1
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
3
|
Grebert C, Becq F, Vandebrouck C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019; 81:29-37. [DOI: 10.1016/j.ceca.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
4
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
5
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Zhuang Z, Xiao J, Chen X, Hu X, Li R, Chen S, Feng X, Shen S, Ma HP, Zhuang J, Cai H. G protein pathway suppressor 2 enhanced the renal large-conductance Ca 2+-activated potassium channel expression via inhibiting ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2018; 315:F503-F511. [PMID: 29767559 DOI: 10.1152/ajprenal.00041.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein and transcriptional regulation factor that is involved in the G protein MAPK signaling pathway. It has been shown that the MAPK signaling pathway plays an important role in the regulation of renal large-conductance Ca2+-activated potassium (BK) channels. In this study, we investigated the effects of GPS2 on BK channel activity and protein expression. In human embryonic kidney (HEK) BK stably expressing cells transfected with either GPS2 or its vector control, a single-cell recording showed that GPS2 significantly increased BK channel activity ( NPo), increasing BK open probability ( Po), and channel number ( N) compared with the control. In Cos-7 cells and HEK 293 T cells, GPS2 overexpression significantly enhanced the total protein expression of BK in a dose-dependent manner. Knockdown of GPS2 expression significantly decreased BK protein expression, while increasing ERK1/2 phosphorylation. Knockdown of ERK1/2 expression reversed the GPS2 siRNA-mediated inhibition of BK protein expression in Cos-7 cells. Pretreatments of Cos-7 cells with either the lysosomal inhibitor bafilomycin A1 or the proteasomal inhibitor MG132 partially reversed the inhibitory effects of GPS2 siRNA on BK protein expression. In addition, feeding a high-potassium diet significantly increased both GPS2 and BK protein abundance in mice. These data suggest that GPS2 enhances BK channel activity and its protein expression by reducing ERK1/2 signaling-mediated degradation of the channel.
Collapse
Affiliation(s)
- Zhizhi Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Jia Xiao
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Xiangya Hospital, Central South University, Hunan, China
| | - Xinxin Chen
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohan Hu
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Ruidian Li
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Shan Chen
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Xiuyan Feng
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Xiangya Hospital, Central South University, Hunan, China
| | - Saier Shen
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jieqiu Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China
| | - Hui Cai
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University , Zhejiang , China.,Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
8
|
Aldosterone, SGK1, and ion channels in the kidney. Clin Sci (Lond) 2018; 132:173-183. [PMID: 29352074 PMCID: PMC5817097 DOI: 10.1042/cs20171525] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+, K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells expressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiquitous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate the surface expression and function of many classes of renal ion channels, including those that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl− (ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels are up-regulated by SGK1, while highlighting newly discovered pathways connecting aldosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+ (TRPV4).
Collapse
|
9
|
Zhang ZY, Qian LL, Wang RX. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels. Front Physiol 2017; 8:698. [PMID: 28955251 PMCID: PMC5601423 DOI: 10.3389/fphys.2017.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
Large-conductance calcium-activated potassium channels (BK channels) belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| |
Collapse
|
10
|
Friard J, Tauc M, Cougnon M, Compan V, Duranton C, Rubera I. Comparative Effects of Chloride Channel Inhibitors on LRRC8/VRAC-Mediated Chloride Conductance. Front Pharmacol 2017; 8:328. [PMID: 28620305 PMCID: PMC5449500 DOI: 10.3389/fphar.2017.00328] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
Chloride channels play an essential role in a variety of physiological functions and in human diseases. Historically, the field of chloride channels has long been neglected owing to the lack of powerful selective pharmacological agents that are needed to overcome the technical challenge of characterizing the molecular identities of these channels. Recently, members of the LRRC8 family have been shown to be essential for generating the volume-regulated anion channel (VRAC) current, a chloride conductance that governs the regulatory volume decrease (RVD) process. The inhibitory effects of six commonly used chloride channel inhibitors on VRAC/LRRC8-mediated chloride transport were tested in wild-type HEK-293 cells expressing LRRC8 proteins and devoid of other types of chloride channels (CFTR and ANO1/2). We explored the effectiveness of the inhibitors using the patch-clamp whole-cell approach and fluorescence-based quantification of cellular volume changes during hypotonic challenge. Both DCPIB and NFA inhibited VRAC current in a whole-cell configuration, with IC50 values of 5 ± 1 μM and 55 ± 2 μM, respectively. Surprisingly, GlyH-101 and PPQ-102, two CFTR inhibitors, also inhibited VRAC conductance at concentrations in the range of their current use, with IC50 values of 10 ± 1 μM and 20 ± 1 μM, respectively. T16Ainh-A01, a so-called specific inhibitor of calcium-activated Cl- conductance, blocked the chloride current triggered by hypo-osmotic challenge, with an IC50 of 6 ± 1 μM. Moreover, RVD following hypotonic challenge was dramatically reduced by these inhibitors. CFTRinh-172 was the only inhibitor that had almost no effect on VRAC/LRRC8-mediated chloride conductance. All inhibitors tested except CFTRinh-172 inhibited VRAC/LRRC8-mediated chloride conductance and cellular volume changes during hypotonic challenge. These results shed light on the apparent lack of chloride channel inhibitors specificity and raise the question of how these inhibitors actually block chloride conductances.
Collapse
Affiliation(s)
- Jonas Friard
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Michel Tauc
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Marc Cougnon
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de MontpellierMontpellier, France
| | - Christophe Duranton
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| | - Isabelle Rubera
- LP2M CNRS-UMR7370, LabEx ICST, Medical Faculty, Université Côte d'AzurNice, France
| |
Collapse
|
11
|
Xie C, Cao X, Chen X, Wang D, Zhang WK, Sun Y, Hu W, Zhou Z, Wang Y, Huang P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J 2016; 30:1579-89. [PMID: 26683699 PMCID: PMC6137689 DOI: 10.1096/fj.15-283002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.
Collapse
Affiliation(s)
- Changyan Xie
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Cao
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xibing Chen
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Kevin Zhang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Sun
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenbao Hu
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Wang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- *Division of Life Science, Division of Biomedical Engineering, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
12
|
Different expressions of large-conductance Ca2+-activated K+ channels in the mouse renal cortex and hippocampus during postnatal development. Appl Immunohistochem Mol Morphol 2015; 23:146-52. [PMID: 25390352 DOI: 10.1097/pai.0000000000000006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Large-conductance Ca(+)-activated K(+) (BKCa) channels are widely distributed in a variety of cells and play a pivotal and specific role in many pathophysiological conditions. However, the function of BK(Ca) channels in the kidney cortex and hippocampus during the postnatal development has not received attention. In this study, to elucidate the role of BK(Ca) channels during the development, it is essential to establish the location and quantitation of expression of BK(Ca). The expressions of BK(Ca) were detected in the kidney and hippocampus on postnatal days (P) 1, 3, 5, 7, 14, 21, 28, and 49 by immunohistochemical and Western blot analysis. Our results showed that expressions of BK(Ca) channels were found in tubules and corpuscles at all time points. The expression was also observed at all developmental stages of the renal corpuscles, such as comma-shaped body, S-shaped body, renal corpuscles of stage III, and renal corpuscles of stage IV. During the development, the expression of BK(Ca) channels was decreased and the most prominent change of BK(Ca) protein level appeared between P14 and P21. In contrast, BK(Ca) channels were expressed in all regions of the hippocampus at every time point with the level increasing during the early development (P1 to P14). The findings of the present study suggest that BKCa channels play an important role during the postnatal development in both the renal cortex and hippocampus.
Collapse
|
13
|
UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci Rep 2015; 5:13450. [PMID: 26304588 PMCID: PMC4548255 DOI: 10.1038/srep13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/01/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor cells can adapt to a hostile environment with reduced oxygen supply. The present study aimed to identify mechanisms that confer hypoxia resistance. Partially hypoxia/reoxygenation (H/R)-resistant proximal tubular (PT) cells were selected by exposing PT cultures to repetitive cycles of H/R. Thereafter, H/R-induced changes in mRNA and protein expression, inner mitochondrial membrane potential (ΔΨm), formation of superoxide, and cell death were compared between H/R-adapted and control PT cultures. As a result, H/R-adapted PT cells exhibited lower H/R-induced hyperpolarization of ΔΨm and produced less superoxide than the control cultures. Consequently, H/R triggered ΔΨm break-down and DNA degradation in a lower percentage of H/R-adapted than control PT cells. Moreover, H/R induced upregulation of mitochondrial uncoupling protein-3 (UCP-3) in H/R-adapted PT but not in control cultures. In addition, ionizing radiation killed a lower percentage of H/R-adapted as compared to control cells suggestive of an H/R-radiation cross-resistance developed by the selection procedure. Knockdown of UCP-3 decreased H/R- and radioresitance of the H/R-adapted cells. Finally, UCP-3 protein abundance of PT-derived clear cell renal cell carcinoma and normal renal tissue was compared in human specimens indicating upregulation of UCP-3 during tumor development. Combined, our data suggest functional significance of UCP-3 for H/R resistance.
Collapse
|
14
|
Del-Aguila JL, Cooper-DeHoff RM, Chapman AB, Gums JG, Beitelshees AL, Bailey K, Turner ST, Johnson JA, Boerwinkle E. Transethnic meta-analysis suggests genetic variation in the HEME pathway influences potassium response in patients treated with hydrochlorothiazide. THE PHARMACOGENOMICS JOURNAL 2015; 15:153-7. [PMID: 25201287 PMCID: PMC4362777 DOI: 10.1038/tpj.2014.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023]
Abstract
Hypokalemia is a recognized adverse effect of thiazide diuretic treatment. This phenomenon, which may impair insulin secretion, has been suggested to be a reason for the adverse effects on glucose metabolism associated with thiazide diuretic treatment of hypertension. However, the mechanisms underlying thiazide diuretic-induced hypokalemia are not well understood. In an effort to identify genes or genomic regions associated with potassium response to hydrochlorothiazide, without a priori knowledge of biologic effects, we performed a genome-wide association study and a multiethnic meta-analysis in 718 European- and African-American hypertensive participants from two different pharmacogenetic studies. Single-nucleotide polymorphisms rs10845697 (Bayes factor=5.560) on chromosome 12, near to the HEME binding protein 1 gene, and rs11135740 (Bayes factor=5.258) on chromosome 8, near to the Mitoferrin-1 gene, reached genome-wide association study significance (Bayes factor >5). These results, if replicated, suggest a novel mechanism involving effects of genes in the HEME pathway influencing hydrochlorothiazide-induced renal potassium loss.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Human Genetics Center, University of Texas Health Science
Center at Houston, Houston, TX, USA
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research
and Division of Cardiovascular Medicine and Center for Pharmacogenomics, University
of Florida, Gainesville, FL, USA
| | - Arlene B. Chapman
- Department of Medicine, Emory University School of
Medicine, Atlanta, GA, USA
| | - John G. Gums
- Department of Pharmacotherapy and Translational Research
and Division of Cardiovascular Medicine and Center for Pharmacogenomics, University
of Florida, Gainesville, FL, USA
| | - Amber L. Beitelshees
- Department of Medicine, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Kent Bailey
- Division of Nephrology and Hypertension, Mayo Clinic,
Rochester, MN, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic,
Rochester, MN, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research
and Division of Cardiovascular Medicine and Center for Pharmacogenomics, University
of Florida, Gainesville, FL, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science
Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center at Baylor College of
Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Liu Y, Song X, Shi Y, Shi Z, Niu W, Feng X, Gu D, Bao HF, Ma HP, Eaton DC, Zhuang J, Cai H. WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling. J Am Soc Nephrol 2014; 26:844-54. [PMID: 25145935 DOI: 10.1681/asn.2014020186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With no lysine (WNK) kinases are members of the serine/threonine kinase family. We previously showed that WNK4 inhibits renal large-conductance Ca(2+)-activated K(+) (BK) channel activity by enhancing its degradation through a lysosomal pathway. In this study, we investigated the effect of WNK1 on BK channel activity. In HEK293 cells stably expressing the α subunit of BK (HEK-BKα cells), siRNA-mediated knockdown of WNK1 expression significantly inhibited both BKα channel activity and open probability. Knockdown of WNK1 expression also significantly inhibited BKα protein expression and increased ERK1/2 phosphorylation, whereas overexpression of WNK1 significantly enhanced BKα expression and decreased ERK1/2 phosphorylation in a dose-dependent manner in HEK293 cells. Knockdown of ERK1/2 prevented WNK1 siRNA-mediated inhibition of BKα expression. Similarly, pretreatment of HEK-BKα cells with the lysosomal inhibitor bafilomycin A1 reversed the inhibitory effects of WNK1 siRNA on BKα expression in a dose-dependent manner. Knockdown of WNK1 expression also increased the ubiquitination of BKα channels. Notably, mice fed a high-K(+) diet for 10 days had significantly higher renal protein expression levels of BKα and WNK1 and lower levels of ERK1/2 phosphorylation compared with mice fed a normal-K(+) diet. These data suggest that WNK1 enhances BK channel function by reducing ERK1/2 signaling-mediated lysosomal degradation of the channel.
Collapse
Affiliation(s)
- Yingli Liu
- Renal Division, Department of Medicine, and Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiang Song
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China; and
| | | | - Zhen Shi
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Weihui Niu
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Xiuyan Feng
- Renal Division, Department of Medicine, and Renal Section, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Dingying Gu
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Jieqiu Zhuang
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China;
| | - Hui Cai
- Renal Division, Department of Medicine, and Renal Section, Atlanta Veterans Affairs Medical Center, Decatur, Georgia Department of Physiology, Emory University School of Medicine, Atlanta, Georgia;
| |
Collapse
|
16
|
Zhuang J, Zhang X, Wang D, Li J, Zhou B, Shi Z, Gu D, Denson DD, Eaton DC, Cai H. WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism. Am J Physiol Renal Physiol 2011; 301:F410-9. [PMID: 21613417 DOI: 10.1152/ajprenal.00518.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
WNK [with no lysine (k)] kinase is a serine/threonine kinase subfamily. Mutations in two of the WNK kinases result in pseudohypoaldosteronism type II (PHA II) characterized by hypertension, hyperkalemia, and metabolic acidosis. Recent studies showed that both WNK1 and WNK4 inhibit ROMK activity. However, little is known about the effect of WNK kinases on Maxi K, a large-conductance Ca(2+) and voltage-activated potassium (K) channel. Here, we report that WNK4 wild-type (WT) significantly inhibits Maxi K channel activity in HEK αBK stable cell lines compared with the control group. However, a WNK4 dead-kinase mutant, D321A, has no inhibitory effect on Maxi K activity. We further found that WNK4 inhibits total and cell surface protein expression of Maxi K equally compared with control groups. A dominant-negative dynamin mutant, K44A, did not alter the WNK4-mediated inhibitory effect on Maxi K surface expression. Treatment with bafilomycin A1 (a proton pump inhibitor) and leupeptin (a lysosomal inhibitor) reversed WNK4 WT-mediated inhibition of Maxi K total protein expression. These findings suggest that WNK4 WT inhibits Maxi K activity by reducing Maxi K protein at the membrane, but that the inhibition is not due to an increase in clathrin-mediated endocytosis of Maxi K, but likely due to enhancing its lysosomal degradation. Also, WNK4's inhibitory effect on Maxi K activity is dependent on its kinase activity.
Collapse
Affiliation(s)
- Jieqiu Zhuang
- Department of Nephrology, The Second Affiliated Hospital, Wenzhou Medical College, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neal AM, Taylor HC, Millar ID, Kibble JD, White SJ, Robson L. Renal defects in KCNE1 knockout mice are mimicked by chromanol 293B in vivo: identification of a KCNE1-regulated K+ conductance in the proximal tubule. J Physiol 2011; 589:3595-609. [PMID: 21576273 PMCID: PMC3167120 DOI: 10.1113/jphysiol.2011.209155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Non-technical summary The kidney plays a critical role in regulating body fluid volume and blood pressure by conserving ions, solutes and water. Knowing the processes that underpin the handling of ions, solutes and water by the kidney is essential to our understanding of fluid and blood pressure regulation. Movement of ions is mediated by specific transport proteins found in the membranes of kidney cells. These proteins are regulated by additional proteins, called accessory proteins. In the current study, we have examined the role of the accessory protein KCNE1 in regulating a channel, KCNQ1, which is important in kidney function. We have observed that in the absence of KCNE1 the kidney has difficulty conserving sodium, chloride and water. However, by using specific inhibitors of these proteins we have also determined that although KCNE1 has a role in kidney function, the mechanism of its action is unlikely to be by regulating the protein KCNQ1. Abstract KCNE1 is a protein of low molecular mass that is known to regulate the chromanol 293B and clofilium-sensitive K+ channel, KCNQ1, in a number of tissues. Previous work on the kidney of KCNE1 and KCNQ1 knockout mice has revealed that these animals have different renal phenotypes, suggesting that KCNE1 may not regulate KCNQ1 in the renal system. In the current study, in vivo clearance approaches and whole cell voltage-clamp recordings from isolated renal proximal tubules were used to examine the physiological role of KCNE1. Data from wild-type mice were compared to those from KCNE1 knockout mice. In clearance studies the KCNE1 knockout mice had an increased fractional excretion of Na+, Cl−, HCO3− and water. This profile was mimicked in wild-type mice by infusion of chromanol 293B, while chromanol was without effect in KCNE1 knockout animals. Clofilium also increased the fractional excretion of Na+, Cl− and water, but this was observed in both wild-type and knockout mice, suggesting that KCNE1 was regulating a chromanol-sensitive but clofilium-insensitive pathway. In whole cell voltage clamp recordings from proximal tubules, a chromanol-sensitive, K+-selective conductance was identified that was absent in tubules from knockout animals. The properties of this conductance were not consistent with its being mediated by KCNQ1, suggesting that KCNE1 regulates another K+ channel in the renal proximal tubule. Taken together these data suggest that KCNE1 regulates a K+-selective conductance in the renal proximal tubule that plays a relatively minor role in driving the transport of Na+, Cl− and HCO3−.
Collapse
Affiliation(s)
- A M Neal
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
18
|
Pluznick JL. Beyond translation: the renal phosphate census. Focus on "Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule". Am J Physiol Cell Physiol 2011; 300:C752-4. [PMID: 21248080 DOI: 10.1152/ajpcell.00009.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Alzamora R, Gong F, Rondanino C, Lee JK, Smolak C, Pastor-Soler NM, Hallows KR. AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 2010; 299:F1308-19. [PMID: 20861072 DOI: 10.1152/ajprenal.00423.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The KCNQ1 K(+) channel plays a key role in the regulation of several physiological functions, including cardiac excitability, cardiovascular tone, and body electrolyte homeostasis. The metabolic sensor AMP-activated protein kinase (AMPK) has been shown to regulate a growing number of ion transport proteins. To determine whether AMPK regulates KCNQ1, we studied the effects of AMPK activation on KCNQ1 currents in Xenopus laevis oocytes and collecting duct epithelial cells. AMPK activation decreased KCNQ1 currents and channel surface expression in X. laevis oocytes, but AMPK did not phosphorylate KCNQ1 in vitro, suggesting an indirect regulatory mechanism. As it has been recently shown that the ubiquitin-protein ligase Nedd4-2 inhibits KCNQ1 plasma membrane expression and that AMPK regulates epithelial Na(+) channels via Nedd4-2, we examined the role of Nedd4-2 in the AMPK-dependent regulation of KCNQ1. Channel inhibition by AMPK was blocked in oocytes coexpressing either a dominant-negative or constitutively active Nedd4-2 mutant, or a Nedd4-2 interaction-deficient KCNQ1 mutant, suggesting that Nedd4-2 participates in the regulation of KCNQ1 by AMPK. KCNQ1 is expressed at the basolateral membrane in mouse polarized kidney cortical collecting duct (mpkCCD(c14)) cells and in rat kidney. Treatment with the AMPK activators AICAR (2 mM) or metformin (1 mM) reduced basolateral KCNQ1 currents in apically permeabilized polarized mpkCCD(c14) cells. Moreover, AICAR treatment of rat kidney slices ex vivo induced AMPK activation and intracellular redistribution of KCNQ1 from the basolateral membrane in collecting duct principal cells. AICAR treatment also induced increased ubiquitination of KCNQ1 immunoprecipitated from kidney slice homogenates. These results indicate that AMPK inhibits KCNQ1 activity by promoting Nedd4-2-dependent channel ubiquitination and retrieval from the plasma membrane.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mechanosensitive gating of CFTR. Nat Cell Biol 2010; 12:507-12. [PMID: 20400957 DOI: 10.1038/ncb2053] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 01/13/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion and intracellular ligand-gated channel associated with cystic fibrosis, a lethal genetic disorder common among Caucasians. Here we show that CFTR is robustly activated by membrane stretch induced by negative pressures as small as 5 mmHg at the single-channel, cellular and tissue levels. Stretch increased the product of the number of channels present and probability of being open (NPo), and also increased the unitary conductance of CFTR in cell-attached membrane patches. CFTR stretch-mediated activation appears to be an intrinsic property independent of cytosolic factors and kinase signalling. CFTR stretch-mediated activation resulted in chloride transport in Calu-3 human airway epithelial cells and mouse intestinal tissues. Our study has revealed an unexpected function of CFTR in mechanosensing, in addition to its roles as a ligand-gated anion channel and a regulator of other membrane transporters, demonstrating for the first time a mechanosensitive anion channel with a clearly defined molecular identity. Given that CFTR is often found in mechanically dynamic environments, its mechanosensitivity has important physiological implications in epithelial ion transport and cell volume regulation in vivo.
Collapse
|
21
|
l'Hoste S, Chargui A, Belfodil R, Corcelle E, Duranton C, Rubera I, Poujeol C, Mograbi B, Tauc M, Poujeol P. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules. Am J Physiol Renal Physiol 2010; 298:F435-53. [DOI: 10.1152/ajprenal.00286.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that despite the presence of mRNA encoding CFTR, renal proximal cells do not exhibit cAMP-sensitive Cl−conductance (Rubera I, Tauc M, Bidet M, Poujeol C, Cuiller B, Watrin A, Touret N, Poujeol P. Am J Physiol Renal Physiol 275: F651–F663, 1998). Nevertheless, in these cells, CFTR plays a crucial role in the control of the volume-sensitive outwardly rectifying (VSOR) activated Cl−currents during hypotonic shock. The aim of this study was to determine the role of CFTR in the regulation of apoptosis volume decrease (AVD) and the apoptosis phenomenon. For this purpose, renal cells were immortalized from primary cultures of proximal convoluted tubules from cftr+/+and cftr−/−mice. Apoptosis was induced by staurosporine (STS; 1 μM). Cell volume, Cl−conductance, caspase-3 activity, intracellular level of reactive oxygen species (ROS), and glutathione content (GSH/GSSG) were monitored during AVD. In cftr+/+cells, AVD and caspase-3 activation were strongly impaired by conventional Cl−channel blockers and by a specific CFTR inhibitor (CFTRinh-172; 5 μM). STS induced activation of CFTR conductance within 15 min, which was progressively replaced by VSOR Cl−currents after 60 min of exposure. In parallel, STS induced an increase in ROS content in the time course of VSOR Cl−current activation. This increase was impaired by CFTRinh-172 and was not observed in cftr−/−cells. Furthermore, the intracellular GSH/GSSG content decreased during STS exposure in cftr+/+cells only. In conclusion, CFTR could play a key role in the cascade of events leading to apoptosis. This role probably involves control of the intracellular ROS balance by some CFTR-dependent modulation of GSH concentration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baharia Mograbi
- Inflammation et Carcinogenese (INSERM ERI21) UFR Medecine, Nice, France
| | - Michel Tauc
- CNRS FRE 3093, Université de Nice-Sophia Antipolis, and
| | | |
Collapse
|
22
|
L'hoste S, Chargui A, Belfodil R, Duranton C, Rubera I, Mograbi B, Poujeol C, Tauc M, Poujeol P. CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 2009; 46:1017-31. [PMID: 19133329 DOI: 10.1016/j.freeradbiomed.2008.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 12/20/2022]
Abstract
The aim of this study was to characterize the role of CFTR during Cd(2+)-induced apoptosis. For this purpose primary cultures and cell lines originated from proximal tubules (PCT) of wild-type cftr(+/+) and cftr(-/-) mice were used. In cftr(+/+) cells, the application of Cd(2+) (5 microM) stimulated within 8 min an ERK1/2-activated CFTR-like Cl(-) conductance sensitive to CFTR(inh)-172. Thereafter Cd(2+) induced an apoptotic volume decrease (AVD) within 6 h followed by caspase-3 activation and apoptosis. The early increase in CFTR conductance was followed by the activation of volume-sensitive outwardly rectifying (VSOR) Cl(-) and TASK2 K(+) conductances. By contrast, cftr(-/-) cells exposed to Cd(2+) were unable to develop VSOR currents, caspase-3 activity, and AVD process and underwent necrosis. Moreover in cftr(+/+) cells, Cd(2+) enhanced reactive oxygen species (ROS) production and induced a 50% decrease in total glutathione content (major ROS scavenger in PCT). ROS generation and glutathione decrease depended on the presence of CFTR, since they did not occur in the presence of CFTR(inh)-172 or in cftr(-/-) cells. Additionally, Cd(2+) exposure accelerates effluxes of fluorescent glutathione S-conjugate in cftr(+/+) cells. Our data suggest that CFTR could modulate ROS levels to ensure apoptosis during Cd(2+) exposure by modulating the intracellular content of glutathione.
Collapse
Affiliation(s)
- Sebastien L'hoste
- CNRS FRE 3093, Université de Nice-Sophia Antipolis, Nice Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bens M, Vandewalle A. Cell models for studying renal physiology. Pflugers Arch 2008; 457:1-15. [DOI: 10.1007/s00424-008-0507-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/22/2008] [Indexed: 12/24/2022]
|
24
|
L'Hoste S, Barriere H, Belfodil R, Rubera I, Duranton C, Tauc M, Poujeol C, Barhanin J, Poujeol P. Extracellular pH alkalinization by Cl-/HCO3- exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney. Am J Physiol Renal Physiol 2006; 292:F628-38. [PMID: 17003225 DOI: 10.1152/ajprenal.00132.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that K(+)-selective TASK2 channels and swelling-activated Cl(-) currents are involved in a regulatory volume decrease (RVD; Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. J Gen Physiol 122: 177-190, 2003; Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. Am J Physiol Renal Physiol 284: F812-F828, 2003). The aim of this study was to determine the mechanism responsible for the activation of TASK2 channels during RVD in proximal cell lines from mouse kidney. For this purpose, the patch-clamp whole-cell technique was used to test the effect of pH and the buffering capacity of external bath on Cl(-) and K(+) currents during hypotonic shock. In the presence of a high buffer concentration (30 mM HEPES), the cells did not undergo RVD and did not develop outward K(+) currents (TASK2). Interestingly, the hypotonic shock reduced the cytosolic pH (pH(i)) and increased the external pH (pH(e)) in wild-type but not in cftr (-/-) cells. The inhibitory effect of DIDS suggests that the acidification of pH(i) and the alkalinization of pH(e) induced by hypotonicity in wild-type cells could be due to an exit of HCO(3)(-). In conclusion, these results indicate that Cl(-) influx will be the driving force for HCO(3)(-) exit through the activation of the Cl(-)/HCO(3)(-) exchanger. This efflux of HCO(3)(-) then alkalinizes pH(e), which in turn activates TASK2 channels.
Collapse
Affiliation(s)
- S L'Hoste
- UMR Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pluznick JL, Sansom SC. BK channels in the kidney: role in K(+) secretion and localization of molecular components. Am J Physiol Renal Physiol 2006; 291:F517-29. [PMID: 16774904 DOI: 10.1152/ajprenal.00118.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is generally accepted that ROMK is the K(+) secretory channel in the mammalian distal nephron, recent in vitro and in vivo studies have provided evidence that large-conductance Ca(2+)-activated K(+) channels (BK, or maxi K) also secrete K(+) in renal tubules. This review assesses the current evidence relating BK channels with K(+) secretion. We shall consider the component proteins of the BK channel, their localization with respect to segment and cell type, and the electrophysiological forces involved in K(+) secretion. Although the majority of studies have focused on a role for BK channels in flow-mediated K(+) secretion, this review also considers a potential role for BK channels in high-K diet-induced K(+) secretion. The division of workload between ROMK and BK is discussed as a mechanism for ensuring a constant plasma K(+) concentration.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
26
|
Pluznick JL, Wei P, Grimm PR, Sansom SC. BK-β1 subunit: immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 2005; 288:F846-54. [PMID: 15613616 DOI: 10.1152/ajprenal.00340.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large, Ca2+-activated K+channels (BK), comprised of α- and β-subunits, mediate K+secretion during high flow rates in distal nephron segments. Because the BK-β1 subunit enhances Ca2+sensitivity of BK in a variety of cells, we determined its role in flow-induced K+secretion and its localization in the mammalian nephron. To determine the role of BK-β1 in the kaliuretic response to volume expansion, the rate of K+excretion (UKV) vs. varied urinary flow rates were determined in wild-type and BK-β1 knockout mice (BK-β1−/−). When flow rate was varied by volume expansion (2 ml·h−1·25 g body wt−1) for 30 to 60 min in wild-type mice, we found that the UKV increased significantly with increasing urine flow rates ( r2= 0.50, P < 0.00001, n = 31), as demonstrated previously in distal nephron of rats and rabbits. However, in BK-β1−/−mice, UKV did not vary with changing flow rates ( r2= 0.15, P = 0.08, n = 20). Using immunohistochemical techniques, we found that BK-β1 was strongly expressed in the apical membrane of the murine distal nephron and that 98% of BK-β1 protein detected by histochemistry colocalized with NCX, a marker of connecting tubules (CNT). Both BK-β1 and NCX colocalized with BK-α in separate experiments. Furthermore, we confirmed BK-β1 protein expression in the apical membrane of connecting tubules in rabbits. BK-β1 RNA from rabbit CNT was sequenced and was identical to previously published rabbit muscle sequences. These data show that the BK-β1 accessory subunit is present in the CNT segment of the mammalian distal nephron and has a significant role in the kaliuretic response to increased urinary flow induced by volume expansion.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
27
|
Barrière H, Tauc M, Poujeol P. Use of knock-out mouse models for the study of renal ion channels. J Membr Biol 2005; 198:113-24. [PMID: 15216413 DOI: 10.1007/s00232-004-0665-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Indexed: 12/30/2022]
Affiliation(s)
- H Barrière
- UMR CNRS 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
28
|
Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 2003; 122:177-90. [PMID: 12860925 PMCID: PMC2229545 DOI: 10.1085/jgp.200308820] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using beta-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 microM 293B, but blocked by 500 microM quinidine and 10 microM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules.
Collapse
Affiliation(s)
- Herve Barriere
- UMR CNRS 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barrière H, Belfodil R, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. CFTR null mutation altered cAMP-sensitive and swelling-activated Cl- currents in primary cultures of mouse nephron. Am J Physiol Renal Physiol 2003; 284:F796-811. [PMID: 12475744 DOI: 10.1152/ajprenal.00237.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of cystic fibrosis transmembrane conductance regulator (CFTR) in the control of Cl(-) currents was studied in mouse kidney. Whole cell clamp was used to analyze Cl(-) currents in primary cultures of proximal and distal convoluted and cortical collecting tubules from wild-type (WT) and cftr knockout (KO) mice. In WT mice, forskolin activated a linear Cl(-) current only in distal convoluted and cortical collecting tubule cells. This current was not recorded in KO mice. In both mice, Ca(2+)-dependent Cl(-) currents were recorded in all segments. In WT mice, volume-sensitive Cl(-) currents were implicated in regulatory volume decrease during hypotonicity. In KO mice, regulatory volume decrease and swelling-activated Cl(-) current were impaired but were restored by adenosine perfusion. Extracellular ATP also restored swelling-activated Cl(-) currents. The effect of ATP or adenosine was blocked by 8-cyclopentyl-1,3-diproxylxanthine. The ecto-ATPase inhibitor ARL-67156 inhibited the effect of hypotonicity and ATP. Finally, in KO mice, volume-sensitive Cl(-) currents are potentially functional, but the absence of CFTR precludes their activation by extracellular nucleosides. This observation strengthens the hypothesis that CFTR is a modulator of ATP release in epithelia.
Collapse
Affiliation(s)
- Hervé Barrière
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|