (LV) injection of GLP-1R agonist, liraglutide, once daily for 15 days counteracted the development of hypertension in spontaneously hypertensive rats (SHR). In parallel, it suppressed urinary norepinephrine excretion, and induced c-Fos expressions in the area postrema (AP) and nucleus tractus solitarius (NTS) of brainstem including the NTS neurons immunoreactive to dopamine beta-hydroxylase (DBH). Acute administration of liraglutide into fourth ventricle, the area with easy access to the AP and NTS, transiently decreased BP in SHR and this effect was attenuated after lesion of NTS DBH neurons with anti-DBH conjugated to saporin (anti-DBH-SAP). In anti-DBH-SAP injected SHR, the antihypertensive effect of repeated LV injection of liraglutide for 14 days was also attenuated. These findings demonstrate that the central GLP-1R signaling via NTS DBH neurons counteracts the development of hypertension in SHR, accompanied by attenuated sympathetic nerve activity.
Collapse
Affiliation(s)
- Kenichi Katsurada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Masanori Nakata
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Toshinobu Saito
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Boyang Zhang
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuko Maejima
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan. .,Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan. .,Division of System Neuroscience, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuou-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
36
|
Tekin T, Cicek B, Konyaligil N. Regulatory Peptide Nesfatin-1 and its Relationship with Metabolic Syndrome. Eurasian J Med 2019; 51:280-284. [PMID: 31692710 DOI: 10.5152/eurasianjmed.2019.18420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome is associated with a group of conditions abdominal obesity, high triglyceride levels, reduction in low-density lipoprotein, increased blood pressure, and increased fasting blood glucose. Hence, it poses a risk for type 2 diabetes and cardiovascular diseases. The prevalence of metabolic syndrome increases with age. Nesfatin-1, which affects different systems, has recently been discovered as a regulatory peptide molecule. With the discovery of nesfatin-1, it has been reported to inhibit the intake of nutrients and have significant regulatory effects on energy metabolism. As nesfatin-1 is present in both central and peripheral tissues, it is thought to have many functions. In addition to its suppressive effect on food intake, nesfatin-1 has also been reported to have an effect on the blood glucose level for regulating cardiac functions and affecting obesity by providing weight loss. Considering the effects of nesfatin-1, it may be associated with metabolic syndrome.
Collapse
Affiliation(s)
- Tuba Tekin
- Department of Nutrition and Dietetics, Sivas Cumhuriyet University School of Health Sciences, Sivas, Turkey
| | - Betul Cicek
- Department of Nutrition and Dietetics, Erciyes University School of Health Sciences, Kayseri, Turkey
| | - Nurefsan Konyaligil
- Department of Nutrition and Dietetics, Erciyes University School of Health Sciences, Kayseri, Turkey
| |
Collapse
|
37
|
Nesfatin-1 regulates glucoregulatory genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2019; 235:121-130. [PMID: 31152914 DOI: 10.1016/j.cbpa.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
The aim of this work was to determine if the anorexigen nesfatin-1 modulates the expression of genes involved in glucoregulation in rainbow trout. First, the nesfatin-1 sequence from trout was confirmed. Second, the effects of 0.1, 1 and 10 nM nesfatin-1 on insulin, glucagon, igf-I, igf-II, glut1, glut2, glut4 and sglt1 expression were tested in cultured liver, gut, muscle and adipose tissue. In liver, the expression of insulin and glucagon isoforms X1 increased after 2 h of incubation with 0.1 nM nesfatin-1, while insulin and glucagon X2 expression increased after 4 h with 1 nM treatment. All nesfatin-1 doses tested decreased glut2 expression after 4 h. In adipose tissue, all nesfatin-1 concentrations reduced insulin X1 expression at 30 min, and 1 nM nesfatin-1 increased insulin X2 expression at 4 h. In gut, 0.1, 1 and 10 nM nesfatin-1 decreased glut2 and sglt1 mRNA levels after 240 min of incubation. In muscle, 0.1 nM nesfatin-1 increased the expression of igf-I after 240 min. The expression of igf-II in muscle increased after 30 min of incubation with 1 and 10 nM nesfatin-1 and after 120 min of incubation with 0.1 and 1 nM nesfatin-1. Expression of glut1 and sglt1 in muscle increased after 240 min of incubation with 0.1 nM nesfatin-1 and after 120 min with 0.1 and 10 nM nesfatin-1, respectively. These results suggest that nesfatin-1 could decrease the gut intake of dietary glucose, and increase its uptake in glucoregulatory tissues such as liver and muscle of rainbow trout.
Collapse
|
38
|
Ciftci K, Guvenc G, Kasikci E, Yalcin M. Centrally and peripherally injected nesfatin-1-evoked respiratory responses. Respir Physiol Neurobiol 2019; 267:6-11. [PMID: 31152893 DOI: 10.1016/j.resp.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Nesfatin-1, which is an anorexiogenic peptide, plays a crucial role as a neurotransmitter and/or neuromodulator in the central nervous system for cardiovascular control and energy balance etc. It is expressed abundantly in multiple brain nuclei including central respiratory control areas such as nucleus tractus solitarius, nucleus ambiguous, dorsal vagal complex, dorsal motor nucleus of the vagus nerve, and hypothalamus. To date, no previous studies have been found to report nesfatin-1-evoked respiratory effects. Therefore, the present study was designed to investigate the possible impacts of centrally and/or peripherally injected nesfatin-1 on respiratory parameters in either 12h-fasted or fed-ad libitum rats. Intracerebroventricular (ICV) administration of nesfatin-1 provoked significant hyperventilation by increasing tidal volume (TV), respiratory rate (RR) and respiratory minute ventilation (RMV) in both the 12h-fasted and the fed-ad libitum Spraque Dawley rats in dose- and time- dependent manner. Moreover, the hyperventilatory effects of centrally injected nesfatin-1 were more potent in the fed-ad libitum rats. Intravenous injection of nesfatin-1 induced a significant rise in RR and RMV, but not in TV, in the fed-ad libitum rats. In conclusion, these findings plainly report that both centrally and/or peripherally injected nesfatin-1 induces significant hyperventilatory effects in the 12h-fasted and the fed-ad libitum rats. These hyperventilatory effects of nesfatin-1 might show a discrepancy according to the food intake of the rats and the delivery method of the peptide.
Collapse
Affiliation(s)
- Kubra Ciftci
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa, 16059, Turkey
| | - Gokcen Guvenc
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa, 16059, Turkey
| | - Esra Kasikci
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa, 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa, 16059, Turkey.
| |
Collapse
|
39
|
Pate AT, Schnell AL, Ennis TA, Samson WK, Yosten GLC. Expression and function of nesfatin-1 are altered by stage of the estrous cycle. Am J Physiol Regul Integr Comp Physiol 2019; 317:R328-R336. [PMID: 31141415 DOI: 10.1152/ajpregu.00249.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 is a peptide derived from the nucleobindin 2 (Nucb2) precursor protein that has been shown to exert potent effects on appetite and cardiovascular function in male animals. Sex hormones modulate the expression of Nucb2 in several species, including goldfish, mouse, and rat, and human studies have revealed differential expression based on male or female sex. We therefore hypothesized that the ability of nesfatin-1 to increase mean arterial pressure (MAP) would be influenced by stage of the estrous cycle. Indeed, we found that in cycling female Sprague-Dawley rats, nesfatin-1 induced an increase in MAP on diestrus, when both estrogen and progesterone levels are low but not on proestrus or estrus. The effect of nesfatin-1 on MAP was dependent on functional central melanocortin receptors, because the nesfatin-1-induced increase in MAP was abolished by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119. We previously reported that nesfatin-1 inhibited angiotensin II-induced water drinking in male rats but found no effect of nesfatin-1 in females in diestrus. However, nesfatin-1 enhanced angiotensin II-induced elevations in MAP in females in diestrus but had no effect on males. Finally, in agreement with previous reports, the expression of Nucb2 mRNA in hypothalamus was significantly reduced in female rats in proestrus compared with rats in diestrus. From these data we conclude that the function and expression of nesfatin-1 are modulated by sex hormone status. Further studies are required to determine the contributions of chromosomal sex and individual sex hormones to the cardiovascular effects of nesfatin-1.
Collapse
Affiliation(s)
- Alicia T Pate
- Saint Louis College of Pharmacy, St. Louis, Missouri
| | - Abigayle L Schnell
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Teresa A Ennis
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
40
|
Mori Y, Shimizu H, Kushima H, Saito T, Hiromura M, Terasaki M, Koshibu M, Ohtaki H, Hirano T. Nesfatin-1 suppresses peripheral arterial remodeling without elevating blood pressure in mice. Endocr Connect 2019; 8:536-546. [PMID: 30939447 PMCID: PMC6499920 DOI: 10.1530/ec-19-0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hiroyuki Shimizu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Maebashi Hirosegawa Clinic, Maebashi, Gunma, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
41
|
Kuyumcu A, Kuyumcu MS, Ozbay MB, Ertem AG, Samur G. Nesfatin-1: A novel regulatory peptide associated with acute myocardial infarction and Mediterranean diet. Peptides 2019; 114:10-16. [PMID: 30959145 DOI: 10.1016/j.peptides.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
We evaluated the relationship between nesfatin-1 and acute myocardial infarction (AMI) and Mediterranean diet scores. 67 patients with AMI and 33 patients with normal coronary arteries (control group) were included in the study. The patients with AMI were divided into 2 groups based on low (<32) (n = 33) and high values of the synergy between percutaneous coronary intervention with Taxus and cardiac surgery (SYNTAX) scores (≥34) (n = 35). Mediterranean diet score, serum nesfatin-1 concentrations and all other data were compared between the groups. Serum nesfatin-1 concentrations were significantly lower in 67 AMI patients (both the high and low SYNTAX groups) than in the control group (p < 0.001). Moreover, serum nesfatin-1 concentrations were lower in the high SYNTAX group than those in the low SYNTAX group (p < 0.001). There were positive correlations between the serum nesfatin-1 concentrations and Mediterranean diet scores in both the AMI patients and the control subjects, and there was a negative correlation between the serum nesfatin-1 concentrations and SYNTAX scores in the AMI patients. This study has shown that serum nesfatin-1 concentrations are closely related to the severity of AMI and Mediterranean diet scores.
Collapse
Affiliation(s)
- Aliye Kuyumcu
- Ankara Numune Education and Research Hospital, Department of Nutrition and Dietetics, Ankara, Turkey.
| | - Mevlut Serdar Kuyumcu
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Mustafa Bilal Ozbay
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Ahmet Goktug Ertem
- Türkiye Yüksek İhtisas Education and Research Hospital, Department of Cardiology, Ankara, Turkey.
| | - Gulhan Samur
- Hacettepe University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey.
| |
Collapse
|
42
|
Pałasz A, Bogus K, Suszka-Świtek A, Kaśkosz A, Saint-Remy S, Piwowarczyk-Nowak A, Filipczyk Ł, Worthington JJ, Mordecka-Chamera K, Kostro K, Bajor G, Wiaderkiewicz R. The first identification of nesfatin-1-expressing neurons in the human bed nucleus of the stria terminalis. J Neural Transm (Vienna) 2019; 126:349-355. [PMID: 30770997 PMCID: PMC6449486 DOI: 10.1007/s00702-019-01984-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Neuropeptides are involved in various brain activities being able to control a wide spectrum of higher mental functions. The purpose of this concise structural investigation was to detect the possible immunoreactivity of the novel multifunctional neuropeptide nesfatin-1 within the human bed nucleus of the stria terminalis (BNST). The BNST is involved in the mechanism of fear learning, integration of stress and reward circuits, and pathogenesis of addiction. Nesfatin-1-expressing neurons were identified for the first time in several regions of the BNST using both immunohistochemical and fluorescent methods. This may implicate a potential contribution of this neuropeptide to the BNST-related mechanisms of stress/reward responses in the human brain.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Katarzyna Bogus
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Andrzej Kaśkosz
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Shirley Saint-Remy
- American Medical Student Association (AMSA), School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kinga Mordecka-Chamera
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Karol Kostro
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Grzegorz Bajor
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
43
|
Affiliation(s)
- Aliye Kuyumcu
- Department of Nutrition and Dietetics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
44
|
Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease. Heart Vessels 2019; 34:965-970. [PMID: 30599062 DOI: 10.1007/s00380-018-01328-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Nesfatin-1 is a recently identified anorexigenic peptide mainly secreted from the brain and adipose tissue. Although nesfatin-1 may have pro-inflammatory and apoptotic properties, the association between plasma nesfatin-1 levels and coronary artery disease (CAD) has not been clarified yet. We investigated plasma nesfatin-1 levels in 302 patients undergoing elective coronary angiography. Of the 302 study patients, CAD was present in 172 (57%), of whom 67 had 1-vessel, 49 had 2-vessel, and 56 had 3-vessel disease. Compared with 130 patients without CAD, 172 with CAD had higher plasma nesfatin-1 levels (median 0.21 vs. 0.17 ng/mL, P < 0.01). A stepwise increase in nesfatin-1 levels was found depending on the number of > 50% stenotic coronary vessels: 0.17 in CAD(-), 0.20 in 1-vessel, 0.21 in 2-vessel, and 0.22 ng/mL in 3-vessel disease (P < 0.05). A high nesfatin-1 level (> 0.19 ng/mL) was found in 43% of patients with CAD(-), 55% of those with 1-vessel, 55% of those with 2-vessel, and 68% of those with 3-vessel disease (P < 0.05). Nesfatin-1 levels significantly correlated with the number of > 50% stenotic coronary segments (r = 0.14, P < 0.02). In multivariate analysis, plasma nesfatin-1 levels were a significant factor for CAD independent of atherosclerotic risk factors. The odds ratio for CAD was 1.71 (95% CI 1.01-2.91) for high nesfatin-1 level of > 0.19 ng/mL (P < 0.05). Thus, plasma nesfatin-1 levels were found to be high in patients with CAD and were associated with CAD independent of atherosclerotic risk factors, suggesting that high nesfatin-1 levels in patients with CAD may play a role in the development of coronary atherosclerosis.
Collapse
|
45
|
Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018; 2:1188-1206. [PMID: 30302423 PMCID: PMC6169466 DOI: 10.1210/js.2018-00246] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of actions were described, including modulation of gastrointestinal functions, glucose and lipid metabolism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive functions. Recent years have witnessed a great increase in our knowledge of these effects and their underlying mechanisms, which will be discussed in the present review. Lastly, gaps in knowledge will be highlighted to foster further studies.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
46
|
Arabaci Tamer S, Yildirim A, Köroğlu MK, Çevik Ö, Ercan F, Yeğen BÇ. Nesfatin-1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion. Peptides 2018; 107:1-9. [PMID: 30031042 DOI: 10.1016/j.peptides.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022]
Abstract
Testicular torsion causes ischemia-reperfusion injury and an increased risk of infertility. Nesfatin-1 is a novel peptide with antioxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we aimed to investigate the putative beneficial effects of nesfatin-1 on oxidative injury and impaired testicular function induced by testis torsion. Under anesthesia, male Sprague-Dawley rats (180-230 g; n = 24) had sham-operation or they underwent testicular torsion by rotating the left testis 720° and fixing it for 2 h, followed by a 2-h detorsion. Rats in each group were treated intraperitoneally with either nesfatin-1 (0.3 μg/kg) or saline prior to the torsion or sham-torsion. At the end of the 4-h experimental period, tissue samples were removed for evaluation of spermatozoa, molecular and histochemical analyses. In saline-treated torsion/detorsion group, a high percentage of abnormal spermatozoa with head defects was observed, which was abolished in nesfatin-1-treated torsion/detorsion group. The levels of 8-OHdG, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, caspase-3 were increased in the saline-treated torsion/detorsion group as compared to sham-operated group, while nesfatin-1 pre-treatment significantly decreased the expressions of the pro-inflammatory cytokines, depressed apoptosis, and also reduced the tubular degeneration. In addition, nesfatin-1 in torsion/detorsion group elevated expressions of transforming growth factor (TGF)-beta and reduced expressions of protein kinase B (AKT) and cAMP response element binding protein (CREB) in the testis tissue. The present findings show that nesfatin-1, by regulating AKT and CREB signaling pathways and pro-inflammatory/anti-inflammatory cytokine balance, preserves the spermatogenic cells and ameliorates torsion-detorsion-induced tubular degeneration.
Collapse
Affiliation(s)
- Sevil Arabaci Tamer
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey
| | - Alper Yildirim
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey
| | - M Kutay Köroğlu
- Marmara University, School of Medicine, Department of Histology & Embryology, Istanbul, Turkey
| | - Özge Çevik
- Adnan Menderes University, School of Medicine, Department of Biochemistry, Aydin, Turkey
| | - Feriha Ercan
- Marmara University, School of Medicine, Department of Histology & Embryology, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
47
|
Zhang B, Nakata M, Lu M, Nakae J, Okada T, Ogawa W, Yada T. Protective role of AgRP neuron's PDK1 against salt-induced hypertension. Biochem Biophys Res Commun 2018; 500:910-916. [PMID: 29705701 DOI: 10.1016/j.bbrc.2018.04.192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1flox/flox) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Physiology, Jichi Medical University, School of Medicine, Japan
| | - Masanori Nakata
- Department of Physiology, Jichi Medical University, School of Medicine, Japan; Department of Physiology, Wakayama Medical University School of Medicine, Japan.
| | - Ming Lu
- Department of Physiology, Jichi Medical University, School of Medicine, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | - Toshihiko Yada
- Department of Physiology, Jichi Medical University, School of Medicine, Japan; Center for Integrative Physiology, Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Japan.
| |
Collapse
|
48
|
Zhang JR, Lu QB, Feng WB, Wang HP, Tang ZH, Cheng H, Du Q, Wang YB, Li KX, Sun HJ. Nesfatin-1 promotes VSMC migration and neointimal hyperplasia by upregulating matrix metalloproteinases and downregulating PPARγ. Biomed Pharmacother 2018; 102:711-717. [PMID: 29604590 DOI: 10.1016/j.biopha.2018.03.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
The dedifferentiation, proliferation and migration of vascular smooth muscle cells (VSMCs) are essential in the progression of hypertension, atherosclerosis and intimal hyperplasia. Nesfatin-1 is a potential modulator in cardiovascular functions. However, the role of nesfatin-1 in VSMC biology has not been explored. The present study was designed to determine the regulatory role of nesfatin-1 in VSMC proliferation, migration and intimal hyperplasia after vascular injury. Herein, we demonstrated that nesfatin-1 promoted VSMC phenotype switch from a contractile to a synthetic state, stimulated VSMC proliferation and migration in vitro. At the molecular level, nesfatin-1 upregulated the protein and mRNA levels, as well as the promoter activities of matrix metalloproteinase 2 (MMP-2) and MMP-9, but downregulated peroxisome proliferator-activated receptor γ (PPARγ) levels and promoter activity in VSMCs. Blockade of MMP-2/9 or activation of PPARγ prevented the nesfatin-1-induced VSMC proliferation and migration. In vivo, knockdown of nesfatin-1 ameliorated neointima formation following rat carotid injury. Taken together, our results indicated that nesfatin-1 stimulated VSMC proliferation, migration and neointimal hyperplasia by elevating MMP2/MMP-9 levels and inhibiting PPARγ gene expression.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, PR China
| | - Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Wu-Bing Feng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Han Cheng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
49
|
Robinson C, Tsang L, Solomon A, Woodiwiss AJ, Gunter S, Mer M, Hsu HC, Gomes M, Norton GR, Millen AME, Dessein PH. Nesfatin-1 and visfatin expression is associated with reduced atherosclerotic disease risk in patients with rheumatoid arthritis. Peptides 2018; 102:31-37. [PMID: 29475075 DOI: 10.1016/j.peptides.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Nesfatin is an anti-inflammatory molecule that reduces atherosclerotic cardiovascular risk. By contrast, visfatin has pro-inflammatory properties and is pro-atherogenic. We examined the potential impact of nesfatin and visfatin on atherosclerotic disease in 232 (113 black and 119 white) consecutive rheumatoid arthritis (RA) patients from 2 centers. Independent relationships of nesfatin and visfatin concentrations with metabolic risk factors, endothelial activation, carotid atherosclerosis and altered plaque stability were determined in multivariable regression models. Rheumatoid factor (RF) positivity was associated with both nesfatin (β = 0.650, p < 0.0001) and visfatin levels (β = 0.157, p = 0.03). Visfatin concentrations were related to increased diastolic blood pressure (β = 4.536, p = 0.01) and diabetes prevalence (β = 0.092, p = 0.04). Nesfatin levels were associated with reduced carotid intima-media thickness (β = -0.017, p = 0.008). Nesfatin (β = 0.116, p = 0.001) and visfatin concentrations (β = 0.234, p = 0.001) were related to those of matrix metalloproteinase-2 (MMP-2), a plaque stability mediator. Nesfatin and visfatin concentrations were directly correlated (Spearman's rho = 0.516). The nesfatin-MMP-2 and visfatin-MMP-2 relations were both stronger in RF negative compared to RF positive patients (interaction p = 0.01 and p = 0.04, respectively). Nesfatin is associated with reduced atherosclerosis and increased plaque stability mediator levels in RA. Visfatin is related to adverse cardio-metabolic risk in RA. Increased MMP-2 expression in relation to visfatin may represent a compensatory mechanism aimed at reducing cardiovascular risk in RA.
Collapse
Affiliation(s)
- Chanel Robinson
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda Tsang
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ahmed Solomon
- Department of Rheumatology, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Angela J Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sule Gunter
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mervyn Mer
- Department of Medicine, Division of Critical Care and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Hon-Chun Hsu
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Gomes
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M E Millen
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - P H Dessein
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Rheumatology Division, Vrije Universiteit Brussel and Universitair Ziekenhuis, Brussel, Belgium.
| |
Collapse
|
50
|
Pałasz A, Janas-Kozik M, Borrow A, Arias-Carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem Int 2018; 113:120-136. [DOI: 10.1016/j.neuint.2017.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
|