1
|
Chauvigné F, Castro-Arnau J, López-Fortún N, Sánchez-Chardi A, Rützler M, Calamita G, Finn RN, Cerdà J. Aquaporin-3a Dysfunction Impairs Osmoadaptation in Post-Activated Marine Fish Spermatozoa. Int J Mol Sci 2024; 25:9604. [PMID: 39273548 PMCID: PMC11395232 DOI: 10.3390/ijms25179604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatozoon volume regulation is an essential determinant of male fertility competence in mammals and oviparous fishes. In mammals, aquaporin water channels (AQP3, -7 and -8) have been suggested to play a role in spermatozoon cell volume regulatory responses in the hypotonic female oviduct. In contrast, the ejaculated spermatozoa of marine teleosts, such as the gilthead seabream (Sparus aurata), experience a high hypertonic shock in seawater, initially resulting in an Aqp1aa-mediated water efflux, cell shrinkage and the activation of motility. Further regulatory recovery of cell volume in post-activated spermatozoa is mediated by Aqp4a in cooperation with the Trpv4 Ca2+ channel and other ion channels and transporters. Using a paralog-specific antibody, here, we show that seabream spermatozoa also express the aquaglyceroporin AQP3 ortholog Aqp3a, which is highly accumulated in the mid posterior region of the spermatozoon flagella, in a similar pattern to that described in mouse and human sperm. To investigate the role of Aqp3a in seabream sperm motility, we used a recently developed AQP3 antagonist (DFP00173), as well as the seabream Aqp3a-specific antibody (α-SaAqp3a), both of which specifically inhibit Aqp3a-mediated water conductance when the channel was heterologously expressed in Xenopus laevis oocytes. Inhibition with either DFP00173 or α-SaAqp3a did not affect sperm motility activation but did impair the spermatozoon motion kinetics at 30 s post activation in a dose-dependent manner. Interestingly, in close resemblance to the phenotypes of AQP3-deficient murine sperm, electron microscopy image analysis revealed that both Aqp3a inhibitors induce abnormal sperm tail morphologies, including swelling and angulation of the tail, with complete coiling of the flagella in some cases. These findings suggest a conserved role of Aqp3a as an osmosensor that regulates cell volume in fish spermatozoa under a high hypertonic stress, thereby controlling the efflux of water and/or solutes in the post-activated spermatozoon.
Collapse
Affiliation(s)
- François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noelia López-Fortún
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Michael Rützler
- Apoglyx AB, c/o Anyo AB, Ideon Science Park, 22370 Lund, Sweden
- Department of Biochemistry and Structural Biology, Lund University, 22184 Lund, Sweden
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Roderick Nigel Finn
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Walsh MR, Roden C. Fish (eggs) out of water: evolutionary divergence in terrestrial embryonic plasticity in Trinidadian killifish. Proc Biol Sci 2024; 291:20240083. [PMID: 38917866 DOI: 10.1098/rspb.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Externally laid eggs are often responsive to environmental cues; however, it is unclear how such plasticity evolves. In Trinidad, the killifish (Anablepsoides hartii) is found in communities with and without predators. Here, killifish inhabit shallower, ephemeral habitats in sites with predators. Such shifts may increase the exposure of eggs to air and lead to possible desiccation. We compared egg-hatching plasticity between communities by rearing eggs terrestrially on peat moss or in water. The timing of hatching did not differ between communities when eggs were reared in water. Eggs from sites with predators responded to terrestrial incubation by hatching significantly earlier compared with water-reared eggs. These responses were weaker in sites with no predators. Such divergent trends show that the presence of predators is associated with evolutionary shifts in hatching plasticity. Our results provide evidence for local adaptation in embryonic plasticity at the population scale.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| | - Christopher Roden
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
3
|
Li Y, Xu P, Sun T, Peng S, Wang F, Wang L, Xing Y, Wang W, Zhao J, Dong Z. Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish. Mol Ecol 2024; 33:e17249. [PMID: 38133544 DOI: 10.1111/mec.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Collapse
Affiliation(s)
- Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yixuan Xing
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Wenhui Wang
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Lorente-Martínez H, Agorreta A, Irisarri I, Zardoya R, Edwards SV, San Mauro D. Multiple Instances of Adaptive Evolution in Aquaporins of Amphibious Fishes. BIOLOGY 2023; 12:846. [PMID: 37372131 DOI: 10.3390/biology12060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade.
Collapse
Affiliation(s)
- Héctor Lorente-Martínez
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ainhoa Agorreta
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, 20146 Hamburg, Germany
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Chutia P, Saha N, Das M, Goswami LM. Differential expression of aquaporin genes and the influence of environmental hypertonicity on their expression in juveniles of air-breathing stinging catfish (Heteropneustes fossilis). Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111314. [PMID: 36096299 DOI: 10.1016/j.cbpa.2022.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
Aquaporins (AQPs) are a superfamily of transmembrane channel proteins that are responsible for the transport of water and some other molecules to and from the cell, mainly for osmoregulation under anisotonicity. We investigated here the expression patterns of different AQP isoforms and also during exposure to hypertonicity (300 mOsmol/L) for 48 h in juvenile stages of air-breathing stinging catfish (Heteropneustes fossilis). A total of 8 mRNA transcripts for different isoforms of AQPs and their translated proteins could be detected in the anterior and posterior regions of S1, S2, and S3 stages of juveniles of stinging catfish at variable levels. In general, more expression of mRNAs for different aqp genes was seen in the S2 and S3 juveniles than in the S1 juveniles. Most interestingly, exposure to hypertonicity of S2 juveniles for a period of 48 h led to increased expression of most of the aqp genes both at transcriptional and translational levels, except for aqp3 in the anterior and posterior regions and aqp1 in the anterior region, showing maximum expression at later stages of hypertonic exposure. Thus, it is evident that AQPs play crucial roles in maintaining the water and ionic balances under anisotonic conditions even at the early developmental stages of stinging catfish as a biochemical adaptational strategy to survive and grow in anisotonic environment.
Collapse
Affiliation(s)
- Priyambada Chutia
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India; Department of Zoology, S.B. Deorah College, Ulubari, Guwahati 781007, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India.
| | | |
Collapse
|
6
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
7
|
Breves JP, Puterbaugh KM, Bradley SE, Hageman AE, Verspyck AJ, Shaw LH, Danielson EC, Hou Y. Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): Ion transporters/channels, aquaporins, and claudins. Gen Comp Endocrinol 2022; 325:114051. [PMID: 35533740 DOI: 10.1016/j.ygcen.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Katie M Puterbaugh
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Serena E Bradley
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Annie E Hageman
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Adrian J Verspyck
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Lydia H Shaw
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Elizabeth C Danielson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Yubo Hou
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
8
|
Sganga DE, Dahlke FT, Sørensen SR, Butts IAE, Tomkiewicz J, Mazurais D, Servili A, Bertolini F, Politis SN. CO2 induced seawater acidification impacts survival and development of European eel embryos. PLoS One 2022; 17:e0267228. [PMID: 35436318 PMCID: PMC9015118 DOI: 10.1371/journal.pone.0267228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
Collapse
Affiliation(s)
- Daniela E. Sganga
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | | | - Sune R. Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- Billund Aquaculture, Billund, Denmark
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Mazurais
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Arianna Servili
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sebastian N. Politis
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Riddle MR, Hu CK. Fish models for investigating nutritional regulation of embryonic development. Dev Biol 2021; 476:101-111. [PMID: 33831748 DOI: 10.1016/j.ydbio.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
In recent decades, biologist have focused on the spatiotemporal regulation and function of genes to understand embryogenesis. It is clear that maternal diet impacts fetal development but how nutrients, like lipids and vitamins, modify developmental programs is not completely understood. Fish are useful research organisms for such investigations. Most species of fish produce eggs that develop outside the mother, dependent on a finite amount of yolk to form and grow. The developing embryo is a closed system that can be readily biochemically analyzed, easily visualized, and manipulated to understand the role of nutrients in tissue specification, organogenesis, and growth. Natural variation in yolk composition observed across fish species may be related to unique developmental strategies. In this review, we discuss the reasons that teleost fishes are powerful models to understand nutritional control of development and highlight three species that are particularly valuable for future investigations: the zebrafish, Danio rerio, the African Killifish, Nothobranchius furzeri, and the Mexican tetra, Astyanax mexicanus. This review is a part of a special issue on nutritional, hormonal, and metabolic drivers of development.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Chi-Kuo Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Zajic DE, Nicholson JP, Podrabsky JE. No water, no problem: stage-specific metabolic responses to dehydration stress in annual killifish embryos. J Exp Biol 2020; 223:jeb231985. [PMID: 32778566 DOI: 10.1242/jeb.231985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 08/26/2023]
Abstract
Annual killifish survive in temporary ponds by producing drought-tolerant embryos that can enter metabolic dormancy (diapause). Survival of dehydration stress is achieved through severe reduction of evaporative water loss. We assessed dehydration stress tolerance in diapausing and developing Austrofundulus limnaeus embryos. We measured oxygen consumption rates under aquatic and aerial conditions to test the hypothesis that there is a trade-off between water retention and oxygen permeability. Diapausing embryos survive dehydrating conditions for over 1.5 years, and post-diapause stages can survive for over 100 days. Diapausing embryos respond to dehydration stress by increasing oxygen consumption rates while post-diapause embryos exhibit the same or reduced rates compared with aquatic embryos. Thus, water retention does not always limit oxygen diffusion. Aerial incubation coupled with hypoxia causes some embryos to arrest development. The observed stage-specific responses are consistent with an intrinsic bet-hedging strategy in embryos that would increase developmental variation in a potentially adaptive manner.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jonathon P Nicholson
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
11
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
12
|
da Fonseca AP, Volcan MV, Robaldo RB. Incubation media affect the survival, pathway and time of embryo development in Neotropical annual fish Austrolebias nigrofasciatus (Rivulidae). JOURNAL OF FISH BIOLOGY 2018; 92:165-176. [PMID: 29178292 DOI: 10.1111/jfb.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
To analyse the survival, pathway and time of embryo development in the annual fish Austrolebias nigrofasciatus eggs were monitored in four liquid media and two damp media under experimental conditions for 130 days until their development was complete. Eggs kept in the same breeding water from oviposition remained in diapause I (DI) during all experiments. In constrast, up to the stage prior to entering diapause II (DII), the other media had no influence on development. Embryos at this stage (DII), however, show longer development time when treated in medium with water and powdered coconut shell so that about 80% of embryos remained in DII at 100 days. In contrast, all other treatments had a significantly lower proportion of embryos remaining in DII. When treated with Yamamoto's solution in humid media, embryos showed the fastest development. The first fully developed embryos (DIII) were seen at 27 days after oviposition. It took an average of 46-58 days for 50% of eggs in each treatment to reach DIII. Compared with other studies, survival in all incubation media was high at between 70 and 98%. Taken together, it can be concluded that all incubation media were found to be viable for maintaining embryos. Altering developmental trajectories through the manipulation of diapauses in different media makes this species a potential model organism for laboratory studies.
Collapse
Affiliation(s)
- A P da Fonseca
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande, Estação Marinha de Aquacultura, Rua do Hotel, n 02, Cassino Rio Grande, 96210-030, RS, Brazil
- Laboratório de Fisiologia Aplicada a Aquicultura, Instituto de Biologia, DFF, prédio 26, Universidade Federal de Pelotas, Capão do Leão, 96010-900, RS, Brazil
| | - M V Volcan
- Laboratório de Ictiologia, Instituto Pró-Pampa, Rua Uruguai, n 1242, Centro, Pelotas, 96010-630, RS, Brazil
| | - R B Robaldo
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande, Estação Marinha de Aquacultura, Rua do Hotel, n 02, Cassino Rio Grande, 96210-030, RS, Brazil
- Laboratório de Fisiologia Aplicada a Aquicultura, Instituto de Biologia, DFF, prédio 26, Universidade Federal de Pelotas, Capão do Leão, 96010-900, RS, Brazil
| |
Collapse
|
13
|
Thompson AW, Hayes A, Podrabsky JE, Ortí G. Gene expression during delayed hatching in fish-out-of-water. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egg.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Wright PA, Turko AJ. Amphibious fishes: evolution and phenotypic plasticity. ACTA ACUST UNITED AC 2017; 219:2245-59. [PMID: 27489213 DOI: 10.1242/jeb.126649] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022]
Abstract
Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods.
Collapse
Affiliation(s)
- Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
15
|
Martin KL, Podrabsky JE. Hit pause: Developmental arrest in annual killifishes and their close relatives. Dev Dyn 2017; 246:858-866. [DOI: 10.1002/dvdy.24507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023] Open
|
16
|
McKenzie JL, Bucking C, Moreira A, Schulte PM. Intrinsic reproductive isolating mechanisms in the maintenance of a hybrid zone between ecologically divergent subspecies. J Evol Biol 2017; 30:848-864. [PMID: 28190270 DOI: 10.1111/jeb.13055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Understanding factors involved in maintaining stable hybrid zones is important for predicting the ultimate fate of the interacting taxa, but the relative importance of mechanisms such as ecological selection and intrinsic reproductive isolation remains unclear. Most studies of reproductive isolation in hybrid zones have focused either on zones with strongly bimodal patterns in genotype or phenotype frequencies, with relatively strong isolation, or unimodal zones with relatively weak isolation, whereas less is known about more intermediate classes of hybrid zone. Here, we utilize a hybrid zone of this intermediate type occurring between northern and southern subspecies of Atlantic killifish, Fundulus heteroclitus, to identify isolating mechanisms playing a role in maintaining this type of zone. The two subspecies differ in environmental tolerance, and we found some evidence of microhabitat preference between subspecies within a small tidal creek at the centre of the hybrid zone. There was also an association between sex, mitochondrial genotype and habitat within this creek. Fertilization success did not differ between consubspecific and heterosubspecific crosses, but hatching success was significantly lower for crosses involving southern males and northern females, and crosses between southern females and northern males had altered developmental rates. Southern females and northern males showed patterns consistent with positive assortative mating. Together, these results indicate a role for a combination of factors including assortative mating and/or early hybrid inviability in the maintenance of this hybrid zone and suggest that hybrid zones with intermediate levels of reproductive isolation are likely to be maintained by multiple interacting isolating mechanisms.
Collapse
Affiliation(s)
- J L McKenzie
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - C Bucking
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - A Moreira
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - P M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Wells MW, Turko AJ, Wright PA. Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus. ACTA ACUST UNITED AC 2017; 218:3249-56. [PMID: 26491194 DOI: 10.1242/jeb.127399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks.
Collapse
Affiliation(s)
- Michael W Wells
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
18
|
Chauvigné F, Fjelldal PG, Cerdà J, Finn RN. Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. PLoS One 2016; 11:e0154592. [PMID: 27153052 PMCID: PMC4859563 DOI: 10.1371/journal.pone.0154592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
AQP0 water channels are the most abundant proteins expressed in the mammalian lens fiber membranes where they are essential for lens development and transparency. Unlike other aquaporin paralogs, mammalian AQP0 has a low intrinsic water permeability, but can form cell-to-cell junctions between the lens fibers. It is not known whether the adhesive properties of AQP0 is a derived feature found only in mammals, or exists as a conserved ancestral trait in non-mammalian vertebrates. Here we show that a tetraploid teleost, the Atlantic salmon, expresses four Aqp0 paralogs in the developing lens, but also expresses significant levels of aqp0 mRNAs and proteins in the epithelia of the pronephros, presumptive enterocytes, gill filament and epidermis. Quantitative PCR reveals that aqp0 mRNA titres increase by three orders of magnitude between the onset of somitogenesis and pigmentation of the eye. Using in situ hybridization and specific antisera, we show that at least two of the channels (Aqp0a1, -0b1 and/or -0b2) are localized in the extraocular basolateral and apical membranes, while Aqp0a2 is lens-specific. Heterologous expression of the Aqp0 paralogs in adhesion-deficient mouse fibolast L-cells reveals that, as for human AQP0, each intact salmon channel retains cell-to-cell adhesive properties. The strongest Aqp0 interactions are auto-adhesion, suggesting that homo-octamers likely form the intercellular junctions of the developing lens and epithelial tissues. The present data are thus the first to show the adhesion potential of Aqp0 channels in a non-mammalian vertebrate, and further uncover a novel extraocular role of the channels during vertebrate development.
Collapse
Affiliation(s)
- François Chauvigné
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| | | | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| |
Collapse
|
19
|
Turko AJ, Wright PA. Evolution, ecology and physiology of amphibious killifishes (Cyprinodontiformes). JOURNAL OF FISH BIOLOGY 2015; 87:815-835. [PMID: 26299792 DOI: 10.1111/jfb.12758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The order Cyprinodontiformes contains an exceptional diversity of amphibious taxa, including at least 34 species from six families. These cyprinodontiforms often inhabit intertidal or ephemeral habitats characterized by low dissolved oxygen or otherwise poor water quality, conditions that have been hypothesized to drive the evolution of terrestriality. Most of the amphibious species are found in the Rivulidae, Nothobranchiidae and Fundulidae. It is currently unclear whether the pattern of amphibiousness observed in the Cyprinodontiformes is the result of repeated, independent evolutions, or stems from an amphibious common ancestor. Amphibious cyprinodontiforms leave water for a variety of reasons: some species emerse only briefly, to escape predation or capture prey, while others occupy ephemeral habitats by living for months at a time out of water. Fishes able to tolerate months of emersion must maintain respiratory gas exchange, nitrogen excretion and water and salt balance, but to date knowledge of the mechanisms that facilitate homeostasis on land is largely restricted to model species. This review synthesizes the available literature describing amphibious lifestyles in cyprinodontiforms, compares the behavioural and physiological strategies used to exploit the terrestrial environment and suggests directions and ideas for future research.
Collapse
Affiliation(s)
- A J Turko
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, N1G 2W1, Canada
| | - P A Wright
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
20
|
Abstract
In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| |
Collapse
|
21
|
Furness AI. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev Camb Philos Soc 2015; 91:796-812. [DOI: 10.1111/brv.12194] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Andrew I. Furness
- Department of Biology; University of California; Riverside CA 92521 U.S.A
| |
Collapse
|
22
|
Varela-Lasheras I, Van Dooren TJM. Desiccation plasticity in the embryonic life histories of non-annual rivulid species. EvoDevo 2014; 5:16. [PMID: 24817996 PMCID: PMC4016651 DOI: 10.1186/2041-9139-5-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/14/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Diapause is a developmental arrest present in annual killifish, whose eggs are able to survive long periods of desiccation when the temporary ponds they inhabit dry up. Diapause can occur in three different developmental stages. These differ, within and between species, in their responsiveness to different environmental cues. A role of developmental plasticity and genetic assimilation in diapause evolution has been previously suggested but not experimentally explored. We investigated whether plastic developmental delays or arrests provoked by an unusual and extreme environment could be the ancestral condition for diapause. This would be in agreement with plasticity evolution playing a role in the emergence of diapause in this group. We have used a comparative experimental approach and exposed embryos of non-annual killifish belonging to five different species from the former genus Rivulus to brief periods of desiccation. We have estimated effects on developmental and mortality rates during and after the desiccation treatment. RESULTS Embryos of these non-annual rivulids decreased their developmental rates in early stages of development in response to desiccation and this effect persisted after the treatment. Two pairs of two different species had sufficient sample sizes to investigate rates of development in later stages well. In one of these, we found cohorts of embryos in the latest stages of development that did not hatch over a period of more than 1 month without mortality. Several properties of this arrest are also used to characterize diapause III in annual killifish. Such a cohort is present in control conditions and increases in frequency in the desiccation treatment. CONCLUSIONS The presence of plasticity for developmental timing and a prolonged developmental arrest in non-annual rivulids, suggest that a plastic developmental delay or diapause might have been present in the shared ancestor of annual and non-annual South American killifish and that the evolution of plasticity could have played a role in the emergence of the diapauses. Further comparative experimental studies and field research are needed to better understand how diapause and its plasticity evolved in this group.
Collapse
Affiliation(s)
- Irma Varela-Lasheras
- Naturalis Biodiversity Center, Darwinweg 2, Leiden 2333 CR, The Netherlands
- Current address: Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tom JM Van Dooren
- Naturalis Biodiversity Center, Darwinweg 2, Leiden 2333 CR, The Netherlands
- CNRS/UPMC/UPEC/UPD/IRD/INRA–UMR 7618 Institute of Ecology and Environmental Sciences Paris (iEES), Université Pierre et Marie Curie, Case 237, 7 Quai St Bernard, 75005 Paris, France
| |
Collapse
|
23
|
Tingaud-Sequeira A, Lozano JJ, Zapater C, Otero D, Kube M, Reinhardt R, Cerdà J. A rapid transcriptome response is associated with desiccation resistance in aerially-exposed killifish embryos. PLoS One 2013; 8:e64410. [PMID: 23741328 PMCID: PMC3669298 DOI: 10.1371/journal.pone.0064410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 11/21/2022] Open
Abstract
Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5–1 h) transcriptional differences in representatives of classical “stress” proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity observed in killifish embryos provides an important insight as to how the embryos are able to rapidly adapt to non-lethal desiccation conditions.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Martin KL, Carter AL. Brave New Propagules: Terrestrial Embryos in Anamniotic Eggs. Integr Comp Biol 2013; 53:233-47. [DOI: 10.1093/icb/ict018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Amaroli A, Ferrando S, Gagliani MC, Gallus L, Masini MA. Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus. Acta Histochem 2013; 115:257-63. [PMID: 22889702 DOI: 10.1016/j.acthis.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Sea urchins are echinoderms, marine invertebrates found at the base of the deutorostome lineage, which show separate sexes and are external spawners. In the sea urchin, efficient regulation of water homeostasis is essential for many biological processes such as cellular respiration, normal fertilization and correct embryo growth. In order to clarify some of these processes, the present study reports on the identification and function of aquaporin proteins in the sea urchin. Our results show, by immunoblot, immunoelectron microscopy and immunofluorescence analysis, the presence of aquaporin1- and aquaporin3-like proteins in virgin eggs and in early embryogenesis of Paracentrotus lividus and, by using known inhibitors of aquaporin functions, the functional and relevant role of aquaporin-3 in the fertilization process. AQP3 in particular seems to play a crucial role in high velocity water flux formations involved in the detachment of the vitelline layer during the slow block of polyspermy, while the presence of AQP1 and the increase of AQP3 in the first phase of the P. lividus developmental cycle, suggest their involvement in the appropriate homeostasis for embryo development.
Collapse
|
26
|
Harbeitner RC, Hahn ME, Timme-Laragy AR. Differential sensitivity to pro-oxidant exposure in two populations of killifish (Fundulus heteroclitus). ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:387-401. [PMID: 23329125 PMCID: PMC3573531 DOI: 10.1007/s10646-012-1033-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 05/06/2023]
Abstract
New Bedford Harbor (MA, U.S.A.; NBH) is a Superfund site inhabited by Atlantic killifish (Fundulus heteroclitus) with altered aryl hydrocarbon receptor (Ahr) signaling, leading to resistance to effects of polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Ahr is a transcription factor that regulates gene expression of many Phase I and II detoxifying enzymes and interacts with Nrf2, a transcription factor that regulates the response to oxidative stress. This study tested the hypothesis that PCB-resistant killifish exhibit altered sensitivity to oxidative stress. Killifish F(1) embryos from NBH and a clean reference site (Scorton Creek, MA, U.S.A.; SC) were exposed to model pro-oxidant and Nrf2-activator, tert-butylhydroquinone (tBHQ). Embryos were exposed at specific embryonic developmental stages (5, 7, and 9 days post fertilization) and toxicity was assessed, using a deformity score, survival, heart rate, and gene expression to compare sensitivity between PCB -resistant and -sensitive (reference) populations. Acute exposure to tBHQ resulted in transient reduction in heart rate in NBH and SC F(1) embryos. However, embryos from NBH were more sensitive to tBHQ, with more frequent and severe deformities, including pericardial edema, tail deformities, small body size, and reduced pigment and erythrocytes. NBH embryos had lower basal expression of antioxidant genes catalase and glutathione-S-transferase alpha (gsta), and upon exposure to tBHQ, exhibited lower levels of expression of catalase, gsta, and superoxide dismutase compared to controls. This result suggests that adaptation to tolerate PCBs has altered the sensitivity of NBH fish to oxidative stress during embryonic development, demonstrating a cost of the PCB resistance adaptation.
Collapse
Affiliation(s)
- Rachel C Harbeitner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
27
|
Chuaypanang S, Kidder GW, Preston RL. Desiccation resistance in embryos of the killifish, Fundulus heteroclitus: single embryo measurements. ACTA ACUST UNITED AC 2013; 319:179-201. [PMID: 23423843 DOI: 10.1002/jez.1783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/19/2012] [Accepted: 01/02/2013] [Indexed: 11/09/2022]
Abstract
Northern killifish, Fundulus heteroclitus macrolepidotus, spawn in estuaries at high tides. Embryos may be stranded in air at stream margins as the water recedes. These aerially incubated embryos are exposed to desiccation stress and may survive and develop normally to hatching at ∼14 days post-fertilization (dpf). We developed a technique to quantitatively measure the kinetics of water loss at various developmental stages from single embryos in controlled relative humidities (RHs). Embryos were able to tolerate short periods (2 hr) of severe desiccation and survive to hatching. Mid-stage (7 dpf) embryos showed the highest degree of desiccation tolerance compared to early-stage (2 dpf) and late-stage (14 dpf) embryos. We classified the patterns of water loss into four phases, the perivitelline space (PVS) phase, the resistance phase, the desiccation phase, and the equilibration phase. In the PVS phase, water loss was rapid at all developmental stages and all RHs (∼25% of total embryo weight). The water loss rate was slower during the resistance phase. It decreased as RH increased and length of this phase was longer in mid-stage than in early- and late-stage embryos. The water loss rate and length of the desiccation phase also depended on RH. These data support the hypothesis that low permeability embryonic compartment surface membranes retard water loss significantly and promote prolonged survival of these embryos during desiccation. We also show this mechanism cannot completely account for the survival of severely desiccated embryos (especially in 23% RH) and that there must also be complementary cellular responses.
Collapse
Affiliation(s)
- Sirilak Chuaypanang
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790‐4120, USA
| | | | | |
Collapse
|
28
|
Schiesari L, O'Connor MB. Diapause: delaying the developmental clock in response to a changing environment. Curr Top Dev Biol 2013; 105:213-46. [PMID: 23962844 DOI: 10.1016/b978-0-12-396968-2.00008-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Seasonal changes can induce organisms to modify their developmental growth. Many holometabolous insects, especially Lepidoptera, trigger diapause, an "actively induced" dormancy, for overwintering. Diapause is an alternative developmental pathway that reversibly blocks developmental growth during specific transitions and enhances the hibernating potential of the organism. Changes in environmental cues, such as light and temperature, trigger modifications in the levels, or in the timing, of developmental hormones. These in turn switch the developmental trajectory (diapause or direct development), strongly altering larval/pupal growth and inducing the appearance of diapause-bound seasonal morphs (polyphenism). We also discuss an example of vertebrate diapause using the killifish embryo as an example where diapause is an environmentally determined developmental switch analogous to that observed in lepidopteran dormancy. Based on the examples discussed here, we propose that the complex physiological responses leading to diapause might evolve quickly by relatively limited genetic changes in the regulation of hormonal signals that program normal developmental transitions.
Collapse
Affiliation(s)
- Luca Schiesari
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
29
|
Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgård T, Terjesen BF. Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:48-57. [PMID: 22898234 DOI: 10.1016/j.aquatox.2012.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have predominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic salmon parr were exposed to four ammonia concentrations between 4 and 1800 μmol l(-1) total ammonia nitrogen (TAN), and subjected to two feeding regimes for 15 weeks. Elevated environmental ammonia and full feeding strength caused an initial increase in plasma ammonia levels ([T(amm)]) after 22 days of exposure, which thereafter declined and remained similar to the control animals towards the end of the study. On the other hand, a progressive decrease in plasma urea levels was evident throughout the entire exposure period and depended on the concentration of environmental ammonia, with the largest decrease in urea levels observed at the highest ammonia concentrations (1700 and 1800 μmol l(-1) TAN). We hypothesized that the successful adaptation to long-term elevated ammonia levels would involve an increased capacity for carrier-facilitated branchial excretion. This hypothesis was strengthened by the first evidence of an up-regulation of branchial transcription of the genes encoding the Rhesus (Rh) glycoproteins, Rhcg1 and Rhcg2, urea transporter (UT) and aquaporin 3a (Aqp3a), during long-term exposure. Of the Rhesus glycoprotein (Rh) mRNAs, Rhcg1 was up-regulated at all tested ammonia levels, while Rhcg2 showed a concentration-sensitive increase. Increased transcription levels of V-type H(+)-ATPase (H(+)-ATPase) were observed at the highest ammonia concentrations (1700 and 1800 μmol l(-1) TAN) and coincided with an up-regulation of Rhcg2 at these concentrations. Transcription of UT and Aqp3a was increased after 15 weeks of exposure to low ammonia levels (470 and 480 μmol l(-1) TAN). A significant increase in brain glutamine (Gln) concentration was observed for full fed Atlantic salmon after 22 days and in fish with restricted feeding after 105 days of exposure to 1800 and 1700 μmol l(-1) TAN, respectively, without any concomitant decrease in brain glutamate (Glu) concentrations. These results suggest that Gln synthesis is an ammonia detoxifying strategy employed in the brain of Atlantic salmon parr during long-term sublethal ammonia exposure. Full feed strength had an additive effect on plasma [T(amm)], while the restricted feeding regime postponed the majority of the observed physiological and molecular responses. In conclusion, Atlantic salmon parr adapts to the long-term sublethal ammonia concentrations with increased branchial transcription levels of ammonia and urea transporting proteins and ammonia detoxification in the brain.
Collapse
|
30
|
Wood CM, Grosell M. Independence of net water flux from paracellular permeability in the intestine of Fundulus heteroclitus, a euryhaline teleost. ACTA ACUST UNITED AC 2012; 215:508-17. [PMID: 22246259 DOI: 10.1242/jeb.060004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Paracellular permeability and absorptive water flux across the intestine of the euryhaline killifish were investigated using in vitro gut sac preparations from seawater- and freshwater-acclimated animals. The permeability of polyethylene glycol (PEG), a well-established paracellular probe, was measured using trace amounts of radiolabelled oligomers of three different molecular sizes (PEG-400, PEG-900 and PEG-4000) at various times after satiation feeding. All three PEG molecules were absorbed, with permeability declining as a linear function of increasing hydrodynamic radius. Response patterns were similar in seawater and freshwater preparations, though water absorption and PEG-900 permeability were greater in the latter. Despite up to 4-fold variations in absorptive water flux associated with feeding and fasting (highest at 1-3 h, lowest at 12-24 h and intermediate at 1-2 weeks post-feeding), there were no changes in PEG permeability for any size oligomer. When PEG permeability was measured in the opposite direction (i.e. serosal to mucosal) from net water flux, it was again unchanged. HgCl(2) (10(-3) mol l(-1)), a putative blocker of aquaporins, eliminated absorptive water flux yet increased PEG-4000 permeability by 6- to 8-fold in both freshwater and seawater preparations. Experimentally raising the serosal osmolality by addition of 300 mmol l(-1) mannitol increased the absorptive water flux rate 10-fold, but did not alter PEG permeability. Under these conditions, HgCl(2) reduced absorptive water flux by 60% and again increased PEG permeability by 6- to 8-fold in both freshwater and seawater preparations. Clearly, there was no influence of solvent drag on PEG movement. The putative paracellular blocker 2,4,6-triaminopyrimidine (TAP, 20 mmol l(-1)) had no effect on net water flux or PEG permeability. We conclude that PEG and water move by separate pathways; absorptive water transport probably occurs via a transcellular route in the intestine of Fundulus heteroclitus.
Collapse
Affiliation(s)
- Chris M Wood
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA.
| | | |
Collapse
|
31
|
Jung D, MacIver B, Jackson BP, Barnaby R, Sato JD, Zeidel ML, Shaw JR, Stanton BA. A novel aquaporin 3 in killifish (Fundulus heteroclitus) is not an arsenic channel. Toxicol Sci 2012; 127:101-9. [PMID: 22323512 PMCID: PMC3327866 DOI: 10.1093/toxsci/kfs078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
The Atlantic killifish (Fundulus heteroclitus) is a model environmental organism that has an extremely low assimilation rate of environmental arsenic. As a first step in elucidating the mechanism behind this phenomenon, we used quantitative real-time PCR to identify aquaglyceroporins (AQPs), which are arsenite transporters, in the killifish gill. A novel homolog killifish AQP3 (kfAQP3a) was cloned from the killifish gill, and a second homolog was identified as the consensus from a transcriptome database (kfAQP3b). The two were 99% homologous to each other, 98% homologous to a previously identified killifish AQP3 from embryos (kfAQP3ts), and 78% homologous to hAQP3. Expression of kfAQP3a in Xenopus oocytes significantly enhanced water, glycerol, and urea transport. However, kfAQP3a expressed in HEK293T cells did not transport significant amounts of arsenic. All sequence motifs thought to confer the ability of AQP3 to transport solutes were conserved in kfAQP3a, kfAQP3b, and kfAQP3ts; however, the C-terminal amino acids were different in kfAQP3a versus the other two homologs. Replacement of the three C-terminal amino acids of kfAQP3 (GKS) with the three C-terminal amino acids of kfAQP3b and kfAQP3ts (ANC) was sufficient to enable kfAQP3a to robustly transport arsenic. Thus, the C-terminus of kfAQP3b and kfAQP3ts confers arsenic selectivity in kfAQP3. Moreover, kfAQP3a, the only AQP expressed in killifish gill, is the first aquaglyceroporin identified that does not transport arsenic, which may explain, in part, why killifish poorly assimilate arsenic and are highly tolerant to environmental arsenic.
Collapse
Affiliation(s)
- Dawoon Jung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Berois N, Arezo MJ, Papa NG, Clivio GA. Annual fish: developmental adaptations for an extreme environment. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:595-602. [PMID: 23801535 DOI: 10.1002/wdev.39] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Annual fish are freshwater teleosts found in South America and Africa that are exposed to an extremely variable environment. They develop and reproduce in seasonal ponds that dry during the summer eliminating the entire adult population. Remarkably, desiccation-resistant embryos survive in these dry ponds that hatch during the next rainy season when the ponds are recreated. Among vertebrates, they represent one of the most remarkable extremophiles. They share several features with other fish models; however, they exhibit unique traits related to their peculiar life cycle. Epiboly is temporally and spatially uncoupled from organogenesis, and the embryos can undergo reversible developmental arrests (diapauses). These attributes make them a useful model to study diverse topics in developmental biology using a comparative and evolutionary approach. In this article, different aspects related to annual fish biology, taxonomy and phylogenetic considerations, reproductive strategy, and developmental characteristics with special focus on arrests, are summarized. The current challenge is to document and determine the factors that generate such high diversity and unique adaptations of annual fish. To understand this complexity, interdisciplinary approaches are being employed taking into consideration evolutionary biology, ethology, reproductive strategies, regulation of developmental mechanisms, and senescence.
Collapse
Affiliation(s)
- Nibia Berois
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
33
|
Chauvigné F, Zapater C, Cerdà J. Role of Aquaporins during Teleost Gametogenesis and Early Embryogenesis. Front Physiol 2011; 2:66. [PMID: 21994496 PMCID: PMC3183482 DOI: 10.3389/fphys.2011.00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/13/2011] [Indexed: 11/13/2022] Open
Abstract
Aquaporins are believed to be involved in homeosmotic mechanisms of marine teleosts. Increasing data suggest that these molecular water channels play critical roles associated with the adaptation of gametes and early embryos to the external spawning environment. In this mini-review, we discuss recent studies suggesting the function of aquaporin-mediated fluid homeostasis during spermatozoa activation and egg formation in teleosts. In addition, we address the potential role of water channels in osmosensing and cell migration during early embryonic development.
Collapse
Affiliation(s)
- François Chauvigné
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas Barcelona, Spain
| | | | | |
Collapse
|
34
|
Giffard-Mena I, Boulo V, Abed C, Cramb G, Charmantier G. Expression and Localization of Aquaporin 1a in the Sea-Bass (Dicentrarchus labrax) during Ontogeny. Front Physiol 2011; 2:34. [PMID: 21808622 PMCID: PMC3137954 DOI: 10.3389/fphys.2011.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/20/2011] [Indexed: 01/24/2023] Open
Abstract
The successful establishment of a species in a given habitat depends on the ability of each of its developing stages to adapt to the environment. In order to understand this process we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax, to various salinities during its ontogeny. The expression and localization of Aquaporin 1a (AQP1a) mRNA and protein were determined in different osmoregulatory tissues. In larvae, the sites of AQP1a expression are variable and they shift according to age, implying functional changes. In juveniles after metamorphosis (D32-D48 post-hatch, 15-25 mm) and in pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and the AQP1a location was observed in the intestine. In juveniles (D87-D100 post-hatch, 38-48 mm), the transcript levels of AQP1a in the digestive tract and in the kidney were higher in sea water (SW) than at lower salinity. These observations, in agreement with existing models, suggest that in SW-acclimated fish, the imbibed water is absorbed via AQP1a through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a may play a role in water reabsorption in the kidney. These mechanisms compensate dehydration in SW, and they contribute to the adaptation of juveniles to salinity changes during sea-lagoon migrations. These results contribute to the interpretation of the adaptation of populations to habitats where salinity varies.
Collapse
Affiliation(s)
- Ivone Giffard-Mena
- Molecular Ecology Laboratory, Universidad Autónoma de Baja CaliforniaEnsenada, Baja California, Mexico
| | - Viviane Boulo
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| | - Charline Abed
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| | - Gordon Cramb
- School of Biology, University of St AndrewsSt Andrews, Fife, UK
| | - Guy Charmantier
- Adaptation Ecophysiologique et Ontogenèse Team, UMR5119, CNRS, IFREMER Ecosym, Université Montpellier 2Montpellier, France
| |
Collapse
|
35
|
Chauvigné F, Lubzens E, Cerdà J. Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol 2011; 11:34. [PMID: 21477270 PMCID: PMC3079631 DOI: 10.1186/1472-6750-11-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 04/08/2011] [Indexed: 12/12/2022] Open
Abstract
Background Increasing cell membrane permeability to water and cryoprotectants is critical for the successful cryopreservation of cells with large volumes. Artificial expression of water-selective aquaporins or aquaglyceroporins (GLPs), such as mammalian aquaporin-3 (AQP3), enhances cell permeability to water and cryoprotectants, but it is known that AQP3-mediated water and solute permeation is limited and pH dependent. To exploit further the possibilities of using aquaporins in cryobiology, we investigated the functional properties of zebrafish (Danio rerio) GLPs. Results Water, glycerol, propylene glycol and ethylene glycol permeability of zebrafish Aqp3a, -3b, -7, -9a, -9b, -10a and -10b, and human AQP3, was examined. Expression in Xenopus laevis oocytes indicated that the permeability of DrAqp3a and -3b to ethylene glycol was higher than for glycerol or propylene glycol under isotonic conditions, unlike other zebrafish GLPs and human AQP3, which were more permeable to glycerol. In addition, dose-response experiments and radiolabeled ethylene glycol uptake assays suggested that oocytes expressing DrAqp3b were permeated by this cryoprotectant more efficiently than those expressing AQP3. Water and ethylene glycol transport through DrAqp3a and -3b were, however, highest at pH 8.5 and completely abolished at pH 6.0. Point mutations in the DrAqp3b amino acid sequence rendered two constructs, DrAqp3b-T85A showing higher water and ethylene glycol permeability at neutral and alkaline pH, and DrAqp3b-H53A/G54H/T85A, no longer inhibited at acidic pH but less permeable than the wild type. Finally, calculation of permeability coefficients for ethylene glycol under concentration gradients confirmed that the two DrAqp3b mutants were more permeable than wild-type DrAqp3b and/or AQP3 at neutral pH, resulting in a 2.6- to 4-fold increase in the oocyte intracellular concentration of ethylene glycol. Conclusion By single or triple point mutations in the DrAqp3b amino acid sequence, we constructed one mutant with enhanced ethylene glycol permeability and another with reduced pH sensitivity. The DrAqp3b and the two mutant constructs may be useful for application in cryobiology.
Collapse
Affiliation(s)
- François Chauvigné
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | |
Collapse
|
36
|
Chaube R, Chauvigné F, Tingaud-Sequeira A, Joy KP, Acharjee A, Singh V, Cerdà J. Molecular and functional characterization of catfish (Heteropneustes fossilis) aquaporin-1b: changes in expression during ovarian development and hormone-induced follicular maturation. Gen Comp Endocrinol 2011; 170:162-71. [PMID: 20937280 DOI: 10.1016/j.ygcen.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/29/2010] [Accepted: 10/02/2010] [Indexed: 12/19/2022]
Abstract
The oocytes of the freshwater catfish Heteropneustes fossilis hydrate during hormone-induced meiotic maturation. To investigate if this process may be mediated by aquaporins (AQPs), as it occurs in marine fish producing highly hydrated eggs, the cloning of ovarian AQPs in catfish was carried out. Using degenerate primers for conserved domains of the major intrinsic protein (MIP) family, and 5' and 3'end amplification procedures, a full-length cDNA encoding for an AQP1-like protein was isolated. The predicted protein showed the typical six transmembrane domains and two Asn-Pro-Ala (NPA) motifs conserved among the members of the AQP superfamily. Phylogenetic analysis indicated that the catfish AQP clustered with the teleost-specific aquaporin-1b subfamily, and accordingly it was termed HfAqp1b. Heterologous expression in Xenopus laevis oocytes indicated that HfAqp1b encoded for a functional AQP, water permeability being enhanced by cAMP. Site-directed mutagenesis revealed that cAMP induced the translocation of HfAqp1b into the oocyte plasma membrane most likely through the phosphorylation of HfAqp1b Ser(227). In adult catfish, hfaqp1b transcripts were detected exclusively in ovary and brain and showed significant seasonal variations; in the ovary, hfaqp1b was maximally expressed during the pre-spawning period, whereas in the brain the highest expression was detected during spawning. In vitro stimulation of isolated catfish ovarian follicles with vasotocin (VT) or human chorionic gonadotropin (hCG), which induce oocyte maturation and hydration, elevated the hfaqp1b transcript levels after 6 or 16 h of incubation, respectively. These results suggest that HfAqp1b may play a role during VT- and hCG-induced oocyte hydration in catfish, and that VT may regulate HfAqp1b at the transcriptional and post-translational level in a manner similar to the vasopressin-dependent mammalian AQP2.
Collapse
Affiliation(s)
- Radha Chaube
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Touchon JC, Urbina J, Warkentin KM. Habitat-specific constraints on induced hatching in a treefrog with reproductive mode plasticity. Behav Ecol 2010. [DOI: 10.1093/beheco/arq192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Tingaud-Sequeira A, Carnevali O, Cerdà J. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:221-8. [PMID: 21059400 DOI: 10.1016/j.cbpa.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
39
|
Cerdà J, Finn RN. Piscine aquaporins: an overview of recent advances. ACTA ACUST UNITED AC 2010; 313:623-50. [PMID: 20717996 DOI: 10.1002/jez.634] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/15/2010] [Accepted: 06/29/2010] [Indexed: 11/08/2022]
Abstract
Aquaporins are a superfamily of integral membrane proteins that facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Since their discovery, they have been documented throughout the living biota, with the majority of research focusing on mammals and plants. Here, we review available data for piscine aquaporins, including Agnatha (jawless fish), Chondrichthyes (chimaeras, sharks, and rays), Dipnoi (lungfishes), and Teleostei (ray-finned bony fishes). Recent evidence suggests that the aquaporin superfamily has specifically expanded in the chordate lineage consequent to serial rounds of whole genome duplication, with teleost genomes harboring the largest number of paralogs. The selective retention and dichotomous clustering of most duplicated paralogs in Teleostei, with differential tissue expression profiles, implies that novel or specialized physiological functions may have evolved in this clade. The recently proposed new nomenclature of the piscine aquaporin superfamily is discussed in relation to the phylogenetic signal and genomic synteny, with the teleost aquaporin-8 paralogs used as a case study to illustrate disparities between the underlying codons, molecular phylogeny, and physical locus. Structural data indicate that piscine aquaporins display similar channel restriction residues found in the tetrapod counterparts, and hence their functional properties seem to be conserved. However, emerging evidence suggests that regulation of aquaporin function in teleosts may have diverged in some cases. Cell localization and experimental studies imply that the physiological roles of piscine aquaporins extend at least to osmoregulation, reproduction, and early development, although in most cases their specific functions remain to be elucidated.
Collapse
Affiliation(s)
- Joan Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| | | |
Collapse
|
40
|
Whitehead A, Galvez F, Zhang S, Williams LM, Oleksiak MF. Functional genomics of physiological plasticity and local adaptation in killifish. J Hered 2010; 102:499-511. [PMID: 20581107 DOI: 10.1093/jhered/esq077] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N. Lessons from biodiversity--the value of nontraditional species to advance reproductive science, conservation, and human health. Mol Reprod Dev 2010; 77:397-409. [PMID: 19967718 PMCID: PMC3929270 DOI: 10.1002/mrd.21137] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reproduction is quintessential to species survival. But what is underappreciated for this discipline is the wondrous array of reproductive mechanisms among species- variations as diverse as the morphology of the species themselves (more than 55,000 vertebrate and 1.1 million invertebrate types). We have investigated only a tiny fraction of these species in reproductive science. Besides the need to fill enormous gaps in a scholarly database, this knowledge has value for recovering and genetically managing rare species as well as addressing certain reproductive issues in humans. This article provides examples, first to advise against oversimplifying reproduction and then to show how such knowledge can have practical use for managing whole animals, populations, or even saving an entire species. We also address the expected challenges and opportunities that could lead to creative shifts in philosophy and effective actions to benefit more species as well as a future generation of reproductive scientists.
Collapse
Affiliation(s)
- David E Wildt
- Department of Reproductive Sciences, Center for Species Survival, Smithsonian's National Zoological Park, Conservation & Research Center, Front Royal, Virginia 22630, USA.
| | | | | | | |
Collapse
|
43
|
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 2010; 10:38. [PMID: 20149227 PMCID: PMC2829555 DOI: 10.1186/1471-2148-10-38] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 01/15/2023] Open
Abstract
Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Cerdà J. Molecular pathways during marine fish egg hydration: the role of aquaporins. JOURNAL OF FISH BIOLOGY 2009; 75:2175-2196. [PMID: 20738681 DOI: 10.1111/j.1095-8649.2009.02397.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The pre-ovulatory hydration of the oocyte of marine teleosts, a unique process among vertebrates that occurs concomitantly with meiosis resumption (oocyte maturation), is a critical process for the correct development and survival of the embryo. Increasing information is available on the molecular mechanisms that control oocyte maturation in fish, but the identification of the cellular processes involved in oocyte hydration has remained long ignored. During the past few years, a number of studies have identified the major inorganic and organic osmolytes that create a transient intra-oocytic osmotic potential for hydrating the oocytes, whereas water influx was believed to occur passively. Recent work, however, has uncovered the role of a novel molecular water channel (aquaporin), designated aquaporin-1b (Aqp1b), which facilitates water permeation and resultant swelling of the oocyte. The Aqp1b belongs to a teleost-specific subfamily of water-selective aquaporins, similar to mammalian aquaporin-1 (AQP1) that has possibly evolved by duplication of a common ancestor and further neofunctionalization in oocytes of marine teleosts for water uptake. Strikingly, Aqp1b shows specific regulatory domains at the cytoplasmic tail, which are key to the vesicular trafficking and temporal insertion of Aqp1b in the oocyte plasma membrane during the phase of maximal hydration. These findings are revealing that the mechanism of oocyte hydration in marine teleosts is a highly regulated process based on the interplay between the generation of inorganic and organic osmolytes and the controlled insertion of Aqp1b in the oocyte surface. The discovery of Aqp1b in teleosts provides an important insight into the molecular basis of the production of viable eggs in marine fish.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Zilli L, Schiavone R, Chauvigné F, Cerdà J, Storelli C, Vilella S. Evidence for the Involvement of Aquaporins in Sperm Motility Activation of the Teleost Gilthead Sea Bream (Sparus aurata)1. Biol Reprod 2009; 81:880-8. [DOI: 10.1095/biolreprod.109.077933] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|