1
|
Arthur G, Wasson AR, Straughan RE, Drummond HA, Stec DE. The Role of Renal Medullary Bilirubin and Biliverdin Reductase in Angiotensin II-Dependent Hypertension. Am J Hypertens 2025; 38:240-247. [PMID: 39656666 PMCID: PMC11911318 DOI: 10.1093/ajh/hpae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Increased circulating bilirubin attenuates angiotensin (Ang) II-induced hypertension and improves renal hemodynamics. However, the intrarenal mechanisms that mediate these effects are not known. The goal of the present study was to test the hypothesis that bilirubin generation in the renal medulla plays a protective role against Ang II-induced hypertension. METHODS Twenty-week-old male C57Bl/6J mice were implanted with intrarenal medullary interstitial (IRMI) catheters following unilateral nephrectomy. After this time, biliverdin IXα was specifically infused into the kidney (3.6 mg/day) for 3 days before implantation with an osmotic minipump delivering Ang II (1,000 ng/kg/min). BP was recorded for 3 days, 1 week after minipump infusion, in conscious mice. To further explore the antihypertensive role of renal medullary bilirubin generation, mice with specific deletion of biliverdin reductase-A (Blvra) in the thick ascending loop of Henle were generated. At 20 weeks, BlvraTALHKO and control mice (Blvrafl/fl) were infused with Ang II for 2 weeks. RESULTS IRMI infusion of biliverdin significantly decreased blood pressure compared with mice infused with vehicle (118 ± 4 vs. 158 ± 2 mmHg, p < 0.05). Angiotensin-II infusion resulted in significantly higher blood pressure measured in conscious mice 7 days after implantation in BlvraTALHKO as compared to Blvrafl/fl mice (152 ± 2 vs. 140 ± 3 mmHg, P < 0.05). CONCLUSIONS Altogether, these findings show that medullary bilirubin and biliverdin reductase can improve hypertension and that mechanisms that increase bilirubin and biliverdin reductase in the renal medulla could be an effective approach to treat hypertension.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wasson
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ross E Straughan
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
2
|
Williams KI, Suryadevara P, Zhan CG, Hinds TD, Kipp ZA. Urobilin Derived from Bilirubin Bioconversion Binds Albumin and May Interfere with Bilirubin Interacting with Albumin: Implications for Disease Pathology. Biomedicines 2025; 13:302. [PMID: 40002715 PMCID: PMC11852593 DOI: 10.3390/biomedicines13020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Bilirubin is a hydrophobic molecule that binds the carrier protein albumin for transport through systemic circulation. Bilirubin is cleared from the body through the liver and excreted into the intestines, where the microbiota modifies the chemical structure, forming urobilin, which can be reabsorbed into circulation by the hepatic portal vein. Urobilin has no known function. It is also unknown whether urobilin binds albumin for transport in circulation. We hypothesized that because of the likeness of their chemical structures, urobilin would also bind albumin like bilirubin does. Methods: First, we used in silico docking to predict if urobilin would bind to albumin and compared it to the bilirubin binding sites. To test this binding in vitro, we applied bilirubin's fluorescent property, which occurs when it is bound to a protein, including albumin, and exposed to light. We also used this method to determine if urobilin could exhibit autofluorescence when protein bound. Results: We found that bilirubin was predicted to bind albumin at amino acids E208, K212, D237, and K240 through hydrogen bonds. However, urobilin was predicted to bind albumin using different hydrogen bonds at amino acids H67, K240, and E252. We found that urobilin has a fluorescent property that can be quantified when bound to albumin. We performed a concentration response for urobilin-albumin fluorescent binding and observed a direct relationship between the urobilin level and the fluorescence intensity. Conclusions: The in silico docking analysis and autofluorescence results demonstrate that urobilin binds to albumin and might compete with bilirubin. This is the first study to identify a urobilin-binding protein and the important aspects of its physiological function and transport in circulation.
Collapse
Affiliation(s)
- Kevin I. Williams
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA;
- Department of Biochemistry and Molecular Biology, Centre College, Danville, KY 40422, USA
| | - Priyanka Suryadevara
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40508, USA; (P.S.); (C.-G.Z.)
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40508, USA; (P.S.); (C.-G.Z.)
| | - Terry D. Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA;
| |
Collapse
|
3
|
Sist P, Urbani R, Tramer F, Bandiera A, Passamonti S. The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules 2025; 30:439. [PMID: 39942546 PMCID: PMC11820890 DOI: 10.3390/molecules30030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
HUG is the HELP-UnaG recombinant fusion protein featuring the typical functions of both HELP and UnaG. In HUG, the HELP domain is a thermoresponsive human elastin-like polypeptide. It forms a shield enwrapping the UnaG domain that emits bilirubin-dependent fluorescence. Here, we recapitulate the technological development of this bifunctional synthetic protein from the theoretical background of its distinct protein moieties to the detailed characterization of its macromolecular and functional properties. These pieces of knowledge are the foundations for HUG production and application in the fluorometric analysis of bilirubin and its congeners, biliverdin and bilirubin glucuronide. These bile pigments are metabolites that arise from the catabolism of heme, the prosthetic group of cytochromes, hemoglobin and several other intracellular enzymes engaged in electron transfer, oxygen transport and protection against oxygen free radicals. The HUG assay is a powerful, user-friendly and affordable analytical tool that alone supports research at each level of complexity or taxonomy of living entities, from enzymology, cell biology and pathophysiology to veterinary and clinical sciences.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| |
Collapse
|
4
|
Lyu L, Miao Y, Liu X, Dong H, Chu H, Wang X. Effect of Serum Bilirubin Levels on Contrast-induced Acute Kidney Injury: A Systematic Evaluation and Meta-analysis. Angiology 2024; 75:605-624. [PMID: 37379462 DOI: 10.1177/00033197231186493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is an important complication following the use of iodinated contrast media. Bilirubin has a protective effect but may also aggravate CI-AKI. The purpose of this systematic review was to assess whether bilirubin is a risk factor for CI-AKI. We searched the databases PubMed, Embase, Web of Science, Cochrane Library, Scopus, Ovid Medline, CNKI (China National Knowledge Infrastructure), VPCS (Vip Paper Check System), Wanfang, and CBM (Chinese BioMedical Literature Database) from the initial date to May 6, 2023. We summarized the results by directly combining the effect-size odds ratio (OR) and 95% confidence interval (CI) and identified sources of heterogeneity through subgroup analysis, sensitivity analysis, and meta-regression analysis. A total of 10 studies (14 data sets) were included: 7 retrospective studies (10 data sets) and 3 prospective studies (4 data sets), involving 12776 participants. The incidence of CI-AKI of 16% (95% CI: 14-19%). Total bilirubin was positively associated with the occurrence of CI-AKI (OR = 1.80; 95% CI: 1.36-2.38). Both low and high bilirubin concentrations were risk factors for CI-AKI. The incidence of CI-AKI was higher in the low bilirubin group than in the high bilirubin group.
Collapse
Affiliation(s)
- Lin Lyu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxin Miao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuequan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Dong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Punzo A, Silla A, Fogacci F, Perillo M, Cicero AFG, Caliceti C. Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases. Diseases 2024; 12:103. [PMID: 38785758 PMCID: PMC11119340 DOI: 10.3390/diseases12050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Bile acids (BAs) and bilirubin, primarily known for their role in lipid metabolism and as heme catabolite, respectively, have been found to have diverse effects on various physiological processes, including oxidative stress and inflammation. Indeed, accumulating evidence showed that the interplay between BAs and bilirubin in these processes involves intricate regulatory mechanisms mediated by specific receptors and signaling pathways under certain conditions and in specific contexts. Oxidative stress plays a significant role in the development and progression of cardiovascular diseases (CVDs) due to its role in inflammation, endothelial dysfunction, hypertension, and other risk factors. In the cardiovascular (CV) system, recent studies have suggested that BAs and bilirubin have some opposite effects related to oxidative and inflammatory mechanisms, but this area of research is still under investigation. This review aims to introduce BAs and bilirubin from a biochemical and physiological point of view, emphasizing their potential protective or detrimental effects on CVDs. Moreover, clinical studies that have assessed the association between BAs/bilirubin and CVD were examined in depth to better interpret the possible link between them.
Collapse
Affiliation(s)
- Angela Punzo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (C.C.)
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgery Sciences Dept., Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (C.C.)
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgery Sciences Dept., Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
- Cardiovascular Medicine Unit, IRCCS AOU di Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (C.C.)
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
6
|
Marghani BH, Ateya AI, Othman BH, Rizk MA, El-Adl M. UGT1A1 morpholino antisense oligonucleotides produce mild unconjugated hyperbilirubinemia in cyclosporine A-induced cardiovascular disorders in BLC57 mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104321. [PMID: 37984676 DOI: 10.1016/j.etap.2023.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to investigate the induction of mild unconjugated hyperbilirubinemia in hepatic UGT1A1 inhibition by Morpholinos antisense in CsA-treated BLC57 mice in comparison with the efficacy of chitosan (CH) as an anti-hypolipidemic natural product. Antisense morpholino oligonucleotides were injected intravenously into CsA-treated mice for 14 days thrice a week. Serum biochemical parameters, antioxidant status, and gene expression analysis of eNOS, PPAR-α, NF-kB, cFn, AT1-R, and ETA-R were determined in cardiac tissues with confirmation by histopathology. Inhibition of UGT1A1 significantly elevated serum unconjugated bilirubin within a physiological range. Furthermore, induced mild hyperbilirubinemia reduces hyperlipidemia, improves antioxidant status, and significantly increases the expression of the cardiac PPAR-α gene while decreasing, ETA-R, iNOS, NF-kB, cFn and AT1-R gene expression in CsA-treated mice. Importantly, mild unconjugated hyperbilirubinemia within physiological ranges may be used as a novel therapeutic strategy to lower hyperlipidemia, atherosclerosis, hypertension, and the CVD outcomes in CsA- treated transplant recipients.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Biochemistry, Physiology, and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, South of Sinai 46612, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Basma H Othman
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
7
|
Badmus OO, Hinds TD, Stec DE. Mechanisms Linking Metabolic-Associated Fatty Liver Disease (MAFLD) to Cardiovascular Disease. Curr Hypertens Rep 2023; 25:151-162. [PMID: 37191842 PMCID: PMC10839567 DOI: 10.1007/s11906-023-01242-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver that occurs in the majority of patients in combination with metabolic dysfunction in the form of overweight or obesity. In this review, we highlight the cardiovascular complications in MAFLD patients as well as some potential mechanisms linking MAFLD to the development of cardiovascular disease and highlight potential therapeutic approaches to treating cardiovascular diseases in patients with MAFLD. RECENT FINDINGS MAFLD is associated with an increased risk of cardiovascular diseases (CVD), including hypertension, atherosclerosis, cardiomyopathies, and chronic kidney disease. While clinical data have demonstrated the link between MAFLD and the increased risk of CVD development, the mechanisms responsible for this increased risk remain unknown. MAFLD can contribute to CVD through several mechanisms including its association with obesity and diabetes, increased levels of inflammation, and oxidative stress, as well as alterations in hepatic metabolites and hepatokines. Therapies to potentially treat MAFLD-induced include statins and lipid-lowering drugs, glucose-lowering agents, antihypertensive drugs, and antioxidant therapy.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, 40508, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
8
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
9
|
Bates EA, Kipp ZA, Martinez GJ, Badmus OO, Soundarapandian MM, Foster D, Xu M, Creeden JF, Greer JR, Morris AJ, Stec DE, Hinds TD. Suppressing Hepatic UGT1A1 Increases Plasma Bilirubin, Lowers Plasma Urobilin, Reorganizes Kinase Signaling Pathways and Lipid Species and Improves Fatty Liver Disease. Biomolecules 2023; 13:252. [PMID: 36830621 PMCID: PMC9953728 DOI: 10.3390/biom13020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Collapse
Affiliation(s)
- Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew J. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
10
|
Flack KD, Vítek L, Fry CS, Stec DE, Hinds TD. Cutting edge concepts: Does bilirubin enhance exercise performance? Front Sports Act Living 2023; 4:1040687. [PMID: 36713945 PMCID: PMC9874874 DOI: 10.3389/fspor.2022.1040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States
| | - Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Christopher S. Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky College of Medicine, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
He Z, Zhang S, Thio C, Wang Y, Li M, Wu Y, Lin R, Liu Z, Snieder H, Zhang Q. Serum total bilirubin and new-onset hypertension in perimenopausal women: a cross-sectional study. Menopause 2022; 29:944-951. [PMID: 35819856 DOI: 10.1097/gme.0000000000001999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Previous studies have shown negative associations between total bilirubin (TBIL) and hypertension. However, the association of TBIL with new-onset hypertension in perimenopausal women is unknown. METHODS A total of 196 perimenopausal women were included in this cross-sectional study of which 85 had new-onset hypertension. All participants underwent 24-hour ambulatory blood pressure monitoring and a clinical assessment including anthropometrics. Sociodemographic, lifestyle, and menopausal symptoms (modified Kupperman Index [mKI]) were measured by questionnaire. A fasting blood sample was taken to measure a wide range of biomarkers and hormone levels. Restricted cubic spline regression was used to investigate potential nonlinearity. Multivariable logistic and robust linear regression analyses adjusting for minimal sufficient adjustment sets based on directed acyclic graphs were performed to test the association of TBIL with hypertension/blood pressure. We examined mKI-stratified analyses and a TBIL-mKI interaction term to explore potential effect modification by number of menopausal symptoms. RESULTS Hypertensive women had significantly lower TBIL levels than did normotensive women (11.15 vs 12.55 μmol/L, P = 0.046). Univariate restricted cubic spline regression showed nonsignificant nonlinearity ( P value for nonlinearity, 0.339). Multivariable regression analyses adjusted for minimal sufficient adjustment sets revealed that higher TBIL level was associated with lower odds of hypertension (odds ratio, 0.91 per μmol/L TBIL; 95% confidence interval [CI], 0.84-0.98; P = 0.019). Total bilirubin showed a significant inverse association with average 24-hour diastolic blood pressure ( β = -0.36 mm Hg per μmol/L TBIL; 95% CI, -0.62 to -0.10; P = 0.008) but not with 24-hour systolic blood pressure ( β = -0.37 mm Hg per μmol/L TBIL; 95% CI, -0.79 to 0.06; P = 0.090). Stratified analyses suggested stronger inverse associations of TBIL with hypertension and 24-hour blood pressure in women with fewer menopausal symptoms (mKI ≤10), although the TBIL-mKI interaction was not significant. CONCLUSIONS In perimenopause, TBIL was inversely associated with diastolic blood pressure and new-onset hypertension, diagnosed using 24-hour ambulatory blood pressure monitoring.
Collapse
Affiliation(s)
- Zhen He
- Department of Preventive Medicine, Shantou University Medical College, Guangdong, PR China
- Department of Epidemiology, University of Groningen, Groningen, the Netherlands
| | - Shengchao Zhang
- Baoan Central Hospital of Shenzhen, Affiliated Hospital Baoan Central Hospital of Guangdong Medical University, Guangdong, PR China
| | - Chris Thio
- Department of Epidemiology, University of Groningen, Groningen, the Netherlands
| | - Yue Wang
- From the Department of Preventive Medicine, Shantou University Medical College, Guangdong, PR China
| | - Min Li
- Baoan Central Hospital of Shenzhen, Affiliated Hospital Baoan Central Hospital of Guangdong Medical University, Guangdong, PR China
| | - Yan Wu
- Baoan Central Hospital of Shenzhen, Affiliated Hospital Baoan Central Hospital of Guangdong Medical University, Guangdong, PR China
| | - Rongqing Lin
- From the Department of Preventive Medicine, Shantou University Medical College, Guangdong, PR China
| | - Zhixi Liu
- From the Department of Preventive Medicine, Shantou University Medical College, Guangdong, PR China
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, Groningen, the Netherlands
| | - Qingying Zhang
- From the Department of Preventive Medicine, Shantou University Medical College, Guangdong, PR China
| |
Collapse
|
12
|
Stec DE, Tiribelli C, Badmus OO, Hinds TD. Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. KIDNEY360 2022; 3:945-953. [PMID: 36128497 PMCID: PMC9438427 DOI: 10.34067/kid.0000062022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 01/30/2023]
Abstract
Bilirubin is the end product of the catabolism of heme via the heme oxygenase pathway. Heme oxygenase generates carbon monoxide (CO) and biliverdin from the breakdown of heme, and biliverdin is rapidly reduced to bilirubin by the enzyme biliverdin reductase (BVR). Bilirubin has long been thought of as a toxic product that is only relevant to health when blood levels are severely elevated, such as in clinical jaundice. The physiologic functions of bilirubin correlate with the growing body of evidence demonstrating the protective effects of serum bilirubin against cardiovascular and metabolic diseases. Although the correlative evidence suggests a protective effect of serum bilirubin against many diseases, the mechanism by which bilirubin offers protection against cardiovascular and metabolic diseases remains unanswered. We recently discovered a novel function for bilirubin as a signaling molecule capable of activating the peroxisome proliferator-activated receptor α (PPARα) transcription factor. This review summarizes the new finding of bilirubin as a signaling molecule and proposes several mechanisms by which this novel action of bilirubin may protect against cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Olufunto O. Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
13
|
Zuo L, Huang J, Zhang H, Huang B, Wu X, Chen L, Xia S, Dong X, Hao G. Dose-Response Association Between Bilirubin and Cardiovascular Disease: A Systematic Review and Meta-analysis. Angiology 2022; 73:911-919. [PMID: 35015578 DOI: 10.1177/00033197211059693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The association between bilirubin (BIL) and cardiovascular disease (CVD) remains controversial. We performed a meta-analysis of prospective studies to evaluate this association in the general population. We searched PubMed, EMBASE, Web of Science, Cochrane, and Scopus databases through to September 2021. The Newcastle-Ottawa Quality Assessment Scale was used to assess study quality. The pooled effect estimate was calculated by the fixed-effect model or random-effect model. We included 12 prospective studies (368 567 participants). The pooled risk ratio of CVD for the lowest vs highest groups of BIL levels was .75 (95% CI: .58-.97) with high heterogeneity (I2 = 87.5%, P < .001). Similar associations were observed for coronary heart disease and stroke. We further performed a "dose-response" meta-analysis, and a significant U-shaped relationship between circulating (most values were serum bilirubin, but a few were plasma bilirubin) BIL and CVD (P < .01) was observed. The lowest risk of CVD events was observed in participants with a BIL of 17-20 µmol/L in serum and/or plasma. In conclusion, there was a U-shaped dose-response relationship between BIL and CVD, especially for men. Further studies are needed to confirm our findings and identify the mechanisms involved as well as any prognostic or therapeutic potential.
Collapse
Affiliation(s)
- Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Jun Huang
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Hongyue Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Bing Huang
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Xiaoyi Wu
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Li Chen
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, 1421Augusta University, Augusta, GA, USA
| | - Sujian Xia
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| | - Guang Hao
- Department of Public Health and Preventive Medicine, School of Medicine, 47885Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Chen G, Adeyemo A, Zhou J, Doumatey AP, Bentley AR, Ekoru K, Shriner D, Rotimi CN. A UGT1A1 variant is associated with serum total bilirubin levels, which are causal for hypertension in African-ancestry individuals. NPJ Genom Med 2021; 6:44. [PMID: 34117260 PMCID: PMC8196001 DOI: 10.1038/s41525-021-00208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
Serum bilirubin is associated with several clinical outcomes, including hypertension, type 2 diabetes (T2D), and drug metabolism. Here, we describe findings from our genome-wide association studies (GWAS) of serum (TBIL) using a generalized linear mixed model in West Africans (n = 1127), with adjustment for age, sex, body mass index, T2D, significant principal components of population structure, and cryptic relatedness. Genome-wide conditional analysis and CAVIARBF were used to fine map significant loci. The causal effect of TBIL on hypertension was assessed by Mendelian randomization (MR) using the GWAS findings as instrumental variables (IVs) in African Americans (n = 3,067). The SNP rs887829 (UGT1A1) was significantly associated with TBIL levels (effect allele (T) frequency = 0.49, β (SE) = 0.59 (0.04), p = 9.13 × 10-54). Genome-wide conditional analysis and regional fine mapping pointed to rs887829 as a possible causal variant with a posterior inclusion probability of 0.99. The T allele of rs887829 is associated with lower hepatic expression of UGT1A1. Using rs887829 as an IV, two-stage least-squares MR showed a causal effect of bilirubin on hypertension (β = -0.76, 95% CI [-1.52, -0.01], p = 0.0459). Our finding confirms that UGT1A1 influences bilirubin levels. Notably, lower TBIL is causally associated with the increased risk of hypertension.
Collapse
Affiliation(s)
- Guanjie Chen
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Adebowale Adeyemo
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Jie Zhou
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Ayo P. Doumatey
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Amy R. Bentley
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Kenneth Ekoru
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Daniel Shriner
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Charles N. Rotimi
- grid.280128.10000 0001 2233 9230Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
15
|
Creeden JF, Gordon DM, Stec DE, Hinds TD. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320:E191-E207. [PMID: 33284088 PMCID: PMC8260361 DOI: 10.1152/ajpendo.00405.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
16
|
Hinds TD, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020; 11:594574. [PMID: 33390979 PMCID: PMC7775678 DOI: 10.3389/fphar.2020.594574] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin nanoparticles improved liver function and activated the hepatic β-oxidation pathway by increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic avenues for NAFLD.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Matthew C Donald
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
17
|
Hinds TD, Creeden JF, Gordon DM, Spegele AC, Britton SL, Koch LG, Stec DE. Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1. Antioxidants (Basel) 2020; 9:antiox9090889. [PMID: 32961782 PMCID: PMC7554716 DOI: 10.3390/antiox9090889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise in humans and animals increases plasma bilirubin levels, but the mechanism by which this occurs is unknown. In the present study, we utilized rats genetically selected for high capacity running (HCR) and low capacity running (LCR) to determine pathways in the liver that aerobic exercise modifies to control plasma bilirubin. The HCR rats, compared to the LCR, exhibited significantly higher levels of plasma bilirubin and the hepatic enzyme that produces it, biliverdin reductase-A (BVRA). The HCR also had reduced expression of the glucuronyl hepatic enzyme UGT1A1, which lowers plasma bilirubin. Recently, bilirubin has been shown to activate the peroxisome proliferator-activated receptor-α (PPARα), a ligand-induced transcription factor, and the higher bilirubin HCR rats had significantly increased PPARα-target genes Fgf21, Abcd3, and Gys2. These are known to promote liver function and glycogen storage, which we found by Periodic acid–Schiff (PAS) staining that hepatic glycogen content was higher in the HCR versus the LCR. Our results demonstrate that exercise stimulates pathways that raise plasma bilirubin through alterations in hepatic enzymes involved in bilirubin synthesis and metabolism, improving liver function, and glycogen content. These mechanisms may explain the beneficial effects of exercise on plasma bilirubin levels and health in humans.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Adam C. Spegele
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - Steven L. Britton
- Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - David E. Stec
- Center for Excellence in Cardiovascular-Renal Research, Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 392161, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| |
Collapse
|
18
|
Wang X, Wu D, Zhong P. Serum bilirubin and ischaemic stroke: a review of literature. Stroke Vasc Neurol 2020; 5:198-204. [PMID: 32606087 PMCID: PMC7337366 DOI: 10.1136/svn-2019-000289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bilirubin, a product of heme metabolism, is the most potent endogenous antioxidant which increases in many oxidative stress conditions such as stroke. It has been widely known to exert neuroprotective effect on stroke through mechanisms involved in development, therefore, it can influence the occurrence and prognosis of ischaemic stroke (IS). In this review, studies were identified by a comprehensive search of Pubmed, Embase, the Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Methodology Register) and Web of Science to examine the correlation between serum bilirubin levels and risks of developing IS as well as IS outcomes. Additional studies were identified by reviewing references and contacting authors.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Wu YH, Wu CY, Cheng CY, Tsai SF. Severe hyperbilirubinemia is associated with higher risk of contrast-related acute kidney injury following contrast-enhanced computed tomography. PLoS One 2020; 15:e0231264. [PMID: 32294106 PMCID: PMC7159198 DOI: 10.1371/journal.pone.0231264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Contrast-induced acute kidney injury (CI-AKI) is associated with high risks of morbidity and mortality. Hyperbilirubinemia might have some renal protection but with no clear cutoff value for protection. Related studies are typically on limited numbers of patients and only in conditions of vascular intervention. METHODS We performed this study to elucidate CI-AKI in patients after contrast-enhanced computed tomography (CCT). The outcomes were CI-AKI, dialysis and mortality. Patients were divided to three groups based on their serum levels of total bilirubin: ≤1.2 mg/dl, 1.3-2.0 mg/dl, and >2.0 mg/dl. RESULTS We enrolled a total of 9,496 patients who had received CCT. Patients with serum total bilirubin >2.0 mg/dl were associated with CI-AKI. Those undergoing dialysis had the highest incidence of PC-AKI (p<0.001). No difference was found between the two groups of total bilirubin ≤1.2 and 1.3-2.0 mg/dl. Patients with total bilirubin >2mg/dl were associated with CI-AKI (OR = 1.89, 1.53-2.33 of 95% CI), dialysis (OR = 1.40, 1.01-1.95 of 95% CI) and mortality (OR = 1.63, 1.38-1.93 of 95% CI) after adjusting for laboratory data and all comorbidities (i.e., cerebrovascular disease, coronary artery disease, peripheral arterial disease, and acute myocardial infarction, diabetes mellitus, hypertension, gastrointestinal bleeding, cirrhosis, peritonitis, ascites, hepatoma, shock lung and colon cancer). We concluded that total bilirubin level >2 mg/dl is an independent risk factor for CI-AKI, dialysis and mortality after CCT. These patients also had high risks for cirrhosis or hepatoma. CONCLUSION This is the first study providing evidence that hyperbilirubinemia (total bilirubin >2.0 mg/dl) being an independent risk factor for CI-AKI, dialysis and mortality after receiving CCT. Most patients with total bilirubin >2.0mg/dl had cirrhosis or hepatoma.
Collapse
Affiliation(s)
- Yu-Hsien Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Yao Cheng
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Nitti M, Furfaro AL, Mann GE. Heme Oxygenase Dependent Bilirubin Generation in Vascular Cells: A Role in Preventing Endothelial Dysfunction in Local Tissue Microenvironment? Front Physiol 2020; 11:23. [PMID: 32082188 PMCID: PMC7000760 DOI: 10.3389/fphys.2020.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Among antioxidants in the human body, bilirubin has been recognized over the past 20 years to afford protection against different chronic conditions, including inflammation and cardiovascular disease. Moderate increases in plasma concentration and cellular bilirubin generation from metabolism of heme via heme oxygenase (HMOX) in virtually all tissues can modulate endothelial and vascular function and exert antioxidant and anti-inflammatory roles. This review aims to provide an up-to-date and critical overview of the molecular mechanisms by which bilirubin derived from plasma or from HMOX1 activation in vascular cells affects endothelial function. Understanding the molecular actions of bilirubin may critically improve the management not only of key cardiovascular diseases, but also provide insights into a broad spectrum of pathologies driven by endothelial dysfunction. In this context, therapeutic interventions aimed at mildly increasing serum bilirubin as well as bilirubin generated endogenously by endothelial HMOX1 should be considered.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Why some organ allografts are tolerated better than others: new insights for an old question. Curr Opin Organ Transplant 2020; 24:49-57. [PMID: 30516578 DOI: 10.1097/mot.0000000000000594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.
Collapse
|
22
|
Associations between Neonatal Serum Bilirubin and Childhood Obesity in Term Infants. Sci Rep 2019; 9:14575. [PMID: 31601856 PMCID: PMC6787235 DOI: 10.1038/s41598-019-51043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022] Open
Abstract
Inverse correlations between serum bilirubin level and obesity had been reported in adults. We aimed to investigate the associations between neonatal hyperbilirubinemia and childhood obesity. Data was obtained from the U.S. Collaborative Perinatal Project (CPP), a multicenter study from 1959 to 1976. Data of serum bilirubin in term newborns were used to observe the association with obesity at age of 7 years. Logistic regression models were performed to calculate adjusted odds ratios (aORs) for obesity. For children from the same mother sharing similar factors, Generalized Estimating Equation (GEE) model was used to correct for intracluster correlation. Relative to newborns with total serum bilirubin (TSB) < 3 mg/dl, there are lower risks for obesity in those with 3 mg/dl ≤ TSB < 6 mg/dl (aOR 0.91; 95%CI 0.81, 1.02), 6 mg/dl ≤ TSB < 9 mg/dl (aOR 0.88; 95%CI 0.78, 0.99), 9 mg/dl ≤ TSB<13 mg/dl (aOR 0.83; 95%CI 0.71, 0.98). By stratifying for subtypes of bilirubin, the inverse correlations only existed in exposure to unconjugated bilirubin. By using the GEE model correcting for intracluster correlations, the results are consistent. In summary, exposure to bilirubin up to 13 mg/dl is inversely associated with obesity at the age of 7 years in term infants.
Collapse
|
23
|
Luo L, Zou L, Dong W, He Y, Yu H, Lei X. Association between neonatal serum bilirubin and childhood obesity in preterm infants. Pediatr Res 2019; 86:227-233. [PMID: 30995676 DOI: 10.1038/s41390-019-0399-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Serum bilirubin levels are inversely associated with obesity in adults. We are interested in whether neonatal jaundice is associated with childhood obesity in preterm infants. METHODS Data were obtained from the US Collaborative Perinatal Project. Neonatal bilirubin levels were used as exposure factors for obesity at age 7 years. Logistic regression models were used to control for potential confounders and calculate odds ratios (ORs). A generalized estimating equation (GEE) model was used to correct for intracluster correlation coefficient. SAS was used for all statistical analyses. RESULTS In the study subjects, 865 of 5019 preterm infants were obese at age 7 years. While neonatal total serum bilirubin (TSB) rose 1 mg/dl, body mass index (BMI) increased 0.03 kg/m2 (95% confidence interval (CI) 0.02, 0.04). Compared with infants with TSB <3 mg/dl, the ORs (95% CIs) for obesity in infants with 3 mg/dl≤ TSB <6 mg/dl, 6 mg/dl≤ TSB <9 mg/dl, 9 mg/dl≤ TSB <12 mg/dl and TSB ≥12 mg/dl were, respectively, 1.18 (0.87, 1.59), 1.25 (0.93, 1.67), 1.52 (1.11, 2.09), and 1.67 (1.22, 2.07). By using subtypes of bilirubin as exposure factors and the GEE model to correct for intracluster correlation coefficient, similar trends of associations were observed. CONCLUSION Neonatal bilirubin levels have positive trends of associations with childhood obesity in preterm infants.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lile Zou
- Department of Histology and Embryology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan He
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Yu
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoping Lei
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
24
|
Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, Ricco C, Xu R, Saavedra HG, Sbodio JI, Snowman AM, Albacarys L, Hester L, Sedlak TW, Paul BD, Snyder SH. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem Biol 2019; 26:1450-1460.e7. [PMID: 31353321 DOI: 10.1016/j.chembiol.2019.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Bilirubin is one of the most frequently measured metabolites in medicine, yet its physiologic roles remain unclear. Bilirubin can act as an antioxidant in vitro, but whether its redox activity is physiologically relevant is unclear because many other antioxidants are far more abundant in vivo. Here, we report that depleting endogenous bilirubin renders mice hypersensitive to oxidative stress. We find that mice lacking bilirubin are particularly vulnerable to superoxide (O2⋅-) over other tested reactive oxidants and electrophiles. Whereas major antioxidants such as glutathione and cysteine exhibit little to no reactivity toward O2⋅-, bilirubin readily scavenges O2⋅-. We find that bilirubin's redox activity is particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging O2⋅- during NMDA neurotransmission. Bilirubin's unique redox activity toward O2⋅- may underlie a prominent physiologic role despite being significantly less abundant than other endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adarsha P Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Tokhunts
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Anthony Lin
- Duke University School of Medicine, Durham, NC 27701, USA
| | - Ming Ji
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cristina Ricco
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry G Saavedra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan I Sbodio
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adele M Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lynda Hester
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
26
|
Xu C, Dong M, Deng Y, Zhang L, Deng F, Zhou J, Yuan Z. Relation of Direct, Indirect, and Total bilirubin to Adverse Long-term Outcomes Among Patients With Acute Coronary Syndrome. Am J Cardiol 2019; 123:1244-1248. [PMID: 30711248 DOI: 10.1016/j.amjcard.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Bilirubin is known as an antioxidant. However, there have been controversies over whether bilirubin is protective against cardiovascular disease or not. In addition, no study has examined the association between subtypes of total bilirubin (direct bilirubin [DB] and indirect bilirubin [IDB]) and long-term outcomes of acute coronary syndrome (ACS) patients. We included 533 consecutive patients with ACS. All the patients were followed up for the composite end point of cardiac death, revascularization, and acute heart failure. At a median follow-up of 2.4 years, Kaplan-Meier curve demonstrated that higher serum DB levels were significantly associated with major adverse cardiac events (MACE) (p <0.05). However, total bilirubin (TB) and IDB were not associated with MACE by Kaplan-Meier analysis. Cox analysis showed that high TB and DB were associated with increased risk of MACE in ACS even after adjustment of cardiovascular risk factors. The receiver operating characteristic curve illustrated that DB had a predictive value of MACE in ACS. In conclusion, we firstly reported that high TB and DB but not IDB were associated with increased risk of MACE in Chinese ACS, and the prognostic value of DB was superior to that of TB or IDB.
Collapse
|
27
|
Affiliation(s)
- Terry D Hinds
- From the Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH (T.D.H.)
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson (D.E.S.)
| |
Collapse
|
28
|
Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD. Bilirubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando) 2018; 32:234-240. [PMID: 29983261 PMCID: PMC6535229 DOI: 10.1016/j.trre.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
In patients with end-stage renal disease, kidney transplantation has been associated with numerous benefits, including increased daily activity, and better survival rates. However, over 20% of kidney transplants result in rejection within five years. Rejection is primarily due to a hypersensitive immune system and ischemia/reperfusion injury. Bilirubin has been shown to be a potent antioxidant that is capable of potentially reversing or preventing damage from reactive oxygen species generated from ischemia and reperfusion. Additionally, bilirubin has several immunomodulatory effects that can dampen the immune system to promote organ acceptance. Increased bilirubin has also been shown to have a positive impact on renal hemodynamics, which is critical post-transplantation. Lastly, bilirubin levels have been correlated with biomarkers of successful transplantation. In this review, we discuss a multitude of potentially beneficial effects that bilirubin has on kidney acceptance of transplantation based on numerous clinical trials and animal models. Exogenous bilirubin delivery or increasing endogenous levels pre- or post-transplantation may have therapeutic benefits.
Collapse
Affiliation(s)
- Vikram L Sundararaghavan
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Sivjot Binepal
- Internal Medicine Department, Kettering Medical Center, Kettering, OH 45429, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Puneet Sindhwani
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA
| | - Terry D Hinds
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| |
Collapse
|
29
|
Weaver L, Hamoud AR, Stec DE, Hinds TD. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G668-G676. [PMID: 29494209 PMCID: PMC6032063 DOI: 10.1152/ajpgi.00026.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.
Collapse
Affiliation(s)
- Lauren Weaver
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Abdul-rizaq Hamoud
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - David E. Stec
- 2Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
30
|
Bulmer AC, Bakrania B, Du Toit EF, Boon AC, Clark PJ, Powell LW, Wagner KH, Headrick JP. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more than just a radical idea. Am J Physiol Heart Circ Physiol 2018; 315:H429-H447. [PMID: 29600900 DOI: 10.1152/ajpheart.00417.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.
Collapse
Affiliation(s)
- Andrew C Bulmer
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Bhavisha Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Centre , Jackson, Mississippi
| | - Eugene F Du Toit
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Ai-Ching Boon
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Paul J Clark
- QIMR-Berghofer Medical Research Institute, School of Medicine, University of Queensland and Princess Alexandra and Mater Hospitals , Brisbane, New South Wales , Australia
| | - Lawrie W Powell
- The Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research , Brisbane, Queensland , Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna , Vienna , Austria
| | - John P Headrick
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review aims to highlight recent advances on the role of hyperbilirubinemia in hypertension and chronic kidney disease, with a focus on the pathophysiological mechanisms explaining the protective effects of bilirubin. An overview of pharmacologic induction of hyperbilirubinemia will also be discussed. RECENT FINDINGS The findings depict a protective role of bilirubin in the development of hypertension and cardiovascular diseases. Hyperbilirubinemia is also negatively correlated with the development and progression of chronic kidney disease. Commonly used drugs play a role in pharmacologic induction of hyperbilirubinemia. Bilirubin is therefore an exciting target for new therapeutic interventions for its antioxidant properties can be pivotal in the management of hypertension and in preventing and halting the progression of chronic kidney disease. Longitudinal studies are warranted to evaluate the prospective association between bilirubin levels and incident hypertension and chronic kidney disease in the general population. Interventions to induce hyperbilirubinemia need to be explored as a novel therapeutic approach in fighting disease burden.
Collapse
Affiliation(s)
- Ibrahim Mortada
- American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|
32
|
Kunutsor SK, Kieneker LM, Burgess S, Bakker SJL, Dullaart RPF. Circulating Total Bilirubin and Future Risk of Hypertension in the General Population: The Prevention of Renal and Vascular End-Stage Disease (PREVEND) Prospective Study and a Mendelian Randomization Approach. J Am Heart Assoc 2017; 6:e006503. [PMID: 29133521 PMCID: PMC5721749 DOI: 10.1161/jaha.117.006503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circulating total bilirubin is known to be inversely and independently associated with future risk of cardiovascular disease. However, the relationship of circulating total bilirubin with incident hypertension is uncertain. We aimed to assess the association of total bilirubin with future hypertension risk and supplemented this with a Mendelian randomization approach to investigate any causal relevance to the association. METHODS AND RESULTS Plasma total bilirubin levels were measured at baseline in the PREVEND (Prevention of Renal and Vascular End-Stage Disease) prospective study of 3989 men and women without hypertension. Hazard ratios (95% confidence intervals) of total bilirubin with incident hypertension were assessed. New-onset hypertension was recorded in 1206 participants during a median follow-up of 10.7 years. Baseline total bilirubin was approximately log-linearly associated with hypertension risk. Age- and sex-adjusted hazard ratio for hypertension per 1-SD increase in loge total bilirubin was 0.86 (0.81-0.92; P<0.001), which was attenuated to 0.94 (0.88-0.99; P=0.040) after further adjustment for established risk factors and other potential confounders. The association was marginally significant on further adjustment for high-sensitivity C-reactive protein (0.94; 0.88-1.00; P=0.067). A genetic variant at the UGT1A1*28 locus consistently shown to be strongly associated with circulating bilirubin levels-rs6742078-was not significantly associated with blood pressure or hypertension (P>0.05 for all), arguing against a strong causal association of circulating bilirubin with blood pressure. CONCLUSIONS The weak and inverse association of circulating total bilirubin with future hypertension risk may be driven by biases such as unmeasured confounding and/or reverse causation. Further evaluation is warranted.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lyanne M Kieneker
- Department of Nephrology Medicine, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Stephan J L Bakker
- Department of Nephrology Medicine, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center, Groningen, The Netherlands
| |
Collapse
|
33
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Hinds TD, Adeosun SO, Alamodi AA, Stec DE. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor? Med Hypotheses 2016; 95:54-57. [PMID: 27692168 PMCID: PMC5433619 DOI: 10.1016/j.mehy.2016.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - Abdulhadi A Alamodi
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| |
Collapse
|
35
|
Pakai E, Garami A, Nucci TB, Ivanov AI, Romanovsky AA. Hyperbilirubinemia exaggerates endotoxin-induced hypothermia. Cell Cycle 2016; 14:1260-7. [PMID: 25774749 PMCID: PMC4613908 DOI: 10.1080/15384101.2015.1014150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Systemic inflammation is accompanied by an increased production of reactive oxygen species (ROS) and by either fever or hypothermia (or both). To study aseptic systemic inflammation, it is often induced in rats by the intravenous administration of bacterial lipopolysaccharide (LPS). Knowing that bilirubin is a potent ROS scavenger, we compared responses to LPS between normobilirubinemic Gunn rats (heterozygous, asymptomatic; J/+) and hyperbilirubinemic Gunn rats (homozygous, jaundiced; J/J) to establish whether ROS mediate fever and hypothermia in aseptic systemic inflammation. These two genotypes correspond to undisturbed versus drastically suppressed (by bilirubin) tissue accumulation of ROS, respectively. A low dose of LPS (10 μg/kg) caused a typical triphasic fever in both genotypes, without any intergenotype differences. A high dose of LPS (1,000 μg/kg) caused a complex response consisting of early hypothermia followed by late fever. The hypothermic response was markedly exaggerated, whereas the subsequent fever response was strongly attenuated in J/J rats, as compared to J/+ rats. J/J rats also tended to respond to 1,000 μg/kg with blunted surges in plasma levels of all hepatic enzymes studied (alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase), thus suggesting an attenuation of hepatic damage. We propose that the reported exaggeration of LPS-induced hypothermia in J/J rats occurs via direct inhibition of nonshivering thermogenesis by bilirubin and possibly via a direct vasodilatatory action of bilirubin in the skin. This hypothermia-exaggerating effect might be responsible, at least in part, for the observed tendency of J/J rats to be protected from LPS-induced hepatic damage. The attenuation of the fever response to 1,000 μg/kg could be due to either direct actions of bilirubin on thermoeffectors or the ROS-scavenging action of bilirubin. However, the experiments with 10 μg/kg strongly suggest that ROS signaling is not involved in the fever response to low doses of LPS.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, blood urea nitrogen
- COX, cyclooxygenase
- GGT, gamma-glutamyl transferase
- Gunn rats
- LPS
- LPS, lipopolysaccharide
- NO, nitric oxide
- PG, prostaglandin
- ROS
- ROS, reactive oxygen species
- Ta, ambient temperature
- Tb, body temperature
- antioxidants
- bilirubin
- fever
- hepatic damage
- lipopolysaccharides
- liver
- reactive oxygen species
- transferases
Collapse
Affiliation(s)
- Eszter Pakai
- a FeverLab; Trauma Research; St. Joseph's Hospital and Medical Center ; Phoenix , AZ USA
| | | | | | | | | |
Collapse
|
36
|
Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway. Hypertens Res 2015; 38:733-40. [PMID: 26134126 DOI: 10.1038/hr.2015.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.
Collapse
|
37
|
McCallum L, Panniyammakal J, Hastie CE, Hewitt J, Patel R, Jones GC, Muir S, Walters M, Sattar N, Dominiczak AF, Padmanabhan S. Longitudinal Blood Pressure Control, Long-Term Mortality, and Predictive Utility of Serum Liver Enzymes and Bilirubin in Hypertensive Patients. Hypertension 2015; 66:37-43. [PMID: 25941342 PMCID: PMC4461392 DOI: 10.1161/hypertensionaha.114.04915] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/12/2015] [Indexed: 01/04/2023]
Abstract
Supplemental Digital Content is available in the text. There is accruing evidence from general population studies that serum bilirubin and liver enzymes affect blood pressure (BP) and cardiovascular risk, but it is unclear whether these have an impact on hypertensive patients in terms of long-term survival or BP control. We analyzed 12 000 treated hypertensive individuals attending a tertiary care clinic followed up for 35 years for association between baseline liver function tests and cause-specific mortality after adjustment for conventional cardiovascular covariates. Generalized estimating equations were used to study the association of liver tests and follow-up BP. The total time at risk was 173 806 person years with median survival 32.3 years. Follow-up systolic BP over 5 years changed by −0.4 (alanine transaminase and bilirubin), +2.1(alkaline phosphatase), +0.9(γ-glutamyl transpeptidase) mm Hg for each standard deviation increase. Serum total bilirubin and alanine transaminase showed a significant negative association with all-cause and cardiovascular mortality, whereas alkaline phosphatase and γ-glutamyl transpeptidase showed a positive association and aspartate transaminase showed a U-shapedassociation. Serum bilirubin showed an incremental improvement of continuous net reclassification improvement by 8% to 26% for 25 year and 35 year cardiovascular mortality, whereas all liver markers together improved continuous net reclassification improvement by 19% to 47% compared with reference model. In hypertensive patients, serum liver enzymes and bilirubin within 4 standard deviations of the mean show independent effects on mortality and BP control. Our findings would support further studies to elucidate the mechanisms by which liver enzymes and bilirubin may exert an effect on BP and cardiovascular risk, but there is little support for using them in risk stratification.
Collapse
Affiliation(s)
- Linsay McCallum
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jeemon Panniyammakal
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Claire E Hastie
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jonathan Hewitt
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rajan Patel
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gregory C Jones
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Scott Muir
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Matthew Walters
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anna F Dominiczak
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
38
|
Abstract
BACKGROUND Experimental studies suggest oxidative stress could lead to the development of hypertension. Serum bilirubin is a major contributor to the antioxidant capacity in blood plasma and has been identified as an independent cardiovascular risk factor in cohort studies. However, data on the relationship between bilirubin and blood pressure are scarce and inconclusive. METHODS We analysed data from the National Health and Nutrition Examination Surveys (NHANES) 1999-2012 (N=31069). Fifty multiple imputed data sets were generated and analysed to avoid selection/confounding bias due to excluding individuals/variables with missing values. A minimal sufficient adjustment set of variables (MSAS) needed to estimate the unconfounded effect of bilirubin on blood pressure and hypertension (systolic/diastolic blood pressure ≥ 140/90 mmHg or using antihypertensive medication) was identified using the back-door criterion and included in all regression models. RESULTS After adjustment for the MSAS variables, systolic blood pressure decreased progressively up to -2.5 mmHg (p<0.001) and the prevalence of hypertension was up to 25% lower (P<0.001) in those with bilirubin ≥ 1.0 mg/dl-the highest two deciles-compared with those with 0.1-0.4 mg/dl-the lowest decile. Sensitivity analyses showed these results were unlikely to be explained by residual confounding or selection bias. CONCLUSIONS High serum bilirubin may decrease the risk of hypertension by inactivating and inhibiting the synthesis of reactive oxygen species in vascular cells. Strategies to boost the bioavailability of circulating and tissue bilirubin or to mimic bilirubin's antioxidant properties could have a significant impact on prevention and control of hypertension as well as coronary heart disease.
Collapse
Affiliation(s)
- Lina Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China and Department of Population Health Sciences, University of Wisconsin in Madison, Madison, WI, USA Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China and Department of Population Health Sciences, University of Wisconsin in Madison, Madison, WI, USA
| | - Leonelo E Bautista
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China and Department of Population Health Sciences, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
39
|
Bakrania B, Du Toit EF, Ashton KJ, Kiessling CJ, Wagner KH, Headrick JP, Bulmer AC. Hyperbilirubinemia modulates myocardial function, aortic ejection, and ischemic stress resistance in the Gunn rat. Am J Physiol Heart Circ Physiol 2014; 307:H1142-9. [DOI: 10.1152/ajpheart.00001.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mildly elevated circulating unconjugated bilirubin (UCB) is associated with protection against hypertension and ischemic heart disease. We assessed whether endogenously elevated bilirubin in Gunn rats modifies cardiovascular function and resistance to ischemic insult. Hearts were assessed ex vivo (Langendorff perfusion) and in vivo (Millar catheterization and echocardiography), and left ventricular myocardial gene expression was measured via quantitative real-time PCR. Ex vivo analysis revealed reduced intrinsic contractility in the Gunn myocardium (+dP/d t: 1,976 ± 622 vs. 2,907 ± 334 mmHg/s, P < 0.01; −dP/d t: −1,435 ± 372 vs. −2,234 ± 478 mmHg/s, P < 0.01), which correlated positively with myocardial UCB concentration ( P < 0.05). In vivo analyses showed no changes in left ventricular contractile parameters and ejection (fractional shortening and ejection fraction). However, Gunn rats exhibited reductions in the rate of aortic pressure development (3,008 ± 461 vs. 4,452 ± 644 mmHg/s, P < 0.02), mean aortic velocity (439 ± 64 vs. 644 ± 62 mm/s, P < 0.01), and aortic volume time integral pressure gradient (2.32 ± 0.65 vs. 5.72 ± 0.74 mmHg, P < 0.01), in association with significant aortic dilatation (12–24% increase in aortic diameter, P < 0.05). Ex vivo Gunn hearts exhibited improved ventricular function after 35 min of ischemia and 90 min of reperfusion (63 ± 14 vs. 35 ± 12%, P < 0.01). These effects were accompanied by increased glutathione peroxidase and reduced superoxide dismutase and phospholamban gene expression in Gunn rat myocardium ( P < 0.05). These data collectively indicate that hyperbilirubinemia in Gunn rats 1) reduces intrinsic cardiac contractility, which is compensated for in vivo; 2) induces aortic dilatation, which may beneficially influence aortic ejection velocities and pressures; and 3) may improve myocardial stress resistance in association with beneficial transcriptional changes. These effects may contribute to protection from cardiovascular disease with elevated bilirubin.
Collapse
Affiliation(s)
- Bhavisha Bakrania
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Eugene F. Du Toit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; and
| | - Can J. Kiessling
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; and
| | - Karl-Heinz Wagner
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
40
|
Boon AC, Bulmer AC, Coombes JS, Fassett RG. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. Am J Physiol Renal Physiol 2014; 307:F123-36. [PMID: 24761005 DOI: 10.1152/ajprenal.00039.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unconjugated bilirubin is an endogenous circulating antioxidant, bound to albumin, and therefore is retained in the vascular compartment. Bilirubin has well-documented neurotoxic effects in infants; however, current evidence indicates mildly elevated bilirubin is associated with protection from cardiovascular disease and all-cause mortality in adults. Recent clinical studies show mildly elevated bilirubin is associated with protection from kidney damage and dysfunction, in addition to cardiovascular events and all-cause mortality in patients undergoing hemodialysis. This is the first review to examine the clinical evidence and summarize the potential mechanisms of action that link bilirubin to protection from kidney damage, subsequent kidney failure, and dialysis-related mortality. With this understanding, it is hoped that new therapies will be developed to prevent renal dysfunction and mortality from cardiovascular disease in at-risk individuals.
Collapse
Affiliation(s)
- Ai-Ching Boon
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia; and
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia; and
| | - Jeff S. Coombes
- School of Human Movement Studies, University of Queensland, St Lucia, Australia
| | - Robert G. Fassett
- School of Human Movement Studies, University of Queensland, St Lucia, Australia
| |
Collapse
|
41
|
Tanaka M, Fukui M, Okada H, Senmaru T, Asano M, Akabame S, Yamazaki M, Tomiyasu KI, Oda Y, Hasegawa G, Toda H, Nakamura N. Low serum bilirubin concentration is a predictor of chronic kidney disease. Atherosclerosis 2014; 234:421-5. [PMID: 24763407 DOI: 10.1016/j.atherosclerosis.2014.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Chronic kidney disease (CKD) is a worldwide public health problem. It is very important to identify the factors that affect CKD. Previous studies have reported that serum bilirubin concentration was positively correlated with renal function in a cross-sectional study. The aim of this study was to investigate the relationship between serum bilirubin concentration and the progression of CKD. METHODS A cohort study was performed on a consecutive series of 2784 subjects without CKD, defined as estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m(2), at baseline. We analyzed the relationship between serum total bilirubin concentration at baseline and new-onset CKD in the general population. RESULTS We followed the subjects for a median period of 7.7 years. There were 1157 females and 1627 males, and 231 females and 370 males developed CKD during this period. Multiple Cox regression analyses revealed that serum total bilirubin concentration (hazard ratio (HR) per 1.0 μmol/L increase 0.97 (95% CI 0.95-0.99), P = 0.0084) in addition to age, gamma-glutamyl transpeptidase (GGT), uric acid (UA), creatinine and medication for hypertension in men and serum total bilirubin concentration (HR per 1.0 μmol/L increase 0.96 (95% CI 0.93-1.00), P = 0.0309) in addition to age, GGT, alanine aminotransferase, UA, creatinine and medication for dyslipidemia in women were independent predictors of new-onset CKD, after adjusting for confounders. CONCLUSION Our study demonstrated that serum total bilirubin concentration could be a novel risk factor for the progression of CKD, defined as eGFR <60 ml/min/1.73 m(2), in the general population.
Collapse
Affiliation(s)
- Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan.
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | - Yohei Oda
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | - Goji Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | - Hitoshi Toda
- Department of Internal Medicine, Oike Clinic, Kyoto, Japan
| | - Naoto Nakamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| |
Collapse
|
42
|
Stec DE, Storm MV, Pruett BE, Gousset MU. Antihypertensive actions of moderate hyperbilirubinemia: role of superoxide inhibition. Am J Hypertens 2013; 26:918-23. [PMID: 23482378 DOI: 10.1093/ajh/hpt038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Moderate (approximately 2-fold) increases in plasma unconjugated bilirubin levels are able to attenuate the development of angiotensin II (Ang II)-dependent hypertension. To determine the specific role of decreases in superoxide production to the blood pressure-lowering effects of moderate hyperbilirubinemia (MHyB), we performed this study, in which the Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin was given to Ang II-infused mice in the presence and absence of moderate hyperbilirubinemia. METHODS Apocynin (14mM) was administered in the drinking water prior to treatment with UDP-glucuronosyltransferase 1A1 antisense morpholino (16 μg/kg), which was administered by intravenous injection every third day. Treatments were started before the implantation of Ang II-containing minipumps (1μg/kg/min) and continued throughout the protocol. RESULTS Ang II infusion increased blood pressure to 145±2mm Hg. Apocynin treatment alone reduced blood pressure to 135±5mm Hg, whereas MHyB alone decreased blood pressure to 118±5mm Hg in Ang II-infused mice. Prior inhibition of NADPH oxidase with apocynin did not result in a further decrease in blood pressure in MHyB mice, which averaged 117±3mm Hg (n = 6 mice per group). In aortic preparations, apocynin treatment decreased Ang II-mediated superoxide production from 2433±120 relative light units (RLU)/min/mg to 1851±126 RLU/min/mg (n = 4 mice per group), which was similar to levels observed in MHyB mice alone (1473±132 RLU/min/mg) or in combination with apocynin (1503±115 RLU/min/mg). CONCLUSIONS Our results indicate that MHyB lowers blood pressure by a mechanism that is partially dependent on the inhibition of superoxide production.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|
43
|
Wei S, Gao C, Wei G, Chen Y, Zhong L, Li X. The level of serum bilirubin associated with coronary lesion types in patients with coronary artery disease. J Cardiovasc Med (Hagerstown) 2012; 13:432-8. [PMID: 21799439 DOI: 10.2459/jcm.0b013e32834a3967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Serum bilirubin has been proven to be associated with coronary artery disease (CAD). However, how serum bilirubin is related to the complexity of coronary artery lesions is still unknown. METHODS AND RESULTS One thousand two hundred and sixty patients (men 775, 61.5%, mean age, 59.3 ± 8.2 years) diagnosed with unstable angina were enrolled in the study. Patients were categorized into three major groups and group III was further divided into four subgroups according to the guidelines of AHA/ACC 1993 described in the Methods section. The total serum bilirubin levels showed significant differences among the three major groups (group I vs. group II, 14.8 ± 5.8 vs. 13.7 ± 4.7 μmol/l, P=0.017; group I vs. group III, 14.8 ± 5.8 vs. 12.6 ± 4.4 μmol/l, P<0.001; group II vs. group III, 13.7 ± 4.7 vs. 12.6 ± 4.4 μmol/l, P=0.009). The difference was further seen among the subgroups. Logistic regression analysis demonstrated that age, male sex, histories of hypertension and diabetes, and total serum bilirubin were independent risk factors for CAD. However, in the subgroups, only age, male sex, history of hypertension and total serum bilirubin were associated with CAD. Total serum bilirubin showed the strongest relationship (odds ratio=0.95, 95% confidence interval 0.91-0.98, P=0.001). CONCLUSION Total serum bilirubin level is an independent risk factor for CAD. It has a strong relationship with coronary artery lesion types.
Collapse
Affiliation(s)
- Shipeng Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
44
|
Peyton KJ, Shebib AR, Azam MA, Liu XM, Tulis DA, Durante W. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration. Front Pharmacol 2012; 3:48. [PMID: 22470341 PMCID: PMC3309974 DOI: 10.3389/fphar.2012.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/04/2012] [Indexed: 12/11/2022] Open
Abstract
Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine Columbia, MO, USA
| | | | | | | | | | | |
Collapse
|
45
|
Stec DE, Hosick PA, Granger JP. Bilirubin, renal hemodynamics, and blood pressure. Front Pharmacol 2012; 3:18. [PMID: 22347861 PMCID: PMC3278997 DOI: 10.3389/fphar.2012.00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/01/2012] [Indexed: 11/28/2022] Open
Abstract
Bilirubin is generated from the breakdown of heme by heme oxygenase and the reduction of biliverdin by the enzyme biliverdin reductase. Several large population studies have reported a significant inverse correlation between plasma bilirubin levels and the incidence of cardiovascular disease. Protection from cardiovascular disease is also observed in patients with Gilbert’s syndrome which is a disease characterized by mutations in hepatic UGT1A1, the enzyme responsible for the conjugation of bilirubin into the bile. Despite the strong correlation between plasma bilirubin levels and the protection from cardiovascular disease, the mechanism by which increases in plasma bilirubin acts to protect against cardiovascular disease is unknown. Since the chronic antihypertensive actions of bilirubin are likely due to its renal actions, the effects of moderate increases in plasma bilirubin on renal hemodynamics as well as bilirubin’s potential effects on renal tubule function will be discussed in this review. Mechanisms of action as well as the potential for antihypertensive therapies targeting moderate increases in plasma bilirubin levels will also be highlighted.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular - Renal Research, University of Mississippi Medical Center Jackson, MS, USA
| | | | | |
Collapse
|
46
|
Renal heme oxygenase-1 induction with hemin augments renal hemodynamics, renal autoregulation, and excretory function. Int J Hypertens 2012; 2012:189512. [PMID: 22518281 PMCID: PMC3296275 DOI: 10.1155/2012/189512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models.
Collapse
|
47
|
Hosick PA, Stec DE. Heme oxygenase, a novel target for the treatment of hypertension and obesity? Am J Physiol Regul Integr Comp Physiol 2011; 302:R207-14. [PMID: 22071158 DOI: 10.1152/ajpregu.00517.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the metabolism of heme-releasing bioactive molecules carbon monoxide (CO), biliverdin, and iron, each with beneficial cardiovascular actions. Biliverdin is rapidly reduced to bilirubin, a potent antioxidant, by the enzyme biliverdin reductase, and iron is rapidly sequestered by ferritin in the cell. Several studies have demonstrated that HO-1 induction can attenuate the development of hypertension as well as lower blood pressure in established hypertension in both genetic and experimental models. HO-1 induction can also reduce target organ injury and can be beneficial in cardiovascular diseases, such as heart attack and stroke. Recent studies have also identified a beneficial role for HO-1 in the regulation of body weight and metabolism in diabetes and obesity. Chronic HO-1 induction lowers body weight and corrects hyperglycemia and hyperinsulinemia. Chronic HO-1 induction also modifies the phenotype of adipocytes in obesity from one of large, cytokine producing to smaller, adiponectin producing. Finally, chronic induction of HO-1 increases oxygen consumption, CO(2), and heat production and activity in obese mice. This review will discuss the current understanding of the actions of the HO system to lower blood pressure and body weight and how HO or its metabolites may be ideal candidates for the development of drugs that can both reduce blood pressure and lower body weight.
Collapse
Affiliation(s)
- Peter A Hosick
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
48
|
Hosick PA, Stec DE. Heme oxygenase, a novel target for the treatment of hypertension and obesity? AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY 2011. [PMID: 22071158 DOI: 10.1152/ajpregu.00517.20113349392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the metabolism of heme-releasing bioactive molecules carbon monoxide (CO), biliverdin, and iron, each with beneficial cardiovascular actions. Biliverdin is rapidly reduced to bilirubin, a potent antioxidant, by the enzyme biliverdin reductase, and iron is rapidly sequestered by ferritin in the cell. Several studies have demonstrated that HO-1 induction can attenuate the development of hypertension as well as lower blood pressure in established hypertension in both genetic and experimental models. HO-1 induction can also reduce target organ injury and can be beneficial in cardiovascular diseases, such as heart attack and stroke. Recent studies have also identified a beneficial role for HO-1 in the regulation of body weight and metabolism in diabetes and obesity. Chronic HO-1 induction lowers body weight and corrects hyperglycemia and hyperinsulinemia. Chronic HO-1 induction also modifies the phenotype of adipocytes in obesity from one of large, cytokine producing to smaller, adiponectin producing. Finally, chronic induction of HO-1 increases oxygen consumption, CO(2), and heat production and activity in obese mice. This review will discuss the current understanding of the actions of the HO system to lower blood pressure and body weight and how HO or its metabolites may be ideal candidates for the development of drugs that can both reduce blood pressure and lower body weight.
Collapse
Affiliation(s)
- Peter A Hosick
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
49
|
Dekker D, Dorresteijn MJ, Pijnenburg M, Heemskerk S, Rasing-Hoogveld A, Burger DM, Wagener FA, Smits P. The Bilirubin-Increasing Drug Atazanavir Improves Endothelial Function in Patients With Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2011; 31:458-63. [DOI: 10.1161/atvbaha.110.211789] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
In type 2 diabetes mellitus (T2DM), oxidative stress gives rise to endothelial dysfunction. Bilirubin, a powerful endogenous antioxidant, significantly attenuates endothelial dysfunction in preclinical experiments. The Gilbert syndrome is accompanied by a mild and lifelong hyperbilirubinemia and associated with only one third of the usual cardiovascular mortality risk. The hyperbilirubinemia caused by atazanavir treatment closely resembles the Gilbert syndrome. We thus hypothesized that treatment with atazanavir would ameliorate oxidative stress and vascular inflammation and improve endothelial function in T2DM.
Methods and Results—
In a double-blind, placebo-controlled crossover design, we induced a moderate hyperbilirubinemia by a 3-day atazanavir treatment in 16 subjects experiencing T2DM. On the fourth day, endothelial function was assessed by venous occlusion plethysmography. Endothelium-dependent and endothelium-independent vasodilation were assessed by intraarterial infusion of acetylcholine and nitroglycerin, respectively. Atazanavir treatment induced an increase in average bilirubin levels from 7 μmol/L (0.4 mg/dL) to 64 μmol/L (3.8 mg/dL). A significant improvement in plasma antioxidant capacity (
P
<0.001) and endothelium-dependent vasodilation (
P
=0.036) and a decrease in plasma von Willebrand factor (
P
=0.052) were observed.
Conclusion—
Experimental hyperbilirubinemia is associated with a significant improvement of endothelial function in T2DM.
Collapse
Affiliation(s)
- Douwe Dekker
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Mirrin J. Dorresteijn
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Margot Pijnenburg
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Suzanne Heemskerk
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Anja Rasing-Hoogveld
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - David M. Burger
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Frank A.D.T.G. Wagener
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Paul Smits
- From the Departments of Pharmacology and Toxicology (D.D., M.P., S.H., A.R.-H., F.A.D.T.G.W., P.S.), Internal Medicine (D.D., M.J.D., P.S.), Intensive Care Medicine (S.H.), Pharmacy (D.M.B.), and Orthodontics and Oral Biology (F.A.D.T.G.W.), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
50
|
Vera T, Stec DE. Moderate hyperbilirubinemia improves renal hemodynamics in ANG II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1044-9. [PMID: 20668235 PMCID: PMC2957382 DOI: 10.1152/ajpregu.00316.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/25/2010] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that moderate hyperbilirubinemia decreases blood pressure in ANG II-dependent hypertension through mechanisms that decrease oxidative stress and increase nitric oxide levels. Since decreases in renal hemodynamics play an important role in mediating the hypertensive actions of ANG II, the goal of the present study was to examine the effect of moderate hyperbilirubinemia on glomerular filtration rate (GFR) and renal blood flow (RBF) in a mouse model of ANG II hypertension. Mice were made moderately hyperbilirubinemic by two methods: indinavir or specific morpholino antisense oligonucleotides against UGT1A1, which is the enzyme responsible for the conjugation of bilirubin in the liver. GFR and RBF were measured in mice after implantation of an osmotic minipump delivering ANG II at a rate of 1 μg·kg(-1)·min(-1). GFR was measured by continuous infusion of I(125)-labeled iothalamate on days 5 and 6 of ANG II infusion in conscious mice. RBF was measured on day 7 of ANG II infusion in anesthetized mice. Blood levels of unconjugated bilirubin were significantly increased in mice treated with indinavir or anti-UGT1A1 (P = 0.002). ANG II decreased GFR by 33% of control (n = 9, P = 0.004), and this was normalized by moderate hyperbilirubinemia (n = 6). Next, we examined the effect of moderate hyperbilirubinemia on RBF in ANG II-infused mice. ANG II infusion significantly decreased RBF by 22% (P = 0.037) of control, and this decrease was normalized by moderate hyperbilirubinemia (n = 6). These results indicate that improvement of renal hemodynamics may be one mechanism by which moderate hyperbilirubinemia lowers blood pressure in this model.
Collapse
Affiliation(s)
- Trinity Vera
- Dept. of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, 39216-4505, USA
| | | |
Collapse
|