1
|
Crespo-Masip M, Goodluck HA, Kim YC, Oe Y, Roach AM, Kanoo S, Lopez N, Zhang H, Badal SS, Vallon V. ASK1 limits kidney glucose reabsorption, growth, and mid-late proximal tubule KIM-1 induction when diabetes and Western diet are combined with SGLT2 inhibition. Am J Physiol Renal Physiol 2025; 328:F662-F675. [PMID: 40152436 DOI: 10.1152/ajprenal.00031.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Selonsertib is an apoptosis signal-regulating kinase 1 inhibitor (ASK1i) that attenuated the decline in creatinine-based estimated GFR in humans with type 2 diabetes and kidney disease but increased the rate of acute kidney injury. This study explored the individual and combined kidney effects of selonsertib and the antihyperglycemic sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin in Western diet-fed male Akita mice, a murine model of early type 1 diabetes mellitus showing signs of systemic but no kidney inflammation. ASK1i reduced elevated plasma levels of proinflammatory cytokines/chemokines (IL-6, MCP1/CCL2, KC/CXCL1, and IP-10/CXCL10) without significantly changing hyperglycemia, glomerular hyperfiltration, and albuminuria or affecting the blood glucose and glomerular hyperfiltration-lowering effect of SGLT2i. A potential sign of tubular stress, SGLT2i modestly upregulated kidney cortex transcription of proinflammatory and profibrotic genes and distal tubule injury marker Ngal. Adding ASK1i to SGLT2i lowered the transcription of many of these genes, including Ngal. However, ASK1i enhanced kidney glucose reabsorption independent of SGLT2i, and combined ASK1i + SGLT2i increased kidney weight by 30%. This was associated with and positively correlated with the upregulation of the tubular stress/injury marker KIM-1, primarily in the mid-to-late proximal tubule. Combined ASK1i + SGLT2i increased the tubular injury score but not signs of kidney inflammation or fibrosis beyond a robust increase in kidney mRNA expression of Il6, Ccl2 (Mcp1), and Timp1, associated with increased plasma IL-6 levels. The data support the hypothesis that housekeeping functions of ASK1 limit glucose reabsorption and the associated growth and cellular stress induced in the mid-to-late proximal tubule by combining hyperglycemia and Western diet with SGLT2 inhibition.NEW & NOTEWORTHY Selonsertib is an apoptosis signal-regulating kinase 1 (ASK1) inhibitor that attenuated creatinine-based eGFR decline in humans with type 2 diabetes and kidney disease but increased acute kidney injury rates. Here, we report evidence in a murine model of early type 1 diabetes mellitus that housekeeping functions of ASK1 limit glucose reabsorption and the associated growth and cellular stress induced in the mid-to-late proximal tubule by combining hyperglycemia and Western diet with SGLT2 inhibition.
Collapse
MESH Headings
- Animals
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Male
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/enzymology
- MAP Kinase Kinase Kinase 5/metabolism
- MAP Kinase Kinase Kinase 5/antagonists & inhibitors
- Hepatitis A Virus Cellular Receptor 1/metabolism
- Diet, Western/adverse effects
- Benzhydryl Compounds/pharmacology
- Glucosides/pharmacology
- Mice, Inbred C57BL
- Diabetic Nephropathies/enzymology
- Mice
- Blood Glucose/metabolism
- Blood Glucose/drug effects
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Renal Reabsorption/drug effects
- Disease Models, Animal
- Glucose/metabolism
- Sodium-Glucose Transporter 2
Collapse
Affiliation(s)
- Maria Crespo-Masip
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Helen A Goodluck
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Young Chul Kim
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Yuji Oe
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Allie M Roach
- Gilead Sciences, Inc., Foster City, California, United States
| | - Sadhana Kanoo
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Natalia Lopez
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Haiyan Zhang
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| | - Shawn S Badal
- Gilead Sciences, Inc., Foster City, California, United States
| | - Volker Vallon
- Department of Medicine, Veterans Affairs San Diego Healthcare System, University of California San Diego, California, United States
| |
Collapse
|
2
|
Goodluck H, Zemljic‐Harpf A, Galdino OA, Kanoo S, Lopez N, Kim YC, Vallon V. Effects of sotagliflozin on kidney and cardiac outcome in a hypertensive model of subtotal nephrectomy in male mice. Physiol Rep 2025; 13:e70217. [PMID: 40151088 PMCID: PMC11950634 DOI: 10.14814/phy2.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 03/29/2025] Open
Abstract
Dual inhibition of sodium glucose cotransporters 1 and 2 (SGLT1/SGLT2) by sotagliflozin protects the kidney and heart in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). To gain mechanistic insights, the current study aimed to establish a murine model of hypertensive CKD that shows cardio-renal protection by sotagliflozin. Since protection by SGLT2 inhibitors can be diabetes-independent, a nondiabetic murine model of subtotal nephrectomy with angiotensin II infusion-facilitated hypertension was followed for 7 weeks. The model showed 40% lower GFR, doubling in plasma FGF23, 50 mmHg higher systolic blood pressure (SBP), 100-fold increased albuminuria, and robust signs of kidney injury, inflammation, and fibrosis versus sham controls, associated with a 30% larger left cardiac ventricle and wall thickness and upregulation of markers of cardiac overload and fibrosis. Sotagliflozin, initiated 1 week after the last surgery, showed target-engagement evidenced by glucosuria, 9 mmHg lower SBP, temporal reduction in body weight and GFR, and 30% higher plasma GLP1. Sotagliflozin, however, did not improve markers of kidney injury, inflammation, fibrosis, albuminuria, and plasma FGF23, or signs of cardiac overload, fibrosis, or impaired function. Limited sotagliflozin responsiveness may relate to short treatment time, limited metabolic benefits in nondiabetic setting and/or the model's dominant angiotensin II-driven effects/hypertension.
Collapse
Affiliation(s)
- Helen Goodluck
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Alice Zemljic‐Harpf
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Ony Araujo Galdino
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- Department of Clinical and Toxicological AnalysesFederal University of Rio Grande do Norte (UFRN)NatalRNBrazil
| | - Sadhana Kanoo
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Natalia Lopez
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Young Chul Kim
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Volker Vallon
- Division of Nephrology & Hypertension, Department of MedicineUniversity of California San Diego, and VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| |
Collapse
|
3
|
Kim YC, Das V, Kanoo S, Yao H, Stanford SM, Bottini N, Karihaloo A, Vallon V. Transcriptomics of SGLT2-positive early proximal tubule segments in mice: response to type 1 diabetes, SGLT1/2 inhibition, or GLP1 receptor agonism. Am J Physiol Renal Physiol 2025; 328:F68-F81. [PMID: 39589189 PMCID: PMC11918450 DOI: 10.1152/ajprenal.00231.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
SGLT2 inhibitors (SGLT2i) and GLP1 receptor (GLP1R) agonists have kidney protective effects. To better understand their molecular effects, RNA sequencing was performed in SGLT2-positive proximal tubule segments isolated by immunostaining-guided laser capture microdissection. Male adult DBA wild-type (WT) and littermate diabetic Akita mice ± Sglt1 knockout (Sglt1-KO) were given vehicle or SGLT2i dapagliflozin (dapa; 10 mg/kg diet) for 2 wk, and other Akita mice received GLP1R agonist semaglutide [sema; 3 nmol/(kg body wt·day), sc]. Dapa (254 ± 11 mg/dL) and Sglt1-KO (367 ± 11 mg/dL) but not sema (407 ± 44 mg/dL) significantly reduced hyperglycemia in Akita mice (480 ± 33 mg/dL). The 20,748 detected annotated protein-coding genes included robust enrichment of S1-segment marker genes. Akita showed 198 (∼1%) differentially expressed genes versus WT (DEGs; adjusted P ≤ 0.1), including downregulation of anionic transport, unsaturated fatty acid, and carboxylic acid metabolism. Dapa changed only two genes in WT but restored 43% of DEGs in Akita, including upregulation of the lipid metabolic pathway, carboxylic acid metabolism, and organic anion transport. In Akita, sema restored ∼10% of DEGs, and Sglt1-KO and dapa were synergistic (restored ∼61%), possibly involving additive blood glucose effects (193 ± 15 mg/dL). Targeted analysis of transporters and channels (t test, P < 0.05) revealed that ∼10% of 526 detectable transporters and channels were downregulated by Akita, with ∼60% restored by dapa. Dapa, dapa + Sglt1-KO, and sema also altered Akita-insensitive genes. Among DEGs in Akita, ∼30% were unresponsive to any treatment, indicating potential new targets. In conclusion, SGLT2i restored transcription for multiple metabolic pathways and transporters in SGLT2-positive proximal tubule segments in diabetic mice, with a smaller effect also observed for GLP1R agonism.NEW & NOTEWORTHY SGLT2 inhibitors and GLP1 receptor agonists have kidney protective effects. By combining immunostaining-guided laser capture microdissection and RNA sequencing, the study established how the gene expression profile changes in SGLT2-positive proximal tubule cells in response to type 1 Akita diabetes and to pharmacological intervention by SGLT2 inhibition or GLP1R agonism and genetic deletion of SGLT1. The data also indicate genes unresponsive to those treatments that may include new therapeutical candidates.
Collapse
Affiliation(s)
- Young Chul Kim
- Division of Nephrology & Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| | | | - Sadhana Kanoo
- Division of Nephrology & Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| | - Huazhen Yao
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States
| | - Stephanie M Stanford
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Nunzio Bottini
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | | | - Volker Vallon
- Division of Nephrology & Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
4
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
5
|
Vallon V. State-of-the-Art-Review: Mechanisms of Action of SGLT2 Inhibitors and Clinical Implications. Am J Hypertens 2024; 37:841-852. [PMID: 39017631 PMCID: PMC11471837 DOI: 10.1093/ajh/hpae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Inhibitors of the Na+-coupled glucose transporter SGLT2 (SGLT2i) primarily shift the reabsorption of large amounts of glucose from the kidney's early proximal tubule to downstream tubular segments expressing SGLT1, and the non-reabsorbed glucose is spilled into the urine together with some osmotic diuresis. How can this protect the kidneys and heart from failing as observed in individuals with and without type 2 diabetes? GOAL Mediation analyses identified clinical phenotypes of SGLT2i associated with improved kidney and heart outcome, including a reduction of plasma volume or increase in hematocrit, and lowering of serum urate levels and albuminuria. This review outlines how primary effects of SGLT2i on the early proximal tubule can explain these phenotypes. RESULTS The physiology of tubule-glomerular communication provides the basis for acute lowering of GFR and glomerular capillary pressure, which contributes to lowering of albuminuria but also to long term preservation of GFR, at least in part by reducing kidney cortex oxygen demand. Functional co-regulation of SGLT2 with other sodium and metabolite transporters in the early proximal tubule explains why SGLT2i initially excrete more sodium than expected and are uricosuric, thereby reducing plasma volume and serum urate. Inhibition of SGLT2 reduces early proximal tubule gluco-toxicity and by shifting transport downstream may simulate "systemic hypoxia", and the resulting increase in erythropoiesis, together with the osmotic diuresis, enhances hematocrit and improves blood oxygen delivery. Cardio-renal protection by SGLT2i is also provided by a fasting-like and insulin-sparing metabolic phenotype and, potentially, by off-target effects on the heart and microbiotic formation of uremic toxins.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
6
|
Vallon V. How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system? Nephrol Dial Transplant 2024; 39:1565-1573. [PMID: 38439675 PMCID: PMC11427065 DOI: 10.1093/ndt/gfae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 03/06/2024] Open
Abstract
What mechanisms can link the inhibition of sodium-glucose cotransporter 2 (SGLT2) in the early proximal tubule to kidney and heart protection in patients with and without type 2 diabetes? Due to physical and functional coupling of SGLT2 to other sodium and metabolite transporters in the early proximal tubule (including NHE3, URAT1), inhibitors of SGLT2 (SGLT2i) reduce reabsorption not only of glucose, inducing osmotic diuresis, but of other metabolites plus of a larger amount of sodium than expected based on SGLT2 inhibition alone, thereby reducing volume retention, hypertension and hyperuricemia. Metabolic adaptations to SGLT2i include a fasting-like response, with enhanced lipolysis and formation of ketone bodies that serve as additional fuel for kidneys and heart. Making use of the physiology of tubulo-glomerular communication, SGLT2i functionally lower glomerular capillary pressure and filtration rate, thereby reducing physical stress on the glomerular filtration barrier, tubular exposure to albumin and nephrotoxic compounds, and the oxygen demand for reabsorbing the filtered load. Together with reduced gluco-toxicity in the early proximal tubule and better distribution of transport work along the nephron, SGLT2i can preserve tubular integrity and transport function and, thereby, glomerular filtration rate in the long-term. By shifting transport downstream, SGLT2i may simulate systemic hypoxia at the oxygen sensors in the deep cortex/outer medulla, which stimulates erythropoiesis and, together with osmotic diuresis, enhances hematocrit and thereby improves oxygen delivery to all organs. The described SGLT2-dependent effects may be complemented by off-target effects of SGLT2i on the heart itself and on the microbiome formation of cardiovascular-effective uremic toxins.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Pang S, Li X. Early use of SGLT2 inhibitors reduces the progression of diabetic kidney disease: a retrospective cohort study. Am J Transl Res 2024; 16:4967-4978. [PMID: 39398587 PMCID: PMC11470299 DOI: 10.62347/arya8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To evaluate the potential of sodium-glucose cotransporter 2 (SGLT2) inhibitors in preventing the progression of diabetic kidney disease and to provide guidance for clinical practice to improve renal health management strategies for diabetic patients. METHODS A retrospective analysis was conducted on 178 patients with diabetic kidney disease admitted to Baoji High Tech Hospital from March 2023 to March 2024. Of these, 88 patients who received early treatment with the SGLT2 inhibitor dapagliflozin were included in the early SGLT2-i group, while 90 patients receiving later treatment with SGLT2 inhibitor dapagliflozin were included in the late SGLT2-i group. Clinical data, overall effectiveness, adverse reactions, blood glucose, renal function, lipid levels, and inflammatory markers were compared between the two groups. RESULTS Prior to treatment, there were no differences in blood glucose indicators between the two groups (all P > 0.05). Following treatment, both groups showed reductions in 2-hour postprandial blood glucose (2hPG), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c), with the early SGLT2-i group demonstrating significantly lower values compared to the late SGLT2-i group (all P < 0.05). Similarly, there were no differences in renal function indicators between the two groups before treatment (all P > 0.05). However, following treatment, the early SGLT2-i group showed more noticeable improvements compared to the late SGLT2-i group (P < 0.05). Inflammatory markers and lipid levels followed similar patterns. The overall effectiveness of the early SGLT2-i group was higher than that of the late SGLT2-i group (92.05% vs. 78.89%, P < 0.05), while the incidence of adverse reactions did not differ statistically between the two groups (6.82% vs. 10.00%, P > 0.05). CONCLUSION Early use of SGLT2 inhibitors in diabetic kidney disease patients effectively controls blood glucose and lipid levels, improves renal function, reduces inflammatory responses, and exhibits a low incidence of adverse reactions. This demonstrates high safety and an important role in delaying disease progression. Therefore, it is worth considering clinical promotion and use for this patient population.
Collapse
Affiliation(s)
- Shaowei Pang
- Nephrology Department, Baoji High Tech Hospital Baoji 721000, Shaanxi, China
| | - Xiaoli Li
- Nephrology Department, Baoji High Tech Hospital Baoji 721000, Shaanxi, China
| |
Collapse
|
8
|
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states. Clin Kidney J 2024; 17:sfae195. [PMID: 39050867 PMCID: PMC11267238 DOI: 10.1093/ckj/sfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
The role of proximal tubules (PTs), a major component of the renal tubular structure in the renal cortex, has been examined extensively. Along with its physiological role in the reabsorption of various molecules, including electrolytes, amino acids and monosaccharides, transcellular transport of different hormones and regulation of homeostasis, pathological events affecting PTs may underlie multiple disease states. PT hypertrophy or a hyperfunctioning state, despite being a compensatory mechanism at first in response to various stimuli or alterations at tubular transport proteins, have been shown to be critical pathophysiological events leading to multiple disorders, including diabetes mellitus, obesity, metabolic syndrome and congestive heart failure. Moreover, pharmacotherapeutic agents have primarily targeted PTs, including sodium-glucose cotransporter 2, urate transporters and carbonic anhydrase enzymes. In this narrative review, we focus on the physiological role of PTs in healthy states and the current understanding of the PT pathologies leading to disease states and potential therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alper Hatipoglu
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology, Dialysis and Transplantation, University Grigore T Popa, Iasi, Romania
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY, USA
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| |
Collapse
|
9
|
Stocker SD, Kinsman BJ, Farquhar WB, Gyarmati G, Peti-Peterdi J, Sved AF. Physiological Mechanisms of Dietary Salt Sensing in the Brain, Kidney, and Gastrointestinal Tract. Hypertension 2024; 81:447-455. [PMID: 37671571 PMCID: PMC10915107 DOI: 10.1161/hypertensionaha.123.19488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.
Collapse
Affiliation(s)
- Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine
| | - Brian J Kinsman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital
| | | | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Alan F. Sved
- Department of Neuroscience, University of Pittsburgh
| |
Collapse
|
10
|
Kanoo S, Goodluck H, Kim YC, Garrido AN, Crespo-Masip M, Lopez N, Zhang H, Gonzalez-Villalobos RA, Ma LJ, Vallon V. Deletion, but Not Heterozygosity, of eNOS Raises Blood Pressure and Aggravates Nephropathy in BTBR ob/ob Mice. Nephron Clin Pract 2024; 148:631-642. [PMID: 38301618 PMCID: PMC11291698 DOI: 10.1159/000536522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice. METHODS Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age, followed by molecular and histological kidney analyses. RESULTS Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex. CONCLUSIONS Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.
Collapse
Affiliation(s)
- Sadhana Kanoo
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Helen Goodluck
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Young Chul Kim
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Aleix Navarro Garrido
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Maria Crespo-Masip
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Natalia Lopez
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Haiyan Zhang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Li-Jun Ma
- CVMR&PH Discovery, Janssen Research and Development, LLC. Cambridge, MA and Spring House, PA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
11
|
Bantounou MA, Sardellis P, Thuemmler R, Black Boada D, Kaczmarek J, Mahmood R, Plascevic J, Philip S. Effect of the dual sodium-glucose co-transporter-1 and -2 inhibitor sotagliflozin on renal outcomes in type 1 diabetes and type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2024; 26:710-720. [PMID: 38031239 DOI: 10.1111/dom.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
AIM To investigate the renal safety profile of sotagliflozin, a novel sodium-glucose co-transporter-1 and -2 inhibitor, in patients with type 1 diabetes and type 2 diabetes, with or without renal impairment, as well as its efficacy in decreasing the risk of further renal events, with an emphasis on those with previous renal impairment. METHODS Embase, Medline, CENTRAL and Scopus were searched from their inception until 24 April 2023 for randomized controlled trials that reported estimated glomerular filtration rate (eGFR), urinary albumin excretion or composite renal events (CRE). The Cochrane risk of bias 2 tool was used. Mean difference, relative risk (RR) and 95% confidence intervals were estimated (PROSPERO: CRD42023425583). RESULTS Fourteen studies were included in this review (n = 17 574 participants; intervention n = 9312, control n = 8262). The median follow-up was 24.5 (Q1 = 15.25, Q3 = 28) months. Four studies recruited participants with renal impairment; baseline eGFR ranged from 23.8 to 50.5 mL/min/1.73m2 . The change in eGFR for studies (n = 6) with a follow-up of 52 weeks or longer was -1.23 (-1.45, -1.01) mL/min/1.73m2 . Sotagliflozin did not significantly alter urinary albumin excretion. No change was observed in the risk of CRE (n = 6 studies; RR = 0.82 [0.61, 1.12]), including in participants with renal impairment. High risk of bias was a limitation of this review. CONCLUSIONS Sotagliflozin did not adversely affect renal function or change the risk of key renal outcomes, including for participants with pre-existing renal impairment. Therefore, sotagliflozin was safe; however, further research is needed to determine its efficacy in reducing the risk of diabetic kidney disease.
Collapse
Affiliation(s)
| | | | - Rosa Thuemmler
- School of Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | - Ribeya Mahmood
- School of Medicine, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- School of Medicine, University of Aberdeen, Aberdeen, UK
- Grampian Diabetes Research Unit, Diabetes Centre, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
12
|
Oshima N, Onimaru H, Yamashiro A, Goto H, Tanoue K, Fukunaga T, Sato H, Uto A, Matsubara H, Imakiire T, Kumagai H. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens Res 2024; 47:46-54. [PMID: 37710035 DOI: 10.1038/s41440-023-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Hypertension is well-known to often coexist with diabetes mellitus (DM) in humans. Treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors has been shown to decrease both the blood glucose and the blood pressure (BP) in such patients. Some reports show that SGLT2 inhibitors improve the BP by decreasing the activities of the sympathetic nervous system. Therefore, we hypothesized that SGLT2 inhibitors might alleviate hypertension via attenuating sympathetic nervous activity. Combined SGLT2/SGLT1 inhibitor therapy is also reported as being rather effective for decreasing the BP. In this study, we examined the effects of SGLT2 and SGLT1 inhibitors on the bulbospinal neurons of the rostral ventrolateral medulla (RVLM). To investigate whether bulbospinal RVLM neurons are sensitive to SGLT2 and SGLT1 inhibitors, we examined the changes in the neuronal membrane potentials (MPs) of these neurons using the whole-cell patch-clamp technique during superfusion of the cells with the SGLT2 and SGLT1 inhibitors. A brainstem-spinal cord preparation was used for the experiments. Our results showed that superfusion of the RVLM neurons with SGLT2 and SGLT1 inhibitor solutions induced hyperpolarization of the neurons. Histological examination revealed the presence of SGLT2s and SGLT1s in the RVLM neurons, and also colocalization of SGLT2s with SGLT1s. These results suggest the involvement of SGLT2s and SGLT1s in regulating the activities of the RVLM neurons, so that SGLT2 and SGLT1 inhibitors may inactivate the RVLM neurons hyperpolarized by empagliflozin. SGLT2 and SGLT1 inhibitors suppressed the activities of the bulbospinal RVLM neurons in the brainstem-spinal preparations, suggesting the possibilities of lowering BP by decreasing the sympathetic nerve activities. RVLM, rostral ventrolateral medulla. IML, intralateral cell column. aCSF, artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Aoi Yamashiro
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keiko Tanoue
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tsugumi Fukunaga
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroki Sato
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Asuka Uto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hidehito Matsubara
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology, Sayama General Clinic, Iruma, Saitama, Japan
| |
Collapse
|
13
|
Numata S, Oishee MJ, McDermott J, Koepsell H, Vallon V, Blanco G. Deletion of the Sodium Glucose Cotransporter 1 (Sglt-1) impairs mouse sperm movement. Mol Reprod Dev 2024; 91:e23723. [PMID: 38282316 DOI: 10.1002/mrd.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
The Sodium Glucose Cotransporter Isoform 1 (Sglt-1) is a symporter that moves Na+ and glucose into the cell. While most studies have focused on the role of Sglt-1 in the small intestine and kidney, little is known about this transporter's expression and function in other tissues. We have previously shown that Sglt-1 is expressed in the mouse sperm flagellum and that its inhibition interferes with sperm metabolism and function. Here, we further investigated the importance of Sglt-1 in sperm, using a Sglt-1 knockout mouse (Sglt-1 KO). RNA, immunocytochemistry, and glucose uptake analysis confirmed the ablation of Sglt-1 in sperm. Sglt-1 KO male mice are fertile and exhibit normal sperm counts and morphology. However, Sglt-1 null sperm displayed a significant reduction in total, progressive and other parameters of sperm motility compared to wild type (WT) sperm. The reduction in motility was exacerbated when sperm were challenged to swim in media with higher viscosity. Parameters of capacitation, namely protein tyrosine phosphorylation and acrosomal reaction, were similar in Sglt-1 KO and WT sperm. However, Sglt-1 KO sperm displayed a significant decrease in hyperactivation. The impaired motility of Sglt-1 null sperm was observed in media containing glucose as the only energy substrate. Interestingly, the addition of pyruvate and lactate to the media partially recovered sperm motility of Sglt-1 KO sperm, both in the low and high viscosity media. Altogether, these results support an important role for Sglt-1 in sperm energetics and function, providing sperm with a higher capacity for glucose uptake.
Collapse
Affiliation(s)
- September Numata
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mumtarin Jannat Oishee
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Maffei P, Bettini S, Busetto L, Dassie F. SGLT2 Inhibitors in the Management of Type 1 Diabetes (T1D): An Update on Current Evidence and Recommendations. Diabetes Metab Syndr Obes 2023; 16:3579-3598. [PMID: 37964939 PMCID: PMC10642354 DOI: 10.2147/dmso.s240903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
SGLT2i (sodium glucose transporter type 2 inhibitors) are pharmacological agents that act by inhibiting the SGLT2, by reducing the renal plasma glucose threshold and inducing glycosuria, resulting in a blood glucose lowering effect. In recent years, studies demonstrating some additional positive effects of SGLT2i also in the treatment of T1D have increased progressively. The SGLT2i dapagliflozin and sotagliflozin have been temporarily licensed for use by the European Medical Agency (EMA) as an adjunct to insulin therapy in adults with T1D with a body mass index of 27 kg/m2 or higher. However, in the meantime, the US Food and Drug Administration (FDA) Endocrinologic and Metabolic Drugs Advisory Committee was divided, citing concerns about the main side effects of SGLT2i, especially diabetic ketoacidosis (DKA). The aim of this manuscript was to conduct an update on current evidence and recommendations of the reported use of SGLT2i in the treatment of T1D in humans. Preclinical studies, clinical trial and real world data suggest benefits in glycaemia control and nefro-cardiovascular protection, even though several studies have documented an important increase in the risk of DKA, a serious and life-threatening adverse event of these agents. SGLT2i potentially addresses some of the unmet needs associated with T1D by improving glycaemic control with weight loss and without increasing hypoglycemia, by reducing glycaemic variability. However, due to side effects, EMA recommendation for SGLT2 use on T1D was withdrawn. Further studies will be needed to determine the safety of this therapy in T1D and to define the type of patient who can benefit most from these medications.
Collapse
Affiliation(s)
- Pietro Maffei
- Department of Medicine, Padua University, Padua, Italy
| | | | - Luca Busetto
- Department of Medicine, Padua University, Padua, Italy
| | | |
Collapse
|
15
|
Cherney DZI, Bhatt DL, Szarek M, Sun F, Girard M, Davies MJ, Pitt B, Steg PG. Effect of sotagliflozin on albuminuria in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2023; 25:3410-3414. [PMID: 37427762 DOI: 10.1111/dom.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Affiliation(s)
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA
| | - Michael Szarek
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franklin Sun
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, USA
| | - Manon Girard
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, USA
| | | | - Bertram Pitt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Ph Gabriel Steg
- Université Paris-Cité, AP-HP, Hôpital Bichat, INSERM U-1148, Paris, France
| |
Collapse
|
16
|
Clemmer JS, Yen TE, Obi Y. Modeling the renoprotective mechanisms of SGLT2 inhibition in hypertensive chronic kidney disease. Physiol Rep 2023; 11:e15836. [PMID: 37957121 PMCID: PMC10643202 DOI: 10.14814/phy2.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023] Open
Abstract
Sodium-glucose cotransporter (SGLT)-2 inhibitors have recently been approved for chronic kidney disease (CKD) based on their ability to lower proteinuria and slow CKD progression independent of diabetes status. In diabetic renal disease, modulation of tubuloglomerular feedback (TGF) leading to lower intraglomerular pressure has been postulated as one of the mechanisms of renal protection with SGLT2 inhibition; however, this mechanism has not been sufficiently explored in non-diabetic CKD. We hypothesized that SGLT2 inhibition exerts renoprotection in CKD through increasing TGF despite normoglycemia. To test this hypothesis, we used an integrative mathematical model of human physiology, HumMod. Stage 3 CKD conditions were simulated by reducing nephron mass which was associated with hypertension, low glomerular filtration rate (GFR) (55 mL/min), hyperfiltration of remnant nephrons, elevated albuminuria (500 mg/day), and minimal levels of urinary glucose (0.02 mmol/L). SGLT2 inhibition was associated with acute reductions in GFR associated with afferent arteriolar vasoconstriction due to TGF. After 12 months, glomerular pressure, nephron damage, and chronic GFR decline were reduced with SGLT2 inhibition with additional SGLT1 inhibitory effects further enhancing these effects. This model supports the use of SGLT2 inhibitors to reduce hyperfiltration in CKD and mitigate renal disease progression, even in the absence of diabetes.
Collapse
Affiliation(s)
- John S. Clemmer
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Timothy E. Yen
- Department of Medicine, Division of NephrologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Yoshitsugu Obi
- Department of Medicine, Division of NephrologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
17
|
Santulli G, Varzideh F, Forzano I, Wilson S, Salemme L, de Donato A, Lombardi A, Rainone A, Nunziata L, Jankauskas SS, Tesorio T, Guerra G, Kansakar U, Mone P. Functional and Clinical Importance of SGLT2-inhibitors in Frailty: From the Kidney to the Heart. Hypertension 2023; 80:1800-1809. [PMID: 37403685 PMCID: PMC10529735 DOI: 10.1161/hypertensionaha.123.20598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) enables glucose and sodium reabsorption in the kidney. SGLT2-inhibitors (also known as gliflozins, which include canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin) act by increasing glycosuria, thereby reducing glycemia. These drugs are critical to reach and keep glycemic control, a crucial feature, especially in patients with comorbidities, like frail individuals. Several studies evaluated the effects of SGLT2-inhibitors in different settings beyond diabetes, revealing that they are actually pleiotropic drugs. We recently evidenced the favorable effects of SGLT2-inhibition on physical and cognitive impairment in frail older adults with diabetes and hypertension. In the present overview, we summarize the latest clinical and preclinical studies exploring the main effects of SGLT2-inhibitors on kidney and heart, emphasizing their potential beneficial actions in frailty.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Einstein College, New York, USA
- Naples University “Federico II”
| | | | | | - Scott Wilson
- Department of Medicine, Einstein College, New York, USA
| | | | | | | | | | | | | | | | | | - Urna Kansakar
- Department of Medicine, Einstein College, New York, USA
| | - Pasquale Mone
- Department of Medicine, Einstein College, New York, USA
- Department of Medicine, Molise University
| |
Collapse
|
18
|
Gronda E, Palazzuoli A, Iacoviello M, Benevenuto M, Gabrielli D, Arduini A. Renal Oxygen Demand and Nephron Function: Is Glucose a Friend or Foe? Int J Mol Sci 2023; 24:9957. [PMID: 37373108 PMCID: PMC10298324 DOI: 10.3390/ijms24129957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The kidneys and heart work together to balance the body's circulation, and although their physiology is based on strict inter dependence, their performance fulfills different aims. While the heart can rapidly increase its own oxygen consumption to comply with the wide changes in metabolic demand linked to body function, the kidneys physiology are primarily designed to maintain a stable metabolic rate and have a limited capacity to cope with any steep increase in renal metabolism. In the kidneys, glomerular population filters a large amount of blood and the tubular system has been programmed to reabsorb 99% of filtrate by reabsorbing sodium together with other filtered substances, including all glucose molecules. Glucose reabsorption involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane in the proximal tubular section; it also enhances bicarbonate formation so as to preserve the acid-base balance. The complex work of reabsorption in the kidney is the main factor in renal oxygen consumption; analysis of the renal glucose transport in disease states provides a better understanding of the renal physiology changes that occur when clinical conditions alter the neurohormonal response leading to an increase in glomerular filtration pressure. In this circumstance, glomerular hyperfiltration occurs, imposing a higher metabolic demand on kidney physiology and causing progressive renal impairment. Albumin urination is the warning signal of renal engagement over exertion and most frequently heralds heart failure development, regardless of disease etiology. The review analyzes the mechanisms linked to renal oxygen consumption, focusing on sodium-glucose management.
Collapse
Affiliation(s)
- Edoardo Gronda
- Medicine and Medicine Sub-Specialties Department, Cardio Renal Program, U.O.C. Nephrology, Dialysis and Adult Renal Transplant Program, IRCCS Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, S. Maria alle Scotte Hospital University of Siena, 53100 Siena, Italy;
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Manuela Benevenuto
- Unità Operativa Complessa Cardiologia-UTIC-Emodinamica, PO Giuseppe Mazzini, 64100 Teramo, Italy;
| | - Domenico Gabrielli
- Unità Operativa Complessa Cardiologia-UTIC, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy;
| | | |
Collapse
|
19
|
Kim YC, Fattah H, Fu Y, Nespoux J, Vallon V. Expression of leptin receptor in renal tubules is sparse but implicated in leptin-dependent kidney gene expression and function. Am J Physiol Renal Physiol 2023; 324:F544-F557. [PMID: 37102688 PMCID: PMC10228677 DOI: 10.1152/ajprenal.00279.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Leptin regulates energy balance via leptin receptors expressed in central and peripheral tissues, but little is known about leptin-sensitive kidney genes and the role of the tubular leptin receptor (Lepr) in response to a high-fat diet (HFD). Quantitative RT-PCR analysis of Lepr splice variants A, B, and C revealed a ratio of ∼100:10:1 in the mouse kidney cortex and medulla, with medullary levels being ∼10 times higher. Leptin replacement in ob/ob mice for 6 days reduced hyperphagia, hyperglycemia, and albuminuria, associated with normalization of kidney mRNA expression of molecular markers of glycolysis, gluconeogenesis, amino acid synthesis, and megalin. Normalization of leptin for 7 h in ob/ob mice did not normalize hyperglycemia or albuminuria. Tubular knockdown of Lepr [Pax8-Lepr knockout (KO)] and in situ hybridization revealed a minor fraction of Lepr mRNA in tubular cells compared with endothelial cells. Nevertheless, Pax8-Lepr KO mice had lower kidney weight. Moreover, while HFD-induced hyperleptinemia, increases in kidney weight and glomerular filtration rate, and a modest blood pressure lowering effect were similar compared with controls, they showed a blunted rise in albuminuria. Use of Pax8-Lepr KO and leptin replacement in ob/ob mice identified acetoacetyl-CoA synthetase and gremlin 1 as tubular Lepr-sensitive genes that are increased and reduced by leptin, respectively. In conclusion, leptin deficiency may increase albuminuria via systemic metabolic effects that impinge on kidney megalin expression, whereas hyperleptinemia may induce albuminuria by direct tubular Lepr effects. Implications of Lepr variants and the novel tubular Lepr/acetoacetyl-CoA synthetase/gremlin 1 axis remain to be determined.NEW & NOTEWORTHY This study provides new insights into kidney gene expression of leptin receptor splice variants, leptin-sensitive kidney gene expression, and the role of the leptin receptor in renal tubular cells for the response to diet-induced hyperleptinemia and obesity including albuminuria.
Collapse
Affiliation(s)
- Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Hadi Fattah
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Yiling Fu
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Josselin Nespoux
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
- Department of Pharmacology, University of California-San Diego, La Jolla, California, United States
| |
Collapse
|
20
|
The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy. Clin Sci (Lond) 2023; 137:87-104. [PMID: 36524468 DOI: 10.1042/cs20220447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.
Collapse
|
21
|
Navarro Garrido A, Kim YC, Oe Y, Zhang H, Crespo-Masip M, Goodluck HA, Kanoo S, Sanders PW, Bröer S, Vallon V. Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B 0AT1 ( Slc6a19). Am J Physiol Renal Physiol 2022; 323:F455-F467. [PMID: 35979966 PMCID: PMC9484999 DOI: 10.1152/ajprenal.00181.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
B0AT1 (Slc6a19) mediates absorption of neutral amino acids in the small intestine and in the kidneys, where it is primarily expressed in early proximal tubules (S1-S2). To determine the role of B0AT1 in nephropathy induced by aristolochic acid (AA), which targets the proximal tubule, littermate female B0AT1-deficient (Slc6a19-/-), heterozygous (Slc6a19+/-), and wild-type (WT) mice were administered AA (10 mg/kg ip) or vehicle every 3 days for 3 wk, and analyses were performed after the last injection or 3 wk later. Vehicle-treated mice lacking Slc6a19 showed normal body and kidney weight and plasma creatinine versus WT mice. The urinary glucose-to-creatinine ratio (UGCR) and urinary albumin-to-creatinine ratio (UACR) were two to four times higher in vehicle-treated Slc6a19-/- versus WT mice, associated with lesser expression of early proximal transporters Na+-glucose cotransporter 2 and megalin, respectively. AA caused tubular injury independently of B0AT1, including robust increases in cortical mRNA expression of p53, p21, and hepatitis A virus cellular receptor 1 (Havcr1), downregulation of related proximal tubule amino acid transporters B0AT2 (Slc6a15), B0AT3 (Slc6a18), and Slc7a9, and modest histological tubular damage and a rise in plasma creatinine. Absence of B0AT1, however, attenuated AA-induced cortical upregulation of mRNA markers of senescence (p16), inflammation [lipocalin 2 (Lcn2), C-C motif chemokine ligand 2 (Ccl2), and C-C motif chemokine receptor 2 (Ccr2)], and fibrosis [tissue inhibitor of metallopeptidase 1 (Timp1), transforming growth factor-β1 (Tgfb1), and collagen type I-α1 (Col1a1)], associated with lesser fibrosis staining, lesser suppression of proximal tubular organic anion transporter 1, restoration of Na+-glucose cotransporter 2 expression, and prevention of the AA-induced fivefold increase in the urinary albumin-to-creatinine ratio observed in WT mice. The data suggest that proximal tubular B0AT1 is important for the physiology of renal glucose and albumin retention but potentially deleterious for the kidney response following AA-induced kidney injury.NEW & NOTEWORTHY Based on insights from studies manipulating glucose transport, the hypothesis has been proposed that inhibiting intestinal uptake or renal reabsorption of energy substrates has unique therapeutic potential to improve metabolic disease and kidney outcome in response to injury. The present study takes this idea to B0AT1, the major transporter for neutral amino acids in the intestine and kidney, and shows that its absence attenuates aristolochic acid-induced nephropathy.
Collapse
Affiliation(s)
- Aleix Navarro Garrido
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yuji Oe
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California-San Diego, San Diego, California
| | - Maria Crespo-Masip
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Helen A Goodluck
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Sadhana Kanoo
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Volker Vallon
- Department of Medicine, University of California-San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
22
|
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes from failing. This includes blood glucose dependent and independent mechanisms. SGLT2 inhibitors lower glomerular pressure and filtration, thereby reducing the physical stress on the filtration barrier and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular glucotoxicity and improved mitochondrial function and autophagy, can reduce proinflammatory and profibrotic signaling and preserve tubular function and GFR in long term. By shifting transport downstream, SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| |
Collapse
|
23
|
Zannad F, Ferreira JP, Gregson J, Kraus BJ, Mattheus M, Hauske SJ, Butler J, Filippatos G, Wanner C, Anker SD, Pocock SJ, Packer M. Early changes in estimated glomerular filtration rate post-initiation of empagliflozin in EMPEROR-Reduced. Eur J Heart Fail 2022; 24:1829-1839. [PMID: 35711093 DOI: 10.1002/ejhf.2578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Sodium-glucose cotransporter 2 inhibitors (SGLT2i) may induce an early post-initiation decrease of estimated glomerular filtration rate (eGFR), which does not impact the SGLT2i benefits. The occurrence, characteristics, determinants, and clinical significance of an initial eGFR change among patients with heart failure with reduced ejection fraction require further study. In this study we aimed to describe eGFR change from randomization to week 4 (as percent of change relative to randomization) and assess its impact in EMPEROR-Reduced. METHODS AND RESULTS Landmark analyses (week 4) were performed. eGFR change was available in 3547 patients out of 3730 (95%). The tertiles of post-initiation % eGFR change for empagliflozin were: tertile 1 (T1) ≤-11.4%; T2 ≥-11.4% to ≤-1.0% and T3 ≥0.0%. The placebo group tertiles were: T1 ≤-6.5%; T2 ≥-6.4% to ≤+3.6%; and T3 ≥+3.6%. On average, empagliflozin induced a leftward distributional shift of initial eGFR changes of -2.5 ml/min/1.73 m2 versus placebo. In the empagliflozin group, after covariate adjustment, the risk of cardiovascular and renal outcomes did not differ between patients in whom early post-treatment initiation eGFR decreased (T1) and patients in whom it increased (T3). However, in the placebo group, patients in whom early post-treatment initiation eGFR decreased (T1) had a higher risk of sustained worsening kidney function and all-cause mortality compared to patients in whom eGFR increased (T3) (hazard ratio [HR] 2.38, 95% confidence interval [CI] 1.25-4.55 and HR 1.37, 95% CI 1.01-1.85, respectively). CONCLUSION A mild eGFR decrease may be expected after the initiation of empagliflozin, and it is not associated with untoward heart failure, mortality, or kidney safety events. Clinicians should not be concerned with early eGFR changes post-initiation of empagliflozin.
Collapse
Affiliation(s)
- Faiez Zannad
- Université de Lorraine, Inserm, Center d'Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - João Pedro Ferreira
- Université de Lorraine, Inserm, Center d'Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - John Gregson
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Bettina Johanna Kraus
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- Würzburg University Clinic, Würzburg, Germany
| | - Michaela Mattheus
- Biostatistics, Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany
| | - Sibylle Jenny Hauske
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, TX and University of Mississippi, Jackson, MS, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies, German Center for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Stuart J Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
24
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
25
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
26
|
Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, Di Salvo J, Epifani R, Marfella R, Docimo G, Lettieri M, Sardu C, Sasso FC. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci 2022; 23:3651. [PMID: 35409011 PMCID: PMC8998569 DOI: 10.3390/ijms23073651] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
- Mediterrannea Cardiocentro, 80122 Napoli, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Miriam Lettieri
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
27
|
Zhang J, Cai J, Cui Y, Jiang S, Wei J, Kim YC, Chan J, Thalakola A, Le T, Xu L, Wang L, Jiang K, Wang X, Wang H, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney Int 2022; 101:541-550. [PMID: 34843754 PMCID: PMC8863629 DOI: 10.1016/j.kint.2021.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
An increase of glomerular filtration rate (GFR) is a common observation in early diabetes and is considered a key risk factor for subsequent kidney injury. However, the mechanisms underlying diabetic hyperfiltration have not been fully clarified. Here, we tested the hypothesis that macula densa neuronal nitric oxide synthase (NOS1) is upregulated via sodium glucose cotransporter type 1 (SGLT1) in diabetes, which then inhibits tubuloglomerular feedback (TGF) promoting glomerular hyperfiltration. Therefore, we examined changes in cortical NOS1 expression and phosphorylation, nitric oxide production in the macula densa, TGF response, and GFR during the early stage of insulin-deficient (Akita) diabetes in wild-type and macula densa-specific NOS1 knockout mice. A set of sophisticated techniques including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of kidney tubules in vivo, and clearance kinetics of plasma fluorescent-sinistrin were employed. Complementary studies tested the role of SGLT1 in SGLT1 knockout mice and explored NOS1 expression and phosphorylation in kidney biopsies of cadaveric donors. Diabetic mice had upregulated macula densa NOS1, inhibited TGF and elevated GFR. Macula densa-selective NOS1 knockout attenuated the diabetes-induced TGF inhibition and GFR elevation. Additionally, deletion of SGLT1 prevented the upregulation of macula densa NOS1 and attenuated inhibition of TGF in diabetic mice. Furthermore, the expression and phosphorylation levels of NOS1 were increased in cadaveric kidneys of diabetics and positively correlated with blood glucose as well as estimated GFR in the donors. Thus, our findings demonstrate that the macula densa SGLT1-NOS1-TGF pathway plays a crucial role in the control of GFR in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Jing Cai
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Cui
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jenna Chan
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Anish Thalakola
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Thanh Le
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ximing Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Haibo Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
28
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review offers a critical narrative evaluation of emerging evidence that sodium-glucose co-transporter-2 (SGLT2) inhibitors exert nephroprotective effects in people with type 2 diabetes. RECENT FINDINGS The SGLT2 inhibitor class of glucose-lowering agents has recently shown beneficial effects to reduce the onset and progression of renal complications in people with and without diabetes. Randomised clinical trials and 'real world' observational studies, mostly involving type 2 diabetes patients, have noted that use of an SGLT2 inhibitor can slow the decline in glomerular filtration rate (GFR), reduce the onset of microalbuminuria and slow or reverse the progression of proteinuria. The nephroprotective effects of SGLT2 inhibitors are class effects observed with each of the approved agents in people with a normal or impaired GFR. These effects are also observed in non-diabetic, lean and normotensive individuals suggesting that the mechanisms extend beyond the glucose-lowering, weight-lowering and blood pressure-lowering effects that accompany their glucosuric action in diabetes patients. A key mechanism is tubuloglomerular feedback in which SGLT2 inhibitors cause more sodium to pass along the nephron: the sodium is sensed by macula cells which act via adenosine to constrict afferent glomerular arterioles, thereby protecting glomeruli by reducing intraglomerular pressure. Other effects of SGLT2 inhibitors improve tubular oxygenation and metabolism and reduce renal inflammation and fibrosis. SGLT2 inhibitors have not increased the risk of urinary tract infections or the risk of acute kidney injury. However, introduction of an SGLT2 inhibitor in patients with a very low GFR is not encouraged due to an initial dip in GFR, and it is prudent to discontinue therapy if there is an acute renal event, hypovolaemia or hypotension.
Collapse
Affiliation(s)
| | - Caroline Day
- Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Srikanth Bellary
- Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
30
|
Yang Y, Xu G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:872918. [PMID: 35663316 PMCID: PMC9161673 DOI: 10.3389/fendo.2022.872918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for accelerated deterioration of renal function and progression of nephropathy, which is associated with a high risk for metabolic and cardiovascular disease. It is imperative to understand hyperfiltration and identify potential treatments to delay DKD progress. This paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close attention to the effect of glucose reabsorption mediated by sodium-glucose cotransporters and renal growth on hyperfiltration in DKD patients, as well as the mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial natriuretic peptide, cyclooxygenase, renin-angiotensin-aldosterone system, and endothelin on hyperfiltration. Proposing potential treatments based on these mechanisms may offer new therapeutic opportunities to reduce the renal burden in this population.
Collapse
|
31
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
32
|
Tauber P, Sinha F, Berger RS, Gronwald W, Dettmer K, Kuhn M, Trum M, Maier LS, Wagner S, Schweda F. Empagliflozin Reduces Renal Hyperfiltration in Response to Uninephrectomy, but Is Not Nephroprotective in UNx/DOCA/Salt Mouse Models. Front Pharmacol 2021; 12:761855. [PMID: 34992532 PMCID: PMC8724563 DOI: 10.3389/fphar.2021.761855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.
Collapse
Affiliation(s)
- Philipp Tauber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Philipp Tauber,
| | - Frederick Sinha
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Raffaela S. Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Soliman RH, Pollock DM. Circadian Control of Sodium and Blood Pressure Regulation. Am J Hypertens 2021; 34:1130-1142. [PMID: 34166494 PMCID: PMC9526808 DOI: 10.1093/ajh/hpab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
The attention for the control of dietary risk factors involved in the development of hypertension, includes a large effort on dietary salt restrictions. Ample studies show the beneficial role of limiting dietary sodium as a lifestyle modification in the prevention and management of essential hypertension. Not until the past decade or so have studies more specifically investigated diurnal variations in renal electrolyte excretion, which led us to the hypothesis that timing of salt intake may impact cardiovascular health and blood pressure regulation. Cell autonomous molecular clocks as the name implies, function independently to maintain optimum functional rhythmicity in the face of environmental stressors such that cellular homeostasis is maintained at all times. Our understanding of mechanisms influencing diurnal patterns of sodium excretion and blood pressure has expanded with the discovery of the circadian clock genes. In this review, we discuss what is known about circadian regulation of renal sodium handling machinery and its influence on blood pressure regulation, with timing of sodium intake as a potential modulator of the kidney clock.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Miyata KN, Lo CS, Zhao S, Zhao XP, Chenier I, Yamashita M, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Deletion of heterogeneous nuclear ribonucleoprotein F in renal tubules downregulates SGLT2 expression and attenuates hyperfiltration and kidney injury in a mouse model of diabetes. Diabetologia 2021; 64:2589-2601. [PMID: 34370045 PMCID: PMC8992778 DOI: 10.1007/s00125-021-05538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
35
|
Zhang J, Wang X, Cui Y, Jiang S, Wei J, Chan J, Thalakola A, Le T, Xu L, Zhao L, Wang L, Jiang K, Cheng F, Patel T, Buggs J, Vallon V, Liu R. Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension 2021; 78:1760-1770. [PMID: 34657443 DOI: 10.1161/hypertensionaha.121.17643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China (X.W.)
| | - Yu Cui
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jenna Chan
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Anish Thalakola
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Thanh Le
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Lan Xu
- College of Medicine, College of Public Health (L.X.), University of South Florida, Tampa
| | - Liang Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL (K.J.)
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy (F.C.), University of South Florida, Tampa
| | - Trushar Patel
- Department of Urology (T.P.), University of South Florida, Tampa
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, FL (J.B.)
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA (V.V.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| |
Collapse
|
36
|
Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021; 908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.
Collapse
Affiliation(s)
- João Faria
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Karin G F Gerritsen
- Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Tri Q Nguyen
- Dept. Pathology, University Medical Center Utrecht, the Netherlands
| | - Silvia M Mihaila
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands; Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
37
|
Curtis LM, George J, Vallon V, Barnes S, Darley-Usmar V, Vaingankar S, Cutter GR, Gutierrez OM, Seifert M, Ix JH, Mehta RL, Sanders PW, Agarwal A. UAB-UCSD O'Brien Center for Acute Kidney Injury Research. Am J Physiol Renal Physiol 2021; 320:F870-F882. [PMID: 33779316 DOI: 10.1152/ajprenal.00661.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury (AKI) remains a significant clinical problem through its diverse etiologies, the challenges of robust measurements of injury and recovery, and its progression to chronic kidney disease (CKD). Bridging the gap in our knowledge of this disorder requires bringing together not only the technical resources for research but also the investigators currently endeavoring to expand our knowledge and those who might bring novel ideas and expertise to this important challenge. The University of Alabama at Birmingham-University of California-San Diego O'Brien Center for Acute Kidney Injury Research brings together technical expertise and programmatic and educational efforts to advance our knowledge in these diverse issues and the required infrastructure to develop areas of novel exploration. Since its inception in 2008, this O'Brien Center has grown its impact by providing state-of-the-art resources in clinical and preclinical modeling of AKI, a bioanalytical core that facilitates measurement of critical biomarkers, including serum creatinine via LC-MS/MS among others, and a biostatistical resource that assists from design to analysis. Through these core resources and with additional educational efforts, our center has grown its investigator base to include >200 members from 51 institutions. Importantly, this center has translated its pilot and catalyst funding program with a $37 return per dollar invested. Over 500 publications have resulted from the support provided with a relative citation ratio of 2.18 ± 0.12 (iCite). Through its efforts, this disease-centric O'Brien Center is providing the infrastructure and focus to help the development of the next generation of researchers in the basic and clinical science of AKI. This center creates the promise of the application at the bedside of the advances in AKI made by current and future investigators.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Volker Vallon
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sucheta Vaingankar
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gary R Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutierrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Seifert
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joachim H Ix
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs, Birmingham, Alabama
| |
Collapse
|
38
|
Shrestha S, Singhal S, Sens DA, Somji S, Davis BA, Guyer R, Breen S, Kalonick M, Garrett SH. Elevated glucose represses lysosomal and mTOR-related genes in renal epithelial cells composed of progenitor CD133+ cells. PLoS One 2021; 16:e0248241. [PMID: 33764985 PMCID: PMC7993790 DOI: 10.1371/journal.pone.0248241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia is one of the major health concern in many parts of the world. One of the serious complications of high glucose levels is diabetic nephropathy. The preliminary microarray study performed on primary human renal tubular epithelial (hRTE) cells exposed to high glucose levels showed a significant downregulation of mTOR as well as its associated genes as well as lysosomal genes. Based on this preliminary data, the expression of various lysosomal genes as well as mTOR and its associated genes were analyzed in hRTE cells exposed to 5.5, 7.5, 11 and 16 mM glucose. The results validated the microarray analysis, which showed a significant decrease in the mRNA as well as protein expression of the selected genes as the concentration of glucose increased. Co-localization of lysosomal marker, LAMP1 with mTOR showed lower expression of mTOR as the glucose concentration increased, suggesting decrease in mTOR activity. Although the mechanism by which glucose affects the regulation of lysosomal genes is not well known, our results suggest that high levels of glucose may lead to decrease in mTOR expression causing the cells to enter an anabolic state with subsequent downregulation of lysosomal genes.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Sandeep Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Bethany A. Davis
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Spencer Breen
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada;
- Departments of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
40
|
Gyimesi G, Pujol-Giménez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch 2020; 472:1177-1206. [PMID: 32767111 PMCID: PMC7462921 DOI: 10.1007/s00424-020-02433-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects. In addition, given the recent finding that SGLT2 is also expressed in tumors of pancreas and prostate and in glioblastoma, this opens the door to potential new therapeutic strategies for cancer treatment by specifically targeting SGLT2. Likewise, further discoveries related to the functional association of other SGLTs of the SLC5 family to human pathologies will open the door to potential new therapeutic strategies. We furthermore hope that the herein summarized information about the physiological roles of SGLTs and the therapeutic benefits of the gliflozins will be useful for our readers to better understand the molecular basis of the beneficial effects of these inhibitors, also in the context of the tubuloglomerular feedback (TGF), and the renin-angiotensin system (RAS). The detailed mechanisms underlying the clinical benefits of SGLT2 inhibition by gliflozins still warrant further investigation that may serve as a basis for future drug development.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
41
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
42
|
Tubular effects of sodium-glucose cotransporter 2 inhibitors: intended and unintended consequences. Curr Opin Nephrol Hypertens 2020; 29:523-530. [PMID: 32701600 DOI: 10.1097/mnh.0000000000000632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antihyperglycemic drugs that act by inhibiting renal sodium-glucose cotransport. Here we present new insights into 'off target', or indirect, effects of SGLT2 inhibitors. RECENT FINDINGS SGLT2 inhibition causes an acute increase in urinary glucose excretion. In addition to lowering blood glucose, there are several other effects that contribute to the overall beneficial renal and cardiovascular effects. Reabsorption of about 66% of sodium is accomplished in the proximal tubule and dependent on the sodium-hydrogen exchanger isoform 3 (NHE3). SGLT2 colocalizes with NHE3, and high glucose levels reduce NHE3 activity. The proximal tubule is also responsible for the majority of phosphate (Pi) reabsorption. SGLT2 inhibition is associated with increases in plasma Pi, fibroblast growth factor 23 and parathyroid hormone levels in nondiabetics and type 2 diabetes mellitus. Studies in humans identified a urate-lowering effect by SGLT2 inhibition which is possibly mediated by urate transporter 1 (URAT1) and/or glucose transporter member 9 in the proximal tubule. Of note, magnesium levels were also found to increase under SGLT2 inhibition, an effect that was preserved in nondiabetic patients with hypomagnesemia. SUMMARY Cardiorenal effects of SGLT2 inhibition might involve, in addition to direct effects on glucose homeostasis, effects on NHE3, phosphate, urate, and magnesium homeostasis.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW SGLT2 inhibitors are a new class of antihyperglycemic drugs that protect kidneys and hearts of type 2 diabetic (T2DM) patients with preserved kidney function from failing. Here we discuss new insights on renal protection. RECENT FINDINGS Also in T2DM patients with CKD, SGLT2 inhibition causes an immediate functional reduction in glomerular filtration rate (GFR) and reduces blood pressure and preserves kidney and heart function in the long-term, despite a lesser antihyperglycemic effect. According to modeling studies, the GFR reduction reduces the tubular transport work and metabolic demand, thereby improving renal cortical oxygenation. In humans, the latter is linked to protection from CKD. Urine metabolomics in T2DM patients suggested improved renal mitochondrial function in response to SGLT2 inhibition, and experimental studies indicated improved tubular autophagy. Modeling studies predicted that also in diabetic CKD, SGLT2 inhibition is natriuretic and potentially stimulates erythropoiesis by mimicking systemic hypoxia in the kidney. Meta-analyses indicated that SGLT2 inhibition also reduces risk and severity of acute kidney injury in T2DM patients. Studies in nondiabetic mice implied inhibition of the renal urate transporter URAT1 in the uricosuric effect of SGLT2 inhibition. SUMMARY Renoprotection of SGLT2 inhibition involves blood glucose-dependent and independent effects and extends to CKD.
Collapse
|
44
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
45
|
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V. Gene knockout of the Na +-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2020; 318:F1100-F1112. [PMID: 32116018 DOI: 10.1152/ajprenal.00607.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-β1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California, San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Paul W Sanders
- Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Young Chul Kim
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
46
|
Sugimoto K, Abe I, Minezaki M, Takashi Y, Ochi K, Fujii H, Ohishi H, Yamao Y, Kudo T, Ohe K, Abe M, Ohnishi Y, Shinagawa T, Mukoubara S, Kobayashi K. Investigation of efficacy and safety of low-dose sodium glucose transporter 2 inhibitors and differences between two agents, canagliflozin and ipragliflozin, in patients with type 2 diabetes mellitus. Drug Discov Ther 2020; 13:322-327. [PMID: 31956230 DOI: 10.5582/ddt.2019.01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sodium glucose transporter 2 inhibitors (SGLT2is), new antidiabetic agents, were reported to improve not only glycemic parameters but also metabolic and circulatory parameters. Whereas, several adverse events caused by SGLT2is were also reported. We aimed to investigate the changes of glycemic, metabolic, and circulatory parameters as well as safety with low-dose administration of two SGLT2is, canagliflozin and ipragliflozin, and also the difference between the two agents. 25 individuals with type-2 diabetes mellitus (T2DM) were recruited and administered with low-dose SGLT2is, canagliflozin (n = 10, 50 mg/day) and ipragliflozin (n = 15, 25 mg/day). We examined glycemic, metabolic, and circulatory parameters at baseline and 24 weeks after administration. All patients completed the study without complications. Compared with baseline, levels of glycated hemoglobin, fasting plasma glucose, and homeostasis model assessment of β-cell function improved significantly at 24 weeks after administration (p < 0.05). Levels of body weight, low-density lipoproteincholesterol, aspartate transaminase, γ-glutamyl transferase, and urinary excretion of albumin also improved significantly (p < 0.05). Moreover, systolic/diastolic blood pressure and levels of brain natriuretic peptide improved significantly (p < 0.05). The comparison of improvement ratio (values of improvement/values of basement) of each agent revealed that there was a significant difference between low-dose canagliflozin and low-dose ipragliflozin for brain natriuretic peptide (0.4404 vs. 0.0970, p = 0.0275). Hence, low-dose SGLT2is could be useful for patients of T2DM not only for hyperglycemia but also for metabolic and circulatory disorders without eliciting adverse events. In addition, with regard to the efficacy upon cardiovascular function, canagliflozin could be more suitable than ipragliflozin.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan.,Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan.,Department of Internal Medicine, Shinagawa Surgical Hospital, Iki, Nagasaki, Japan
| | - Midori Minezaki
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan.,Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan.,Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan
| | - Kentaro Ochi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan.,Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan
| | - Hideyuki Fujii
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan.,Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan.,Department of Internal Medicine, Shinagawa Surgical Hospital, Iki, Nagasaki, Japan
| | - Hanako Ohishi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Yuka Yamao
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Tadachika Kudo
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makiko Abe
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Yasushi Ohnishi
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan
| | - Tomohiro Shinagawa
- Department of Internal Medicine, Shinagawa Surgical Hospital, Iki, Nagasaki, Japan
| | - Shigeaki Mukoubara
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| |
Collapse
|
47
|
Thomson SC, Vallon V. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors. Am J Cardiol 2019; 124 Suppl 1:S28-S35. [PMID: 31741437 DOI: 10.1016/j.amjcard.2019.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.
Collapse
|
48
|
Zhang N, Gu ZQ, Ding YL, Yang L, Chen MB, Zheng QH. A comparison of sotagliflozin therapy for diabetes mellitus between week 24 with week 52 : A protocol for mixed treatment comparisons meta-analysis. Medicine (Baltimore) 2019; 98:e17976. [PMID: 31764805 PMCID: PMC6882651 DOI: 10.1097/md.0000000000017976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND According to the centers for disease control and prevention, 14% of American adults have diabetes - 10% know it, and more than 4% go undiagnosed. Sotagliflozin is a new type of diabetes drug This study is to compare the efficacy of Sotagliflozin therapy for Diabetes Mellitus (DM) between week 24 with week 52. METHODS AND ANALYSIS Through to October 2019, Web of Science, PubMed Database, Cochrane Library, EMBASE, Clinical Trials and CNKI will be searched to identify randomized controlled trials (RCTs) exploring SOTA therapy for DM. Strict screening and quality evaluation will be performed on the obtained literature independently by 2 researchers; outcome indexes will be extracted. The bias risk of the included studies will be evaluated based on Cochrane assessment tool. Meta-analysis will be performed on the data using Revman 5.3 software. We will provide practical and targeted results assessing the lost efficacy of SOTA therapy for DM from week 24 to week 52, to provide reference for clinicians. ETHICS AND DISSEMINATION The stronger evidence about the lost efficacy of SOTA for DM from week 24 to week 52 will be provided for clinicians. TRIAL REGISTRATION NUMBER PROSPERO CRD42019133027. STRENGTHS AND LIMITATIONS OF THIS STUDY Whether the efficacy of SOTA could last for a long time is still inconclusive, high quality research is still lacking, and this study attempts to explore this issue; The efficacy of SOTA at different times will be compared by direct comparisons and indirect comparisons, this can lead to more accurate and reliable results; The quality of the included literatures are uneven, and some data might be estimated by calculation, which may affect the quality of this study.
Collapse
Affiliation(s)
| | - Zhi-Qun Gu
- Department of Neurology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University
| | - Yun-Long Ding
- Department of Neurology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University
| | | | - Mao-Bing Chen
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, PR China
| | - Qi-Han Zheng
- Department of Emergency, Wujin Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, PR China
| |
Collapse
|
49
|
Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, Patel R, Kim YC, Nespoux J, Freeman B, Soleimani M, Thomson S, Sharma K, Vallon V. Effect of renal tubule-specific knockdown of the Na +/H + exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol 2019; 317:F419-F434. [PMID: 31166707 PMCID: PMC6732454 DOI: 10.1152/ajprenal.00497.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023] Open
Abstract
Na+/H+ exchanger isoform 3 (NHE3) contributes to Na+/bicarbonate reabsorption and ammonium secretion in early proximal tubules. To determine its role in the diabetic kidney, type 1 diabetic Akita mice with tubular NHE3 knockdown [Pax8-Cre; NHE3-knockout (KO) mice] were generated. NHE3-KO mice had higher urine pH, more bicarbonaturia, and compensating increases in renal mRNA expression for genes associated with generation of ammonium, bicarbonate, and glucose (phosphoenolpyruvate carboxykinase) in proximal tubules and H+ and ammonia secretion and glycolysis in distal tubules. This left blood pH and bicarbonate unaffected in nondiabetic and diabetic NHE3-KO versus wild-type mice but was associated with renal upregulation of proinflammatory markers. Higher renal phosphoenolpyruvate carboxykinase expression in NHE3-KO mice was associated with lower Na+-glucose cotransporter (SGLT)2 and higher SGLT1 expression, indicating a downward tubular shift in Na+ and glucose reabsorption. NHE3-KO was associated with lesser kidney weight and glomerular filtration rate (GFR) independent of diabetes and prevented diabetes-associated albuminuria. NHE3-KO, however, did not attenuate hyperglycemia or prevent diabetes from increasing kidney weight and GFR. Higher renal gluconeogenesis may explain similar hyperglycemia despite lower SGLT2 expression and higher glucosuria in diabetic NHE3-KO versus wild-type mice; stronger SGLT1 engagement could have affected kidney weight and GFR responses. Chronic kidney disease in humans is associated with reduced urinary excretion of metabolites of branched-chain amino acids and the tricarboxylic acid cycle, a pattern mimicked in diabetic wild-type mice. This pattern was reversed in nondiabetic NHE3-KO mice, possibly reflecting branched-chain amino acids use for ammoniagenesis and tricarboxylic acid cycle upregulation to support formation of ammonia, bicarbonate, and glucose in proximal tubule. NHE3-KO, however, did not prevent the diabetes-induced urinary downregulation in these metabolites.
Collapse
Affiliation(s)
- Akira Onishi
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Maria Crespo-Masip
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
- Biomedical Research Institute (IRBLleida), University of Lleida, Lleida, Spain
| | - Winnie Huang
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Panai Song
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Josselin Nespoux
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - Scott Thomson
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Volker Vallon
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|