1
|
Talebi S, Shab-Bidar S, Askari G, Mohammadi H, Moini A, Djafarian K. Comparison of the impact of intermittent fasting diet alone or in conjunction with probiotic supplementation versus calorie-restricted diet on inflammatory, oxidative stress, and antioxidant capacity biomarkers in women with polycystic ovary syndrome: A randomized placebo-controlled trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:5. [PMID: 40200973 PMCID: PMC11974602 DOI: 10.4103/jrms.jrms_280_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 04/10/2025]
Abstract
Background The objective of this study was to compare the effects of early time-restricted eating (eTRE) and eTRE plus probiotic supplementation to daily caloric restriction (DCR) alone in terms of biomarkers of oxidative stress (OS), antioxidant capacity, inflammation, and blood pressure (BP) in obese women with polycystic ovary syndrome (PCOS). Materials and Methods The research was conducted as a randomized, parallel, placebo-controlled clinical trial with an 8-week follow-up period. Participants were randomly assigned to one of three groups: 14:10 eTRE with probiotic supplementation (n = 30), 14:10 eTRE with placebo supplementation (n = 30), or DCR with placebo supplementation (n = 30). At the beginning and 8 weeks of the intervention, systolic blood pressure (SBP) and diastolic BP, inflammation, and OS parameters were evaluated. Results A total of 90 participants (mean age, 30.49 years and mean weight, 81.45 kg) were enrolled in this trial. After 8-week intervention, we observed SBP significantly decreased in both the eTRE + probiotic group (-0.31 mmHg [95% confidence interval (CI): -0.55, -0.07]) and the eTRE + placebo group (-0.24 mmHg [95% CI: -0.43, 0.04]), with no significant differences observed between groups. Moreover, C-reactive protein (CRP) levels were significantly reduced in all groups (P < 0.005). Total antioxidant capacity (TAC) also showed notable improvement in both the eTRE + probiotic group (P = 0.012) and the DCR group (P = 0.032). However, there were no significant differences between the three groups regarding BP, OS, TAC, and CRP markers. Conclusion It was not found that eTRE alone or eTRE with probiotics intervention resulted in improving BP, inflammatory, OS, and antioxidant capacity biomarkers than a standard DCR diet among obese women with PCOS. The present study did not reveal significant improvements in BP, inflammatory markers, OS, or antioxidant capacity with either eTRE alone or eTRE combined with probiotics compared to a standard DCR among obese women diagnosed with PCOS.Trial Register no: IRCT20121110011421N5.
Collapse
Affiliation(s)
- Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Costello HM, Eikenberry SA, Cheng KY, Broderick B, Joshi AS, Scott GR, McKee A, Mendez VM, Douma LG, Crislip GR, Gumz ML. Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice. Am J Physiol Renal Physiol 2025; 328:F1-F14. [PMID: 39447118 DOI: 10.1152/ajprenal.00177.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Brain and muscle ARNT-Like 1 (BMAL1) is a circadian clock transcription factor that regulates physiological functions. Male adrenal-specific Bmal1 (ASCre/+::Bmal1) KO mice displayed blunted serum corticosterone rhythms, altered blood pressure rhythm, and altered timing of eating, but there is a lack of knowledge in females. This study investigates the role of adrenal BMAL1 in renal electrolyte handling and urinary aldosterone levels in response to low salt in male and female mice. Mice were placed in metabolic cages to measure 12-h urinary aldosterone after a standard diet and 7 days low-salt diet, as well as daily body weight, 12-h food and water intake, and renal sodium and potassium balance. Adrenal glands and kidneys were collected at ZT0 or ZT12 to measure the expression of aldosterone synthesis genes and clock genes. Compared with littermate controls, ASCre/+::Bmal1 KO male and female mice displayed increased urinary aldosterone in response to a low-salt diet, although mRNA expression of aldosterone synthesis genes was decreased. Timing of food intake was altered in ASCre/+::Bmal1 KO male and female mice, with a blunted night/day ratio. ASCre/+::Bmal1 KO female mice displayed decreases in renal sodium excretion in response to low salt, but both male and female KO mice had changes in sodium balance that were time-of-day-dependent. In addition, sex differences were found in adrenal and kidney clock gene expression. Notably, this study highlights sex differences in clock gene expression that could contribute to sex differences in physiological functions.NEW & NOTEWORTHY Our findings highlight the importance of sex as well as time-of-day in understanding the role of the circadian clock in the regulation of homeostasis. Time-of-day is a key biological variable that is often ignored in research, particularly in preclinical rodent studies. Our findings demonstrate important differences in several measures at 6 AM compared with 6 PM. Consideration of time-of-day is critical for the translation of findings in nocturnal rodent physiology to diurnal human physiology.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Sophia A Eikenberry
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Bryanna Broderick
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Advay S Joshi
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Gianna R Scott
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Annalisse McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida, United States
| |
Collapse
|
3
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
4
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Jiang L, Shen W, Wang A, Fang H, Wang Q, Li H, Liu S, Shen Y, Liu A. Cardiovascular Disease Burden Attributable to High Sodium Intake in China: A Longitudinal Study from 1990 to 2019. Nutrients 2024; 16:1307. [PMID: 38732554 PMCID: PMC11085757 DOI: 10.3390/nu16091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Overconsumption of sodium has been identified as a key driving factor for diet-related cardiovascular diseases (CVDs). China, being a country bearing a hefty burden of CVD, has a large population with diverse cultural traditions and ethnic beliefs, which complicates the patterns of dietary sodium intake, necessitating a systematic investigation into the profile of the high sodium intake (HSI)-related burden of CVD within its subregions. This study aims to estimate the evolving patterns of HSI-induced CVD burden across China from 1990 to 2019. METHODS The methodology used in the Global Burden of Disease Study was followed to assess deaths and disability-adjusted life years (DALYs) by age, sex, region, and socio-demographic index (SDI). The estimated annual percentage change (EAPC) was calculated to quantify the secular changes in the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR). RESULTS In 2019, 0.79 million deaths and 1.93 million DALYs of CVD were attributed to HSI, an increase of 53.91% and 39.39% since 1990, respectively. Nevertheless, a downward trend in ASMR (EAPC: -1.45, 95% CI: -1.55, -1.35) and ASDR (EAPC: -1.61, 95% CI: -1.68, -1.53) was detected over time. ASMR and ASDR were higher for males, individuals aged ≥60 years, and regions with low-middle SDI. A markedly negative association between the EAPC in both ASMR and ASDR and the SDI was found in 2019 (ρ = -0.659, p < 0.001 and ρ = -0.558, p < 0.001, respectively). CONCLUSIONS The HSI-induced CVD burden is gender-, age-, and socioeconomic-dependent. Integrated and targeted strategies for CVD prevention are anticipated in the future throughout China.
Collapse
Affiliation(s)
- Liying Jiang
- Jiading Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201899, China;
- Department of Prevention Medicine, College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Wanying Shen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China; shenwanying-@outlook.com
| | - Anqi Wang
- Graduate School, Shanghai University of Traditional & Chinese Medicine, Shanghai 201203, China;
| | - Haiqin Fang
- Department of Nutrition Division I, China National Center for Food Safety Risk Assessment, Beijing 100022, China; (H.F.); (Q.W.); (H.L.); (S.L.)
| | - Qihe Wang
- Department of Nutrition Division I, China National Center for Food Safety Risk Assessment, Beijing 100022, China; (H.F.); (Q.W.); (H.L.); (S.L.)
| | - Huzhong Li
- Department of Nutrition Division I, China National Center for Food Safety Risk Assessment, Beijing 100022, China; (H.F.); (Q.W.); (H.L.); (S.L.)
| | - Sana Liu
- Department of Nutrition Division I, China National Center for Food Safety Risk Assessment, Beijing 100022, China; (H.F.); (Q.W.); (H.L.); (S.L.)
| | - Yi Shen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong 226019, China; shenwanying-@outlook.com
| | - Aidong Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
6
|
Sun ML, Yao W, Wang XY, Gao S, Varady KA, Forslund SK, Zhang M, Shi ZY, Cao F, Zou BJ, Sun MH, Liu KX, Bao Q, Xu J, Qin X, Xiao Q, Wu L, Zhao YH, Zhang DY, Wu QJ, Gong TT. Intermittent fasting and health outcomes: an umbrella review of systematic reviews and meta-analyses of randomised controlled trials. EClinicalMedicine 2024; 70:102519. [PMID: 38500840 PMCID: PMC10945168 DOI: 10.1016/j.eclinm.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background Benefits of Intermittent fasting (IF) on health-related outcomes have been found in a range of randomised controlled trials (RCTs). Our umbrella review aimed to systematically analyze and synthesize the available causal evidence on IF and its impact on specific health-related outcomes while evaluating its evidence quality. Methods We comprehensively searched the PubMed, Embase, Web of Science, and Cochrane databases (from inception up to 8 January 2024) to identify related systematic reviews and meta-analyses of RCTs investigating the association between IF and human health outcomes. We recalculated the effect sizes for each meta-analysis as mean difference (MD) or standardized mean difference (SMD) with corresponding 95% confidence intervals (CIs). Subgroup analyses were performed for populations based on three specific status: diabetes, overweight or obesity, and metabolic syndrome. The quality of systematic reviews was evaluated using A Measurement Tool to Assess Systematic Reviews (AMSTAR), and the certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) system. This study is registered with PROSPERO (CRD42023382004). Findings A total of 351 associations from 23 meta-analyses with 34 health outcomes were included in the study. A wide range of outcomes were investigated, including anthropometric measures (n = 155), lipid profiles (n = 83), glycemic profiles (n = 57), circulatory system index (n = 41), appetite (n = 9), and others (n = 6). Twenty-one (91%) meta-analyses with 346 associations were rated as high confidence according to the AMSTAR criteria. The summary effects estimates were significant at p < 0.05 in 103 associations, of which 10 (10%) were supported by high certainty of evidence according to GRADE. Specifically, compared with non-intervention diet in adults with overweight or obesity, IF reduced waist circumference (WC) (MD = -1.02 cm; 95% CI: -1.99 to -0.06; p = 0.038), fat mass (MD = -0.72 kg; 95% CI: -1.32 to -0.12; p = 0.019), fasting insulin (SMD = -0.21; 95% CI: -0.40 to -0.02; p = 0.030), low-density lipoprotein cholesterol (LDL-C) (SMD = -0.20; 95% CI: -0.38 to -0.02; p = 0.027), total cholesterol (TC) (SMD = -0.29; 95% CI: -0.48 to -0.10; p = 0.003), and triacylglycerols (TG) (SMD = -0.23; 95% CI: -0.39 to -0.06; p = 0.007), but increased fat free mass (FFM) (MD = 0.98 kg; 95% CI: 0.18-1.78; p = 0.016). Of note, compared with the non-intervention diet, modified alternate-day fasting (MADF) reduced fat mass (MD = -0.70 kg; 95% CI: -1.38 to -0.02; p = 0.044). In people with overweight or obesity, and type 2 diabetes, IF increases high-density lipoprotein cholesterol (HDL-C) levels compared to continuous energy restriction (CER) (MD = 0.03 mmol/L; 95% CI: 0.01-0.05; p = 0.010). However, IF was less effective at reducing systolic blood pressure (SBP) than a CER diet in adults with overweight or obesity (SMD = 0.21; 95% CI: 0.05-0.36; p = 0.008). Interpretation Our findings suggest that IF may have beneficial effects on a range of health outcomes for adults with overweight or obesity, compared to CER or non-intervention diet. Specifically, IF may decreased WC, fat mass, LDL-C, TG, TC, fasting insulin, and SBP, while increasing HDL-C and FFM. Notably, it is worth noting that the SBP lowering effect of IF appears to be weaker than that of CER. Funding This work was supported by the National Key Research and Development Program of China (Q-JW), the Natural Science Foundation of China (Q-JW and T-TG), Outstanding Scientific Fund of Shengjing Hospital of China Medical University (Q-JW), and 345 Talent Project of Shengjing Hospital of China Medical University (T-TG).
Collapse
Affiliation(s)
- Ming-Li Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Miao Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zan-Yu Shi
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing-Jie Zou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Xiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - De-Yu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
8
|
Ezpeleta M, Cienfuegos S, Lin S, Pavlou V, Gabel K, Tussing-Humphreys L, Varady KA. Time-restricted eating: Watching the clock to treat obesity. Cell Metab 2024; 36:301-314. [PMID: 38176412 PMCID: PMC11221496 DOI: 10.1016/j.cmet.2023.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Time-restricted eating (TRE) has become a popular strategy to treat obesity. TRE involves confining the eating window to 4-10 h per day and fasting for the remaining hours (14-20 h fast). During the eating window, individuals are not required to monitor food intake. The sudden rise in popularity of TRE is most likely due to its simplicity and the fact that it does not require individuals to count calories to lose weight. This feature of TRE may appeal to certain individuals with obesity, and this could help produce lasting metabolic health improvements. The purpose of this review is to summarize current evidence from randomized clinical trials of TRE (without calorie counting) on body weight and metabolic risk factors. The efficacy of TRE in various populations groups, including those with obesity, type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS), is also examined.
Collapse
Affiliation(s)
- Mark Ezpeleta
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Vasiliki Pavlou
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Bohmke NJ, Dixon DL, Kirkman DL. Chrono-nutrition for hypertension. Diabetes Metab Res Rev 2024; 40:e3760. [PMID: 38287721 DOI: 10.1002/dmrr.3760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Despite the advancement in blood pressure (BP) lowering medications, uncontrolled hypertension persists, underscoring a stagnation of effective clinical strategies. Novel and effective lifestyle therapies are needed to prevent and manage hypertension to mitigate future progression to cardiovascular and chronic kidney diseases. Chrono-nutrition, aligning the timing of eating with environmental cues and internal biological clocks, has emerged as a potential strategy to improve BP in high-risk populations. The aim of this review is to provide an overview of the circadian physiology of BP with an emphasis on renal and vascular circadian biology. The potential of Chrono-nutrition as a lifestyle intervention for hypertension is discussed and current evidence for the efficacy of time-restricted eating is presented.
Collapse
Affiliation(s)
- Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Nasci VL, Almutlaq RN, Pollock DM, Gohar EY. Endothelin mediates sex-differences in acclimation to high salt diet in rats. Biol Sex Differ 2023; 14:70. [PMID: 37817272 PMCID: PMC10566168 DOI: 10.1186/s13293-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.
Collapse
Affiliation(s)
- Victoria L Nasci
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rawan N Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
12
|
Imamura M, Sasaki H, Hayashi K, Shibata S. Mid-Point of the Active Phase Is Better to Achieve the Natriuretic Effect of Acute Salt Load in Mice. Nutrients 2023; 15:nu15071679. [PMID: 37049519 PMCID: PMC10096866 DOI: 10.3390/nu15071679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Excess sodium intake and insufficient potassium intake are a prominent global issue because of their influence on high blood pressure. Supplementation of potassium induces kaliuresis and natriuresis, which partially explains its antihypertensive effect. Balancing of minerals takes place in the kidney and is controlled by the circadian clock; in fact, various renal functions exhibit circadian rhythms. In our previous research, higher intake of potassium at lunch time was negatively associated with blood pressure, suggesting the importance of timing for sodium and potassium intake. However, the effects of intake timing on urinary excretion remain unclear. In this study, we investigated the effect of 24 h urinary sodium and potassium excretion after acute sodium and potassium load with different timings in mice. Compared to other timings, the middle of the active phase resulted in higher urinary sodium and potassium excretion. In Clock mutant mice, in which the circadian clock is genetically disrupted, urinary excretion differences from intake timings were not observed. Restricted feeding during the inactive phase reversed the excretion timing difference, suggesting that a feeding-induced signal may cause this timing difference. Our results indicate that salt intake timing is important for urinary sodium and potassium excretion and provide new perspectives regarding hypertension prevention.
Collapse
|
13
|
Costello HM, Juffre A, Cheng KY, Bratanatawira P, Crislip GR, Zietara A, Spires DR, Staruschenko A, Douma LG, Gumz ML. The circadian clock protein PER1 is important in maintaining endothelin axis regulation in Dahl salt-sensitive rats. Can J Physiol Pharmacol 2023; 101:136-146. [PMID: 36450128 PMCID: PMC9992312 DOI: 10.1139/cjpp-2022-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.
Collapse
Affiliation(s)
- Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Phillip Bratanatawira
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - G. Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602
| | - Denisha R. Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602
- James A. Haley Veterans’ Hospital, Tampa, FL 33612
| | - Lauren G. Douma
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| |
Collapse
|
14
|
Guthrie GL, Almutlaq RN, Sugahara S, Butt MK, Brooks CR, Pollock DM, Gohar EY. G protein-coupled estrogen receptor 1 regulates renal endothelin-1 signaling system in a sex-specific manner. Front Physiol 2023; 14:1086973. [PMID: 36733911 PMCID: PMC9887121 DOI: 10.3389/fphys.2023.1086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.
Collapse
Affiliation(s)
- Ginger L. Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sho Sugahara
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M. Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Eman Y. Gohar,
| |
Collapse
|
15
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Zhang LM, Liu Z, Wang JQ, Li RQ, Ren JY, Gao X, Lv SS, Liang LY, Zhang F, Yin BW, Sun Y, Tian H, Zhu HC, Zhou YT, Ma YX. Randomized controlled trial for time-restricted eating in overweight and obese young adults. iScience 2022; 25:104870. [PMID: 36034217 PMCID: PMC9400087 DOI: 10.1016/j.isci.2022.104870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Time-restricted eating (TRE) is known to improve metabolic health, whereas very few studies have compared the effects of early and late TRE (eTRE and lTRE) on metabolic health. Overweight and obese young adults were randomized to 6-h eTRE (eating from 7 a.m. to 1 p.m.) (n = 21), 6-h lTRE (eating from 12 p.m. to 6 p.m.) (n = 20), or a control group (ad libitum intake in a day) (n = 19). After 8 weeks, 6-h eTRE and lTRE produced comparable body weight loss compared with controls. Compared with control, 6-h eTRE reduced systolic blood pressure, mean glucose, fasting insulin, insulin resistance, leptin, and thyroid axis activity, whereas lTRE only reduced leptin. These findings shed light on the promise of 6-h eTRE and lTRE for weight loss. Larger studies are needed to assess the promise of eTRE to yield better thyroid axis modulation and overall cardiometabolic health improvement.
Collapse
Affiliation(s)
- Li-min Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Zhan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jia-qi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Rui-qiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jing-yi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xian Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shuai-shuai Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Lu-yao Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bo-wen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yan Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Hui-chen Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yu-tian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yu-xia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| |
Collapse
|
17
|
Soliman RH, Jin C, Taylor CM, Moura Coelho da Silva E, Pollock DM. Sex Differences in Diurnal Sodium Handling During Diet-Induced Obesity in Rats. Hypertension 2022; 79:1395-1408. [PMID: 35545941 PMCID: PMC9186154 DOI: 10.1161/hypertensionaha.121.18690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Emerging evidence over the past several years suggests that diurnal control of sodium excretion is sex dependent and involves the renal endothelin system. Given recent awareness of disruptions of circadian function in obesity, we determined whether diet-induced obesity impairs renal handling of an acute salt load at different times of day and whether this varies by sex and is associated with renal endothelin dysfunction. METHODS Male and female Sprague-Dawley rats were placed on a high-fat diet for 8 weeks before assessing renal sodium handling and blood pressure. RESULTS Male, but not female, rats on high fat had a significantly reduced natriuretic response to acute NaCl injection at the beginning of their active period that was associated with lower endothelin 1 (ET-1) excretion, lower ET-1 mRNA expression in the cortex and outer medulla as well as lower ETB receptor expression in the outer medulla of the high-fat rats. Obese males also had significantly higher blood pressure (telemetry) that was exacerbated by adding high salt to the diet during the last 2 weeks. While female rats developed hypertension with a high-fat diet, they were not salt sensitive and ET-1 excretion was unchanged. CONCLUSIONS These data identify diet-induced obesity as a sex-specific disruptive factor for maintaining proper sodium handling. Although high-fat diets induce hypertension in both sexes, these data reveal that males are at greater risk of salt-dependent hypertension and further suggest that females have more redundant systems that can be productive against salt-sensitive hypertension in at least some circumstances.
Collapse
Affiliation(s)
- Reham H. Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Crystal M. Taylor
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Emile Moura Coelho da Silva
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
18
|
Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol 2022; 18:309-321. [PMID: 35194176 DOI: 10.1038/s41574-022-00638-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Intermittent fasting diets have become very popular in the past few years, as they can produce clinically significant weight loss. These diets can be defined, in the simplest of terms, as periods of fasting alternating with periods of eating. The most studied forms of intermittent fasting include: alternate day fasting (0-500 kcal per 'fast day' alternating with ad libitum intake on 'feast days'); the 5:2 diet (two fast days and five feast days per week) and time-restricted eating (only eating within a prescribed window of time each day). Despite the recent surge in the popularity of fasting, only a few studies have examined the health benefits of these diets in humans. The goal of this Review is to summarize these preliminary findings and give insights into the effects of intermittent fasting on body weight and risk factors for cardiometabolic diseases in humans. This Review also assesses the safety of these regimens, and offers some practical advice for how to incorporate intermittent fasting diets into everyday life. Recommendations for future research are also presented.
Collapse
Affiliation(s)
- Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Ezpeleta
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Zeraattalab-Motlagh S, Lesani A, Janbozorgi N, Djafarian K, Majdi M, Shab-Bidar S. Association of nightly fasting duration, meal timing and frequency with the metabolic syndrome among Iranian adults. Br J Nutr 2022; 129:1-8. [PMID: 35411844 DOI: 10.1017/s0007114521005079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulative evidence indicates that meal timing is associated with cardiometabolic risks by deteriorating circadian rhythms. However, evidence is unclear. This cross-sectional study aimed to investigate the relation between nightly fasting duration, meal timing and frequency and metabolic syndrome (MetS) among Iranian adults. Eight hundred fifty adults were recruited in this study. Dietary data were collected by 24-h dietary recalls. Time-related eating patterns were determined as nightly fasting duration, occasions of eating, time and energy proportion of first and last meal and meal frequency on a day. The MetS was recognised on the basis of the National Cholesterol Education Program Adult Treatment Panel III criteria. A binary logistic regression was applied to examine the relation between meal timing and MetS. A significant inverse relation between habitual nightly fasting duration with MetS (OR = 0·74, 95 % CI 0·55, 0·99, P = 0·04) and 'increased TAG' (OR = 0·73, 95 % CI 0·55, 0·98, P = 0·03) was found after confounder adjustment. Also, habitual first and last meal energy had no significant connection with MetS. However, the odds of 'increased fasting blood glucose' were lower in subjects who consumed ≥25% of habitual energy intake in the last meal (OR = 0·60, 95 % CI 0·42, 0·85, P = 0·005). Having longer nightly fasting duration may be useful for decreasing the risk of both MetS and 'elevated TAG'. These findings introduce a new insight that time-related eating patterns, instead of nightly fasting duration alone, might be related to cardiometabolic risks in Iranian adults.
Collapse
Affiliation(s)
- Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Azadeh Lesani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasim Janbozorgi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Majdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
20
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
21
|
Culshaw G, Binnie D, Dhaun N, Hadoke P, Bailey M, Webb D. The acute pressure natriuresis response is suppressed by selective ETA receptor blockade. Clin Sci (Lond) 2021; 136:CS20210937. [PMID: 34918049 PMCID: PMC8734438 DOI: 10.1042/cs20210937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease. In a significant minority of people, it develops when salt intake is increased (salt-sensitivity). It is not clear whether this represents impaired vascular function or disruption to the relationship between blood pressure (BP) and renal salt-handling (pressure natriuresis, PN). Endothelin-1 (ET-1) regulates BP via ETA and ETB receptor subtypes. Blockade of ETA receptors reduces BP, but promotes sodium retention by an unknown mechanism. ETB blockade increases both BP and sodium retention. We hypothesised that ETA blockade promotes sodium and water retention by suppressing PN. We also investigated whether suppression of PN might reflect off-target ETB blockade. Acute PN was induced by sequential arterial ligation in male Sprague Dawley rats. Intravenous atrasentan (ETA antagonist, 5mg/kg) halved the normal increase in medullary perfusion and reduced sodium and water excretion by >60%. This was not due to off-target ETB blockade because intravenous A-192621 (ETB antagonist, 10mg/kg) increased natriuresis by 50% without modifying medullary perfusion. In a separate experiment in salt-loaded rats monitored by radiotelemetry, oral atrasentan reduced systolic and diastolic BP by ~10mmHg, but additional oral A-192621 reversed these effects. Endogenous ETA stimulation has natriuretic effects mediated by renal vascular dilation while endogenous ETB stimulation in the kidney has antinatriuretic effects via renal tubular mechanisms. Pharmacological manipulation of vascular function with ET antagonists modifies the BP set-point, but even highly selective ETA antagonists attenuate PN, which may be associated with salt and water retention.
Collapse
Affiliation(s)
- Geoffrey J. Culshaw
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - David Binnie
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Neeraj Dhaun
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Patrick W.F. Hadoke
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Matthew A. Bailey
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - David J. Webb
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, U.K
| |
Collapse
|
22
|
Soliman RH, Pollock DM. Circadian Control of Sodium and Blood Pressure Regulation. Am J Hypertens 2021; 34:1130-1142. [PMID: 34166494 PMCID: PMC9526808 DOI: 10.1093/ajh/hpab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
The attention for the control of dietary risk factors involved in the development of hypertension, includes a large effort on dietary salt restrictions. Ample studies show the beneficial role of limiting dietary sodium as a lifestyle modification in the prevention and management of essential hypertension. Not until the past decade or so have studies more specifically investigated diurnal variations in renal electrolyte excretion, which led us to the hypothesis that timing of salt intake may impact cardiovascular health and blood pressure regulation. Cell autonomous molecular clocks as the name implies, function independently to maintain optimum functional rhythmicity in the face of environmental stressors such that cellular homeostasis is maintained at all times. Our understanding of mechanisms influencing diurnal patterns of sodium excretion and blood pressure has expanded with the discovery of the circadian clock genes. In this review, we discuss what is known about circadian regulation of renal sodium handling machinery and its influence on blood pressure regulation, with timing of sodium intake as a potential modulator of the kidney clock.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Habib YH, Abdelhady SA, Gowayed MA, El-Deeb NM, Darwish IE, El-Mas MM. Prenatal endothelin or thromboxane receptor antagonism surpasses sympathoinhibition in improving cardiorenal malfunctions in preeclamptic rats. Toxicol Appl Pharmacol 2021; 426:115615. [PMID: 34102242 DOI: 10.1016/j.taap.2021.115615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023]
Abstract
Current therapies for preeclampsia (PE) and its complications are limited and defective. Considering the importance of endothelin (ET) and thromboxane A2 (TXA2) signaling in PE pathophysiology, we tested the hypothesis that prenatal blockade of endothelin ETA or thromboxane TXA2 receptors favorably reprograms preeclamptic cardiovascular and renal insults. PE was induced by daily oral administration of L-NAME (50 mg/kg) to pregnant rats for 7 consecutive days starting from gestational day 14. The effects of co-exposure to atrasentan (ETA receptor blocker, 10 mg/kg/day) or terutroban (TXA2 receptor blocker, 10 mg/kg/day) on cardiovascular and renal anomalies induced by PE were assessed on gestational day 20 (GD20) and at weaning time and compared with those evoked by the sympatholytic drug α-methyldopa (α-MD, 100 mg/kg/day), a prototypic therapy for PE management. Among all drugs, terutroban was basically the most potent in ameliorating PE-evoked increments in blood pressure and decrements in creatinine clearance. Cardiorenal tissues of PE rats exhibited significant increases in ETA and TXA2 receptor expressions and these effects disappeared after treatment with atrasentan and to a lesser extent by terutroban or α-MD. Atrasentan was also the most effective in reversing the reduced ETB receptor expression in renal tissues of PE rats. Signs of histopathological damage in cardiac and renal tissues of PE rats were mostly improved by all therapies. Together, pharmacologic elimination of ETA or TXA2 receptors offers a relatively better prospect than α-MD in controlling perinatal cardiorenal irregularities sparked by PE.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nevine M El-Deeb
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
24
|
Identification of genetic loci associated with nocturnal enuresis: a genome-wide association study. THE LANCET CHILD & ADOLESCENT HEALTH 2021; 5:201-209. [DOI: 10.1016/s2352-4642(20)30350-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
|
25
|
Świątkiewicz I, Woźniak A, Taub PR. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients 2021; 13:nu13010221. [PMID: 33466692 PMCID: PMC7828812 DOI: 10.3390/nu13010221] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) occurs in ~30% of adults and is associated with increased risk of cardiovascular disease and diabetes mellitus. MetS reflects the clustering of individual cardiometabolic risk factors including central obesity, elevated fasting plasma glucose, dyslipidemia, and elevated blood pressure. Erratic eating patterns such as eating over a prolonged period per day and irregular meal timing are common in patients with MetS. Misalignment between daily rhythms of food intake and circadian timing system can contribute to circadian rhythm disruption which results in abnormal metabolic regulation and adversely impacts cardiometabolic health. Novel approaches which aim at restoring robust circadian rhythms through modification of timing and duration of daily eating represent a promising strategy for patients with MetS. Restricting eating period during a day (time-restricted eating, TRE) can aid in mitigating circadian disruption and improving cardiometabolic outcomes. Previous pilot TRE study of patients with MetS showed the feasibility of TRE and improvements in body weight and fat, abdominal obesity, atherogenic lipids, and blood pressure, which were observed despite no overt attempt to change diet quantity and quality or physical activity. The present article aims at giving an overview of TRE human studies of individuals with MetS or its components, summarizing current clinical evidence for improving cardiometabolic health through TRE intervention in these populations, and presenting future perspectives for an implementation of TRE to treat and prevent MetS. Previous TRE trials laid the groundwork and indicate a need for further clinical research including large-scale controlled trials to determine TRE efficacy for reducing long-term cardiometabolic risk, providing tools for sustained lifestyle changes and, ultimately, improving overall health in individuals with MetS.
Collapse
Affiliation(s)
- Iwona Świątkiewicz
- Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
- Correspondence: ; Tel.: +1-858-249-1308
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland;
| | - Pam R. Taub
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
26
|
Douma LG, Barral D, Gumz ML. Interplay of the Circadian Clock and Endothelin System. Physiology (Bethesda) 2021; 36:35-43. [PMID: 33325818 DOI: 10.1152/physiol.00021.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The peptide hormone endothelin-1 and its receptors are linked to several disease states. Pharmacological inhibition of this pathway has proven beneficial in pulmonary hypertension, yet its potential in other disease states remains to be realized. This review considers an often understudied aspect of endothelin biology, circadian rhythm regulation and how understanding the intersection between endothelin signaling and the circadian clock may be leveraged to realize the potential of endothelin-based therapeutics.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Zhang D, Colson JC, Jin C, Becker BK, Rhoads MK, Pati P, Neder TH, King MA, Valcin JA, Tao B, Kasztan M, Paul JR, Bailey SM, Pollock JS, Gamble KL, Pollock DM. Timing of Food Intake Drives the Circadian Rhythm of Blood Pressure. FUNCTION 2020; 2:zqaa034. [PMID: 33415319 PMCID: PMC7772288 DOI: 10.1093/function/zqaa034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023] Open
Abstract
Timing of food intake has become a critical factor in determining overall cardiometabolic health. We hypothesized that timing of food intake entrains circadian rhythms of blood pressure (BP) and renal excretion in mice. Male C57BL/6J mice were fed ad libitum or reverse feeding (RF) where food was available at all times of day or only available during the 12-h lights-on period, respectively. Mice eating ad libitum had a significantly higher mean arterial pressure (MAP) during lights-off compared to lights-on (113 ± 2 mmHg vs 100 ± 2 mmHg, respectively; P < 0.0001); however, RF for 6 days inverted the diurnal rhythm of MAP (99 ± 3 vs 110 ± 3 mmHg, respectively; P < 0.0001). In contrast to MAP, diurnal rhythms of urine volume and sodium excretion remained intact after RF. Male Bmal1 knockout mice (Bmal1KO) underwent the same feeding protocol. As previously reported, Bmal1KO mice did not exhibit a diurnal MAP rhythm during ad libitum feeding (95 ± 1 mmHg vs 92 ± 3 mmHg, lights-off vs lights-on; P > 0.05); however, RF induced a diurnal rhythm of MAP (79 ± 3 mmHg vs 95 ± 2 mmHg, lights-off vs lights-on phase; P < 0.01). Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 in ex vivo tissue cultures. The timing of the PER2::LUC rhythm in the renal cortex and suprachiasmatic nucleus was not affected by RF; however, RF induced significant phase shifts in the liver, renal inner medulla, and adrenal gland. In conclusion, the timing of food intake controls BP rhythms in mice independent of Bmal1, urine volume, or sodium excretion.
Collapse
Affiliation(s)
| | | | - Chunhua Jin
- Division of Nephrology, Department of Medicine
| | | | | | | | | | | | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology
| | - Binli Tao
- Division of Nephrology, Department of Medicine
| | | | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
28
|
Douma LG, Crislip GR, Cheng KY, Barral D, Masten S, Holzworth M, Roig E, Glasford K, Beguiristain K, Li W, Bratanatawira P, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Knockout of the circadian clock protein PER1 results in sex-dependent alterations of ET-1 production in mice in response to a high-salt diet plus mineralocorticoid treatment. Can J Physiol Pharmacol 2020; 98:579-586. [PMID: 32437627 DOI: 10.1139/cjpp-2019-0688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - G Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Kit-Yan Cheng
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Dominique Barral
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Sarah Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Meaghan Holzworth
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Emilio Roig
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Krystal Glasford
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Beguiristain
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Wendy Li
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Phillip Bratanatawira
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - I Jeanette Lynch
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA.,North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32611, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Charles S Wingo
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA.,North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32611, USA
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Johnston JG, Speed JS, Becker BK, Kasztan M, Soliman RH, Rhoads MK, Tao B, Jin C, Geurts AM, Hyndman KA, Pollock JS, Pollock DM. Diurnal Control of Blood Pressure Is Uncoupled From Sodium Excretion. Hypertension 2020; 75:1624-1634. [PMID: 32306766 PMCID: PMC7228023 DOI: 10.1161/hypertensionaha.119.13908] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
The diurnal rhythms of sodium handling and blood pressure are thought to be regulated by clock genes, such as Bmal1. However, little is known about the regulation of these factors by Bmal1, especially in rats. Using a novel whole-body Bmal1 knockout rat model (Bmal1-/-), we hypothesized that time of day regulation of sodium excretion is dependent on Bmal1. Using telemetry to continuously record mean arterial pressure, we observed that male and female Bmal1-/- rats had significantly reduced mean arterial pressure over the course of 24 hours compared with littermate controls. The circadian mean arterial pressure pattern remained intact in both sexes of Bmal1-/- rats, which is in contrast to the Bmal1-/- mouse model. Male Bmal1-/- rats had no significant difference in baseline sodium excretion between 12-hour active and inactive periods, indicating a lack of diurnal control independent of maintained mean arterial pressure rhythms. Female Bmal1-/- rats, however, had significantly greater sodium excretion during the active versus inactive period similar to controls. Thus, we observed a clear dissociation between circadian blood pressure and control of sodium excretion that is sex dependent. These findings are consistent with a more robust ability of females to maintain control of sodium excretion, and furthermore, demonstrate a novel role for Bmal1 in control of diurnal blood pressure independent of sodium excretion.
Collapse
Affiliation(s)
- Jermaine G. Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Bryan K. Becker
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Reham H. Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Megan K. Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Binli Tao
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kelly A. Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
30
|
Zhang D, Jin C, Obi IE, Rhoads MK, Soliman RH, Sedaka RS, Allan JM, Tao B, Speed JS, Pollock JS, Pollock DM. Loss of circadian gene Bmal1 in the collecting duct lowers blood pressure in male, but not female, mice. Am J Physiol Renal Physiol 2020; 318:F710-F719. [PMID: 31904281 PMCID: PMC7099501 DOI: 10.1152/ajprenal.00364.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/19/2023] Open
Abstract
Kidney function follows a 24-h rhythm subject to regulation by circadian genes including the transcription factor Bmal1. A high-salt diet induces a phase shift in Bmal1 expression in the renal inner medulla that is dependent on endothelin type B (ETB) receptors. Furthermore, ETB receptor-mediated natriuresis is sex dependent. Therefore, experiments tested the hypothesis that collecting duct Bmal1 regulates blood pressure in a sex-dependent manner. We generated a mouse model that lacks Bmal1 expression in the collecting duct, where ETB receptor abundance is highest. Male, but not female, collecting duct Bmal1 knockout (CDBmal1KO) mice had significantly lower 24-h mean arterial pressure (MAP) than flox controls (105 ± 2 vs. 112 ± 3 mmHg for male mice and 106 ± 1 vs. 108 ± 1 mmHg for female mice, by telemetry). After 6 days on a high-salt (4% NaCl) diet, MAP remained significantly lower in male CDBmal1KO mice than in male flox control mice (107 ± 2 vs. 113 ± 1 mmHg), with no significant differences between genotypes in female mice (108 ± 2 vs. 109 ± 1 mmHg). ETB receptor blockade for another 6 days increased MAP similarly in both male and female CDBmal1KO and flox control mice. However, MAP remained lower in male CDBmal1KO mice than in male flox control mice (124 ± 2 vs. 130 ± 2 mmHg). No significant differences were observed between female CDBmal1KO and flox mice during ETB blockade (130 ± 2 vs. 127 ± 2 mmHg). There were no significant genotype differences in amplitude or phase of MAP in either sex. These data suggest that collecting duct Bmal1 has no role in circadian MAP but plays an important role in overall blood pressure in male, but not female, mice.
Collapse
Affiliation(s)
- Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ijeoma E Obi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Megan K Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Reham H Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee S Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Miller Allan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Binli Tao
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Soliman RH, Johnston JG, Gohar EY, Taylor CM, Pollock DM. Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R418-R427. [PMID: 31913682 DOI: 10.1152/ajpregu.00060.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genes for the epithelial sodium channel (ENaC) subunits are expressed in a circadian manner, but whether this results in time-of-day differences in activity is not known. Recent data show that protein expression of ENaC subunits is higher in kidneys from female rats, yet females are more efficient in excreting an acute salt load. Thus, our in vivo study determined whether there is a time-of-day difference as well as a sex difference in the response to ENaC inhibition by benzamil. Our results showed that the natriuretic and diuretic responses to a single dose of benzamil were significantly greater in male compared with female rats whether given at the beginning of the inactive period [Zeitgeber time 0 (ZT0), 7 AM] or active period (ZT12, 7 PM). However, the response to benzamil was not significantly different between ZT0 and ZT12 dosing in either male or female rats. There was no difference in renal cortical α-ENaC protein abundance between ZT0 and ZT12 or males and females. Given previous reports of flow-induced stimulation of endothelin-1 (ET-1) production and sex differences in the renal endothelin system, we measured urinary ET-1 excretion to assess the effects of increased urine flow on intrarenal ET-1. ET-1 excretion was significantly increased following benzamil administration in both sexes, but this increase was significantly greater in females. These results support the hypothesis that ENaC activity is less prominent in maintaining Na+ balance in females independent of renal ET-1. Because ENaC subunit genes and protein expression vary by time of day and are greater in female rat kidneys, this suggests a clear disconnect between ENaC expression and channel activity.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jermaine G Johnston
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eman Y Gohar
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Zhang D, Pollock DM. Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annu Rev Physiol 2019; 82:343-363. [PMID: 31635525 DOI: 10.1146/annurev-physiol-021119-034446] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.
Collapse
Affiliation(s)
- Dingguo Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
33
|
Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol 2019; 317:H1173-H1182. [PMID: 31585045 DOI: 10.1152/ajpheart.00312.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that the gut microbiota contributes to the pathogenesis of hypertension (HTN). The gut microbiota is a highly dynamic organ mediating numerous physiological functions, which can be influenced by external factors such as diet. In particular, a major modifiable risk factor for HTN is dietary sodium intake. Sodium consumption in the United States is significantly greater than that recommended by the federal government and organizations such as the American Heart Association. Because of the emerging connection between the gut microbiota and HTN, the interaction between dietary sodium and gut microbiota has sparked interest. High-sodium diets promote local and systemic tissue inflammation and impair intestinal anatomy compared with low sodium intake in both human and animal studies. It is biologically plausible that the gut microbiota mediates the inflammatory response, as it is in constant interaction with the immune system and is necessary for proper maturation of immune cells. Recent rodent data demonstrate that dietary sodium disrupts gut microbial homeostasis as gut microbiota composition shifts with dietary sodium manipulation. In this review, we will focus on gut microbiota activity in HTN and the influence of high dietary sodium intake with an emphasis on the immune system, bacterial metabolites, and the circadian clock.
Collapse
Affiliation(s)
- Katarina Smiljanec
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
34
|
Abstract
Numerous physiological functions exhibit substantial circadian oscillations. In the kidneys, renal plasma flow, the glomerular filtration rate and tubular reabsorption and/or secretion processes have been shown to peak during the active phase and decline during the inactive phase. These functional rhythms are driven, at least in part, by a self-sustaining cellular mechanism termed the circadian clock. The circadian clock controls different cellular functions, including transcription, translation and protein post-translational modifications (such as phosphorylation, acetylation and ubiquitylation) and degradation. Disruption of the circadian clock in animal models results in the loss of blood pressure control and substantial changes in the circadian pattern of water and electrolyte excretion in the urine. Kidney-specific suppression of the circadian clock in animals implicates both the intrinsic renal and the extrarenal circadian clocks in these pathologies. Alterations in the circadian rhythm of renal functions are associated with the development of hypertension, chronic kidney disease, renal fibrosis and kidney stones. Furthermore, renal circadian clocks might interfere with the pharmacokinetics and/or pharmacodynamics of various drugs and are therefore an important consideration in the treatment of some renal diseases or disorders.
Collapse
Affiliation(s)
- Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland. .,Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
35
|
Ryan MJ, Sullivan JC. Sex as a biological variable in renal, metabolic, and cardiovascular physiology: eighteen years of leadership by the American Physiological Society. Am J Physiol Renal Physiol 2019; 316:F615-F616. [PMID: 30759024 PMCID: PMC6483030 DOI: 10.1152/ajprenal.00019.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | | |
Collapse
|
36
|
Douma LG, Solocinski K, Holzworth MR, Crislip GR, Masten SH, Miller AH, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am J Physiol Regul Integr Comp Physiol 2018; 316:R50-R58. [PMID: 30427705 DOI: 10.1152/ajpregu.00381.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Kristen Solocinski
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | | | - G Ryan Crislip
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Amber H Miller
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, University of Florida , Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| |
Collapse
|
37
|
Glen Pyle W, Martino TA. Circadian rhythms influence cardiovascular disease differently in males and females: role of sex and gender. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Crislip GR, Masten SH, Gumz ML. RECENT ADVANCES IN UNDERSTANDING THE CIRCADIAN CLOCK IN RENAL PHYSIOLOGY. CURRENT OPINION IN PHYSIOLOGY 2018; 5:38-44. [PMID: 30714020 DOI: 10.1016/j.cophys.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests a critical role for the molecular circadian clock in the regulation of renal function. Here, we consider the most recent advances in our understanding of the relationship between the circadian clock and renal physiology.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
| | - Sarah H Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
39
|
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 2018; 27:1212-1221.e3. [PMID: 29754952 PMCID: PMC5990470 DOI: 10.1016/j.cmet.2018.04.010] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/23/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
Abstract
Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.
Collapse
Affiliation(s)
| | - Robbie Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kate S Early
- Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA 31907, USA
| | - William T Cefalu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; American Diabetes Association, Arlington, VA 22202, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Courtney M Peterson
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
41
|
Zhang D, Pollock DM. Circadian regulation of kidney function: finding a role for Bmal1. Am J Physiol Renal Physiol 2018; 314:F675-F678. [PMID: 29357439 PMCID: PMC6031908 DOI: 10.1152/ajprenal.00580.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Mounting evidence suggests that there is an internal molecular "clock" within the kidney to help maintain normal renal function. Disturbance of the kidney circadian rhythm may pose a threat to water and electrolyte homeostasis and blood pressure regulation, among many other problems. The identification of circadian genes facilitated a more comprehensive appreciation of the importance of "keeping the body on time"; however, our knowledge is very limited with regard to how circadian genes regulate kidney function. In this brief review, we summarize recent progress in circadian control of renal physiology, with a particular focus on aryl hydrocarbon receptor nuclear translocator-like protein (Arntl1; also called Bmal1).
Collapse
Affiliation(s)
- Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
42
|
Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 2018; 314:F89-F98. [PMID: 28971988 PMCID: PMC5866350 DOI: 10.1152/ajprenal.00028.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 314: F89-F98, 2018. First published September 27, 2017; doi:10.1152/ajprenal.00028.2017.-Dyssynchrony of circadian rhythms is associated with various disorders, including cardiovascular and metabolic diseases. The cell autonomous molecular clock maintains circadian control; however, environmental factors that may cause circadian dyssynchrony either within or between organ systems are poorly understood. Our laboratory recently reported that the endothelin (ET-1) B (ETB) receptor functions to facilitate Na+ excretion in a time of day-dependent manner. Therefore, the present study was designed to determine whether high salt (HS) intake leads to circadian dyssynchrony within the kidney and whether the renal endothelin system contributes to control of the renal molecular clock. We observed that HS feeding led to region-specific alterations in circadian clock components within the kidney. For instance, HS caused a significant 5.5-h phase delay in the peak expression of Bmal1 and suppressed Cry1 and Per2 expression in the renal inner medulla, but not the renal cortex, of control rats. The phase delay in Bmal1 expression appears to be mediated by ET-1 because this phenomenon was not observed in the ETB-deficient rat. In cultured inner medullary collecting duct cells, ET-1 suppressed Bmal1 mRNA expression. Furthermore, Bmal1 knockdown in these cells reduced epithelial Na+ channel expression. These data reveal that HS feeding leads to intrarenal circadian dyssynchrony mediated, in part, through activation of ETB receptors within the renal inner medulla.
Collapse
Affiliation(s)
- Joshua S Speed
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kaehler Roth
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
43
|
Gohar EY, Kasztan M, Becker BK, Speed JS, Pollock DM. Ovariectomy uncovers purinergic receptor activation of endothelin-dependent natriuresis. Am J Physiol Renal Physiol 2017; 313:F361-F369. [PMID: 28468962 DOI: 10.1152/ajprenal.00098.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
We recently reported that natriuresis produced by renal medullary salt loading is dependent on endothelin (ET)-1 and purinergic (P2) receptors in male rats. Because sex differences in ET-1 and P2 signaling have been reported, we decided to test whether ovarian sex hormones regulate renal medullary ET-1 and P2-dependent natriuresis. The effect of medullary NaCl loading on Na+ excretion was determined in intact and ovariectomized (OVX) female Sprague-Dawley rats with and without ET-1 or P2 receptor antagonism. Isosmotic saline (284 mosmol/kgH2O) was infused in the renal medullary interstitium of anesthetized rats during a baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) infusion. Medullary NaCl loading significantly enhanced Na+ excretion in intact and OVX female rats. ETA+B or P2 receptor blockade did not attenuate the natriuretic effect of medullary NaCl loading in intact females, whereas ETA+B or P2 receptor blockade attenuated the natriuretic response to NaCl loading in OVX rats. Activation of medullary P2Y2 and P2Y4 receptors by UTP infusion had no significant effect in intact females but enhanced Na+ excretion in OVX rats. Combined ETA+B receptor blockade significantly inhibited the natriuretic response to UTP observed in OVX rats. These data demonstrate that medullary NaCl loading induces ET-1 and P2-independent natriuresis in intact females. In OVX, activation of medullary P2 receptors promotes ET-dependent natriuresis, suggesting that ovarian hormones may regulate the interplay between the renal ET-1 and P2 signaling systems to facilitate Na+ excretion.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Emans TW, Janssen BJ, Joles JA, Krediet CTP. Circadian Rhythm in Kidney Tissue Oxygenation in the Rat. Front Physiol 2017; 8:205. [PMID: 28428757 PMCID: PMC5382217 DOI: 10.3389/fphys.2017.00205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
Blood pressure, renal hemodynamics, electrolyte, and water excretion all display diurnal oscillation. Disturbance of these patterns is associated with hypertension and chronic kidney disease. Kidney oxygenation is dependent on oxygen delivery and consumption that in turn are determined by renal hemodynamics and metabolism. We hypothesized that kidney oxygenation also demonstrates 24-h periodicity. Telemetric oxygen-sensitive carbon paste electrodes were implanted in Sprague-Dawley rats (250–300 g), either in renal medulla (n = 9) or cortex (n = 7). Arterial pressure (MAP) and heart rate (HR) were monitored by telemetry in a separate group (n = 8). Data from 5 consecutive days were analyzed for rhythmicity by cosinor analysis. Diurnal electrolyte excretion was assessed by metabolic cages. During lights-off, oxygen levels increased to 105.3 ± 2.1% in cortex and 105.2 ± 3.8% in medulla. MAP was 97.3 ± 1.5 mmHg and HR was 394.0 ± 7.9 bpm during lights-off phase and 93.5 ± 1.3 mmHg and 327.8 ± 8.9 bpm during lights-on. During lights-on, oxygen levels decreased to 94.6 ± 1.4% in cortex and 94.2 ± 8.5% in medulla. There was significant 24-h periodicity in cortex and medulla oxygenation. Potassium excretion (1,737 ± 779 vs. 895 ± 132 μmol/12 h, P = 0.005) and the distal Na+/K+ exchange (0.72 ± 0.02 vs. 0.59 ± 0.02 P < 0.001) were highest in the lights-off phase, this phase difference was not found for sodium excretion (P = 0.4). It seems that oxygen levels in the kidneys follow the pattern of oxygen delivery, which is known to be determined by renal blood flow and peaks in the active phase (lights-off).
Collapse
Affiliation(s)
- Tonja W Emans
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands.,Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Ben J Janssen
- Department of Pharmacology and Toxicology, Maastricht UniversityMaastricht, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - C T Paul Krediet
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|