1
|
Lin Y, Yang Q, Zeng R. Crosstalk between macrophages and adjacent cells in AKI to CKD transition. Ren Fail 2025; 47:2478482. [PMID: 40110623 PMCID: PMC11926904 DOI: 10.1080/0886022x.2025.2478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Acute kidney injury (AKI), triggered by ischemia, sepsis, toxicity, or obstruction, is marked by a rapid impairment of renal function and could lead to the initiation and advancement of chronic kidney disease (CKD). The concept of AKI to CKD transition has gained much interest. Despite a series of studies highlighting the diverse roles of renal macrophages in the immune response following AKI, the intricate mechanisms of macrophage-driven cell-cell communication in AKI to CKD transition remains incompletely understood. In this review, we introduce the dynamic phenotype change of macrophages under the different stages of kidney injury. Importantly, we present novel perspectives on the extensive interaction of renal macrophages with adjacent cells, including tubular epithelial cells, vascular endothelial cells, fibroblasts, and other immune cells via soluble factors, extracellular vesicles, and direct contact, to facilitate the transition from AKI to CKD. Additionally, we summarize the potential therapeutic strategies based on the adverse macrophage-neighboring cell crosstalk.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ciccimarra R, Zoboli M, Ragionieri L, Cacchioli A, Gazza F, Saleri R, Stellari FF, Ravanetti F. Histological characterization and spatial profiling of age-induced tertiary lymphoid structures in mouse lung parenchyma. Ann Anat 2025; 260:152660. [PMID: 40239746 DOI: 10.1016/j.aanat.2025.152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Tertiary lymphoid structures are ectopic lymphoid aggregates traditionally associated with inflammation or injury. Their presence in uninjured, aged murine lungs remains unexplored. This study investigates age-induced TLS formation, morphology and cellular composition, comparing these structures to those induced by bleomycin treatment. Lungs from healthy mice aged two, 18, and 24 months were analyzed using histological staining, histomorphometry and high-plex immunofluorescence. TLSs were identified and spatially classified (perivascular, peribronchial, parenchymal). We performed a single-cell phenotype analysis that revealed distinctive alterations in the immune repertoire identifying lymphoid neogenesis in healthy elderly lungs. BLM-induced TLSs in young (2-month-old) mice were also examined. Age-related TLS formation was evident, with a significant increase in both density and size at 18 and 24 months compared to two months. Peribronchial TLSs were larger and more circular with age, while perivascular TLSs showed higher T cell density. Immunofluorescence revealed diverse immune cell populations, including B cells, T cells and macrophages, organized in location-specific patterns. BLM-induced TLSs were larger and less compact than those in aged lungs, correlating with fibrotic severity (R² = 0,92). This study reveals that TLSs develop in murine lungs with age, exhibiting distinct spatial organization and immune cell compositions. Compared to damage-induced TLSs, age-related TLSs are more compact and structured. These findings highlight the role of TLSs in age-related immune surveillance and suggest their potential involvement in inflammaging and chronic lung conditions. It will be crucial to further investigate their role and determine whether their formation is associated with respiratory disease and age-related immune dynamics.
Collapse
Affiliation(s)
- R Ciccimarra
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| | - M Zoboli
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| | - L Ragionieri
- Department of Veterinary Science, University of Parma, Parma 43126, Italy.
| | - A Cacchioli
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| | - F Gazza
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| | - R Saleri
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| | - F F Stellari
- Molecular Imaging Facility, Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, Parma 43122, Italy
| | - F Ravanetti
- Department of Veterinary Science, University of Parma, Parma 43126, Italy
| |
Collapse
|
3
|
Singh P, Chaudhary M, Kazmi JS, Kuschner CE, Volpe BT, Chaudhuri TD, Becker LB. Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury. Biomed Pharmacother 2025; 184:117898. [PMID: 39923406 DOI: 10.1016/j.biopha.2025.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Vagus Nerve Stimulation (VNS), a neuromodulation technique of applying controlled electrical impulses to the vagus nerve, has now emerged as a potential therapeutic approach for ischemia-reperfusion insults. It provides a pivotal link in improving functional outcomes for the central nervous system and multiple target organs affected by ischemia-reperfusion injury (I/RI). Reduced blood flow during ischemia and subsequent resumption of blood supply during reperfusion to the tissue compromises cellular health because of the combination of mitochondrial dysfunction, oxidative stress, cytokine release, inflammation, apoptosis, intracellular calcium overload, and endoplasmic reticulum stress, which ultimately leads to cell death and irreversible tissue damage. Furthermore, inflammation and apoptosis also play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that VNS in I/RI may act in an anti-inflammatory capacity, reducing oxidative stress and apoptosis, while also improving endothelial and mitochondrial function leading to reduced infarct sizes and cytoprotection in skeletal muscle, gastrointestinal tract, liver, kidney, lung, heart, and brain tissue. In this review, we attempt to shed light on the mechanistic links between tissue-specific damage following I/RI and the therapeutic approach of VNS in attenuating damage, considering both direct and remote I/RI scenarios. Thus, we want to advance the understanding of VNS that could further warrant its clinical implementation, especially as a treatment for I/RI.
Collapse
Affiliation(s)
- Parmeshar Singh
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Manju Chaudhary
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacob S Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Timir D Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA; Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
4
|
Xiang Q, Ni L, Xu Z, Ma X, Wang Y, Xuan Z, Xu F. Exploring the therapeutic potential of Danggui Shaoyao San in nephrotic syndrome: Impact on skin sodium content and renal function. Heliyon 2025; 11:e42577. [PMID: 40051859 PMCID: PMC11883388 DOI: 10.1016/j.heliyon.2025.e42577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
The purpose of this study was to explore the mechanism of sodium transport in the skin of rats with nephrotic syndrome (NS) and the intervention effect of Danggui Shaoyao San (DSS). NS model was established by tail vein injection of adriamycin (ADR), and different doses of DSS, vascular endothelial growth factor receptor-3 (VEGFR-3) inhibitor Levatinib and diuretic amiloride were given for intervention. We analysed serum biochemical parameters, urine sodium, skin sodium and glycosaminoglycan (GAG), lymphatic vessel density, and the expression and mRNA levels of key proteins involved in lymphangiogenesis. The results showed that DSS treatment not only significantly reduced the content of sodium ions in the skin of NS rats, but also effectively alleviated the pathological damage of the kidney, improved proteinuria and promoted the excretion of sodium in urine. At the same time, Levatinib can reduce the content of sodium ions in the skin of NS rats by inhibiting lymphangiogenesis, while amiloride can improve the state of sodium retention in the body and reduce the level of sodium ions in the skin by promoting the excretion of sodium ions in the urine of NS rats. Especially important, DSS can effectively inhibit the proliferation of renal cortical lymphatic vessels, down-regulate the expression of lymphangiogenesis related proteins and mRNA, promote urinary sodium excretion, and inhibit the transport of sodium ions from kidney to skin. In summary, this study reveals that during sodium retention in NS rats, sodium ions can be further transported to the skin for storage through increased lymph in the kidney, and DSS can inhibit renal lymphangiogenesis, promote urinary sodium excretion, and reduce the content of sodium ions in the skin, which provides a novel and potential strategy for the treatment of NS edema.
Collapse
Affiliation(s)
- Qingzhen Xiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lianghou Ni
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zaiping Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaowen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Chen RY, Xie H, Zhuang SY, Liu XW, Wu HY, Yuan XD, Zhang M, Zhong C, Li DW. LncRNA-AC006129.1 Aggravates kidney hypoxia-ischemia injury by promoting CXCL2-dependent inflammatory response. Int Immunopharmacol 2025; 147:113920. [PMID: 39799734 DOI: 10.1016/j.intimp.2024.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025]
Abstract
PURPOSE Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear. METHODS HI gene expression analysis was conducted using Gene Expression Omnibus datasets, followed by experiments on patient tissues and cell lines. Subsequently, loss-of-function assays characterized AC006129.1 in HK2 cells, while RIP, RNA pull-down, and mRNA degradation assays explored its relationship with CXCL2 mRNA. Rescue experiments assessed the impact of these interactions on cell proliferation, apoptosis, and inflammation in vitro. Additionally, ChIP and dual-luciferase reporter assays were conducted to investigate the mechanism behind AC006129.1 upregulation. RESULTS Among the 469 dysregulated long non-coding RNAs (lncRNAs), AC006129.1 exhibited a significant upregulation in cases of kidney HI. This finding was corroborated in clinical specimens and cell lines. AC006129.1 expression inhibits proliferation, induces apoptosis, and triggers the inflammatory response due to HI. Mechanistically, AC006129.1 facilitated the interaction between CXCL2 mRNA and the RNA-binding protein HuR, thereby stabilizing CXCL2 mRNA. Rescue experiments further demonstrated that AC006129.1 modulated HI injury through its influence on CXCL2. Additionally, ERG1 was found to specifically interact with the promoter region of AC006129.1, thereby activating its transcription. CONCLUSIONS Our findings indicate that AC006129.1 plays a pathogenic role in the HI process by enhancing the inflammatory response, which exacerbates kidney cell damage. This suggests that AC006129.1 is a critical factor in the development of HI and represents a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ruo-Yang Chen
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hui Xie
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shao-Yong Zhuang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Wen Liu
- Department of Institute of Molecular Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hao-Yu Wu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Xiao-Dong Yuan
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chen Zhong
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Da-Wei Li
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Tang Q, Xie J, Wang Y, Dong C, Sun Q. Exosomes secreted by ATF3/Nrf2-mediated ferroptotic renal tubular epithelial cells promote M1/M2 ratio imbalance inducing renal interstitial fibrosis following ischemia and reperfusion injury. Front Immunol 2025; 16:1510500. [PMID: 39975560 PMCID: PMC11835872 DOI: 10.3389/fimmu.2025.1510500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Background Severe renal ischemia and reperfusion injury (IRI) progresses to renal interstitial fibrosis (RIF) with limited therapeutic strategies. Although ferrptosis and macrophage polarization both play important roles in this model, their specific pathogenesis and interactions have not been elucidated. Therefore, we aimed to explore the mechanisms by which ferrotosis occurs in renal tubular epithelial cells (RTECs) and ferroptotic cell-derived exosomes induce macrophage polarization in IRI-related RIF model. Methods In vivo, C57BL/6J mice were randomly divided into four groups: sham group, ischemia and reperfusion (IR) group, IR + Ferrostatin-1 (Fer-1) group, and IR +ATF3 knockdown (ATFKD) group. In vitro, RTECs were divided into control (CON) group, hypoxia/reoxygenation (HR) group, HR +Fer-1 group, HR + siRNA-ATF3 (siATF3) group. Result Compared with the sham group, the IR group showed more severe kidney injury in HE staining, more collagen fibers in Masson staining, and higher α-SMA expression levels in immunohistochemistry. Total iron and MDA content increased while GSH content decreased. The IR group had more significant mitochondrial damage and higher PTGS2 and TFRC mRNA levels than those in the sham group. Compared with the IR group, the above indexes were all alleviated in the IR+Fer-1 or IR+ATF3KD groups. In addition, the protein expressions of ATF3, Nrf2 and HO-1 in the IR group were increased than those in sham group. Compared with the IR group, ATF3 expressions in the IR+Fer-1 or IR+ATF3KD groups were decreased, and the protein contents of Nrf2 and HO-1 were further increased. Moreover, there were higher levels of M2 markers (Arg1, TGF-β and IL-10 mRNA) in the IR group than those in the sham group, and lower levels in the IR+Fer-1 group or in the IR+ATF3KD group compared with the IR group. The results of in vitro experiment are consistent with those of in vivo experiment. Mechanistically, the release of exosomes carrying miR-1306-5p by the HR group promoted more M2 macrophage. Conclusion ATF3 might accelerate the ferroptosis by inhibiting Nrf2/ARE pathway, and exosomes from ferroptotic cells reduced the M1/M2 macrophage ratio, promoting fibrosis.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiatao Xie
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yifei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Ortega MA, Boaru DL, De Leon-Oliva D, De Castro-Martinez P, Minaya-Bravo AM, Casanova-Martín C, Barrena-Blázquez S, Garcia-Montero C, Fraile-Martinez O, Lopez-Gonzalez L, Saez MA, Alvarez-Mon M, Diaz-Pedrero R. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel) 2025; 16:128. [PMID: 40004457 PMCID: PMC11854833 DOI: 10.3390/genes16020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Klotho, initially identified as an anti-aging gene, has been shown to play significant roles in cancer biology. Alongside α-Klotho, the β-Klotho and γ-Klotho isoforms have also been studied; these studies showed that Klotho functions as a potential tumor suppressor in many different cancers by inhibiting cancer cell proliferation, inducing apoptosis and modulating critical signaling pathways such as the Wnt/β-catenin and PI3K/Akt pathways. In cancers such as breast cancer, colorectal cancer, hepatocellular carcinoma, ovarian cancer, and renal cell carcinoma, reduced Klotho expression often correlates with a poor prognosis. In addition, Klotho's role in enhancing chemotherapy sensitivity and its epigenetic regulation further underscores its potential as a target for cancer treatments. This review details Klotho's multifaceted contributions to cancer suppression and its potential as a therapeutic target, enhancing the understanding of its significance in cancer treatment and prognoses.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
8
|
Husain I, Shah H, Jordan CZ, Natesh NR, Fay OK, Chen Y, Privratsky JR, Kitai H, Souma T, Varghese S, Howell DN, Thorp EB, Luo X. Targeting allograft inflammatory factor 1 reprograms kidney macrophages to enhance repair. J Clin Invest 2025; 135:e185146. [PMID: 39836477 PMCID: PMC11870741 DOI: 10.1172/jci185146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury. Aif1 genetic deletion led to MΦ polarization toward a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of antiinflammatory and proregenerative markers, leading to a reduction in cell death and an increase in proliferation of kidney tubular epithelial cells after ischemia followed by reperfusion injury (I/RI). Adoptive transfer of Aif1-/- MΦs into Aif1+/+ mice conferred protection against I/RI. Conversely, depletion of MΦs reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a MΦ marker of renal inflammation, and its targeting uncouples MΦ reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Shah
- Division of Nephrology, Department of Medicine, and
| | | | - Naveen R. Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | | | | | | | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, and
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, and
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Zhang F, Hu Z, Jacob A, Brenner M, Wang P. An eCIRP inhibitor attenuates fibrosis and ferroptosis in ischemia and reperfusion induced chronic kidney disease. Mol Med 2025; 31:11. [PMID: 39794717 PMCID: PMC11724597 DOI: 10.1186/s10020-025-01071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated. We hypothesize that eCIRP is involved in renal ischemia/reperfusion (RIR)-induced CKD and that C23, an antagonist to eCIRP, is beneficial in attenuating renal fibrosis and ferroptosis in RIR-induced CKD. METHODS C57BL/6 (WT) or CIRP-/- mice underwent renal injury with total blockage of blood perfusion by clamping bilateral renal pedicles for 28 min. In the WT mice at the time of reperfusion, they were treated with C23 (8 mg/kg) or vehicle. Blood and kidneys were harvested for further analysis at 21 days thereafter. In a separate cohort, mice underwent bilateral RIR and treatment with C23 or vehicle and were then subjected to left nephrectomy 72 h thereafter. Mice were then monitored for additional 19 days, and glomerular filtration rate (GFR) was assessed using a noninvasive transcutaneous method. RESULTS In the RIR-induced CKD, CIRP-/- mice showed decreased collagen deposition, fibronectin staining, and renal injury as compared to the WT mice. Administration of C23 ameliorated renal fibrosis by decreasing the expression of active TGF-β1, α-SMA, collagen deposition, fibronectin and macrophage infiltration to the kidneys. Furthermore, intervention with C23 significantly decreased renal ferroptosis by reducing iron accumulation, increasing the expression of glutathione peroxidase 4 (GPX4) and lipid peroxidation in the kidneys of RIR-induced CKD mice. Treatment with C23 also attenuated BUN and creatinine. Finally, GFR was significantly decreased in RIR mice with left nephrectomy and C23 treatment partially prevented their decrease. CONCLUSION Our data show that eCIRP plays an important role in RIR-induced CKD. Treatment with C23 decreased renal inflammation, alleviated chronic renal injury and fibrosis, and inhibited ferroptosis in the RIR-induced CKD mice.
Collapse
Affiliation(s)
- Fangming Zhang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
| | - Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY, USA
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY, USA.
| |
Collapse
|
10
|
Kim HK, Jun H, Ko SY. Neutrophil-to-lymphocyte ratio as a predictor for early mortality in older patients requiring hemodialysis; insights for hemodialysis access planning. BMC Nephrol 2025; 26:2. [PMID: 39748336 PMCID: PMC11697461 DOI: 10.1186/s12882-024-03924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The 2019 Kidney Disease Outcome Quality Initiative guidelines emphasize the importance of selecting dialysis based on the life expectancy of the patient. However, it is difficult to predict the life expectancy of a patient during arteriovenous fistula creation. We investigated whether neutrophil-to-lymphocyte, monocyte-to-lymphocyte, and platelet-to-lymphocyte ratios measured before dialysis could predict mortality. MATERIALS AND METHODS Between January 2016 and December 2020, we retrospectively analyzed electronic medical records of 448 patients aged ≥ 70 years undergoing first-time arteriovenous access surgery at three tertiary care hospitals, all of whom had not received prior dialysis treatment. Only patients undergoing blood tests on the day before surgery were included in the analysis. Patients who died within one year after surgery were included in the non-survival group, while those who died after one year were included in the survival group. RESULTS Patients were categorized into non-survival (n = 52) and survival (n = 396) groups. Multivariate analysis for one-year mortality revealed that the preoperative neutrophil-to-lymphocyte ratio demonstrated a 1.15 hazard ratio ( p < 0.001 ). Also, cancer (HR 2.50, p = 0.02) and peripheral arterial disease (HR 4.62, p < 0.001) were risk factor for one-year mortality. The preoperative platelet-to-lymphocyte and monocyte-to-lymphocyte ratios were not identified as one-year mortality risk factors. In the total mortality multivariate analysis, monocyte-to-lymphocyte ratios were one of the risk factors (HR 2.74, p < 0.007). CONCLUSION The neutrophil-to-lymphocyte ratio was a risk factor associated with one-year mortality in patients aged ≥ 70 years. However, further research is required to determine whether these can be used for predictive purposes.
Collapse
Affiliation(s)
- Hyo Kee Kim
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Heungman Jun
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sun-Young Ko
- Department of Laboratory Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2025; 61:25-41. [PMID: 38334370 PMCID: PMC11645494 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Yoshikawa T, Yanagita M. Single-Cell Analysis Provides New Insights into the Roles of Tertiary Lymphoid Structures and Immune Cell Infiltration in Kidney Injury and Chronic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:40-54. [PMID: 39097168 DOI: 10.1016/j.ajpath.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024]
Abstract
Chronic kidney disease (CKD) is a global health concern with high morbidity and mortality. Acute kidney injury (AKI) is a pivotal risk factor for the progression of CKD, and the rate of AKI-to-CKD progression increases with aging. Intrarenal inflammation is a fundamental mechanism underlying AKI-to-CKD progression. Tertiary lymphoid structures (TLSs), ectopic lymphoid aggregates formed in nonlymphoid organs, develop in aged injured kidneys, but not in young kidneys, with prolonged inflammation and maladaptive repair, which potentially exacerbates AKI-to-CKD progression in aged individuals. Dysregulated immune responses are involved in the pathogenesis of various kidney diseases, such as IgA nephropathy, lupus nephritis, and diabetic kidney diseases, thereby deteriorating kidney function. TLSs also develop in several kidney diseases, including transplanted kidneys and renal cell carcinoma. However, the precise immunologic mechanisms driving AKI-to-CKD progression and development of these kidney diseases remain unclear, which hinders the development of novel therapeutic approaches. This review aims to describe recent findings from single-cell analysis of cellular heterogeneity and complex interactions among immune and renal parenchymal cells, which potentially contribute to the pathogenesis of AKI-to-CKD progression and other kidney diseases, highlighting the mechanisms of formation and pathogenic roles of TLSs in aged injured kidneys.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Xiao C, Wang Y, Liu J, Li X, Wang P, Zhou J, Xiu H, Lu S, Zhu H, Wang R. Mechanism of Fangji Huangqi decoction against acute kidney injury based on network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156345. [PMID: 39742571 DOI: 10.1016/j.phymed.2024.156345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet. PURPOSE A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI. MATERIALS AND METHODS The model of mouse renal ischemic reperfusion was adopted to verify the curative effect of FJHQD against renal injury. FJHQD was analyzed and separated by Ultra-High performance liquid chromatography (UHPLC). Bioactives and potential targets of FJHQD, as well as AKI-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Besides, in vivo and vitro experiments were conducted to verify the findings. RESULTS A total of 20 bioactive ingredients of FJHQD (top 10 positive ion and negative ion compounds) and 274 FJHQD-AKI overlaped targets were screened. Bioinformatics analysis revealed that apoptosis mediated by PI3K-AKT signaling pathway might play an important role in FJHQD against AKI. Further experiments showed that FJHQD alleviated I/R-induced renal injury and OGD/R induced TEC apoptosis by activating PI3K-AKT signaling pathway. Moreover, molecular docking suggested (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid, 2-Hydroxyacetophenone, Liquiritigenin, (S)-[10]-Gingerol and Isookanin-7-O-glucoside may be potential candidate agents, among which, PIK3CA interacted with Liquiritigenin, (S)-[10]-Gingerol, Isookanin-7-O-glucoside and 2-Hydroxyacetophenone respectively. AKT1 interacted with (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid and 2-Hydroxyacetophenone. Cell experiments showed that the most important ingredient of FJHQD, Liquiritigenin, could inhibit the TEC apoptosis and up-regulate PI3K-Akt signaling pathway, which further confirmed the prediction by network pharmacology strategy and molecular docking. CONCLUSION Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of FJHQD against AKI. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.
Collapse
Affiliation(s)
- Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Yayun Wang
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Jingwei Liu
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, PR China
| | - Xin Li
- Department of Anorectal, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Junran Zhou
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, PR China
| | - Hao Xiu
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China
| | - Shun Lu
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao, PR China
| | - Renhe Wang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China.
| |
Collapse
|
14
|
Jin R, Dai Y, Wang Z, Hu Q, Zhang C, Gao H, Yan Q. Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression. BIOLOGY 2024; 14:12. [PMID: 39857243 PMCID: PMC11763183 DOI: 10.3390/biology14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis. Understanding the molecular mechanisms of renal fibrosis is crucial for delaying CKD progression. Ferroptosis is a type of discovered an iron-dependent lipid peroxidation-regulated cell death. Notably, Ferroptosis contributes to tissue and organ fibrosis, which is correlated with the degree of renal fibrosis. This study aims to clarify the complex mechanisms of ferroptosis in renal parenchymal cells and explore how ferroptosis intervention may help alleviate renal fibrosis, particularly by addressing the gap in CKD mechanisms related to abnormal lipid metabolism under the ferroptosis context. The goal is to provide a new theoretical basis for clinically delaying CKD progression.
Collapse
Affiliation(s)
- Rui Jin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinyang Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi 445000, China
| |
Collapse
|
15
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
16
|
Liao S, Chen Y, Wang S, Wang C, Ye C. Shenkang injection for the treatment of acute kidney injury: a systematic review and meta-analysis. Ren Fail 2024; 46:2338566. [PMID: 38655870 PMCID: PMC11044765 DOI: 10.1080/0886022x.2024.2338566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/30/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Shenkang injection (SKI) has been widely used in China for many years for the treatment of kidney disease. The objective of this systematic review was to assess the efficacy of Shenkang injection for the treatment of acute kidney injury (AKI). METHODS A search was conducted across seven databases, encompassing data from the inception of each database through October 8th, 2023. Randomized controlled trials comparing SKI-treated AKI patients with control subjects were extracted. The main outcome measure was serum creatinine (SCr) levels. Secondary outcomes included blood urea nitrogen (BUN), serum cystatin C (CysC), 24-h urine protein (24 h-Upro) levels, APACHE II score and adverse reactions. RESULTS This meta-analysis included eleven studies, and the analysis indicated that, compared with the control group, SKI significantly decreased SCr [WMD = -23.31, 95% CI (-28.06, -18.57); p < 0.001]; BUN [WMD = -2.07, 95% CI (-2.56, -1.57); p < 0.001]; CysC [WMD = -0.55, 95% CI (-0.78, -0.32), p < 0.001]; 24-h urine protein [WMD = -0.43, 95% CI (-0.53, -0.34), p < 0.001]; and the APACHE II score [WMD = -3.07, 95% CI (-3.67, -2.48), p < 0.001]. There was no difference in adverse reactions between the SKI group and the control group [RR = 1.32, 95% CI (0.66, 2.63), p = 0.431]. CONCLUSION The use of SKI in AKI patients may reduce SCr, BUN, CysC, 24-h Upro levels, and APACHE II scores in AKI patients. The incidence of adverse reactions did not differ from that in the control group. Additional rigorous clinical trials will be necessary in the future to thoroughly evaluate and establish the effectiveness of SKI in the treatment of AKI.
Collapse
Affiliation(s)
- Shengchun Liao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yurou Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuting Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Institute of Traditional Chinese Medicine Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Kim MJ, Hwang T, Ha S, Kim H, Kim J, Kim D, Yoo JA, Kim BM, Chung HY, Kim D, Lee J, Lee H, Kim S, Chung KW. Calorie restriction exacerbates folic acid-induced kidney fibrosis by altering mitochondria metabolism. J Nutr Biochem 2024; 134:109765. [PMID: 39255902 DOI: 10.1016/j.jnutbio.2024.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Calorie restriction (CR) is known to confer health benefits, including longevity and disease prevention. Although CR is promising in preventing chronic kidney disease (CKD), its potential impact on the progression of kidney fibrosis from acute kidney injury (AKI) to CKD remains unclear. Here, we present evidence that CR exacerbates renal damage in a mouse model of folic acid (FA)-induced renal fibrosis by altering mitochondrial metabolism and inflammation. Mice subjected to CR (60% of ad libitum) for three days were subjected to high dose of FA (250 mg/kg) injection and maintained under CR for an additional week before being sacrificed. Biochemical analyses showed that CR mice exhibited increased kidney injury and fibrosis. RNA sequencing analysis demonstrated decreased electron transport and oxidative phosphorylation (OXPHOS) in CR kidneys with injury, heightened inflammatory, and fibrotic responses. CR significantly decreased OXPHOS gene and protein levels and reduced β-oxidation-associated proteins in the kidney. To determine whether defects in mitochondrial metabolism is associated with inflammation in the kidney, further in vitro experiments were performed. NRK52E kidney epithelial cells were treated with antimycin A to induce mitochondrial damage. Antimycin A treatment significantly increased chemokine expression via a STING-dependent pathway. Serum restriction in NRK49F kidney fibroblasts was observed to enhance the fibrotic response induced by TGFβ under in vitro conditions. In summary, our results indicate that CR exacerbates fibrosis and inflammatory responses in the kidney by altering mitochondrial metabolism, highlighting the importance of adequate energy supply for an effective response to AKI and fibrosis development.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Taeyeon Hwang
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyerin Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Doyeon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji-An Yoo
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byeong Moo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sangok Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Morgan C, Forest E, Ulrich E, Sutherland S. Pediatric acute kidney injury and adverse health outcomes: using a foundational framework to evaluate a causal link. Pediatr Nephrol 2024; 39:3425-3438. [PMID: 38951220 PMCID: PMC11511696 DOI: 10.1007/s00467-024-06437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Acute kidney injury (AKI) is a major global health problem, expensive to manage, and its associations with negative pediatric health outcomes have been clearly demonstrated. One of the most fundamental questions to consider as we use previous epidemiological information to advance research and care paradigms is the strength of the causal link between pediatric AKI and health outcomes. In this review, we apply the foundational framework of the Bradford Hill criteria to evaluate the extent to which a causal link exists between AKI and the associated adverse outcomes in children. Available data in children support a causal link between AKI and short-term outcomes including mortality, length of stay, and ventilation time. Clarifying the causal nature of longer term associations requires further high-quality observational studies in children, careful consideration of what defines the most meaningful and measurable longer term outcomes after pediatric AKI, and integration of evolving biological data related to mechanisms of disease. Preventing or mitigating AKI should lead to improved outcomes. Demonstrating such reversibility will solidify confidence in the causal relationship, improve child health, and highlight an aspect which is highly relevant to clinicians, scientists, and policy makers.
Collapse
Affiliation(s)
- Catherine Morgan
- Department of Pediatrics, Division of Nephrology, University of Alberta, Edmonton, AB, Canada.
| | - Emma Forest
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Emma Ulrich
- Department of Pediatrics, Division of Nephrology, University of Alberta, Edmonton, AB, Canada
| | - Scott Sutherland
- Department of Pediatrics, Division of Nephrology, Center for Academic Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
19
|
Puri B, Majumder S, Gaikwad AB. Novel dysregulated long non-coding RNAs in the acute kidney injury-to-chronic kidney diseases transition unraveled by transcriptomic analysis. Pharmacol Res Perspect 2024; 12:e70036. [PMID: 39549026 PMCID: PMC11568611 DOI: 10.1002/prp2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition involves a complex pathomechanism, including inflammation, apoptosis, and fibrosis where long non-coding RNAs (lncRNAs) play a crucial role in their regulation. However, to date, only a few lncRNAs have been discovered to be involved in the AKI-to-CKD transition. Therefore, this study aims to investigate the dysregulated lncRNAs in the AKI-to-CKD transition in vitro and in vivo. To mimic AKI-to-CKD transition both in vivo and in vitro, bilateral ischemia-reperfusion (IR) kidney injury was performed in Wistar rats (male), and normal rat kidney epithelial cell (NRK52E) cells were treated with exogenous transforming growth factor-β1 (TGF-β1). Further processing and analysis of samples collected from these studies (e.g., biochemical, histopathology, immunofluorescence, and RNA isolation) were also performed, and transcriptomic analysis was performed to identify the dysregulated lncRNAs. Rats subjected to IR showed a significant increase in kidney injury markers (creatinine, blood urea nitrogen (BUN), kidney injury molecule-1(KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) along with altered cell morphology). Apoptosis, inflammation, and fibrosis markers were markedly increased during the AKI-to-CKD transition. Furthermore, transcriptomic analysis revealed 62 and 84 unregulated and 95 and 92 downregulated lncRNAs in vivo and in vitro, respectively. Additionally, functional enrichment analysis revealed their involvement in various pathways, including the tumor necrosis factor (TNF), wingless-related integration site (Wnt), and hypoxia-inducible factor-1 (HIF-1) signaling pathways. These identified dysregulated lncRNAs significantly contribute to AKI-to-CKD transition, and their knockin/out can aid in developing targeted therapeutic interventions against AKI-to-CKD transition.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of PharmacyBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| | - Syamantak Majumder
- Department of Biological SciencesBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| | - Anil Bhanudas Gaikwad
- Department of PharmacyBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| |
Collapse
|
20
|
Chang TT, Li SY, Tsai MT, Chiang CH, Chen C, Chen JW. CXCL5 inhibition ameliorates acute kidney injury and prevents the progression from acute kidney injury to chronic kidney disease. Clin Sci (Lond) 2024; 138:1451-1466. [PMID: 39503534 DOI: 10.1042/cs20241713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD). CXC motif chemokine ligand 5 (CXCL5) is up-regulated in kidney diseases. We aimed to investigate the direct effect of CXCL5 on the pathology of AKI. Serum and renal expression of CXCL5 were increased in animals with renal ischemia-reperfusion injury or unilateral ureteral obstruction. CXCL5-knockout mice exhibited reduced systemic oxidative stress and preserved renal function in the acute and chronic phases of AKI, as evidenced by reductions in serum BUN and creatinine levels, the urinary albumin-to-creatinine ratio, and the kidney-to-body weight ratio. CXCL5-knockout mice improved AKI-induced tubular injury and fibrosis, reduced renal macrophage infiltration, and reduced expression of NADPH oxidase and inflammatory and fibrotic proteins. CXCL5 activated p47 to up-regulate ROS generation and induce cellular damages through CXCR2. CXCL5 knockdown exerted antioxidative, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects on hypoxia-reoxygenation-stimulated renal proximal tubular epithelial cells. Clinical data indicated elevated circulating and renal CXCL5 in CKD patients, and renal CXCL5 was correlated with increased renal fibrosis and decreased estimated glomerular filtration rate. Altogether, CXCL5 levels increased in experimental AKI and clinical CKD, and in vivo and in vitro CXCL5 inhibition may reduce acute tubular injury and prevent the subsequent progression from AKI to CKD.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Chiang
- Division of Urology, Department of Surgery and Department of Research and Development, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
- Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Shi J, Xu A, Huang L, Liu S, Wu B, Zhang Z. Immune Microenvironment Alterations and Identification of Key Diagnostic Biomarkers in Chronic Kidney Disease Using Integrated Bioinformatics and Machine Learning. Pharmgenomics Pers Med 2024; 17:497-510. [PMID: 39588536 PMCID: PMC11586269 DOI: 10.2147/pgpm.s488143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Background Chronic kidney disease (CKD) involves complex immune dysregulation and altered gene expression profiles. This study investigates immune cell infiltration, differential gene expression, and pathway enrichment in CKD patients to identify key diagnostic biomarkers through machine learning methods. Methods We assessed immune cell infiltration and immune microenvironment scores using the xCell algorithm. Differentially expressed genes (DEGs) were identified using the limma package. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed to evaluate pathway enrichment. Machine learning techniques (LASSO and Random Forest) pinpointed diagnostic genes. A nomogram model was constructed and validated for diagnostic prediction. Spearman correlation explored associations between key genes and immune cell recruitment. Results The CKD group exhibited significantly altered immune cell infiltration and increased immune microenvironment scores compared to the normal group. We identified 2335 DEGs, including 124 differentially expressed immune-related genes. GSEA highlighted significant enrichment of inflammatory and immune pathways in the high immune score (HIS) subgroup, while GSVA indicated upregulation of immune responses and metabolic processes in HIS. Machine learning identified four key diagnostic genes: RGS1, IL4I1, NR4A3, and SOCS3. Validation in an independent dataset (GSE96804) and clinical samples confirmed their diagnostic potential. The nomogram model integrating these genes demonstrated high predictive accuracy. Spearman correlation revealed positive associations between the key genes and various immune cells, indicating their roles in immune modulation and CKD pathogenesis. Conclusion This study provides a comprehensive analysis of immune alterations and gene expression profiles in CKD. The identified diagnostic genes and the constructed nomogram model offer potent tools for CKD diagnosis. The immunomodulatory roles of RGS1, IL4I1, NR4A3, and SOCS3 warrant further investigation as potential therapeutic targets in CKD.
Collapse
Affiliation(s)
- Jinbao Shi
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Aliang Xu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Liuying Huang
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Shaojie Liu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Binxuan Wu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Zuhong Zhang
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| |
Collapse
|
22
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Zhang C, Wu Z, Song Y, Jin X, Hu J, Huang C, Zhou J, Lian J. Exploring diagnostic biomarkers of type 2 cardio-renal syndrome based on secreted proteins and bioinformatics analysis. Sci Rep 2024; 14:24612. [PMID: 39427047 PMCID: PMC11490509 DOI: 10.1038/s41598-024-75580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Chronic heart failure (CHF) can induce chronic kidney disease (CKD), called type 2 cardio-renal syndrome (CRS2). The mechanism is not completely clear, and there is a lack of early warning biomarkers of CKD in the context of CHF. Two CKD, one CHF-PBMC and four CHF-cardiac tissue expression profile datasets were obtained from GEO database. Differential expression analysis and WGCNA were used to detect CKD key genes and CHF-related secreted proteins. Protein-protein interaction (PPI), functional enrichment, and cMAP analysis reveal potential mechanisms and drugs of CHF-related CKD. Five machine learning algorithms were used to screen candidate biomarkers, construct a diagnostic nomogram for CKD and validate it in two external cohorts. Clinical serum samples were collected in our hospital to evaluate the correlation and diagnostic value of biomarkers and CKD. 225 CKD key genes and 316 CHF-related secreted proteins were identified. Four key subgroups, including 204 genes, were identified as CRS2-related pathogenic genes by PPI analysis. Enrichment analysis revealed that the identified subgroups exhibited significant enrichment in cytokine action, immune responses, and inflammatory processes. The cMAP analysis highlighted metiradone as a drug with greater potential for therapeutic intervention for CRS2. Utilizing five machine learning algorithms, three hub genes (CD48, COL3A1, LOXL1) were pinpointed as potential biomarkers for CKD, and a nomogram model was constructed. Receiver operating characteristic analysis demonstrated that the nomogram's area under the curve (AUC) exceeded 0.80 in both the CKD combined dataset and two external cohorts. In addition, the three biomarkers were significantly correlated with the glomerular filtration rate, and the AUC of the model predicting disease progression was 0.944. Furthermore, analysis of immune cell infiltration indicated a correlation between the three biomarkers and the infiltration fraction of macrophages, neutrophils, and other immune cells in CKD. Our clinical cohort validated the expression patterns of three biomarkers in serum, and the diagnostic model achieved an AUC of 0.876. CHF has the potential to facilitate the progression of CKD via the release of cardiac and PBMC secreted proteins. Furthermore, CD48, COL3A1, and LOXL1 have been identified as potential biomarkers for the detection of CKD.
Collapse
Affiliation(s)
- Chuanjing Zhang
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China
| | - Zhuonan Wu
- Department of Cardiology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Yongfei Song
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China
| | - Xiaojun Jin
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China
| | - Jiale Hu
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jianqing Zhou
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China
| | - Jiangfang Lian
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, No.57, Xingning Road, Ningbo, 315040, Zhejiang Province, China.
| |
Collapse
|
24
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
25
|
Wang Y, Zhang J, Yang Z, Li C, Zhang C, Sun S, Jiao Z, Che G, Gao H, Liu J, Li J. Ocotillol-Type Pseudoginsenoside-F11 Alleviates Lipopolysaccharide-Induced Acute Kidney Injury through Regulation of Macrophage Function by Suppressing the NF-κB/NLRP3/IL-1β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20496-20512. [PMID: 39239930 DOI: 10.1021/acs.jafc.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. The inflammatory response is the fundamental pathologic alteration throughout AKI, regardless of the various causal factors. Macrophages are the main immune cells involved in the inflammatory microenvironment in AKI. Consequently, targeting macrophages might become a novel strategy for the treatment of AKI. In this study, we demonstrated that pseudoginsenoside-F11 (PF11), a distinctive component of Panax quinquefolius L., regulated macrophage function and protected renal tubular epithelial cells TCMK-1 from lipopolysaccharide (LPS) in vitro. PF11 also alleviated renal injuries in an LPS-induced AKI mouse model, decreased the levels of inflammatory cytokines, reduced macrophage inflammatory infiltration, and promoted the polarization of M1 macrophages to M2c macrophages with suppression of the nuclear factor-κB/NOD-like receptor thermal protein domain-associated protein 3/interleukin-1β (NF-κB/NLRP3/IL-1β) signaling pathway. To further investigate whether this nephroprotective effect of PF11 is mediated by macrophages, we performed macrophage depletion by injection of clodronate liposomes in mice. Macrophage depletion abolished PF11's ability to protect against LPS-induced kidney damage with downregulating the NF-κB/NLRP3/IL-1β signaling pathway. In summary, this is the first study providing data on the efficacy and mechanism of PF11 in the treatment of AKI by regulating macrophage function.
Collapse
Affiliation(s)
- Yaru Wang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinyu Zhang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Zhuo Yang
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Changcheng Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Chenming Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Shengkai Sun
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Ziyan Jiao
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Guanghua Che
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Hang Gao
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
26
|
Tang Y, Jiang J, Zhao Y, Du D. Aging and chronic kidney disease: epidemiology, therapy, management and the role of immunity. Clin Kidney J 2024; 17:sfae235. [PMID: 40034487 PMCID: PMC11873799 DOI: 10.1093/ckj/sfae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney disease (CKD) is now an unquestionable progressive condition that affects more than 10% of the general population worldwide, and has emerged as one of the most important causes of global mortality. It is clear that the prevalence of CKD among the aging population is significantly elevated. It involves a broad range of complex and poorly understood concerns in older adults such as frailty, malnutrition, sarcopenia, and even cognitive and mental dysfunction. In kidneys, renal function such as glomerular filtration, urine concentration and dilution, and homeostasis of sodium and potassium, can be influenced by the aging process. In addition, it is worth noting that CKD and end-stage kidney disease patients often have accompanying activation of immune system and inflammation, involving both the innate and adaptive immune system. Based on this background, in this review article we attempt to summarize the epidemiological characteristics of CKD in the aging population, discuss the immunological mechanisms in aging-related CKD, and furnish the reader with processes for the therapy and management of elderly patients with CKD.
Collapse
Affiliation(s)
- Yukun Tang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| |
Collapse
|
27
|
Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. Cell Mol Immunol 2024; 21:826-841. [PMID: 38871810 PMCID: PMC11291639 DOI: 10.1038/s41423-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Sang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jian Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
28
|
Fan Y, Wang C, Dai W, Zhou Y, Lu G, Li W, Li L, Lin T. DNA Origami Enhanced Cytokine Immunotherapy for Alleviating Renal Ischemia-Reperfusion Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38979-38988. [PMID: 39029244 DOI: 10.1021/acsami.4c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Institute of Urology and Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshu Dai
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaojia Zhou
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gonggong Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Lin
- Department of Urology, Institute of Urology and Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, Xie J, Ma H, Chen H, Wang Y, Xu Y. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant 2024; 39:1344-1359. [PMID: 38244230 DOI: 10.1093/ndt/gfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND AND HYPOTHESIS Acute kidney injury (AKI) could progress to chronic kidney disease (CKD) and the AKI-CKD transition has major clinical significance. A growing body of evidence has unveiled the role of pyroptosis in kidney injury. We postulate that GSDMD and GSDME exert cumulative effects on the AKI-CKD transition by modulating different cellular responses. METHODS We established an AKI-CKD transition model induced by folic acid in wildtype (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-Gsdme-/- mice. Tubular injury, renal fibrosis and inflammatory responses were evaluated. In vitro studies were conducted to investigate the interplay among tubular cells, neutrophils, and macrophages. RESULTS Double deletion of Gsdmd and Gsdme conferred heightened protection against AKI, mitigating inflammatory responses, including the formation of neutrophil extracellular traps (NETs), macrophage polarization and differentiation, and ultimately renal fibrosis, compared with wildtype mice and mice with single deletion of either Gsdmd or Gsdme. Gsdme, but not Gsdmd deficiency, shielded tubular cells from pyroptosis. GSDME-dependent tubular cell death stimulated NETs formation and prompted macrophage polarization towards a pro-inflammatory phenotype. Gsdmd deficiency suppressed NETs formation and subsequently hindered NETs-induced macrophage-to-myofibroblast transition (MMT). CONCLUSION GSDMD and GSDME collaborate to contribute to AKI and subsequent renal fibrosis induced by folic acid. Synchronous inhibition of GSDMD and GSDME could be an innovative therapeutic strategy for mitigating the AKI-CKD transition.
Collapse
Affiliation(s)
- Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
30
|
Lisa A, Carbone F, Liberale L, Montecucco F. The Need to Identify Novel Markers for Early Renal Injury in Cardiorenal Syndrome. Cells 2024; 13:1283. [PMID: 39120314 PMCID: PMC11311518 DOI: 10.3390/cells13151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The term "Cardiorenal Syndrome" (CRS) refers to the complex interplay between heart and kidney dysfunction. First described by Robert Bright in 1836, CRS was brought to its modern view by Ronco et al. in 2008, who defined it as one organ's primary dysfunction leading to secondary dysfunction in the other, a view that led to the distinction of five different types depending on the organ of primary dysfunction and the temporal pattern (acute vs. chronic). Their pathophysiology is intricate, involving various hemodynamic, neurohormonal, and inflammatory processes that result in damage to both organs. While traditional biomarkers have been utilized for diagnosing and prognosticating CRS, they are inadequate for the early detection of acute renal damage. Hence, there is a pressing need to discover new biomarkers to enhance clinical outcomes and treatment approaches.
Collapse
Affiliation(s)
- Anna Lisa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
31
|
Liu WS, Liang SS, Cheng MM, Wu MT, Li SY, Cheng TT, Liu TY, Tsai CY, Lai YT, Lin CH, Wang HT, Tsou HH. How renal toxins respond to renal function deterioration and oral toxic adsorbent in pH-controlled releasing capsule. ENVIRONMENTAL TOXICOLOGY 2024; 39:3930-3943. [PMID: 38572829 DOI: 10.1002/tox.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Mei Cheng
- Division of nephrology, Department of internal medicine, West Garden Hospital, Taipei, Taiwan
| | - Ming-Tsan Wu
- Department of internal medicine, Fu-Ling clinic, New Taipei City, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Nephrology, and Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Tien Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Yao Tsai
- Institute of Public Health, Department of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
- Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Ting Lai
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Nursing, College of Medical Technology and Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Hung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Kim Forest Enterprise Co., Ltd., New Taipei City, Taiwan
| |
Collapse
|
32
|
Ruan L, Xu S, Qin Y, Tang H, Li X, Yan G, Wang D, Tang C, Qiao Y. Red Blood Cell Distribution Width to Albumin Ratio for Predicting Type I Cardiorenal Syndrome in Patients with Acute Myocardial Infarction: A Retrospective Cohort Study. J Inflamm Res 2024; 17:3771-3784. [PMID: 38882186 PMCID: PMC11180445 DOI: 10.2147/jir.s454904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Red blood cell distribution width to albumin ratio (RAR) is a novel inflammatory biomarker that independently predicts adverse cardiovascular events and acute kidney injury. This study aimed to assess the predictive value of RAR for cardio-renal syndrome type I (CRS-I) risk in acute myocardial infarction (AMI) patients. Patients and methods This study retrospectively enrolled 551 patients who were definitively diagnosed as AMI between October 2021 and October 2022 at the Affiliated Zhongda Hospital of Southeast University. Participants were divided into two and four groups based on the occurrence of CRS-I and the quartiles of RAR, respectively. Demographic data, laboratory findings, coronary angiography data, and drug utilization were compared among the groups. Logistic regression and receiver operating characteristic curve (ROC) analysis were performed to identify independent risk factors for CRS-I and evaluated the predictive value of RAR for CRS-I. Results Among the cohort of 551 patients, 103 (18.7%) developed CRS-I. Patients with CRS-I exhibited significantly elevated RAR levels compared to those without the condition, and the incidence of CRS-I correlated with escalating RAR. Univariate and multivariate logistic regression analyses identified RAR as an independent risk factor for CRS-I. ROC curves analysis demonstrated that RAR alone predicted CRS-I with an area under the curve (AUC) of 0.683 (95% CI=0.642-0.741), which was superior to the traditional inflammatory marker C-reactive protein (CRP). Adding the variable RAR to the model for predicting the risk of CRS-I further improved the predictive value of the model from 0.808 (95% CI=0.781-0.834) to 0.825 (95% CI=0.799-0.850). Conclusion RAR is an independent risk factor for CRS-I, and high levels of RAR are associated with an increased incidence of CRS-I in patients with AMI. RAR emerges as a valuable and readily accessible inflammatory biomarker that may play a pivotal role in risk stratification in clinical practice.
Collapse
Affiliation(s)
- Liang Ruan
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Shuailei Xu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yuhan Qin
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Huihong Tang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Xudong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Lin S, Yang X. Body surface area is a predictor of 90-day all-cause mortality in critically ill patients with acute kidney injury. Injury 2024; 55:111544. [PMID: 38626586 DOI: 10.1016/j.injury.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE To clarify the prognosis effect between body surface area (BSA) and patients with acute kidney injury (AKI), we attempted to analyze the association between BSA and 90-day all-cause mortality in critically ill patients with AKI. METHODS Clinical data of 9195 critically ill patients with AKI were retrieved from the Medical Information Mart for Intensive Care III database were then retrospectively analyzed. BSA were calculated using the Mosteller formula. We analyzed the correlation between BSA and 90-day all-cause mortality in critically ill patients with AKI based on Kaplan-Meier curve analysis and adjusted Cox regression model. RESULTS Of the 9195 critically ill patients with AKI, there were 3778 (41.1%) female patients and 2001 90-day all-cause deaths (female: 22.2%, male: 21.5%). Kaplan-Meier curve analysis revealed that a lower body surface area indicated a higher 90-day all-cause mortality in both male and female patients with AKI (log-rank P < 0.001). Cox regression model showed that a higher BSA was independently correlated with a lower 90-day all-cause mortality (female: hazard ratio=0.657, 95% confidence interval: 0.550-0.784, P < 0.001; male: hazard ratio=0.655, 95% confidence interval: 0.565-0.760, P < 0.001). CONCLUSIONS BSA was negatively correlated with 90-day all-cause mortality in critically ill patients with AKI. BSA can therefore be used as a prognostic indicator for poor outcomes in critically ill patients with AKI.
Collapse
Affiliation(s)
- Sencai Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
34
|
Jian J, Yu-Qing L, Rang-Yue H, Xia Z, Ke-Huan X, Ying Y, Li W, Rui-Zhi T. Isorhamnetin ameliorates cisplatin-induced acute kidney injury in mice by activating SLPI-mediated anti-inflammatory effect in macrophage. Immunopharmacol Immunotoxicol 2024; 46:319-329. [PMID: 38466121 DOI: 10.1080/08923973.2024.2329621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Isorhamnetin (IH) has been reported to have significant anti-inflammatory effects in various diseases, but its role and mechanism in AKI remain unclear. This study aimed to explore the potential role and mechanism of isorhamnetin in inhibiting macrophage related inflammation and improving AKI injury. METHODS We established an AKI mouse model by intraperitoneal injection of cisplatin in vivo, and constructed an inflammatory cell model by stimulating RAW264.7 cells with LPS. Creatinine and urea nitrogen were measured to evaluate the changes of renal function in AKI mice. The changes of renal pathological structure were observed by H&E staining. The inflammatory factor-related proteins and RNA expression levels were detected by Western blot and real time PCR. RESULTS Isorhamnetin protected the kidney from cisplatin induced AKI and significantly inhibited the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) both in AKI kidney and LPS-stimulated RAW264.7 cells. Interestingly, the data also demonstrated that isorhamnetin significantly upregulated the expression of secretory leukocyte peptidase inhibitor (SLPI), an anti-inflammatory factor, in AKI kidney and LPS-stimulated macrophages, as well as inhibited the M1 macrophage and activated M2 macrophage in vitro. Blocking of SLPI by siRNA activated Mincle-associated inflammatory signaling in macrophages, and the inhibitory effect of isorhamnetin on inflammation was significantly attenuated. CONCLUSION Isorhamnetin inhibits macrophage inflammation and protects kidney in AKI may be related to downregulating Mincle/Syk/NF-κB-maintained macrophage phenotype by activating SLPI.
Collapse
Affiliation(s)
- Jia Jian
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Yu-Qing
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Han Rang-Yue
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhong Xia
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xie Ke-Huan
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yan Ying
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wang Li
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Tan Rui-Zhi
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Qiao R, Wang H, Li D, Yang Y, Shu J, Song X, Zhao X, Lu L. Stevioside protects against acute kidney injury by inhibiting gasdermin D pathway. SMART MEDICINE 2024; 3:e20240010. [PMID: 39188700 PMCID: PMC11235599 DOI: 10.1002/smmd.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 08/28/2024]
Abstract
Recent studies indicate a significant upregulation of gasdermin D (GSDMD) in acute kidney injury (AKI), a severe medical condition characterized by high morbidity and mortality globally. In this study, we identified and validated the therapeutic effects of small molecule inhibitors targeting the GSDMD pathway for AKI treatment. Using a drug screening assay, we evaluated thousands of small molecules from DrugBank against Lipopolysaccharide (LPS) and Nigericin-stimulated immortalized bone marrow-derived macrophages (iBMDMs) to discern GSDMD pathway activators. We simulated AKI in primary renal tubular epithelial cells using hydrogen peroxide (H2O2) exposure. Furthermore, AKI in mouse models was induced via cisplatin and ischemia/reperfusion. Our findings highlight stevioside as a potent GSDMD activator exhibiting minimal toxicity. Experimental results, both in vitro and in vivo, demonstrate stevioside's significant potential in alleviating renal tubular epithelial cell injury and AKI histological damage. After stevioside treatment, a notable decrease in cleaved GSDMD-N terminal levels was observed coupled with diminished inflammatory factor release. This observation was consistent in both cisplatin- and ischemia/reperfusion-induced AKI mouse models. Collectively, our research suggests that stevioside could be a promising candidate for modulating GSDMD signaling in AKI treatment.
Collapse
Affiliation(s)
- Ruochen Qiao
- Institute of Translational Medicinethe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- University College London School of PharmacyLondonUK
| | - Hui Wang
- Hospital‐Acquired Infection Control DepartmentNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Dasheng Li
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yu Yang
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jiaxin Shu
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Xiang Song
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Xiaozhi Zhao
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Li Lu
- Department of AndrologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| |
Collapse
|
36
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
38
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
39
|
Saiz ML, Lozano-Chamizo L, Florez AB, Marciello M, Diaz-Bulnes P, Corte-Iglesias V, Bernet CR, Rodrigues-Diez RR, Martin-Martin C, Rodriguez-Santamaria M, Fernandez-Vega I, Rodriguez RM, Diaz-Corte C, Suarez-Alvarez B, Filice M, Lopez-Larrea C. BET inhibitor nanotherapy halts kidney damage and reduces chronic kidney disease progression after ischemia-reperfusion injury. Biomed Pharmacother 2024; 174:116492. [PMID: 38537579 DOI: 10.1016/j.biopha.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain; Atrys Health, Madrid E-28001, Spain
| | - Aida Bernardo Florez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| | - Cristian Ruiz Bernet
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Raul R Rodrigues-Diez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Mar Rodriguez-Santamaria
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain
| | - Ivan Fernandez-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain; Biobank of Principality of Asturias, Oviedo 33011, Spain
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, Palma, Balearic Islands E-07120, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa79, Palma, Balearic Islands E-07120, Spain
| | - Carmen Diaz-Corte
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; Department of Nephrology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| |
Collapse
|
40
|
Wu X, Zhou L, Li Z, Rong K, Gao S, Chen Y, Zuo J, Tang W. Arylacryl amides: Design, synthesis and the protection against cisplatin-induced acute kidney injury via TLR4/STING/NF-κB pathway. Bioorg Chem 2024; 146:107303. [PMID: 38521012 DOI: 10.1016/j.bioorg.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1β, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.
Collapse
Affiliation(s)
- Xiaoming Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Long Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Ziyun Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yun Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Butler AE, Lubbad W, Akbar S, Kilpatrick ES, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:4899. [PMID: 38732117 PMCID: PMC11084759 DOI: 10.3390/ijms25094899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Glomerular hyperfiltration (GH) has been reported to be higher in women with polycystic ovary syndrome (PCOS) and is an independent risk factor for renal function deterioration, metabolic, and cardiovascular disease. The aim of this study was to determine GH in type A PCOS subjects and to identify whether inflammatory markers, markers of CKD, renal tubule injury markers, and complement system proteins were associated. In addition, a secondary cohort study was performed to determine if the eGFR had altered over time. In this comparative cross-sectional analysis, demographic, metabolic, and proteomic data from Caucasian women aged 18-40 years from a PCOS Biobank (137 with PCOS, 97 controls) was analyzed. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for inflammatory proteins, serum markers of chronic kidney disease (CKD), tubular renal injury markers, and complement system proteins. A total of 44.5% of the PCOS cohort had GH (eGFR ≥ 126 mL/min/1.73 m2 (n = 55)), and 12% (n = 17) eGFR ≥ 142 mL/min/1.73 m2 (super-GH(SGH)). PCOS-GH women were younger and had lower creatinine and urea versus PCOS-nonGH. C-reactive protein (CRP), white cell count (WCC), and systolic blood pressure (SBP) were higher in PCOS versus controls, but CRP correlated only with PCOS-SGH alone. Complement protein changes were seen between controls and PCOS-nonGH, and decay-accelerator factor (DAF) was decreased between PCOS-nonGH and PCOS-GSGH (p < 0.05). CRP correlated with eGFR in the PCOS-SGH group, but not with other inflammatory or complement parameters. Cystatin-c (a marker of CKD) was reduced between PCOS-nonGH and PCOS-GSGH (p < 0.05). No differences in tubular renal injury markers were found. A secondary cohort notes review of the biobank subjects 8.2-9.6 years later showed a reduction in eGFR: controls -6.4 ± 12.6 mL/min/1.73 m2 (-5.3 ± 11.5%; decrease 0.65%/year); PCOS-nonGH -11.3 ± 13.7 mL/min/1.73 m2 (-9.7 ± 12.2%; p < 0.05, decrease 1%/year); PCOS-GH (eGFR 126-140 mL/min/17.3 m2) -27.1 ± 12.8 mL/min/1.73 m2 (-19.1 ± 8.7%; p < 0.0001, decrease 2%/year); PCOS-SGH (eGFR ≥ 142 mL/min/17.3 m2) -33.7 ± 8.9 mL/min/17.3 m2 (-22.8 ± 6.0%; p < 0.0001, decrease 3.5%/year); PCOS-nonGH eGFR versus PCOS-GH and PCOS-SGH, p < 0.001; no difference PCOS-GH versus PCOS-SGH. GH was associated with PCOS and did not appear mediated through tubular renal injury; however, cystatin-c and DAF were decreased, and CRP correlated positively with PCOS-SGH, suggesting inflammation may be involved at higher GH. There were progressive eGFR decrements for PCOS-nonGH, PCOS-GH, and PCOS-SGH in the follow-up period which, in the presence of additional factors affecting renal function, may be clinically important in the development of CKD in PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| | - Walaa Lubbad
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| | - Shahzad Akbar
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Trust, Hull HU3 2JZ, UK;
| | | | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| |
Collapse
|
42
|
Niu X, Xu X, Xu C, Cheuk YC, Rong R. Recent Advances of MSCs in Renal IRI: From Injury to Renal Fibrosis. Bioengineering (Basel) 2024; 11:432. [PMID: 38790298 PMCID: PMC11117619 DOI: 10.3390/bioengineering11050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once thought to play a protective role after renal IRI. However, growing evidence suggests that MSCs have a two-sided nature. In spite of their protective role, in maladaptive situations, MSCs start to differentiate towards myofibroblasts, increasing the myofibroblast pool and promoting renal fibrosis. Following renal IRI, it has been observed that Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) and Renal Resident Mesenchymal Stem Cells (RR-MSCs) play important roles. This review presents evidence supporting their involvement, discusses their potential mechanisms of action, and suggests several new targets for future research.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
43
|
Puri B, Majumder S, Gaikwad AB. Significance of LncRNAs in AKI-to-CKD transition: A therapeutic and diagnostic viewpoint. Life Sci 2024; 342:122509. [PMID: 38387702 DOI: 10.1016/j.lfs.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Acute kidney injury to chronic kidney disease (AKI-to-CKD) transition is a complex intermingling of characteristics of both AKI and CKD. Pathophysiologically, the transition lasts seven days after the AKI episode and thereafter silently progresses towards CKD. Growing reports confirm that the AKI-to-CKD transition is heavily regulated by epigenetic modifiers. Long non-coding RNAs (lncRNAs) share a diverse role in gene regulation at transcriptional and translational levels and have been reported to be involved in the regulation and progression of AKI-to-CKD transition. Several lncRNAs have been considered potential biomarkers for diagnosing kidney disease, including AKI and CKD. Targeting lncRNAs gives a promising therapeutic strategy against kidney diseases. The primitive role of lncRNA in the progression of the AKI-to-CKD transition is yet to be fully understood. As known, the lncRNAs could be used as a biomarker and a therapeutic target to halt the CKD development and progression after AKI. This review aims to deepen our understanding of the current knowledge regarding the involvement of lncRNAs in the AKI-to-CKD transition. This review primarily discusses the role of lncRNAs and the change in their mechanisms during different stages of kidney disease, such as in AKI, AKI-to-CKD transition, and CKD. Further, we have discussed the potential diagnostic and pharmacological outcomes of targeting lncRNAs to prevent or slow the progression of AKI-to-CKD transition.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
44
|
Jiang L, Huang M, Ge J, Zhang X, Liu Y, Liu H, Liu X, Jiang L. Circular RNA hsa_circ_0005519 contributes to acute kidney injury via sponging microRNA-98-5p. BMC Nephrol 2024; 25:107. [PMID: 38504194 PMCID: PMC10949765 DOI: 10.1186/s12882-024-03544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND This study intends to explore the role and molecular mechanism of hsa_circ_0005519 in acute kidney injury (AKI). METHODS We conducted reverse transcription-qPCR for human serum to determine levels of hsa_circ_0005519 in AKI patients and healthy controls. Hsa_circ_0005519 was inhibited for expression in HK-2 cells using specific siRNAs. A number of techniques, MTT and ELISA assays, were used to analyze the potential role of hsa_circ_0005519 in cell viability, oxidative stress, and inflammation of LPS-induced HK-2 cells. RESULTS The serum of patients with AKI exhibited a significant increase in hsa_circ_0005519 expression, compared with healthy controls. Hsa_circ_0005519 was knockdown by siRNA, and its knockdown led to cell viability increase in LPS-induced HK-2 cells. Inhibition of hsa_circ_0005519 can reverse the TNF-α, IL-6 and IL-1β increase in LPS-induced HK-2 cells. Inhibiting hsa_circ_0005519 led to downregulation of MPO and MDA levels. MiR-98-5p was a downstream miRNA for hsa_circ_0005519. MiR-98-5p can offset the effects of hsa_circ_0005519 on LPS-induced HK-2 cells. IFG1R was a target gene for miR-98-5p. CONCLUSIONS These findings indicate that the highly expressed hsa_circ_0005519 plays a promoting role in AKI.
Collapse
Affiliation(s)
- Linsen Jiang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Manxin Huang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xuefeng Zhang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Ye Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Hang Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xiaoming Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China.
| | - Lili Jiang
- Department of Nephrology, Youyang Tujia and Miao Autonomous County People's Hospital, No.102, Middle Road, Taohuayuan Avenue, Taohuayuan Street, Youyang County, Chongqing, 409800, China.
| |
Collapse
|
45
|
Peng Z, Dong X, Long Y, Li Z, Wang Y, Zhu W, Ding B. Causality between allergic diseases and kidney diseases: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1347152. [PMID: 38533318 PMCID: PMC10963543 DOI: 10.3389/fmed.2024.1347152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Background Evidence from observational studies and clinical trials suggests that the allergic diseases (ADs) are associated with kidney diseases (KDs). However, the causal association between them remains to be determined. We used bidirectional two-sample Mendelian randomization (MR) analysis to evaluate the potential causality between them. Methods Mendelian randomization (MR) was performed using publicly available genome-wide association study (GWAS) summary datasets. Inverse variance weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode methods are used to evaluate the causality between ADs and KDs. Sensitivity and heterogeneity analyses were used to ensure the stability of the results. Results The MR results indicated that genetic susceptibility to ADs was associated with a higher risk of CKD [odds ratio (OR) = 1.124, 95% CI = 1.020-1.239, p = 0.019] and unspecified kidney failure (OR = 1.170, 95% CI = 1.004-1.363, p = 0.045) but not with kidney stone, ureter stone or bladder stone (OR = 1.001, 95% CI = 1.000-1.002, p = 0.216), other renal or kidney problem (OR = 1.000, 95% CI = 1.000-1.001, p = 0.339), urinary tract or kidney infection (OR = 1.000, 95% CI = 0.999-1.001, p = 0.604), kidney volume (OR = 0.996, 95% CI = 0.960-1.033, p = 0.812) and cyst of kidney (OR = 0.914, 95% CI = 0.756-1.105, p = 0.354). No causal evidence of KDs on ADs was found in present study. Conclusion Results from MR analysis indicate a causal association between ADs and CKD and unspecified kidney failure. These findings partly suggest that early monitoring of CKD risk in patients with ADs is intentional.
Collapse
Affiliation(s)
- Zhe Peng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yingxin Long
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zunjiang Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yueyao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Banghan Ding
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Cai M, Deng Y, Hu T. Prognostic Value of Leukocyte-Based Risk Model for Acute Kidney Injury Prediction in Critically Ill Acute Exacerbation of Chronic Obstructive Pulmonary Disease Patients. Int J Chron Obstruct Pulmon Dis 2024; 19:619-632. [PMID: 38464562 PMCID: PMC10923243 DOI: 10.2147/copd.s444888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose Acute kidney injury (AKI) is a common complication of acute exacerbation of chronic obstructive pulmonary disease (AECOPD), and inflammation is the potential link between AKI and AECOPD. However, little is known about the incidence and risk stratification of AKI in critically ill AECOPD patients. In this study, we aimed to establish risk model based on white blood cell (WBC)-related indicators to predict AKI in critically ill AECOPD patients. Material and Methods For the training cohort, data were taken from the Medical Information Mart for eICU Collaborative Research Database (eICU-CRD) database, and for the validation cohort, data were taken from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. The study employed logistic regression analysis to identify the major predictors of WBC-related biomarkers on AKI prediction. Subsequently, a risk model was developed by multivariate logistic regression, utilizing the identified significant indicators. Results Finally, 3551 patients were enrolled in training cohort, 926 patients were enrolled in validation cohort. AKI occurred in 1206 (33.4%) patients in training cohort and 521 (56.3%) patients in validation cohort. According to the multivariate logistic regression analysis, four WBC-related indicators were finally included in the novel risk model, and the risk model had a relatively good accuracy for AKI in the training set (C-index, 0.764, 95% CI 0.749-0.780) as well as in the validation set (C-index, 0.738, 95% CI: 0.706-0.770). Even after accounting for other models, the critically ill AECOPD patients in the high-risk group (risk score > 3.44) still showed an increased risk of AKI (odds ratio: 4.74, 95% CI: 4.07-5.54) compared to those in low-risk group (risk score ≤ 3.44). Moreover, the risk model showed outstanding calibration capability as well as therapeutic usefulness in both groups for AKI and ICU mortality and in-hospital mortality of critical ill AECOPD patients. Conclusion The novel risk model showed good AKI prediction performance. This risk model has certain reference value for the risk stratification of AECOPD complicated with AKI in clinically.
Collapse
Affiliation(s)
- Min Cai
- Department of Nephropathy and Rheumatism, Yongchuan Hospital of Chongqing Medical University (The Fifth Clinical College of Chongqing Medical University), Chongqing, People’s Republic of China
| | - Yue Deng
- Department of Respiratory and Critical Care Medicine, The Fifth People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
47
|
Sutherland SM, Alobaidi R, Gorga SM, Iyengar A, Morgan C, Heydari E, Arikan AAA, Basu RK, Goldstein SL, Zappitelli M. Epidemiology of acute kidney injury in children: a report from the 26th Acute Disease Quality Initiative (ADQI) consensus conference. Pediatr Nephrol 2024; 39:919-928. [PMID: 37874357 PMCID: PMC10817829 DOI: 10.1007/s00467-023-06164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
The nephrology and critical care communities have seen an increase in studies exploring acute kidney injury (AKI) epidemiology in children. As a result, we now know that AKI is highly prevalent in critically ill neonates, children, and young adults. Furthermore, children who develop AKI experience greater morbidity and higher mortality. Yet knowledge gaps still exist that suggest a more comprehensive understanding of AKI will form the foundation for future efforts designed to improve outcomes. In particular, the areas of community acquired AKI, AKI in non-critically ill children, and cohorts from low-middle income countries have not been well studied. Longer-term functional outcomes and patient-centric metrics including social determinants of health, quality of life, and healthcare utilization should be the foci of the next phase of scholarship. Current definitions identify AKI-based upon evidence of dysfunction which serves as a proxy for injury; biomarkers capable of identifying injury as it occurs are likely to more accurately define populations with AKI. Despite the strength of the association, the causal and mechanistic relationships between AKI and poorer outcomes remain inadequately examined. A more robust understanding of the relationship represents a potential to identify therapeutic targets. Once established, a more comprehensive understanding of AKI epidemiology in children will allow investigation of preventive, therapeutic, and quality improvement interventions more effectively.
Collapse
Affiliation(s)
- Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Center for Academic Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Rashid Alobaidi
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stephen M Gorga
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arpana Iyengar
- Department of Paediatric Nephrology, St. John's National Academy of Health Sciences, Bangalore, India
| | - Catherine Morgan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Emma Heydari
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - A Ayse Akcan Arikan
- Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Raj K Basu
- Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Zappitelli
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Inoue T, Umene R, Sung SSJ, Tanaka S, Huang L, Yao J, Hashimoto N, Wu CH, Nakamura Y, Nishino T, Ye H, Rosin DL, Ishihara K, Okusa MD. Bone marrow stromal cell antigen-1 deficiency protects from acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F167-F177. [PMID: 37969103 PMCID: PMC11967511 DOI: 10.1152/ajprenal.00175.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sun-Sang J Sung
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Shinji Tanaka
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Liping Huang
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Junlan Yao
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Noritatsu Hashimoto
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States
| | - Katsuhiko Ishihara
- Department of Design for Medical and Health Care, Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
49
|
Yeh TH, Tu KC, Wang HY, Chen JY. From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease. Int J Mol Sci 2024; 25:1755. [PMID: 38339031 PMCID: PMC10855633 DOI: 10.3390/ijms25031755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
This article provides a thorough overview of the biomarkers, pathophysiology, and molecular pathways involved in the transition from acute kidney injury (AKI) and acute kidney disease (AKD) to chronic kidney disease (CKD). It categorizes the biomarkers of AKI into stress, damage, and functional markers, highlighting their importance in early detection, prognosis, and clinical applications. This review also highlights the links between renal injury and the pathophysiological mechanisms underlying AKI and AKD, including renal hypoperfusion, sepsis, nephrotoxicity, and immune responses. In addition, various molecules play pivotal roles in inflammation and hypoxia, triggering maladaptive repair, mitochondrial dysfunction, immune system reactions, and the cellular senescence of renal cells. Key signaling pathways, such as Wnt/β-catenin, TGF-β/SMAD, and Hippo/YAP/TAZ, promote fibrosis and impact renal function. The renin-angiotensin-aldosterone system (RAAS) triggers a cascade leading to renal fibrosis, with aldosterone exacerbating the oxidative stress and cellular changes that promote fibrosis. The clinical evidence suggests that RAS inhibitors may protect against CKD progression, especially post-AKI, though more extensive trials are needed to confirm their full impact.
Collapse
Affiliation(s)
- Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
50
|
Fang X, Chen Y, Chen Y, Qiu M, Huang J, Ke B. Identification and characterization of two immune-related subtypes in human chronic kidney disease. Transpl Immunol 2024; 82:101983. [PMID: 38184215 DOI: 10.1016/j.trim.2023.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/09/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Immune response plays a vital role in the initiation and development of chronic kidney disease (CKD). Detailed mechanisms and specific immune-related biomarkers of CKD need further clarification. We aimed to identify and characterize immune-related infiltrates that are implicated in the CKD development using a bioinformatics method. METHODS The expression profiles of GSE66494 dataset were acquired from the Gene Expression Omnibus (GEO) database. Patients with CKD were divided into low- vs. high-immune subtypes based on their immune score. Based on such analysis, we identified differentially expressed genes (DEGs) of low- and high-immune subtypes. The weight gene co-expression network analysis (WGCNA) was used to identify immune-associated modules between two subtypes. The gene set enriched (GSEA) and variation (GSVA) analyses were correlated with their functional types using the molecular complex detection (MCODE) method. Finally, the immune infiltration landscape between subtypes was revealed using the xCell algorithm. RESULTS The total number of 131 differentially expressed immune-related genes (DEIRGs) were identified between low- vs. high-immune subtypes. Out of them GSEA/GSVA results identified and enriched immune- and inflammation-related pathways. In particular, GSVA results indicated that immune-related pathways were activated in high-immune subgroups. The core DEIRG genes that were identified to be involved in CKD development included: the protein tyrosine phosphatase receptor type C (PTPRC; also known as CD45) regulating cell growth and differentiation, an early activation marker (CD69), co-receptor for T cell receptor (CD8A), and T cell co-stimulatory signal (CD28). These core DEIRD genes were further verified by the GSE96804 dataset. We also found a higher proportion of immune cells infiltrating the high-immune subgroup. Furthermore, the four core genes were positively correlated with most immune cell types. CONCLUSION Among 131 DEIRG genes, four genes (PTPRC, CD69, CD8A, and CD28) were identified as potential biomarkers associated with the immune cell infiltration in CKD patients, which may provide a novel insight for immunotherapy for CKD.
Collapse
Affiliation(s)
- Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinjing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|