1
|
Kryska A, Sawic M, Depciuch J, Sosnowski P, Szałaj K, Paja W, Khalavka M, Sroka-Bartnicka A. Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102804. [PMID: 39855441 DOI: 10.1016/j.nano.2025.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine Raman spectroscopy and biochemical lipid profiling, complemented by machine learning (ML) techniques to evaluate chemical composition changes in kidneys induced by Type 2 Diabetes mellitus (T2DM). Raman spectroscopy identified significant differences in lipid content and specific molecular vibrations, with the 1777 cm-1 band emerging as a potential spectroscopic marker for diabetic kidney damage. The integration of ML algorithms improved the analysis, providing high accuracy, selectivity, and specificity in detecting these changes. Moreover, lipids metabolic profiling revealed distinct variations in the concentration of 11 phosphatydylocholines and 9 acyl-alkylphosphatidylcholines glycerophospholipids. Importantly, the correlation between Raman data and lipids metabolic profiling differed for control and T2DM groups. This study underscores the combined power of Raman spectroscopy and ML in offering a low-cost, fast, precise, and comprehensive approach to diagnosing and monitoring diabetic nephropathy, paving the way for improved clinical interventions. However, taking into account small number of data related to ethical committee approvals, the study should be verified on a larger number of cases.
Collapse
Affiliation(s)
- Adrianna Kryska
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Sawic
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Li Z, Wang H, Liu N, Lan X, Xie A, Yuan G, Li B, Geng J, Liu X. Renal Lipid Alterations From Diabetes to Early-Stage Diabetic Kidney Disease and Mitophagy: Focus on Cardiolipin. J Cell Mol Med 2025; 29:e70419. [PMID: 39936909 PMCID: PMC11816159 DOI: 10.1111/jcmm.70419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Lipotoxicity plays a crucial role in the progression of diabetic kidney disease (DKD), yet the dynamic changes in renal lipid composition from diabetes to early-stage DKD remain unclear. Free fatty acids, lactosylceramides and cardiolipin (CL) were identified as the most significantly altered lipids by quantitatively comparing targeted lipids in the renal cortex of the classic spontaneous diabetic db/db mice using high-coverage targeted lipidomics. Further investigation into the causes and effects of decreased CL, which is a unique mitochondrial phospholipid, was conducted in mitochondria-rich renal proximal tubular cells by using western blotting, real-time PCR, immunohistochemistry and transmission electron microscopy. Reduced expression of cardiolipin synthase, a key enzyme in the CL synthesis pathway, and inhibition of CL-related mitophagy were confirmed under high glucose conditions. In addition, the protective effect of CL-targeted Szeto-Schiller 31 in preserving mitophagy was demonstrated in both in vivo and in vitro studies. These findings provide new insights into the pathogenesis of early-stage DKD from a lipid perspective and offer a theoretical basis for discovering new treatments.
Collapse
Affiliation(s)
- Zhijie Li
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hongmiao Wang
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Nan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiayuchen Lan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ailing Xie
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ge Yuan
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Bowen Li
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Jiaxin Geng
- LipidALL Technologies Company LimitedChangzhouJiangsuChina
| | - Xiaodan Liu
- Department of NephrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
E J, Liu SY, Ma DN, Zhang GQ, Cao SL, Li B, Lu XH, Luo HY, Bao L, Lan XM, Fu RG, Zheng YL. Nanopore-based full-length transcriptome sequencing for understanding the underlying molecular mechanisms of rapid and slow progression of diabetes nephropathy. BMC Med Genomics 2024; 17:246. [PMID: 39379958 PMCID: PMC11463056 DOI: 10.1186/s12920-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the diagnosis and therapy. OBJECTIVE We aimed to explore the key genes and pathways that affect the rate progression of DN. METHODS Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6). RESULTS Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, autophagy/mitophagy, apoptosis/necroptosis pathway. CONCLUSION Collectively, our study provided a full-length transcriptome data source for the future DN research, and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow progression of DN.
Collapse
Affiliation(s)
- Jing E
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shun-Yao Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Dan-Na Ma
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guo-Qing Zhang
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Shi-Lu Cao
- Department of Nephrology, Chengdu first people's hospital, Chengdu, Sichuan, 610000, China
| | - Bo Li
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Hua Lu
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Hong-Yan Luo
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Li Bao
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Xiao-Mei Lan
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rong-Guo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Zheng
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China.
| |
Collapse
|
4
|
Sun X, Wang N, Jiang H, Liu Q, Xiao C, Xu J, Wu Y, Mei J, Wu S, Lin Z. Insulin-transferrin-selenium promote formation of tissue-engineered vascular grafts in early stage of culture. Prep Biochem Biotechnol 2024; 54:1186-1195. [PMID: 38546975 DOI: 10.1080/10826068.2024.2333468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
To create tissue-engineered vascular grafts (TEVGs) in vitro, vascular smooth muscle cells (VSMCs) must function effectively and produce sufficient extracellular matrix (ECM) in a three-dimensional space. In this study, we investigated whether the addition of insulin-transferrin-selenium (ITS), a medium supplement, could enhance TEVG formation. PGA fabric was used as the scaffold, and 1% ITS was added to the medium. After two weeks, the tissues were examined using electron microscopy and staining. The ITS group exhibited a denser structure and increased collagen production. VSMCs were cultured in two dimensions with ITS and assessed for collagen production, cell growth, and glucose metabolism. The results showed that ITS supplementation increased collagen production, cell growth, glucose utilization, lactate production, and ATP levels. Furthermore, reducing the amount of fetal bovine serum (FBS) in the medium did not affect the TEVGs or VSMCs when ITS was present. In conclusion, ITS improves TEVG construction by promoting VSMCs growth and reducing the need for FBS.
Collapse
MESH Headings
- Tissue Engineering/methods
- Insulin/metabolism
- Animals
- Blood Vessel Prosthesis
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Selenium/pharmacology
- Selenium/chemistry
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
- Cell Proliferation/drug effects
- Rats
- Tissue Scaffolds/chemistry
- Collagen/metabolism
- Glucose/metabolism
Collapse
Affiliation(s)
- Xuheng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Nannan Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Hongjing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jingyi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Shuting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Province, P.R. China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| |
Collapse
|
5
|
Velazquez FN, Luberto C, Canals D, Hannun YA. Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans 2024; 52:1795-1808. [PMID: 39101614 PMCID: PMC11783705 DOI: 10.1042/bst20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Chiara Luberto
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Daniel Canals
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
6
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Wang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, Zhao H, Liu W, Li P. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci 2024; 20:3710-3724. [PMID: 39113692 PMCID: PMC11302873 DOI: 10.7150/ijbs.95216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Lipid homeostasis is crucial for proper cellular and systemic functions. A growing number of studies confirm the importance of lipid homeostasis in diabetic kidney disease (DKD). Lipotoxicity caused by imbalance in renal lipid homeostasis can further exasperate renal injury. Large lipid deposits and lipid droplet accumulation are present in the kidneys of DKD patients. Autophagy plays a critical role in DKD lipid homeostasis and is involved in the regulation of lipid content. Inhibition or reduction of autophagy can lead to lipid accumulation, which in turn further affects autophagy. Lipophagy selectively recognizes and degrades lipids and helps to regulate cellular lipid metabolism and maintain intracellular lipid homeostasis. Therefore, we provide a systematic review of fatty acid, cholesterol, and sphingolipid metabolism, and discuss the responses of different renal intrinsic cells to imbalances in lipid homeostasis. Finally, we discuss the mechanism by which autophagy, especially lipophagy, maintains lipid homeostasis to support the development of new DKD drugs targeting lipid homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
8
|
Nehus EJ, Sheanon NM, Zhang W, Marcovina SM, Setchell KDR, Mitsnefes MM. Urinary sphingolipids in adolescents and young adults with youth-onset diabetes. Pediatr Nephrol 2024; 39:1875-1883. [PMID: 38172468 DOI: 10.1007/s00467-023-06257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND This study evaluated urinary sphingolipids as a marker of diabetic kidney disease (DKD) in adolescents and young adults with youth-onset type 1 and type 2 diabetes. METHODS A comprehensive panel of urinary sphingolipids, including sphingomyelin (SM), glucosylceramide (GC), ceramide (Cer), and lactosylceramide (LC) species, was performed in patients with youth-onset diabetes from the SEARCH for Diabetes in Youth cohort. Sphingolipid levels, normalized to urine creatinine, were compared in 57 adolescents and young adults with type 1 diabetes, 59 with type 2 diabetes, and 44 healthy controls. The association of sphingolipids with albumin-to-creatinine (ACR) ratio and estimated glomerular filtration rate (eGFR) was evaluated. RESULTS The median age (interquartile range [IQR]) of participants was 23.1 years (20.9, 24.9) and the median duration of diabetes was 9.3 (8.5, 10.2) years. Urinary sphingolipid concentrations in patients with and without DKD (ACR ≥ 30 mg/g) were significantly elevated compared to healthy controls. There were no significant differences in sphingolipid levels between participants with type 1 and type 2 diabetes. In multivariable analysis, many sphingolipid species were positively correlated with ACR. Most significant associations were evident for the following species: C18 SM, C24:1 SM, C24:1 GC, and C24:1 Cer (all p < 0.001). Sphingolipid levels were not associated with eGFR. However, several interaction terms (diabetes type*sphingolipid) were significant, indicating diabetes type may modify the association of sphingolipids with eGFR. CONCLUSION Urinary sphingolipids are elevated in adolescents and young adults with youth-onset diabetes and correlate with ACR. Urinary sphingolipids may therefore represent an early biomarker of DKD.
Collapse
Affiliation(s)
- Edward J Nehus
- Department of Pediatrics, West Virginia University School of Medicine Charleston Campus, Charleston, WV, USA.
| | - Nicole M Sheanon
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Clinical Mass Spectroscopy Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Kenneth D R Setchell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Clinical Mass Spectroscopy Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark M Mitsnefes
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
9
|
Luo H, Yang L, Zhang G, Bao X, Ma D, Li B, Cao L, Cao S, Liu S, Bao L, E J, Zheng Y. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Genes Genomics 2024; 46:621-635. [PMID: 38536617 DOI: 10.1007/s13258-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.
Collapse
Affiliation(s)
- Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lirong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Shilu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shunyao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing E
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China.
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
10
|
Dh HS, Sultana R, Prabhu A, S R P, Mohanto S, Subramaniyan V. Biomedicine and pharmacotherapeutic effectiveness of combinatorial atorvastatin and quercetin on diabetic nephropathy: An in vitro study. Biomed Pharmacother 2024; 174:116533. [PMID: 38574626 DOI: 10.1016/j.biopha.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Diabetic nephropathy is a type of kidney disorder that develops as a complication of multifactorial diabetes. Diabetic nephropathy is characterized by microangiopathy, resulting from glucose metabolism, oxidative stress, and changes in renal hemodynamics. This study strived to evaluate the in vitro cytoprotective activity of atorvastatin (ATR), and quercetin (QCT) alone and in combination against diabetic nephropathy. METHODS The MTT assay was utilized to analyze the effects of the test compounds on NRK-52E rat kidney epithelial cells. The detection of apoptosis and ability to scavenge free radicals was assessed via acridine orange-ethidium bromide (AO-EB) dual fluorescence staining, and 2,2-diphenyl-1-picrylhydrazyfree assay (DPPH), respectively. The ability of anti-inflammatory effect of the test compounds and western blot analysis against TGF-β, TNF-α, and IL-6 further assessed to determine the combinatorial efficacy. RESULTS Atorvastatin and quercetin treatment significantly lowered the expression of TGF-β, TNF-α, and IL-6 indicating the protective role in Streptozotocin-induced nephrotoxicity. The kidney cells treated with a combination of atorvastatin and quercetin showed green fluorescing nuclei in the AO-EB staining assay, indicating that the combination treatment restored cell viability. Quercetin, both alone and in combination with atorvastatin, demonstrated strong DPPH free radical scavenging activity and further encountered an anti-oxidant and anti-inflammatory effect on the combination of these drugs. CONCLUSION Nevertheless, there is currently no existing literature that reports on the role of QCT as a combination renoprotective drug with statins in the context of diabetic nephropathy. Hence, these findings suggest that atorvastatin and quercetin may have clinical potential in treating diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin Dh
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India.
| | - Ashwini Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India.
| | - Pavan S R
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India.
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Malaysia.
| |
Collapse
|
11
|
Lopes-Virella MF, Hammad SM, Baker NL, Klein RL, Hunt KJ. Circulating Lipoprotein Sphingolipids in Chronic Kidney Disease with and without Diabetes. Biomedicines 2024; 12:190. [PMID: 38255295 PMCID: PMC10813484 DOI: 10.3390/biomedicines12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormalities of sphingolipid metabolism play an important role in diabetes. We compared sphingolipid levels in plasma and in isolated lipoproteins between healthy control subjects and two groups of patients, one with chronic kidney disease without diabetes (ND-CKD), and the other with type 2 diabetes and macroalbuminuria (D-MA). Ceramides, sphingomyelins, and sphingoid bases and their phosphates in LDL were higher in ND-CKD and in D-MA patients compared to controls. However, ceramides and sphingoid bases in HDL2 and HDL3 were lower in ND-CKD and in D-MA patients than in controls. Sphingomyelins in HDL2 and HDL3 were lower in D-MA patients than in controls but were normal in ND-CKD patients. Compared to controls, lactosylceramides in LDL and VLDL were higher in ND-CKD patients but not in D-MA patients. However, lactosylceramides in HDL2 and HDL3 were lower in both ND-CKD and D-MA patients than in controls. Plasma hexosylceramides in ND-CKD patients were increased and sphingoid bases decreased in both ND-CKD and D-MA patients. However, hexosylceramides in LDL, HDL2, and HDL3 were higher in ND-CKD patients than in controls. In D-MA patients, only C16:0 hexosylceramide in LDL was higher than in controls. The data suggest that sphingolipid measurement in lipoproteins, rather than in whole plasma, is crucial to decipher the role of sphingolipids in kidney disease.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Richard L. Klein
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Kelly J. Hunt
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
12
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Bioinformatics to Identify Biomarkers of Diabetic Nephropathy based on Sphingolipid Metabolism and their Molecular Mechanisms. Curr Diabetes Rev 2024; 21:e070524229720. [PMID: 38712372 DOI: 10.2174/0115733998297749240418071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| |
Collapse
|
13
|
Franco M, Cano-Martínez A, Ramos-Godínez MDP, López-Marure R, Donis-Maturano L, Sosa JS, Bautista-Pérez R. Immunolocalization of Sphingolipid Catabolism Enzymes along the Nephron: Novel Early Urinary Biomarkers of Renal Damage. Int J Mol Sci 2023; 24:16633. [PMID: 38068956 PMCID: PMC10706607 DOI: 10.3390/ijms242316633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.
Collapse
Affiliation(s)
- Martha Franco
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | | | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | - Luis Donis-Maturano
- Faculty of Higher Studies Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - José Santamaría Sosa
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Rocio Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| |
Collapse
|
14
|
Wolf B, Blaschke CRK, Mungaray S, Weselman BT, Stefanenko M, Fedoriuk M, Bai H, Rodgers J, Palygin O, Drake RR, Nowling TK. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. Int J Mol Sci 2023; 24:16490. [PMID: 38003679 PMCID: PMC10671813 DOI: 10.3390/ijms242216490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.
Collapse
Affiliation(s)
- Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA;
| | - Calvin R. K. Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Sandy Mungaray
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Bryan T. Weselman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Hongxia Bai
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| |
Collapse
|
15
|
Mirza I, Haloul M, Hassan C, Masrur M, Mostafa A, Bianco FM, Ali MM, Minshall RD, Mahmoud AM. Adiposomes from Obese-Diabetic Individuals Promote Endothelial Dysfunction and Loss of Surface Caveolae. Cells 2023; 12:2453. [PMID: 37887297 PMCID: PMC10605845 DOI: 10.3390/cells12202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.
Collapse
Affiliation(s)
- Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Mohamed Haloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Amro Mostafa
- Departments of Anesthesiology and Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco M. Bianco
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mohamed M. Ali
- School of Business and Non-Profit Management, North Park University, Chicago, IL 60625, USA;
| | - Richard D. Minshall
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Ye S, Hu YP, Zhou Q, Zhang H, Xia ZZ, Zhao SZ, Wang Z, Wang SY, Wang XY, Zhang YK, Chen ZD, Mao GY, Zheng C. Lipidomics Profiling Reveals Serum Phospholipids Associated with Albuminuria in Early Type 2 Diabetic Kidney Disease. ACS OMEGA 2023; 8:36543-36552. [PMID: 37810655 PMCID: PMC10552467 DOI: 10.1021/acsomega.3c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Early screening and administration of DKD are beneficial for renal outcomes of type 2 diabetic patients. However, the current early diagnosis using the albuminuria/creatine ratio (ACR) contains limitations. This study aimed to compare serum lipidome variation between type 2 diabetes and early DKD patients with increased albuminuria through an untargeted lipidomics method to explore the potential lipid biomarkers for DKD identification. 92 type 2 diabetic patients were enrolled and divided into two groups: DM group (ACR < 3 mg/mmol, n = 49) and early DKD group (3 mg/mmol ≤ ACR < 30 mg/mmol, n = 43). Fasting serum was analyzed through an ultraperformance liquid mass spectrometry tandem chromatography system (LC-MS). Orthogonal partial least-squares discriminant analysis (OPLS-DA) and univariate and multivariate analysis were performed to filter differentially depressed lipids. Receiver operating characteristic (ROC) curves were used to estimate the diagnostic capability of potential lipid biomarkers. We found that serum phospholipids including phosphatidylserine (PS), sphingomyelin (SM), and phosphatidylcholine (PC) were significantly upregulated in the DKD group and were highly correlated with the ACR. In addition, a panel of two phospholipids including PS(27:0)-H and PS(30:2e)-H showed good performance to help clinical lipids in early DKD identification, which increased the area under the curve (AUC) from 0.568 to 0.954. The study exhibited the serum lipidome variation in early DKD patients, and the increased phospholipids might participate in the development of albuminuria. The panel of PS(27:0)-H and PS(30:2e)-H could be a potential biomarker for DKD diagnosis.
Collapse
Affiliation(s)
- Shu Ye
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Ye-peng Hu
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Qiao Zhou
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhang
- Diabetes
Center and Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhe-zheng Xia
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Shu-zhen Zhao
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Zhe Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Sheng-yao Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Xin-yi Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Yi-kai Zhang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Chen
- Department
of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Guang-yun Mao
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Chao Zheng
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
- Diabetes
Center and Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
17
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Düsing P, Heinrich NN, Al-Kassou B, Gutbrod K, Dörmann P, Nickenig G, Jansen F, Zietzer A. Analysis of circulating ceramides and hexosylceramides in patients with coronary artery disease and type II diabetes mellitus. BMC Cardiovasc Disord 2023; 23:454. [PMID: 37700226 PMCID: PMC10498560 DOI: 10.1186/s12872-023-03454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of death worldwide. The main driving force behind this association is coronary artery disease (CAD), the manifestation of atherosclerosis in the coronary circulation. Cornerstones in the development of CAD are pathologies in lipid metabolism. In recent years, ongoing research has identified ceramides, a subclass of sphingolipids to be mediators of CVD. The aim of this study is to investigate the influence of type II diabetes mellitus (DM) on circulating ceramides and hexosylceramides (HexCers) in CAD patients. METHODS 24 patients aged 40-90 years with CAD confirmed by angiography were included into a pilot study. Patients with DM were identified by analysis of discharge letters or other medical documents available at the study center. During coronary angiography, arterial blood samples were collected and quantification of sphingolipids in patient serum was performed by mass spectrometry. RESULTS Statistical analysis showed nine significantly different HexCers in CAD patients with DM compared to patients without DM. Among the nine significantly regulated HexCers, we identified seven d18:1 HexCers. This group contributes to the fourth most abundant subgroup of total ceramides and HexCers in this dataset. HexCer-d18:1-23:1(2-OH) showed the strongest downregulation in the patient group with DM. CONCLUSION This study suggests that levels of circulating HexCers are downregulated in patients with CAD and concomitant DM compared to patients without DM. Further research is needed to investigate the underlying mechanisms and the suitability of HexCers as possible mediators and/or prognostic markers in CAD.
Collapse
Affiliation(s)
- Philip Düsing
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Nadine N Heinrich
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Baravan Al-Kassou
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Felix Jansen
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Andreas Zietzer
- Heart Center, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
19
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Nakamura H, Zhou Y, Sakamoto Y, Yamazaki A, Kurumiya E, Yamazaki R, Hayashi K, Kasuya Y, Watanabe K, Kasahara J, Takabatake M, Tatsumi K, Yoshino I, Honda T, Murayama T. N-butyldeoxynojirimycin (miglustat) ameliorates pulmonary fibrosis through inhibition of nuclear translocation of Smad2/3. Biomed Pharmacother 2023; 160:114405. [PMID: 36804125 DOI: 10.1016/j.biopha.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. The disease involves excessive accumulation of fibroblasts and myofibroblasts, and myofibroblasts differentiated by pro-fibrotic factors promote the deposition of extracellular matrix proteins such as collagen and fibronectin. Transforming growth factor-β1 is a pro-fibrotic factor that promotes fibroblast-to-myofibroblast differentiation (FMD). Therefore, inhibition of FMD may be an effective strategy for IPF treatment. In this study, we screened the anti-FMD effects of various iminosugars and showed that some compounds, including N-butyldeoxynojirimycin (NB-DNJ, miglustat, an inhibitor of glucosylceramide synthase (GCS)), a clinically approved drug for treating Niemann-Pick disease type C and Gaucher disease type 1, inhibited TGF-β1-induced FMD by inhibiting the nuclear translocation of Smad2/3. N-butyldeoxygalactonojirimycin having GCS inhibitory effect did not attenuate the TGF-β1-induced FMD, suggesting that NB-DNJ exerts the anti-FMD effects by GCS inhibitory effect independent manner. N-butyldeoxynojirimycin did not inhibit TGF-β1-induced Smad2/3 phosphorylation. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, intratracheal or oral administration of NB-DNJ at an early fibrotic stage markedly ameliorated lung injury and deterioration of respiratory functions, such as specific airway resistance, tidal volume, and peak expiratory flow. Furthermore, the anti-fibrotic effects of NB-DNJ in the BLM-induced lung injury model were similar to those of pirfenidone and nintedanib, which are clinically approved drugs for the treatment of IPF. These results suggest that NB-DNJ may be effective for IPF treatment.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuan Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuka Sakamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Eon Kurumiya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Risa Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyota Hayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshitoshi Kasuya
- Deprtment of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Watanabe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mamoru Takabatake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
21
|
Sun ZJ, Chang DY, Chen M, Zhao MH. Deficiency of CFB attenuates renal tubulointerstitial damage by inhibiting ceramide synthesis in diabetic kidney disease. JCI Insight 2022; 7:156748. [PMID: 36546481 PMCID: PMC9869976 DOI: 10.1172/jci.insight.156748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests the pathogenic role of immunity and metabolism in diabetic kidney disease (DKD). Herein, we aimed to investigate the effect of complement factor B (CFB) on lipid metabolism in the development of DKD. We found that in patients with diabetic nephropathy, the staining of Bb, CFB, C3a, C5a, and C5b-9 was markedly elevated in renal tubulointerstitium. Cfb-knockout diabetic mice had substantially milder tubulointerstitial injury and less ceramide biosynthesis. The in vitro study demonstrated that cytokine secretion, endoplasmic reticulum stress, oxidative stress, and cell apoptosis were ameliorated in HK-2 cells transfected with siRNA of CFB under high-glucose conditions. Exogenous ceramide supplementation attenuated the protective effect of CFB knockdown in HK-2 cells, while inhibiting ceramide synthases (CERS) with fumonisin B1 in CFB-overexpressing cells rescued the cell injury. CFB knockdown could downregulate the expression of NF-κB p65, which initiates the transcription of CERS3. Furthermore, C3 knockdown abolished CFB-mediated cytokine secretion, NF-κB signaling activation, and subsequently ceramide biosynthesis. Thus, CFB deficiency inhibited activation of the complement alternative pathway and attenuated kidney damage in DKD, especially tubulointerstitial injury, by inhibiting the NF-κB signaling pathway, further blocking the transcription of CERS, which regulates the biosynthesis of ceramide. CFB may be a promising therapeutic target of DKD.
Collapse
Affiliation(s)
- Zi-jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
22
|
Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat Commun 2022; 13:3835. [PMID: 35788583 PMCID: PMC9253056 DOI: 10.1038/s41467-022-31476-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
Global obesity epidemics impacts human health and causes obesity-related illnesses, including the obesity-related kidney and liver diseases. UTX, a histone H3K27 demethylase, plays important roles in development and differentiation. Here we show that kidney-specific knockout Utx inhibits high-fat diet induced lipid accumulation in the kidney and liver via upregulating circulating serine levels. Mechanistically, UTX recruits E3 ligase RNF114 to ubiquitinate phosphoglycerate dehydrogenase, the rate limiting enzyme for de novo serine synthesis, at Lys310 and Lys330, which leads to its degradation, and thus suppresses renal and circulating serine levels. Consistently, phosphoglycerate dehydrogenase and serine levels are markedly downregulated in human subjects with diabetic kidney disease or obesity-related renal dysfunction. Notably, oral administration of serine ameliorates high-fat diet induced fatty liver and renal dysfunction, suggesting a potential approach against obesity related metabolic disorders. Together, our results reveal a metabolic homeostasis regulation mediated by a renal UTX-PHGDH-serine axis.
Collapse
|
23
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
24
|
Patel J, Torrealba JR, Poggio ED, Bebiak J, Alpers CE, Grewenow SM, Toto RD, Eadon MT. Molecular Signatures of Diabetic Kidney Disease Hiding in a Patient with Hypertension-Related Kidney Disease: A Clinical Pathologic Molecular Correlation. Clin J Am Soc Nephrol 2022; 17:594-601. [PMID: 34911732 PMCID: PMC8993486 DOI: 10.2215/cjn.10350721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Kidney Precision Medicine Project (KPMP) seeks to establish a molecular atlas of the kidney in health and disease and improve our understanding of the molecular drivers of CKD and AKI. Herein, we describe the case of a 66-year-old woman with CKD who underwent a protocol KPMP kidney biopsy. Her clinical history included well-controlled diabetes mellitus, hypertension, and proteinuria. The patient's histopathology was consistent with modest hypertension-related kidney injury, without overt diabetic kidney disease. Transcriptomic signatures of the glomerulus, interstitium, and tubular subsegments were obtained from laser microdissected tissue. The molecular signatures that were uncovered revealed evidence of early diabetic kidney disease adaptation and ongoing active tubular injury with enriched pathways related to mesangial cell hypertrophy, glycosaminoglycan biosynthesis, and apoptosis. Molecular evidence of diabetic kidney disease was found across the nephron. Novel molecular assays can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.
Collapse
Affiliation(s)
- Jiten Patel
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Jose R. Torrealba
- Department of Pathology, University of Texas Southwestern, Dallas, Texas
| | - Emilio D. Poggio
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jack Bebiak
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Stephanie M. Grewenow
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, Washington
| | - Robert D. Toto
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Michael T. Eadon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
25
|
Deng Y, Wu Q, Chen W, Zhu L, Liu W, Xia F, Sun L, Lin X, Zeng R. Lipidomics reveals association of circulating lipids with body mass index and outcomes in IgA nephropathy patients. J Mol Cell Biol 2021; 13:mjab040. [PMID: 34272854 PMCID: PMC8697343 DOI: 10.1093/jmcb/mjab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022] Open
Abstract
IgA nephropathy (IgAN) is a leading cause of chronic kidney disease (CKD), which are commonly accompanied by dyslipidemia. Obesity is also associated with dyslipidemia and risk of CKD, but the relation of the dyslipidemia patterns with obesity and disease progression in IgAN patients remains unknown. Traditional Chinese medicine (TCM) and the combined treatment with corticosteroids and TCM have been shown to be of benefit for IgAN patients, but predictive markers for guiding these treatments are lacking. Here, we quantified 545 lipid species in the plasma from 196 participants, including 140 IgAN patients and 56 healthy volunteers, and revealed an altered plasma lipidome in IgAN patients as compared to healthy participants. Association analysis showed that a sub-group of glycerides, particularly triacylglycerols (TGs) containing docosahexaenoic acid, were positively associated with high body mass index (BMI) in under- or normal weight IgAN patients, while several free fatty acids and sphingomyelins were positively associated with high BMI in overweight or obese IgAN patients. Further, our study suggested that elevated levels of eight lipids, mainly TG species containing linolenic acid, were independent risk factors for IgAN progression and also reported the prospective association of circulating lipids with treatment outcomes in IgAN. Taken together, our findings may not only help to achieve precision medicine but also provide a knowledge base for dietary intervention in the treatment of IgAN.
Collapse
Affiliation(s)
- Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wanjia Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Li Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wangyi Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Fangying Xia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| |
Collapse
|
26
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
27
|
Zhu Y, Liu Y, Wu C, Li H, Du H, Yu H, Huang C, Chen Y, Wang W, Zhu Q, Wang L. Enterococcus faecalis contributes to hypertension and renal injury in Sprague-Dawley rats by disturbing lipid metabolism. J Hypertens 2021; 39:1112-1124. [PMID: 33967216 DOI: 10.1097/hjh.0000000000002767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Increasing studies have demonstrated that gut microbiota play vital roles in the development of hypertension. However, the underlying mechanism is not fully understood. METHODS The relative abundance of Enterococcus faecalis was determined in the faecal samples of angiotensin II or deoxycorticosterone acetate/salt-induced hypertensive rats. Then, E. faecalis culture was administered orally to rats for 6 weeks. Blood pressure (BP) was measured, renal injury was estimated and a serum metabolomic analysis was performed. RESULTS Compared with control, E. faecalis was markedly enriched in the faecal samples of hypertensive rats. The rats receiving live E. faecalis but not dead bacteria exhibited higher BP and enhanced renal injury. The serum metabolomic data showed that the E. faecalis treatment resulted in 35 variable metabolites including 16 (46%) lipid/lipid-like molecules, suggesting significant disturbance of lipid metabolism. Furthermore, the mRNA levels of 18 lipid metabolic enzymes in the renal medulla and cortex presented distinct and dynamic changes in response to 3 or 6-week E. faecalis treatment. Consistently, the protein levels of lysophospholipases A1 (LYPLA1) and phospholipase A2 group 4 A (PLA2G4) were enhanced only by live E. faecalis, which thus may have decreased the nitric oxide production in the renal medulla and elevated BP. CONCLUSION Our results suggest that E. faecalis in the gut contributes to hypertension and renal injury in rats by disturbing the lipid metabolism. The information provided here could shed new light on the pathologic mechanisms and potential intervention targets for the treatment of gut dysbiosis-induced hypertension.
Collapse
Affiliation(s)
- Yeyan Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yuting Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Chunying Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Haonan Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Huiting Du
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Huijing Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Cailin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yating Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Lei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| |
Collapse
|
28
|
Yang X, Luo W, Li L, Hu X, Xu M, Wang Y, Feng J, Qian J, Guan X, Zhao Y, Liang G. CDK9 inhibition improves diabetic nephropathy by reducing inflammation in the kidneys. Toxicol Appl Pharmacol 2021; 416:115465. [PMID: 33631230 DOI: 10.1016/j.taap.2021.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory renal disease induced by hyperglycemia. Recent studies have implicated cyclin-dependent kinase 9 (CDK9) in inflammatory responses and renal fibrosis. In this study, we explored a potential role of CDK9 in DN by using cultured mouse mesangial cell line SV40 MES-13 and streptozotocin-induced type 1 mouse model of diabetes. We inhibited CDK9 in mice and in cultured cells by a highly selective CDK9 inhibitor, LDC000067 (LDC), and evaluated inflammatory and fibrogenic outcome by mRNA and protein analyses. Our studies show that treatment of diabetic mice with LDC significantly inhibits the levels of inflammatory cytokines and fibrogenic genes in kidney specimens. These reductions were associated with improved renal function. We also found that LDC treatment suppressed MAPK-AP1 activation. We then confirmed the involvement of CDK9 in cultured SV40 MES-13 cells and showed that deficiency in CDK9 prevents glucose-induced inflammatory and fibrogenic proteins. This protection was also afforded by suppression of MAPK-AP1. Taken together, our results how that hyperglycemia activates CDK9-MAPK-AP1 axis in kidneys to induce inflammation and fibrosis, leading to renal dysfunction. Our findings also suggest that CDK9 may serve as a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Xiaojing Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Xiang Hu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingjiang Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianpeng Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinfu Guan
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
30
|
Nicholson RJ, Pezzolesi MG, Summers SA. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 11:622692. [PMID: 33584550 PMCID: PMC7876379 DOI: 10.3389/fendo.2020.622692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes mellitus that increases one's risk of developing renal failure. Progress toward development of better DKD therapeutics is limited by an incomplete understanding of forces driving and connecting the various features of DKD, which include renal steatosis, fibrosis, and microvascular dysfunction. Herein we review the literature supporting roles for bioactive ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD, renal ceramides are elevated, and genetic and pharmacological ceramide-lowering interventions improve kidney function and ameliorate DKD histopathology. In humans, circulating sphingolipid profiles distinguish human DKD patients from diabetic controls. These studies highlight the potential for ceramide to serve as a central and therapeutically tractable lipid mediator of DKD.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Marcus G. Pezzolesi
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Sundararaj K, Rodgers J, Angel P, Wolf B, Nowling TK. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021; 162:418-433. [PMID: 33314123 DOI: 10.1111/imm.13294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, we demonstrated neuraminidase (NEU) activity or NEU1 expression, specifically, is increased in the kidneys of lupus mice and urine of human patients with nephritis. Additionally, NEU activity mediates IL-6 secretion from lupus-prone MRL/lpr primary mouse mesangial cells (MCs) in response to an IgG mimic. IL-6 mediates glomerular inflammation and promotes tissue damage in patients and mouse strains with lupus nephritis. This study further elucidates the mechanisms by which NEU activity and NEU1 specifically mediates the release of IL-6 and other cytokines from lupus-prone MCs. We demonstrate significantly increased release of multiple cytokines and NEU activity in MRL/lpr MCs in response to serum from MRL/lpr mice (lupus serum). Inhibiting NEU activity significantly reduced secretion of three of those cytokines: IL-6, GM-CSF and MIP1α. Message levels of Il-6 and Gm-csf were also increased in response to lupus serum and reduced when NEU activity was inhibited. Neutralizing antibodies to cell-surface receptors and MAPK inhibitors in lupus serum- or LPS-stimulated MCs indicate TLR4 and p38 or ERK MAP kinase signalling play key roles in the NEU-mediated secretion of IL-6. Significantly reduced IL-6 release was observed in C57BL/6 (B6) Neu1+/+ primary MCs compared with wild-type (Neu1+/+) B6 MCs in response to lupus serum. Additional results show inhibiting NEU activity significantly increases sialic acid-containing N-glycan levels. Together, our novel observations support a role for NEU activity, and specifically NEU1, in mediating release of IL-6 from lupus-prone MCs in response to lupus serum through a TLR4-p38/ERK MAPK signalling pathway that likely includes desialylation of glycoproteins.
Collapse
Affiliation(s)
- Kamala Sundararaj
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Jessalyn Rodgers
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Mitrofanova A, Drexler Y, Merscher S, Fornoni A. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. JOURNAL OF CELLULAR SIGNALING 2020; 1:56-69. [PMID: 32914148 PMCID: PMC7480905 DOI: 10.33696/signaling.1.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, including chronic kidney disease. The kidney is a very sensitive organ to alterations in sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular diseases with a special focus on podocytes, a key cellular component of the glomerular filtration barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of podocyte injury in kidney disease.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
33
|
Pongrac Barlovic D, Harjutsalo V, Sandholm N, Forsblom C, Groop PH. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes. Diabetologia 2020; 63:1847-1856. [PMID: 32564139 PMCID: PMC7406485 DOI: 10.1007/s00125-020-05201-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Lipid abnormalities are associated with diabetic kidney disease and CHD, although their exact role has not yet been fully explained. Sphingomyelin, the predominant sphingolipid in humans, is crucial for intact glomerular and endothelial function. Therefore, the objective of our study was to investigate whether sphingomyelin impacts kidney disease and CHD progression in individuals with type 1 diabetes. METHODS Individuals (n = 1087) from the Finnish Diabetic Nephropathy (FinnDiane) prospective cohort study with serum sphingomyelin measured using a proton NMR metabolomics platform were included. Kidney disease progression was defined as change in eGFR or albuminuria stratum. Data on incident end-stage renal disease (ESRD) and CHD were retrieved from national registries. HRs from Cox regression models and regression coefficients from the logistic or linear regression analyses were reported per 1 SD increase in sphingomyelin level. In addition, receiver operating curves were used to assess whether sphingomyelin improves eGFR decline prediction compared with albuminuria. RESULTS During a median (IQR) 10.7 (6.4, 13.5) years of follow-up, sphingomyelin was independently associated with the fastest eGFR decline (lowest 25%; median [IQR] for eGFR change: <-4.4 [-6.8, -3.1] ml min-1 [1.73 m-2] year-1), even after adjustment for classical lipid variables such as HDL-cholesterol and triacylglycerols (OR [95% CI]: 1.36 [1.15, 1.61], p < 0.001). Similarly, sphingomyelin increased the risk of progression to ESRD (HR [95% CI]: 1.53 [1.19, 1.97], p = 0.001). Moreover, sphingomyelin increased the risk of CHD (HR [95% CI]: 1.24 [1.01, 1.52], p = 0.038). However, sphingomyelin did not perform better than albuminuria in the prediction of eGFR decline. CONCLUSIONS/INTERPRETATION This study demonstrates for the first time in a prospective setting that sphingomyelin is associated with the fastest eGFR decline and progression to ESRD in type 1 diabetes. In addition, sphingomyelin is a risk factor for CHD. These data suggest that high sphingomyelin level, independently of classical lipid risk factors, may contribute not only to the initiation and progression of kidney disease but also to CHD. Graphical abstract.
Collapse
Affiliation(s)
- Drazenka Pongrac Barlovic
- University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Folkhälsan Institute of Genetics, Folkhälsan Research Center Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, PO Box 63, FIN-00014, Helsinki, Finland.
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
34
|
Hou B, He P, Ma P, Yang X, Xu C, Lam SM, Shui G, Yang X, Zhang L, Qiang G, Du G. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy. Front Endocrinol (Lausanne) 2020; 11:359. [PMID: 32655493 PMCID: PMC7325916 DOI: 10.3389/fendo.2020.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic changes associated with diabetes are reported to lead to the onset of early-stage diabetic nephropathy (DN). Furthermore, lipotoxicity is implicated in renal dysfunction. Most studies of DN have focused on a single or limited number of lipids, and the lipidome of the kidney during early-stage DN remains to be elucidated. In the present study, we aimed to comprehensively identify lipid abnormalities during early-stage DN; to this end, we established an early-stage DN rat model by feeding a high-sucrose and high-fat diet combined with administration of low-dose streptozotocin. Using a high-coverage, targeted lipidomic approach, we established the lipid profile, comprising 437 lipid species and 25 lipid classes, of the kidney cortex in normal rats and the DN rat model. Our findings additionally confirmed that the DN rat model had been successfully established. We observed distinct lipidomic signatures in the DN kidney, with characteristic alterations in side chain composition and degree of unsaturation. Glyceride lipids, especially cholesteryl esters, showed a significant increase in the DN kidney cortex. The levels of most phospholipids exhibited a decline, except those of phospholipids with side chain of 36:1. Furthermore, the levels of lyso-phospholipids and sphingolipids, including ceramide and its derivatives, were dramatically elevated in the present DN rat model. Our findings, which provide a comprehensive lipidome of the kidney cortex in rats with DN, are expected to be useful for the identification of pathologically relevant lipid species in DN. Furthermore, the results represent novel insights into the mechanistic basis of DN.
Collapse
Affiliation(s)
- Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Li H, Wang D, Chen Y, Yang M. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells. Int Immunopharmacol 2020; 84:106556. [PMID: 32416450 DOI: 10.1016/j.intimp.2020.106556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
β-Caryophyllene (BCP) is a bicyclic sesquiterpene compound that has anti-diabetic activity. However, the effect of BCP on diabetic nephropathy (DN) remains unclear. Here, we aimed to evaluate the potential role of BCP in high glucose (HG)-induced glomerular mesangial cells (MCs). MCs were maintained under HG condition to simulate DN in vitro. Our results showed that BCP inhibited HG-induced cell proliferation, ROS production and NADPH oxidase (NOX) 2/4 expression. BCP exhibited anti-inflammatory activity with decreased levels of TNF-α, IL-1β, IL-6 in HG-induced MCs. Moreover, BCP treatment suppressed the HG-induced secretion of fibronectin (FN) and collagen IV (Col IV) in MCs. Furthermore, BCP suppressed the NF-κB activation and enhanced the Nrf2 activation in HG-induced MCs. However, inhibition of Nrf2 attenuated the protective effects of BCP on HG-induced MCs, while inhibition of NF-κB enhanced the nephro-protective effects of BCP on MCs. In conclusion, these findings demonstrated that BCP executed protective effects on HG-induced MCs via regulating NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Heng Li
- Department of Traditional Medicine, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi Province, China
| | - Defen Wang
- Department of Endocrinology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi Province, China
| | - Yujie Chen
- Department of Traditional Medicine, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi Province, China
| | - Minsheng Yang
- Department of Endocrinology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi Province, China.
| |
Collapse
|
36
|
Nowling TK, Rodgers J, Thiyagarajan T, Wolf B, Bruner E, Sundararaj K, Molano I, Gilkeson G. Targeting glycosphingolipid metabolism as a potential therapeutic approach for treating disease in female MRL/lpr lupus mice. PLoS One 2020; 15:e0230499. [PMID: 32187230 PMCID: PMC7080257 DOI: 10.1371/journal.pone.0230499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosphingolipids (GSLs) hexosylceramides and lactosylceramides are elevated in lupus mice and human patients with nephritis. Whereas other renal diseases characterized by increased GSL levels are thought to be a result of upregulated GSL synthesis, our results suggest elevated hexosylceramides and lactosylceramides in lupus nephritis is a result of increased catabolism of ganglioside GM3 due to significantly increased neuraminidase (NEU) activity. Thus, we hypothesized GM3 would be decreased in lupus nephritis kidneys and blocking NEU activity would reduce GSLs and improve disease in lupus mice. Female MRL/lpr lupus mice were treated with water or the NEU inhibitor oseltamivir phosphate at the onset of proteinuria to block GSL catabolism. Age-matched (non-nephritic) female MRL/MpJ lupus mice served as controls. Renal GM3 levels were significantly higher in the nephritic MRL/lpr water-treated mice compared to non-nephritic MRL/MpJ mice, despite significantly increased renal NEU activity. Blocking GSL catabolism increased, rather than decreased, renal and urine GSL levels and disease was not significantly impacted. A pilot study treating MRL/lpr females with GlcCer synthase inhibitor Genz-667161 to block GSL synthesis resulted in a strong significant negative correlation between Genz-667161 dose and renal GSL hexosylceramide and GM3 levels. Splenomegaly was negatively correlated and serum IgG levels were marginally correlated with increasing Genz-667161 dose. These results suggest accumulation of renal GM3 may be due to dysregulation of one or more of the GSL ganglioside pathways and inhibiting GSL synthesis, but not catabolism, may be a therapeutic approach for treating lupus nephritis.
Collapse
Affiliation(s)
- Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thirumagal Thiyagarajan
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kamala Sundararaj
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ivan Molano
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
37
|
Morita Y, Kurano M, Sakai E, Nishikawa T, Nishikawa M, Sawabe M, Aoki J, Yatomi Y. Analysis of urinary sphingolipids using liquid chromatography-tandem mass spectrometry in diabetic nephropathy. J Diabetes Investig 2020; 11:441-449. [PMID: 31580528 PMCID: PMC7078086 DOI: 10.1111/jdi.13154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Sphingolipids, such as ceramides and sphingosine, are involved in the pathogenesis of diabetes; however, the modulation of urinary sphingolipids in diabetic nephropathy has not been fully elucidated. Therefore, we aimed to develop a simultaneous measurement system for urinary sphingolipids using liquid chromatography-tandem mass spectrometry and to elucidate the modulation of urinary sphingolipids in diabetic nephropathy. MATERIALS AND METHODS We established a simultaneous measurement system for the urinary sphingosine, dihydrosphingosine, and six ceramide species (Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/18:1, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0), and we examined the urinary sphingolipids in 64 type 2 diabetes patients and 15 control participants. RESULTS The established measurement system for the urinary sphingolipids showed good precision for Cer d18:1/16:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0. We observed that the urinary levels of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0 were elevated in patients with stage 3 of diabetic nephropathy, and were correlated with urinary biomarkers, such as albumin and N-acetyl-β-d-glucosaminidase, and sediment score. CONCLUSIONS Our method is useful for the measurement of ceramide in urine specimens, and urinary ceramides might be associated with the pathological condition of diabetic nephropathy, such as renal tubular injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Makoto Kurano
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Eri Sakai
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Takako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Masako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Motoji Sawabe
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Junken Aoki
- Laboratory of Molecular and Cellular BiochemistryGraduate School of Pharmaceutical SciencesTohoku UniversityMiyagiJapan
| | - Yutaka Yatomi
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
38
|
Bjornstad P, Nehus E, van Raalte D. Bariatric surgery and kidney disease outcomes in severely obese youth. Semin Pediatr Surg 2020; 29:150883. [PMID: 32238288 PMCID: PMC7125208 DOI: 10.1016/j.sempedsurg.2020.150883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgery, an emerging treatment for severely obese youth with and without T2D, provides marked improvement in insulin resistance, beta-cell function, and central adiposity. Further, preliminary data suggest that bariatric surgery also results in significant improvement in markers of obesity-related nephropathy and DKD, beyond that which can be achieved with current medical interventions. Yet, the mechanisms whereby bariatric surgery attenuates kidney disease remain unclear. This review summarizes the data on the effects of bariatric surgery on obesity-related nephropathy and DKD in youth with and without T2D, in addition to potential mechanisms underlying the nephroprotective effects of weight loss surgery and how these may differ in Roux-en-Y gastric bypass vs. vertical sleeve gastrectomy. Finally, we discuss potential future non-surgical therapies to mitigate kidney disease.
Collapse
Affiliation(s)
- Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, United States.
| | - Edward Nehus
- Section of Nephrology, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Daniel van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUMC, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Nitta T, Kanoh H, Inamori KI, Suzuki A, Takahashi T, Inokuchi JI. Globo-series glycosphingolipids enhance Toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology 2019; 29:260-268. [PMID: 30476082 DOI: 10.1093/glycob/cwy105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Alteration of glycosphingolipid (GSL) expression plays key roles in the pathogenesis and pathophysiology of many important human diseases, including cancer, diabetes and glycosphingolipidosis. Inflammatory processes are involved in development and progression of diabetic nephropathy, a major complication of type 2 diabetes mellitus. GSLs are known to play roles in inflammatory responses in various diseases, and levels of renal GSLs are elevated in mouse models of diabetic nephropathy; however, little is known regarding the pathophysiological role of these GSLs in this disease process. We studied proinflammatory activity of GSLs in diabetic nephropathy using spontaneously diabetic mouse strain KK. Mice were fed a high-fat diet (HFD) (60% kcal from fat) or normal diet (ND) (4.6% kcal from fat) for a period of 8 wk. HFD-feeding resulted in quantitative and qualitative changes of renal globo-series GSLs (particularly Gb3Cer), upregulation of TNF-α, and induction of renal inflammation. Gb3Cer/Gb4Cer treatment enhanced inflammatory responses via TLR4 in TLR4/MD-2 complex expressing cells, including HEK293T, mouse bone marrow-derived macrophages (BMDMs) and human monocytes. Our findings suggest that HFD-induced increase of Gb3Cer/Gb4Cer positively modulate TLR4-mediated inflammatory response, and that such GSLs play an important pathophysiological role in diabetic nephropathy.
Collapse
Affiliation(s)
- Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
40
|
Lopes-Virella MF, Baker NL, Hunt KJ, Hammad SM, Arthur J, Virella G, Klein RL. Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. J Clin Lipidol 2019; 13:481-491.e1. [PMID: 31043336 DOI: 10.1016/j.jacl.2019.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glycosphingolipids are important components of cell membranes, modulators of cell-cell interactions and cell recognition, and have recently emerged as bioactive molecules and important players in nearly all cell biological processes. We previously have shown that decreased plasma levels of long and very long species of ceramides were able to predict the development of macroalbuminuria (MA) in type 1 diabetes. OBJECTIVE This study proposed to examine whether plasma glycosphingolipids could predict development of diabetic nephropathy, assessed as MA or chronic kidney disease (CKD). METHODS Measurement of plasma hexosylceramides (H) and lactosylceramides (L) were conducted in the Lipidomics Core Facility of our Institution in a subcohort of 432 patients from the DCCT/Epidemiology of Diabetes Interventions and Complications cohort in plasma collected at entry into the study. Inverse probability weighted Cox proportional hazards regression models were used to assess the effect of glycosphingolipids levels on the risk of developing MA (albumin excretion rate ≥300 mg/24 hours) or CKD (glomerular filtration rate <60 mL/min) over a period of 21 to 28 years. RESULTS Decreases of several long and very long chain lactosylceramides were significantly associated with increased risk of progression to MA but not CKD. Among the hexosylceramides, the only significant association observed was between one of its minor species C18:1-H and CKD. CONCLUSION Our findings showed that decreased levels of long and very long lactosylceramides were able to predict the development of MA in type 1 diabetes. This finding is similar to previous findings showing that low levels of long and very long ceramides were also able to predict development of MA in the same cohort. Further studies are needed to determine the changes in sphingolipid metabolism leading to the development of complications.
Collapse
Affiliation(s)
- Maria F Lopes-Virella
- Division of Diabetes, Endocrinology and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Nathaniel L Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kelly J Hunt
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - John Arthur
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Richard L Klein
- Division of Diabetes, Endocrinology and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | | |
Collapse
|
41
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
42
|
Abstract
Sphingolipids, including ceramides, glycosphingolipids, sphingomyelin, and sphingosine-1-phosphate, have been recognized as important molecules that regulate critical cellular functions. Although originally studied in the context of lysosomal storage diseases, the roles of these compounds in more common disorders involving metabolism, vascular disease, and aberrant growth has been the focus of recent studies, including in disorders that affect the kidneys. These efforts have led to new insights into Fabry disease, a classic disorder of lysosomal function that results in renal failure as well as in more common renal diseases including diabetic nephropathy and polycystic kidney disease. Pathways for glycosphingolipid synthesis can be targeted with orally available small-molecule inhibitors, creating new opportunities for the treatment of both rare and common kidney diseases.
Collapse
|
43
|
The role of sphingolipids in acute kidney injury. Adv Biol Regul 2018; 70:31-39. [PMID: 30455062 DOI: 10.1016/j.jbior.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is most simply defined as the rapid loss of kidney function in a matter of hours to days. AKI can manifest in a number of ways including pre-renal, post-renal, or intrinsic AKI. During acute kidney injury, multiple pathogenic processes are activated including inflammation, cell death, and the generation of reactive oxygen species, just to name a few. Sphingolipids are known to play a role in a number of the pathogenic pathways involved in the pathogenesis of many types of AKI, which suggests a role for sphingolipids in AKI. This short review will discuss the evidence for a role for sphingolipids in AKI.
Collapse
|
44
|
Magagnotti C, Zerbini G, Fermo I, Carletti RM, Bonfanti R, Vallone F, Andolfo A. Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes. J Proteomics 2018; 193:205-216. [PMID: 30366120 DOI: 10.1016/j.jprot.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Despite research progresses, the chance to accurately predict the risk for diabetic nephropathy (DN) is still poor. So far, the first evidence of DN is micro-albuminuria, which is detected only 10-20 years after the onset of diabetes. Our goal is to develop new predictive tools of nephropathy starting from urine, which can be easily obtained using noninvasive procedures and it is directly related to kidney. Since it is reasonable to suppose that, in predisposed patients, the mechanisms leading to nephropathy start acting since the diabetes onset, urine from children with recent diagnosis of type 1 diabetes was subjected to proteomic analysis in comparison to age-matched controls. Targeted confirmation was performed on children with a longer history of diabetes using Western Blotting and applying a urinary lipidomic approach. To definitively understand whether the observed alterations could be related to diabetic nephropathy, urine from diabetic adults with or without albuminuria was also examined. For the first time, lipid metabolisms of prostaglandin and ceramide, which are significantly and specifically modified in association with DN, are shown to be already altered in children with a recent diabetes diagnosis. Future studies on larger cohorts are needed to improve the validity and generalizability of these findings. Data are available via ProteomeXchange with identifier PXD011183 Submission details: Project Name: Urinary proteomics by 2DE and LC-MS/MS. Project accession: PXD011183 Project DOI: https://doi.org/10.6019/PXD011183 SIGNIFICANCE: Nephropathy is a very common diabetic complication. Once established, its progression can only be slowed down but full control or remission is achieved in very few cases, thus posing a large burden on worldwide health. The first evidence of diabetic nephropathy (DN) is micro-albuminuria, but only 30% of patients with micro-albuminuria progress to proteinuria, while in some patients it spontaneously reverts to normo-albuminuria. Thus, there is clear need for biomarkers that can accurately predict the risk to develop DN. Herein, by applying proteomic and lipidomic approaches on urine samples, we show that alteration of prostaglandin and ceramide metabolisms specifically occurs in association with DN. Interestingly, we demonstrate that the modification of these metabolic pathways is an early event in diabetic patients, suggesting the identified changed proteins as possible predictive biomarkers of diabetes-induced renal function decline.
Collapse
Affiliation(s)
- Cinzia Magagnotti
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute (DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Fermo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Rose Mary Carletti
- Molecular Medicine Program, Department of Experimental Oncology, European Institute of Oncology, Italy; IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Riccardo Bonfanti
- Childhood Diabetes Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Fabiana Vallone
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- ProMiFa, Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
45
|
Snider JM, Snider AJ, Obeid LM, Luberto C, Hannun YA. Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 2018; 59:1046-1057. [PMID: 29610123 DOI: 10.1194/jlr.d081646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids constitute a dynamic metabolic network that interconnects several bioactive molecules, including ceramide (Cer), sphingosine (Sph), Sph 1-phosphate, and Cer 1-phosphate. The interconversion of these metabolites is controlled by a cohort of at least 40 enzymes, many of which respond to endogenous or exogenous stimuli. Typical probing of the sphingolipid pathway relies on sphingolipid mass levels or determination of the activity of individual enzymes. Either approach is unable to provide a complete analysis of flux through sphingolipid metabolism, which, given the interconnectivity of the sphingolipid pathway, is critical information to identify nodes of regulation. Here, we present a one-step in situ assay that comprehensively probes the flux through de novo sphingolipid synthesis, post serine palmitoyltransferase, by monitoring the incorporation and metabolism of the 17 carbon dihydrosphingosine precursor with LC/MS. Pulse labeling and analysis of precursor metabolism identified sequential well-defined phases of sphingolipid synthesis, corresponding to the activity of different enzymes in the pathway, further confirmed by the use of specific inhibitors and modulators of sphingolipid metabolism. This work establishes precursor pulse labeling as a practical tool for comprehensively studying metabolic flux through de novo sphingolipid synthesis and complex sphingolipid generation.
Collapse
Affiliation(s)
- Justin M Snider
- Molecular and Cellular Biology and Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY; Departments of Medicine Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Departments of Medicine Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Lina M Obeid
- Departments of Medicine Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Physiology and Biophysics, Stony Brook University, Stony Brook, NY.
| | - Yusuf A Hannun
- Departments of Medicine Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
46
|
Bhat OM, Yuan X, Li G, Lee R, Li PL. Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxid Redox Signal 2018; 28:1008-1026. [PMID: 29121774 PMCID: PMC5849286 DOI: 10.1089/ars.2017.7129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Significance: Sphingolipids play critical roles in the membrane biology and intracellular signaling events that influence cellular behavior and function. Our review focuses on the cellular mechanisms and functional relevance of the cross talk between sphingolipids and redox signaling, which may be critically implicated in the pathogenesis of different renal diseases. Recent Advances: Reactive oxygen species (ROS) and sphingolipids can regulate cellular redox homeostasis through the regulation of NADPH oxidase, mitochondrial integrity, nitric oxide synthase (NOS), and antioxidant enzymes. Over the last two decades, there have been significant advancements in the field of sphingolipid research, and it was in 2010 for the first time that sphingolipid receptor modulator was exploited as a therapeutic in humans. The cross talk of sphingolipids with redox signaling pathways becomes an important mechanism in the development of many different diseases such as renal diseases. Critical Issues: The critical issues to be addressed in this review are how sphingolipids interact with the redox signaling pathway to regulate renal function and even result in chronic kidney diseases. Ceramide, sphingosine, and sphingosine-1-phosphate (S1P) as main signaling sphingolipids are discussed in more detail. Future Directions: Although sphingolipids and ROS may mediate or modulate cellular responses to physiological and pathological stimuli, more translational studies and mechanistic pursuit in a tissue- or cell-specific way are needed to enhance our understanding of this important topic and to develop effective therapeutic strategies to treat diseases associated with redox signaling and sphingolipid cross talk. Antioxid. Redox Signal. 28, 1008-1026.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - RaMi Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
47
|
Huwiler A, Pfeilschifter J. Sphingolipid signaling in renal fibrosis. Matrix Biol 2018; 68-69:230-247. [PMID: 29343457 DOI: 10.1016/j.matbio.2018.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Over the last decade, various sphingolipid subspecies have gained increasing attention as important signaling molecules that regulate a multitude of physiological and pathophysiological processes including inflammation and tissue remodeling. These mediators include ceramide, sphingosine 1-phosphate (S1P), the cerebroside glucosylceramide, lactosylceramide, and the gangliosides GM3 and Gb3. These lipids have been shown to accumulate in various chronic kidney diseases that typically end in renal fibrosis and ultimately renal failure. This review will summarize the effects and contributions of those enzymes that regulate the generation and interconversion of these lipids, notably the acid sphingomyelinase, the acid sphingomyelinase-like protein SMPDL3B, the sphingosine kinases, the S1P lyase, the glucosylceramide synthase, the GM3 synthase, and the α-galactosidase A, to renal fibrotic diseases. Strategies of manipulating these enzymes for therapeutic purposes and the impact of existing drugs on renal pathologies will be discussed.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe- University, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Davis S, Nehus E, Inge T, Zhang W, Setchell K, Mitsnefes M. Effect of bariatric surgery on urinary sphingolipids in adolescents with severe obesity. Surg Obes Relat Dis 2017; 14:446-451. [PMID: 29396280 DOI: 10.1016/j.soard.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Untreated severe obesity of adolescents is associated with abnormal kidney function and development of chronic kidney disease. Lipotoxicity due to lipid accumulation in glomeruli might be an important mechanism in the progression of kidney disease in obesity. OBJECTIVE To assess subclinical glomerular injury by measuring urinary sphingolipids in adolescents with severe obesity before and after weight loss surgery. We hypothesized that the levels of urinary sphingolipids would be elevated at baseline and improve after weight reduction. SETTING Cincinnati Children's Hospital Medical Center, University of Cincinnati. METHODS Ten adolescents undergoing bariatric surgery with no microalbuminuria and normal kidney function were selected. Urinary sphingolipids (ceramides, glycosphingolipids, and sphingomyelins) were quantified using ultra performance liquid chromatography electrospray ionization tandem mass spectrometry at baseline and 1 year postoperatively. The levels of sphingolipids were compared with lean and moderately obese controls. RESULTS Participants with severe obesity had a mean baseline body mass index of 50 kg/m2 that decreased to 36 kg/m2 at 1 year postsurgery (28% reduction). Almost all urinary ceramides, glycosphingolipids, and sphingomyelin species were significantly elevated in participants with severe obesity compared with controls at baseline (P<.01). One year after weight loss surgery, levels of urinary sphingolipids improved but were still significantly elevated compared with controls. CONCLUSIONS Our study indicates that severe obesity is associated with increased urinary excretion of sphingolipids despite the absence of microalbuminuria or decreased kidney function. Urinary sphingolipids may therefore represent a marker of early (subclinical) glomerular injury in adolescents with severe obesity.
Collapse
Affiliation(s)
- Stephanie Davis
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Edward Nehus
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas Inge
- Division of Surgery, Colorado Children's Hospital, Denver, Colorado
| | - Wujuan Zhang
- Clinical Mass Spectrometry laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kenneth Setchell
- Clinical Mass Spectrometry laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Mitsnefes
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
49
|
Dupre TV, Doll MA, Shah PP, Sharp CN, Siow D, Megyesi J, Shayman J, Bielawska A, Bielawski J, Beverly LJ, Hernandez-Corbacho M, Clarke CJ, Snider AJ, Schnellmann RG, Obeid LM, Hannun YA, Siskind LJ. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J Lipid Res 2017; 58:1439-1452. [PMID: 28490444 DOI: 10.1194/jlr.m076745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.
Collapse
Affiliation(s)
- Tess V Dupre
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Mark A Doll
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Parag P Shah
- Departments of Pharmacology and Medicine, University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Cierra N Sharp
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Deanna Siow
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Judit Megyesi
- Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - James Shayman
- Department Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resources, Medical University of South Carolina, Charleston, SC
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resources, Medical University of South Carolina, Charleston, SC
| | - Levi J Beverly
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY; Departments of Pharmacology and Medicine, University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | | | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Leah J Siskind
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY.
| |
Collapse
|
50
|
Scerbo D, Son NH, Sirwi A, Zeng L, Sas KM, Cifarelli V, Schoiswohl G, Huggins LA, Gumaste N, Hu Y, Pennathur S, Abumrad NA, Kershaw EE, Hussain MM, Susztak K, Goldberg IJ. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids. J Lipid Res 2017; 58:1132-1142. [PMID: 28404638 DOI: 10.1194/jlr.m074427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.
Collapse
Affiliation(s)
- Diego Scerbo
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY.,Institute of Human Nutrition, Columbia University, New York, NY
| | - Ni-Huiping Son
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Alaa Sirwi
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Lixia Zeng
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - Kelli M Sas
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | | | - Gabriele Schoiswohl
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA.,Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | - Yunying Hu
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| | | | - Nada A Abumrad
- Department of Medicine, Washington University, St. Louis, MO
| | - Erin E Kershaw
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY
| |
Collapse
|