1
|
Yao Q, Zheng X, Zhang X, Wang Y, Zhou Q, Lv J, Zheng L, Lan J, Chen W, Chen J, Chen D. METTL3 Potentiates M2 Macrophage-Driven MMT to Aggravate Renal Allograft Fibrosis via the TGF-β1/Smad3 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412123. [PMID: 39869489 PMCID: PMC11923867 DOI: 10.1002/advs.202412123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Indexed: 01/29/2025]
Abstract
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR. We found that elevated m6A modification and METTL3 levels strongly correlated with enhanced MMT and increased fibrotic severity. METTL3 knockout (METTL3 KO) significantly increased the m6A modification of Smad3, decreased Smad3 expression, and inhibited M2-driven MMT. Smad3 knockdown with siRNA (siSmad3) further inhibited M2-driven MMT, while Smad3 overexpression rescued the inhibitory effects of METTL3 silencing, restoring M2-driven MMT and fibrotic tissue damage. Additionally, the METTL3 inhibitor STM2457 effectively reversed M2-driven MMT and alleviated fibrotic tissue damage in CAR. These findings highlight that METTL3 enhances M2-driven MMT in renal fibrosis during CAR by promoting the TGF-β1/Smad3 axis, suggesting that METTL3 is a promising therapeutic target for mitigating renal fibrosis in CAR.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Xiaoxiao Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Xinyi Zhang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Yucheng Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Qin Zhou
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Li Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Jiahua Lan
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Wei Chen
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal InfectionSir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Dajin Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| |
Collapse
|
2
|
Zhu K, Sun S, Li Z, Deng G, Guo Y, Zheng B, He Q, Zhao Z, Ding C. METTL3 promotes renal ischemia-reperfusion injury by modulating miR-374b-5p/SRSF7 axis. FASEB J 2025; 39:e70320. [PMID: 39887511 DOI: 10.1096/fj.202402443r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a prevalent cause of acute kidney injury, however, the regulatory mechanisms of miR-374b-5p in renal IRI remain poorly understood. We established hypoxia/reoxidation (H/R)-induced renal injury models using HK-2 and TCMK-1 cells, as well as an ischemia-reperfusion (I/R)-induced mouse model. Renal tubular epithelial cells (RTECs) viability and apoptosis were assessed using CCK-8, flow cytometry, and TUNEL assays. The targeting relationship between miR-374b-5p and SRSF7 was analyzed using dual luciferase reporter assays. The interaction between METTL3 and miR-374b-5p was confirmed through methylated RNA immunoprecipitation (MeRIP) and co-immunoprecipitation (Co-IP) assays. We found that miR-374b-5p levels were significantly upregulated in H/R-induced HK-2 and TCMK-1 cells. Furthermore, miR-374b-5p promoted H/R-induced RTEC injury by suppressing cell viability and exacerbating apoptosis. SRSF7 was identified as a downstream target of miR-374b-5p, inhibition of SRSF7 reversed the inhibitory effects of miR-374b-5p inhibitors on RTEC injury. Additionally, METTL3 interacted with the microprocessor protein DGCR8 and modulated the processing of pri-miR-374b-5p in an m6A-dependent manner. In the renal IRI model, METTL3 and miR-374b-5p levels were upregulated, and knockdown of METTL3 inhibited apoptosis in H/R-induced HK-2 and TCMK-1 cells. Conversely, miR-374b-5p reversed the protective effects of METTL3 knockdown on renal IRI. Our findings provide novel insights into the role of m6A methylation in the development of renal IRI, demonstrating that METTL3 promotes renal IRI by modulating the miR-374b-5p/SRSF7 axis.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shirui Sun
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zepeng Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, China
| | - Ge Deng
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingcong Guo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, China
| | - Qi He
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenting Zhao
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, China
- Organ Procurement and Allocation Organization, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05208-z. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Peng J, Zhu H, Ruan B, Duan Z, Cao M. miR-155 promotes m6A modification of SOX2 mRNA through targeted regulation of HIF-1α and delays wound healing in diabetic foot ulcer in vitro models. J Diabetes Investig 2025; 16:60-71. [PMID: 39509294 DOI: 10.1111/jdi.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Diabetic foot ulcers (DFU) are one of the most destructive complications of diabetes mellitus. The aim of this study was to link miR-155 and SOX2 with DFU to explore the regulation of wound healing by DFU and its potential mechanism. METHODS Human keratinocytes (HaCaT) were induced with advanced glycation end products (AGEs) to construct DFU models in vitro. AGE-induced HaCaT cells were subjected to CCK-8 assays, flow cytometry, and wound healing assays to evaluate cell proliferation, apoptosis, and migration capacity, respectively. RT-qPCR and Western blotting were used to determine gene and protein expression levels, respectively. N6-methyladenosine (M6A) levels in total RNA were assessed using an M6A methylation quantification kit. RESULTS Our results suggested that the inhibition of miR-155 promoted wound healing in an in vitro DFU model, while the knockdown of HIF-1α reversed this process, and that HIF-1α was a target protein of miR-155. In addition, knockdown of HIF-1α promoted the m6A level of SOX2 mRNA, inhibited the expression of SOX2, and inhibited the activation of the EGFR/MEK/ERK signaling pathway, thus inhibiting the proliferation and migration of HaCaT cells and promoting the apoptosis of HaCaT cells, while overexpression of SOX2 reversed this effect. We also found that METTL3 knockdown had the opposite effect of HIF-1α knockdown. CONCLUSIONS Inhibition of miR-155 promoted the expression of HIF-1α and attenuated the m6A modification of SOX2 mRNA, thereby promoting the expression of SOX2 and activating the downstream EGFR/MEK/ERK signaling pathway to promote wound healing in an in vitro DFU model.
Collapse
Affiliation(s)
- Jiarui Peng
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhu
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Bin Ruan
- Department of Occupational Disease, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhisheng Duan
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Mei Cao
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Yang J, Jiang T, Lu X, Li X, Zhou X, Guo X, Ma C, Xie X, Li D, Yu S, An J, Zhao B, Li H. METTL14 downregulates GLUT9 through m6A methylation and attenuates hyperuricemia-induced fibrosis in mouse renal tubular epithelial cells. Int Immunopharmacol 2024; 143:113308. [PMID: 39393275 DOI: 10.1016/j.intimp.2024.113308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Hyperuricemia is a known risk factor for chronic kidney disease (CKD) and subsequent renal fibrosis. N6-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and has been implicated in various diseases. However, its role in hyperuricemic nephropathy (HN) remains unclear. This study investigated the involvement of the methylase METTL14 in HN pathogenesis. Our in vitro and in vivo function experiments demonstrated that METTL14 plays a crucial role in HN. In mouse models of uric acid (UA)-induced renal injury, we detected impaired kidney function, increased renal interstitial fibrosis, and significantly decreased m6A methylation levels in renal tissues. Treatment with benzbromarone, a UA-lowering drug, alleviated renal injury, restored m6A methylation levels, and upregulated METTL14 expression. Cellular experiments showed that METTL14 overexpression attenuated high UA-induced fibrosis in renal tubular epithelial cells. This overexpression significantly decreases the expression of GLUT9, a key protein involved in UA transport, leading to reduced UA reabsorption. Additionally, MeRIP-qPCR and dual-luciferase reporter gene experiments further demonstrated that METTL14 overexpression enhanced Glut9 mRNA m6A methylation modification, accelerating its degradation and decreasing expression levels. Thus, METTL14-mediated RNA m6A modification plays a role in the renal tubular epithelial cell damage induced by high UA, by regulating Glut9 mRNA post-transcriptionally. These findings provide valuable insights for the diagnosis and development of therapeutic drugs for HN.
Collapse
Affiliation(s)
- Jianan Yang
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Tonglian Jiang
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xun Lu
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xiang Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China
| | - Xuling Zhou
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xinxin Guo
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Chengxin Ma
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Xiaobei Xie
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Dongxiao Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Siqi Yu
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Jiayi An
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China.
| | - Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, Beihua University School of Basic Medical Science, Jilin 132011, Jilin, China; Jilin Province Science and Technology Innovation Center of Kidney Disease Precision Medicine Based on Gene Sequencing, Beihua University, Jilin 132011, Jilin, China.
| |
Collapse
|
6
|
Wu Y, Shi H, Xu Y, Shu G, Xiao Y, Hong G, Xu S. Targeted Restoration of GPX3 Attenuates Renal Ischemia/Reperfusion Injury by Balancing Selenoprotein Expression and Inhibiting ROS-mediated Mitochondrial Apoptosis. Transplantation 2024; 108:2351-2365. [PMID: 38771110 DOI: 10.1097/tp.0000000000005068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Renal ischemia/reperfusion (IR) injury is the leading cause of acute kidney injury in both autologous and transplanted kidneys. Low-level glutathione peroxidase 3 (GPX3) is associated with renal IR injury. The exact mechanism of targeted GPX3 restoration in renal IR injury has yet to be determined. METHODS The distribution of GPX3 in different tissues and organs of the body was investigated. The level of GPX3 in renal IR injury was assessed. To confirm the action of GPX3 and its mechanisms, IR models were used to introduce adeno-associated virus 9 containing GPX3, as well as hypoxia/reoxygenation-exposed normal rat kidney cells that consistently overexpressed GPX3. Reverse molecular docking was used to confirm whether GPX3 was a target of ebselen. RESULTS GPX3 is abundant in the kidneys and decreases in expression during renal IR injury. GPX3 overexpression reduced renal IR injury and protected tubular epithelial cells from apoptosis. Proteomics analysis revealed a strong link between GPX3 and mitochondrial signaling, cellular redox state, and different expression patterns of selenoproteins. GPX3 inhibited reactive oxygen species-induced mitochondrial apoptosis and balanced the disordered expression of selenoproteins. GPX3 was identified as a stable selenoprotein that interacts with ebselen. Ebselen enhanced the level of GPX3 and reduced IR-induced mitochondrial damage and renal dysfunction. CONCLUSIONS Targeted restoration of GPX3 attenuates renal IR injury by balancing selenoprotein expression and inhibiting reactive oxygen species-mediated mitochondrial apoptosis, indicating that GPX3 could be a potential therapeutic target for renal IR injury.
Collapse
Affiliation(s)
- Yikun Wu
- Guizhou University Medical College, Guiyang, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hua Shi
- Department of Urology, Tongren City People's Hospital, Tongren, China
| | - Yuangao Xu
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Guofeng Shu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu Xiao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangyi Hong
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Liu WH, Cao F, Lin M, Hong FY. Comprehensive Analysis of RNA Methylation-Regulated Gene Signature and Immune Infiltration in Ischemia/Reperfusion-Induced Acute Kidney Injury. Kidney Blood Press Res 2024; 50:14-32. [PMID: 39600181 PMCID: PMC11844686 DOI: 10.1159/000542787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The morbidity and mortality of acute kidney injury (AKI) are increasing. Epigenetic regulation and immune cell infiltration are thought to be involved in AKI. However, the relationship between epigenetic regulation and immune cell infiltration in AKI has not been elucidated. This study was conducted to identify the differentially expressed genes (DEGs), differentially expressed RNA methylation genes (DEMGs), and infiltrated immune cells in the kidneys of ischemia-reperfusion induced-acute kidney injury (IRI-AKI) models and further explore their relationships in IRI-AKI. METHODS This is a bioinformatic analysis using R programming language in 3 selected IRI-AKI datasets from the Gene Expression Omnibus (GEO) database, including 16 IRI-AKI kidney tissues and 10 normal kidney tissues. The DEGs were screened, and enrichment pathways were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEMGs and core DEMGs were identified using the R package. The ROC curve was plotted to predict disease occurrence of 7 core DEMGs. The correlation of 7 core DEMGs and other genes was analyzed using Pearson's correlation test. The gene set enrichment analysis (GSEA) of each DEMG was conducted using the R package. The upstream miRNAs and transcript factors of 7 core DEMGs were predicted based on the RegNetwork database and Cytoscape software. The STITCH database was used to predict the possible binding compounds of the 7 core DEMGs. Immune cell infiltration in kidney tissues between the IRI-AKI group and control group was evaluated using the R package. RESULTS A total of 2,367 DEGs were obtained, including 1,180 upregulated and 1,187 downregulated genes in IRI-AKI kidney associated with the cell structure, proliferation, molecule binding/interaction, and signaling pathways such as the leukocyte migration and chemokine signaling pathways. Ten DEMGs were identified, with Ythdf1, Rbm15, Trmt6, Hnrnpc, and Dnmt1 being significantly upregulated, while Lrpprc, Cyfip2, Mettl3, Ncbp2, and Nudt7 were significantly downregulated in IRI-AKI tissues. The molecules interacting with 7 core DEMGs were identified. Significant changes in the infiltration of 8 types of immune cells were observed in IRI-AKI kidneys compared to normal controls. The significant correlation between 6 core DEMGs and the infiltration of immune cells was observed. CONCLUSION IRI may induce AKI through RNA methylation to regulate the expression of genes involved in immune cell infiltration.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China,
| | - Fang Cao
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Miao Lin
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Fu-Yuan Hong
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
8
|
Song B, Wu X, Zeng Y. Methyltransferase-like 3 represents a prospective target for the diagnosis and treatment of kidney diseases. Hum Genomics 2024; 18:125. [PMID: 39538346 PMCID: PMC11562609 DOI: 10.1186/s40246-024-00692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney disease is marked by complex pathological mechanisms and significant therapeutic hurdles, resulting in high morbidity and mortality rates globally. A deeper understanding of the fundamental processes involved can aid in identifying novel therapeutic targets and improving treatment efficacy. Current comprehensive data analyses indicate the involvement of methyltransferase-like 3 (METTL3) and its role in RNA N6-methyladenosine methylation in various renal pathologies, including acute kidney injury, renal fibrosis, and chronic kidney disease. However, there is a paucity of thorough reviews that clarify the functional mechanisms of METTL3 and evaluate its importance in enhancing therapeutic outcomes. This review seeks to systematically examine the roles, mechanisms, and potential clinical applications of METTL3 in renal diseases. The findings presented suggest that METTL3 is implicated in the etiology and exacerbation of kidney disorders, affecting their onset, progression, malignancy, and responsiveness to chemotherapeutic agents through the regulation of specific genetic pathways. In conclusion, this review underscores a detrimental correlation between METTL3 and kidney diseases, highlighting the therapeutic promise of targeting METTL3. Additionally, it offers critical insights for researchers concerning the diagnosis, prognosis, and treatment strategies for renal conditions.
Collapse
Affiliation(s)
- Bin Song
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xiaolong Wu
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Yan Zeng
- Department of Pediatrics, People's Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang, Sichuan Province, 618000, China.
| |
Collapse
|
9
|
Jiang X, Zhang W, Xie S. METTL3 inhibits microglial pyroptosis in neonatal hypoxia-ischemia encephalopathy by regulating GPR39 expression in an m6A-HuR-dependent manner. Neuroscience 2024; 563:175-187. [PMID: 39461660 DOI: 10.1016/j.neuroscience.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Neonatal hypoxia-ischemia encephalopathy (HIE) is a significant reason for neonatal mortality and prolonged disability. We have previously revealed that GPR39 activation attenuates neuroinflammation in a neonatal HIE rat model. This study aimed to investigate whether GPR39 affected microglial pyroptosis post-HIE. METHODS A neonatal rat model of HIE and a microglia cell model of oxygen-glucose deprivation (OGD) were established. Neuronal loss and cerebral infarction were assessed by using TTC, H&E staining, and Nissl staining. Pyroptosis was evaluated with western blot, LDH assay kit, ELISA, and flow cytometry. Total m6A level and GPR39 m6A modification were determined using m6A dot blot and MeRIP. The interaction between METTL3/HuR/GSK3β and GPR39 was analyzed by performing molecular interaction experiments. GPR39 mRNA stability was examined with actinomycin D. RESULTS The level of GPR39 was increased in neonatal HIE rats and OGD-treated microglia. Brain injury and neuronal loss were significantly increased in the HIE model when GPR39 was knocked down. GPR39 knockdown aggravated NLRP3 inflammasome-mediated microglial pyroptosis. METTL3 upregulated GPR39 expression in an m6A-dependent manner. METTL3 enhanced the interaction of HuR and GPR39. In OGD-exposed microglia, METTL3 elevated GPR39 expression and mRNA stability, which declined after HuR depletion. METTL3 knockdown promoted microglial pyroptosis, which was reversed by GPR39 agonist. Furthermore, microglial pyroptosis was inhibited by GPR39 upregulation, but the outcome was reverted by GSK3β activator SNP. CONCLUSION METTL3 inhibits microglial pyroptosis in neonatal HIE via regulating m6A-HuR dependent stabilization of GPR39, which contributes to therapeutics development for neonatal HIE.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
10
|
Xie Z, Luo H, Wang T, Wang L, Zhang J, Dong W, Liu G, Li F, Kang Q, Zhu X, Zhang F, Peng W. METTL3 inhibits BMSC apoptosis and facilitates osteonecrosis repair via an m6A-IGF2BP2-dependent mechanism. Heliyon 2024; 10:e30195. [PMID: 38784565 PMCID: PMC11112270 DOI: 10.1016/j.heliyon.2024.e30195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Hypoxia-induced apoptosis of bone marrow mesenchymal stem cells (BMSCs) limits the efficacy of their transplantation for steroid-induced osteonecrosis of the femoral head (SONFH). As apoptosis and RNA methylation are closely related, exploring the role and mechanism of RNA methylation in hypoxic apoptosis of BMSCs is expected to identify new targets for transplantation of BMSCs for SONFH and enhance transplantation efficacy. We performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA-seq on a hypoxia-induced apoptosis BMSC model and found that the RNA methyltransferase-like 3 (METTL3) is involved in hypoxia-induced BMSC apoptosis. The expression of METTL3 was downregulated in BMSCs after hypoxia and in BMSCs implanted in osteonecrosis areas. Knockdown of METLL3 under normoxic conditions promoted apoptosis of BMSCs. In contrast, overexpression of METTL3 promoted the survival of BMSCs under hypoxic conditions, and overexpression of METTL3 promoted the survival of BMSCs in the osteonecrosis area and the repair of the osteonecrosis area. Regarding the mechanism, the m6A levels of the mRNAs of anti-apoptotic genes Bcl-2, Mcl-1, and BIRC5 were significantly increased upon the overexpression of METTL3 under hypoxic conditions, which promoted the binding of Bcl-2, Mcl-1, and BIRC5 mRNAs to IGF2BP2, enhanced the mRNA stability, and increased the protein expression of the three anti-apoptotic genes. In conclusion, overexpression of METTL3 promoted m6A modification of mRNAs of Bcl-2, Mcl-1, and BIRC5, promoted the binding of IGF2BP2 to the above-mentioned mRNAs, enhanced mRNA stability, inhibited hypoxia-induced BMSC apoptosis, and promoted repair of SONFH, thereby providing novel targets for transplantation of BMSCs for SONFH.
Collapse
Affiliation(s)
- Zhihong Xie
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lei Wang
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Gang Liu
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Fanchao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Fei Zhang
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Emergency Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
11
|
Jung HR, Lee J, Hong SP, Shin N, Cho A, Shin DJ, Choi JW, Kim JI, Lee JP, Cho SY. Targeting the m 6A RNA methyltransferase METTL3 attenuates the development of kidney fibrosis. Exp Mol Med 2024; 56:355-369. [PMID: 38297163 PMCID: PMC10907702 DOI: 10.1038/s12276-024-01159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Kidney fibrosis is a major mechanism underlying chronic kidney disease (CKD). N6-methyladenosine (m6A) RNA methylation is associated with organ fibrosis. We investigated m6A profile alterations and the inhibitory effect of RNA methylation in kidney fibrosis in vitro (TGF-β-treated HK-2 cells) and in vivo (unilateral ureteral obstruction [UUO] mouse model). METTL3-mediated signaling was inhibited using siRNA in vitro or the METTL3-specific inhibitor STM2457 in vivo and in vitro. In HK-2 cells, METTL3 protein levels increased in a dose- and time-dependent manner along with an increase in the cellular m6A levels. In the UUO model, METTL3 expression and m6A levels were significantly increased. Transcriptomic and m6A profiling demonstrated that epithelial-to-mesenchymal transition- and inflammation-related pathways were significantly associated with RNA m6A methylation. Genetic and pharmacologic inhibition of METTL3 in HK-2 cells decreased TGF-β-induced fibrotic marker expression. STM2457-induced inhibition of METTL3 attenuated the degree of kidney fibrosis in vivo. Furthermore, METTL3 protein expression was significantly increased in the tissues of CKD patients with diabetic or IgA nephropathy. Therefore, targeting alterations in RNA methylation could be a potential therapeutic strategy for treating kidney fibrosis.
Collapse
Affiliation(s)
- Hae Rim Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ara Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Jin Shin
- Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Sung-Yup Cho
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Shen J, Sun Y, Zhuang Q, Xue D, He X. NAT10 promotes renal ischemia-reperfusion injury via activating NCOA4-mediated ferroptosis. Heliyon 2024; 10:e24573. [PMID: 38312597 PMCID: PMC10835180 DOI: 10.1016/j.heliyon.2024.e24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI) and is associated with substantial morbidity and mortality rates. In this study, we aimed to investigate the role of NAT10 and its ac4C RNA modification in IRI-induced renal injury. Our findings revealed that both the expression level of NAT10 and the RNA ac4C level in the kidneys were elevated in the IRI group compared to the sham group. Functionally, we observed that inhibition of NAT10 activity with Remodelin or the specific knockout of NAT10 in the kidney led to a significant attenuation of IRI-induced renal injury. Furthermore, in vitro experiments demonstrated that NAT10 inhibition and specific knockout of NAT10 in the kidney markedly suppressed global ac4C RNA modification, providing protection against hypoxia/reoxygenation-induced tubular epithelial cell injury and ferroptosis. Mechanistically, our study uncovered that NAT10 promoted ac4C RNA modification of NCOA4 mRNA, thereby enhancing its stability and contributing to IRI-induced ferroptosis in tubular epithelial cells (TECs). These findings underscore the potential of NAT10 and ac4C RNA modification as promising therapeutic targets for the treatment of AKI. Overall, our study sheds light on the critical involvement of NAT10 and ac4C RNA modification in the pathogenesis of IRI-induced renal injury, offering valuable insights for the development of novel AKI treatment strategies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yangyang Sun
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
13
|
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med 2023; 29:166. [PMID: 38066436 PMCID: PMC10709953 DOI: 10.1186/s10020-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a kind of RNA modification in which methylation occurs at the sixth N position in adenosine in RNA, which can occur in various RNAs such as mRNAs, lncRNAs and miRNAs. This is one of the most prominent and frequent posttranscriptional modifications within organisms and has been shown to function dynamically and reversibly in a variety of ways, including splicing, export, attenuation and translation initiation efficiency to regulate RNA expression. There are three main enzymes associated with m6A modification: writers, readers and erasers. Increasing evidence has shown that m6A modification is associated with the onset and development of kidney disease. In this article, we address the important physiological and pathological roles of m6A modification in kidney diseases (uremia, ischemia-reperfusion kidney injury, drug-induced kidney injury, and diabetic nephropathy) and its molecular mechanisms to provide reference for the diagnosis and clinical management of kidney diseases.
Collapse
Affiliation(s)
- Saiqi Qi
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Jie Song
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Linjun Chen
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Qi C, Guo Y, Li X, Zhu Z. Key m 6A regulators mediated methylation modification pattern and immune infiltration characterization in hepatic ischemia-reperfusion injury. BMC Med Genomics 2023; 16:314. [PMID: 38049811 PMCID: PMC10694893 DOI: 10.1186/s12920-023-01751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) mRNA modification plays a critical role in various human biological processes. However, there has been no study reported to elucidate its role in hepatic ischemia-reperfusion injury (IRI). This study was aimed to explore the expression pattern together with the potential functions of m6A regulators in hepatic IRI. METHODS The gene expression data (GSE23649) of m6A regulators in human liver tissue samples before cold perfusion and within 2 h after portal vein perfusion from Gene Expression Omnibus database was analyzed. The candidate m6A regulators were screened using random forest (RF) model to predict the risk of hepatic IRI. The evaluation of infiltrating abundance of 23 immune cells was performed using single sample gene set enrichment analysis. Besides, quantitative real time polymerase chain reaction (qRT-PCR) assay was carried out to validate the expression of key m6A regulators in mouse hepatic IRI model. RESULTS The expressions of WTAP, CBLL1, RBM15, and YTHDC1 were found to be increased in liver tissues 2 h after portal vein perfusion; in contrast, the expressions of LRPPRC, FTO, METTL3, and ALKBH5 were decreased. Based on RF model, we identified eight m6A methylation regulators for the prediction of the risk of hepatic IRI. Besides, a nomogram was built to predict the probability of hepatic IRI. In addition, the levels of WTAP, ALKBH5, CBLL1, FTO, RBM15B, LRPPRC and YTHDC1 were correlated with the immune infiltration of activated CD4 T cell, activated dendritic cell (DC), immature DC, mast cell, neutrophil, plasmacytoid DC, T helper (Th) cell (type 1, 2, and 17), gamma delta T cell, T follicular helper (Tfh) cell, myeloid-derived suppressor cell (MDSC), macrophage, natural killer cell, and regulatory Th cell. Among mouse hepatic IRI model, the mRNA level of CBLL1 and YTHDC1 was increased with statistical significance; however, the mRNA level of FTO and METTL3 was decreased among post-reperfusion liver samples compared with those in pre-reperfusion samples with statistical significance. CONCLUSIONS The m6A regulators exerted a pivotal impact on hepatic IRI. The m6A patterns that found in this study might provide novel targets and strategies for the alleviation/treatment of hepatic IRI in the future.
Collapse
Affiliation(s)
- Yixi Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, NO. 95 Yongan Road, Beijing, 100051, China
| | - Can Qi
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, NO.17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yiwen Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, NO. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xuefeng Li
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, NO.17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, NO.17 Lujiang Road, Hefei, 230001, Anhui, China.
| |
Collapse
|
15
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
16
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Ding W, Peng H, Tian J, Wang S. Remimazolam relieved the injury of hypoxia/reperfusion treated human embryo liver cell line through the targeting METTL3 mediated m6A modification of P53. Heliyon 2023; 9:e20285. [PMID: 37809663 PMCID: PMC10560062 DOI: 10.1016/j.heliyon.2023.e20285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Background This study was performed to explore the role of Re in liver IRI progression. Hypoxia and reperfusion (H/R) treated human embryo liver cell line (L-02) was used to establish a liver IRI model. Materials and methods Cell behaviors were detected using CCK-8, flow cytometry and TUNEL staining assays. The m6A content was detected using m6A dot blot assay. RT-qPCR and western blot assays were used to assessed the relative mRNA and protein levels. MeRIP assay was conducted to determine the m6A levels of P53. The relationship between METTL3 and P53 was demonstrated using RIP and dual-luciferase reporter assays. Results The results showed that Re treatment significantly decreased the cell apoptosis and promoted the cell viability in the H/R treated L-02 cells. Besides, H/R treatment increased the METTL3 and m6A levels in the L-02 cells, and Re treatment decreased them. Additionally, METTL3 overexpression reversed the role of Re in the H/R treated L-02 cells. Mechanistically, METTL3 overexpression enhanced the m6A levels and mRNA stability and expressions of P53. The combination of METTL3 and P53 was further confirmed. Conclusion In conclusion, this study demonstrated that Re treatment relieved the H/R induced injury in the L-02 cells through decreasing the METTL3 levels. METTL3 enhanced the mRNA stability and expressions of P53 through m6A modification. Re-METTL3-P53 axis might a new direction for the treatment of liver IRI in the future.
Collapse
Affiliation(s)
- Weixing Ding
- Pain Department, Qujing Second People's Hospital, No. 289 Qilin Xi Road, Qilin District, Qujing, Yunnan, 655009, China
| | - Huijuan Peng
- Pain Department, Qujing Second People's Hospital, No. 289 Qilin Xi Road, Qilin District, Qujing, Yunnan, 655009, China
| | - Jianyou Tian
- Anesthesiology Department, Qujing Second People's Hospital, No. 289 Qilin Xi Road, Qilin District, Qujing, Yunnan, 655009, China
| | - Siyan Wang
- Health Examination Center, Qujing Second People's Hospital, No. 289 Qilin Xi Road, Qilin District, Qujing, Yunnan, 655009, China
| |
Collapse
|
18
|
Lian B, Yan S, Li J, Bai Z, Li J. HNRNPC promotes collagen fiber alignment and immune evasion in breast cancer via activation of the VIRMA-mediated TFAP2A/DDR1 axis. Mol Med 2023; 29:103. [PMID: 37528369 PMCID: PMC10394847 DOI: 10.1186/s10020-023-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Cancers aggressively reorganize collagen in their microenvironment, leading to the evasion of tumor cells from immune surveillance. However, the biological significance and molecular mechanism of collagen alignment in breast cancer (BC) have not been well established. METHODS In this study, BC-related RNA-Seq data were obtained from the TCGA database to analyze the correlation between DDR1 and immune cells. Mouse BC cells EO771 were selected for in vitro validation, and dual-luciferase experiments were conducted to examine the effect of TFAP2A on DDR1 promoter transcription activity. ChIP experiments were performed to assess TFAP2A enrichment on the DDR1 promoter, while Me-RIP experiments were conducted to detect TFAP2A mRNA m6A modification levels, and PAR-CLIP experiments were conducted to determine VIRMA's binding to TFAP2A mRNA and RIP experiments to investigate HNRNPC's recognition of m6A modification on TFAP2A mRNA. Additionally, an in vivo mouse BC transplant model and the micro-physiological system was constructed for validation, and Masson staining was used to assess collagen fiber arrangement. Immunohistochemistry was conducted to identify the number of CD8-positive cells in mouse BC tumors and Collagen IV content in ECM, while CD8 + T cell migration experiments were performed to measure CD8 + T cell migration. RESULTS Bioinformatics analysis showed that DDR1 was highly expressed in BC and negatively correlated with the proportion of anti-tumor immune cell infiltration. In vitro cell experiments indicated that VIRMA, HNRNPC, TFAP2A, and DDR1 were highly expressed in BC cells. In addition, HNRNPC promoted TFAP2A expression and, therefore, DDR1 transcription by recognizing the m6A modification of TFAP2A mRNA by VIRMA. In vivo animal experiments further confirmed that VIRMA and HNRNPC enhanced the TFAP2A/DDR1 axis, promoting collagen fiber alignment, reducing anti-tumor immune cell infiltration, and promoting immune escape in BC. CONCLUSION This study demonstrated that HNRNPC promoted DDR1 transcription by recognizing VIRMA-unveiled m6A modification of TFAP2A mRNA, which enhanced collagen fiber alignment and ultimately resulted in the reduction of anti-tumor immune cell infiltration and promotion of immune escape in BC.
Collapse
Affiliation(s)
- Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Shuxun Yan
- Ningxia Medical University, Yinchuan, 750004, China
| | - Jiayi Li
- Northwest University for Nationalities, Lanzhou, 730030, China
| | | | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
19
|
Tang S, Xie X, Wang M, Wei W. Asiaticoside ameliorates renal ischemia/reperfusion injury by promoting CD4 +CD25 +FOXP3 + treg cell differentiation. Heliyon 2023; 9:e17390. [PMID: 37539103 PMCID: PMC10395025 DOI: 10.1016/j.heliyon.2023.e17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023] Open
Abstract
Ischemia/reperfusion injury (I/R) is the major cause of acute kidney injury, which becomes a global health problem. The effects of asiaticoside, as an anti-inflammatory drug, on renal ischemia-reperfusion injury have not been well defined. After the CD4+ cells were treated with asiaticoside, the CD4+CD25+FOXP3+ Treg cell differentiation was detected by flow cytometry. The viability and release of inflammatory factors of CD4+CD25+FOXP3+ Treg cell were detected by CCK-8 and ELISA. Renal I/R injury mice model was established, and the mice were pre-treated with asiaticoside or CD25 antibody or infused with Treg cells. The histological changes of renal tissue were evaluated by Hematoxylin-eosin, PAS, and Masson staining. The renal function markers were evaluated by colorimetry, the release of inflammatory factors was determined by ELISA. The Th17 and Treg cells in the blood and spleen were quantified by flow cytometry. The expressions of FOXP3 and RoR-γt in renal tissues were determined by western blotting. Asiaticoside promoted CD4+CD25+FOXP3+ Treg cell differentiation, increased the cell viability and down-regulated TNF-α, IL-1β, and IL-6, while up-regulated IL-10 of CD4+CD25+FOXP3+ Treg cells. Moreover, asiaticoside ameliorated the histological damage, decreased the Th17 cells and increased Treg cells, and down-regulated the TNF-α, IL-1β, IL-6, blood urea nitrogen, serum creatinine, and RoR-γt, while up-regulated IL-10 and FOXP3 of renal I/R injury mice. Effect of asiaticoside on renal I/R injury mice was reversed by CD25 antibody whose role was further reversed by Treg cell infusing. In conclusion, asiaticoside ameliorated renal I/R injury due to promoting CD4+CD25+FOXP3+ Treg cell differentiation.
Collapse
|
20
|
Gao C, Xu YJ, Meng ZX, Gu S, Zhang L, Zheng L. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 2023; 60:2379-2396. [PMID: 36652050 DOI: 10.1007/s12035-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Zhi-Xiu Meng
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Shuang Gu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Zhuang Y, Li T, Hu X, Xie Y, Pei X, Wang C, Li Y, Liu J, Tian Z, Zhang X, Peng L, Meng B, Wu H, Yuan W, Pan Z, Lu Y. MetBil as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3-mediated m6A modification. FASEB J 2023; 37:e22797. [PMID: 36753405 DOI: 10.1096/fj.202201734r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-β1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yilin Xie
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinyu Pei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chaoqun Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yuyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhongrui Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Lili Peng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Bo Meng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Hao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wei Yuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
22
|
Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun 2023; 14:1161. [PMID: 36859428 PMCID: PMC9977869 DOI: 10.1038/s41467-023-36747-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The role of N6-methyladenosine (m6A) modification in AKI remains unclear. Here, we characterize the role of AlkB homolog 5 (ALKBH5) and m6A modification in an I/R-induced renal injury model in male mice. Alkbh5-knockout mice exhibit milder pathological damage and better renal function than wild-type mice post-IRI, whereas Alkbh5-knockin mice show contrary results. Also conditional knockout of Alkbh5 in the tubular epithelial cells alleviates I/R-induced AKI and fibrosis. CCL28 is identified as a target of ALKBH5. Furthermore, Ccl28 mRNA stability increases with Alkbh5 deficiency, mediating by the binding of insulin-like growth factor 2 binding protein 2. Treg recruitment is upregulated and inflammatory cells are inhibited by the increased CCL28 level in IRI-Alkbh5fl/flKspCre mice. The ALKBH5 inhibitor IOX1 exhibits protective effects against I/R-induced AKI. In summary, inhibition of ALKBH5 promotes the m6A modifications of Ccl28 mRNA, enhancing its stability, and regulating the Treg/inflammatory cell axis. ALKBH5 and this axis is a potential AKI treatment target.
Collapse
|
23
|
Luan J, Kopp JB, Zhou H. N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidney Int Rep 2022; 8:36-50. [PMID: 36644366 PMCID: PMC9831943 DOI: 10.1016/j.ekir.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
RNA methylation modification is a rapidly developing field in epigenetics. N6-methyladensine (m6A) is the most common internal modification in eukaryotic mRNA. m6A group regulates RNA splicing, stability, translocation, and translation. Enzymes catalyzing this process were termed as writers, erasers, and readers. Recent studies have focused on exploring the role of RNA methylation in human diseases. RNA methylation modifications, particularly m6A, play important roles in the pathogenesis of kidney diseases. In this review, we provide a brief description of m6A and summarize the impact of m6A on acute and chronic kidney disease (CKD) and possible future study directions for this research.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland, USA,Jeffrey B. Kopp, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, 10 Center Drive, 3N116, Bethesda, Maryland 20892-1268, USA.
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China,Correspondence: Hua Zhou, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
24
|
N(6)-methyladenosine modification: A vital role of programmed cell death in myocardial ischemia/reperfusion injury. Int J Cardiol 2022; 367:11-19. [PMID: 36002042 DOI: 10.1016/j.ijcard.2022.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
N(6)-methyladenosine (m6A) modification is closely associated with myocardial ischemia/reperfusion injury (MIRI). As the most common modification among RNA modifications, the reversible m6A modification is processed by methylase ("writers") and demethylase ("erasers"). The biological effects of RNA modified by m6A are regulated under the corresponding RNA binding proteins (RBPs) ("readers"). m6A modification regulates the whole process of RNA, including transcription, processing, splicing, nuclear export, stability, degradation, and translation. Programmed cell death (PCD) is a regulated mechanism that maintains the internal environment's stability. PCD plays an essential role in MIRI, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. However, the relationship between PCD modified with m6A and MIRI is still not clear. This review summarizes the regulators of m6A modification and their bioeffects on PCD in MIRI.
Collapse
|
25
|
Feng J, Zhang Y, Wen J, Chen Y, Tao J, Yu S, Zhu Z, Dong B, Liu Y, Fan Y, Lv L, Zhang X. Alteration of N6-methyladenosine epitranscriptome profiles in bilateral ureteral obstruction-induced obstructive nephropathy in juvenile rats. Pediatr Res 2022; 93:1509-1518. [PMID: 35986151 DOI: 10.1038/s41390-022-02228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urinary tract obstruction is a common cause of renal failure in children and infants, and the pathophysiological mechanisms of obstructive nephropathy are largely unclear. It has been reported that m6A modulation is involved in renal injury. However, whether m6A RNA modulation is associated with obstructive nephropathy has not yet been reported. The aim of this study was to investigate the m6A epitranscriptome profiles in the kidneys of bilateral ureteral obstruction (BUO) in young rats. METHODS The total level of m6A in the kidneys was measured by liquid chromatography-tandem mass spectrometry. The mRNAs of related genes were detected by real-time PCR. Methylated RNA immunoprecipitation sequencing was performed to map the epitranscriptome-wide m6A profile. RESULTS Global m6A levels were increased after BUO, and the mRNA expression levels of m6A methyltransferases and demethylases were significantly decreased in BUO group rat kidneys; the expression levels of EGFR and Brcal were significantly upregulated, while the mRNA expression levels of Notch1 were downregulated (P < 0.05). A total of 154 genes associated with 163 m6A peaks were identified. CONCLUSION The m6A epitranscriptome was significantly altered in BUO rat kidneys, which is potentially implicated in the pathophysiological processes of obstructive nephropathy. IMPACT The m6A RNA modification was associated with the process of renal injury in ureteral obstructive nephropathy by participating in multiple dimensions. The dysregulation of m6A methyltransferases and demethylases may be related to the pathophysiological changes of BUO-induced obstructive nephropathy. The m6A RNA modulation of the genes EGFR, Brca1, and Notch1 that were related to the regulation of aquaporin2 might be the potential mechanism for the polyuresis after ureteral obstruction.
Collapse
Affiliation(s)
- Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanping Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Chen
- Department of Center for Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhaowei Zhu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biao Dong
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yafeng Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Lv
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Meng F, Chen Q, Gu S, Cui R, Ma Q, Cao R, Zhao M. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren Fail 2022; 44:672-681. [PMID: 35416113 PMCID: PMC9009919 DOI: 10.1080/0886022x.2022.2032746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNA (circRNA) is involved in the process of acute kidney injury (AKI), but only a few circRNAs have been reported. In the study, we investigated a new circRNA and its association with AKI. Methods An AKI model was established in Sprague-Dawley rats, followed by serum creatinine and urea nitrogen tests measured by a biochemical analyzer. The pathological changes and apoptosis in the renal tissue were detected by Hematoxylin and Eosin, and TUNEL staining. Then, circRNA expression in AKI was determined by quantitative real-time-PCR (qRT-PCR). NRK-52E cells were induced with hypoxia/reoxygenation (H/R) as in vitro models and the circ-Snrk level was tested by qRT-PCR. The effects of circ-Snrk in H/R-induced NRK-52E cells were assessed by flow cytometry, western blot, and enzyme-linked immunosorbent assay. Finally, RNA sequencing and western blot analysis were used to validate the mRNA profile and pathways involved in circ-Snrk knockdown in H/R-induced NRK-52E. Results A reliable AKI rat model and H/R cell model were established. qRT-PCR demonstrated that circ-Snrk level was upregulated in AKI left kidney tissue and NRK-52E cells with H/R treatment. Circ-Snrk knockdown inhibited apoptosis of NRK-52E cells and secretion of inflammatory factors (IL-6 and TNF-α). RNA sequencing showed that the mRNA profile changed after inhibition of circ-Snrk and differential expression of mRNA mainly enriched various signaling pathways, including MAPK signaling pathway. Furthermore, western blot indicated that circ-Snrk knockdown could inhibit the activation of p-JNK and p-38 transcription factors. Conclusions Circ-Snrk is involved in AKI development and associated with the MAPK signaling pathway in AKI.
Collapse
Affiliation(s)
- Fanhang Meng
- Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuyuan Chen
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Gu
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiwen Cui
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Ma
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ronghua Cao
- Department of Organ Transplantation, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wang JN, Wang F, Ke J, Li Z, Xu CH, Yang Q, Chen X, He XY, He Y, Suo XG, Li C, Yu JT, Jiang L, Ni WJ, Jin J, Liu MM, Shao W, Yang C, Gong Q, Chen HY, Li J, Wu YG, Meng XM. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med 2022; 14:eabk2709. [PMID: 35417191 DOI: 10.1126/scitranslmed.abk2709] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of N6-methyladenosine (m6A) modifications in renal diseases is largely unknown. Here, we characterized the role of N6-adenosine-methyltransferase-like 3 (METTL3), whose expression is elevated in renal tubules in different acute kidney injury (AKI) models as well as in human biopsies and cultured tubular epithelial cells (TECs). METTL3 silencing alleviated renal inflammation and programmed cell death in TECs in response to stimulation by tumor necrosis factor-α (TNF-α), cisplatin, and lipopolysaccharide (LPS), whereas METTL3 overexpression had the opposite effects. Conditional knockout of METTL3 from mouse kidneys attenuated cisplatin- and ischemic/reperfusion (I/R)-induced renal dysfunction, injury, and inflammation. Moreover, TAB3 [TGF-β-activated kinase 1 (MAP3K7) binding protein 3] was identified as a target of METTL3 by m6A methylated RNA immunoprecipitation sequencing and RNA sequencing. The stability of TAB3 was increased through binding of IGF2BP2 (insulin-like growth factor 2 binding protein 2) to its m6A-modified stop codon regions. The proinflammatory effects of TAB3 were then explored both in vitro and in vivo. Adeno-associated virus 9 (AAV9)-mediated METTL3 silencing attenuated renal injury and inflammation in cisplatin- and LPS-induced AKI mouse models. We further identified Cpd-564 as a METTL3 inhibitor that had better protective effects against cisplatin- and ischemia/reperfusion-induced renal injury and inflammation than S-adenosyl-l-homocysteine, a previously identified METTL3 inhibitor. Collectively, METTL3 promoted m6A modifications of TAB3 and enhanced its stability via IGF2BP2-dependent mechanisms. Both genetic and pharmacological inhibition of METTL3 attenuated renal injury and inflammation, suggesting that the METTL3/TAB3 axis is a potential target for treatment of AKI.
Collapse
Affiliation(s)
- Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an 237006, China
| | - Jing Ke
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei 23003, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 23003, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
28
|
Wang X, Li Y, Li J, Li S, Wang F. Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia–Reperfusion Injury. Cardiovasc Drugs Ther 2022; 37:435-448. [PMID: 35066738 DOI: 10.1007/s10557-021-07300-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (MI/R) injury is a complicated pathophysiological process associated with cardiomyocyte pyroptosis. Methyltransferase-like protein 3 (METTL3) catalyzes the formation of N6-methyl-adenosine (m6A) and participates in various biological processes. This study probed into the mechanism of METTL3 in cardiomyocyte pyroptosis in MI/R injury. METHODS A rat model of MI/R was established. Rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment for the establishment of a cell model in vitro. METTL3 expression in myocardial tissues of MI/R rats and OGD/R-treated cardiomyocytes was determined using RT-qPCR and Western blot. The pathological changes of rat myocardial tissues were observed using hematoxylin and eosin staining. The positive expression of NLRP3 in myocardial tissues or cardiomyocytes was observed through immunohistochemistry or immunofluorescence. The activity of caspase-1 was measured using the colorimetric method. The expressions of GSDMD and cleaved caspase-1, as well as the levels of IL-1β and IL-18 in rat myocardial tissues or cardiomyocytes were determined. m6A modification level was quantified. The binding relationship between pri-miR-143-3p and DGCR8 and the enrichment of m6A on pri-miR-143-3p were detected. The binding relationship between miR-143-3p and protein kinase C epsilon (PRKCE) was verified. RESULTS METTL3 expression was elevated in MI/R rats and OGD/R cardiomyocytes. METTL3 silencing alleviated myocardial injury, reduced the number of NLRP3-positive cardiomyocytes, suppressed caspase-1 activity, decreased the protein levels of GSDMD-N and cleaved caspase-1, and decreased IL-1β and IL-18 levels. METTL3 increased the total m6A level in MI/R rats and injured cardiomyocytes, promoted DGCR8 binding to pri-miR-143-3p, and enhanced miR-143-3p expression. miR-143-3p suppressed PRKCE transcription, and miR-143-3p overexpression reversed the inhibitory effect of METTL3 silencing on cardiomyocyte pyroptosis. CONCLUSION METTL3 promoted DGCR8 binding to pri-miR-143-3p through m6A modification, thus enhancing miR-143-3p expression to inhibit PRKCE transcription and further aggravating cardiomyocyte pyroptosis and MI/R injury.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yi Li
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing Hospital, Beijing, 100730, China
| | - Jiahan Li
- The First Mobile Corps of People's Armed Police, Beijing, 101100, China
| | - Shiguo Li
- Department of Structural Heart Disease Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Fang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
29
|
Zhao X, Yang L, Qin L. Methyltransferase-like 3 (METTL3) attenuates cardiomyocyte apoptosis with myocardial ischemia-reperfusion (I/R) injury through miR-25-3p and miR-873-5p. Cell Biol Int 2021; 46:992. [PMID: 34553450 DOI: 10.1002/cbin.11706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methyltransferase-like 3 (METTL3) mediated N6 -methyladenosine (m6A) promotes microRNAs (miRNAs) maturation by processing the primary miRNAs, and METTL3 involves in regulating the development of various diseases, including myocardial ischemia-reperfusion (I/R) injury. However, up until now, the association between METTL3 regulated miRNAs and I/R injury is not fully investigated, which makes investigations on this academic issue necessary. In this study, we showed that METTL3 was downregulated in mice I/R myocardial tissues and hypoxic/re-oxygenated (H/R) cardiomyocytes, and upregulation of METTL3 attenuated I/R and H/R-induced cell apoptosis. In addition, we screened out that two miRNAs, including miR-25-3p and miR-873-5p, were positively regulated by METTL3 in cardiomyocytes in a DGCR8-dependent manner. In addition, both miR-25-3p and miR-873-5p were significantly downregulated by I/R and H/R treatments in mice tissues and cardiomyocytes, and overexpression of the above two miRNAs were effective to improve cell viability in cardiomyocytes under H/R stress. Next, we evidenced that METTL3 suppressed H/R-induced cell death via upregulating miR-25-3p and miR-873-5p. Finally, the potential downstream mechanisms were investigated, and we expectedly found that METTL3 activated the PI3K/Akt pathway in H/R-treated cardiomyocytes through modulating miR-25-3p and miR-873-5p, and the PI3K/Akt pathway inhibitor (LY294002) abrogated the protective effects of METTL3 overexpression in cardiomyocytes with H/R treatment. Collectively, we concluded that METTL3 upregulated miR-25-3p and miR-873-5p to activate the PI3K/Akt pathway, resulting in the suppression of I/R injury.
Collapse
Affiliation(s)
- Xiangmei Zhao
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lei Yang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Li CM, Li M, Zhao WB, Ye ZC, Peng H. Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice. Front Mol Biosci 2021; 8:654465. [PMID: 34307448 PMCID: PMC8299335 DOI: 10.3389/fmolb.2021.654465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the alterations of N6-methyladenosine (m6A) RNA profiles in cisplatin-induced acute kidney injury (Cis-AKI) in mice. Materials and Methods: The total level of m6A and the expression of methyltransferases and demethylases in the kidneys were measured. The profiles of methylated RNAs were determined by the microarray method. Bioinformatics analysis was performed to predict the functions. Results: Global m6A levels were increased after cisplatin treatment, accompanied by the alterations of Mettl3, Mettl14, Wtap, Fto, and Alkbh5. A total of 618 mRNAs and 98 lncRNAs were significantly differentially methylated in response to cisplatin treatment. Bioinformatics analysis indicated that the methylated mRNAs predominantly acted on the metabolic process. Conclusion: M6A epitranscriptome might be significantly altered in Cis-AKI, which is potentially implicated in the development of nephrotoxicity.
Collapse
Affiliation(s)
- Can-Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Bo Zhao
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeng-Chun Ye
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|