1
|
Krajewska M, Możajew M, Filipek S, Koprowski P. Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159443. [PMID: 38056763 DOI: 10.1016/j.bbalip.2023.159443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Mariusz Możajew
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
2
|
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 2022; 9:796136. [PMID: 35223865 PMCID: PMC8864065 DOI: 10.3389/fcell.2021.796136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Potassium (K+) homeostasis is tightly regulated for optimal cell and organismal health. Failure to control potassium balance results in disease, including cardiac arrythmias and developmental disorders. A family of inwardly rectifying potassium (Kir) channels helps cells maintain K+ levels. Encoded by KCNJ genes, Kir channels are comprised of a tetramer of Kir subunits, each of which contains two-transmembrane domains. The assembled Kir channel generates an ion selectivity filter for K+ at the monomer interface, which allows for K+ transit. Kir channels are found in many cell types and influence K+ homeostasis across the organism, impacting muscle, nerve and immune function. Kir2.1 is one of the best studied family members with well-defined roles in regulating heart rhythm, muscle contraction and bone development. Due to their expansive roles, it is not surprising that Kir mutations lead to disease, including cardiomyopathies, and neurological and metabolic disorders. Kir malfunction is linked to developmental defects, including underdeveloped skeletal systems and cerebellar abnormalities. Mutations in Kir2.1 cause the periodic paralysis, cardiac arrythmia, and developmental deficits associated with Andersen-Tawil Syndrome. Here we review the roles of Kir family member Kir2.1 in maintaining K+ balance with a specific focus on our understanding of Kir2.1 channel trafficking and emerging roles in development and disease. We provide a synopsis of the vital work focused on understanding the trafficking of Kir2.1 and its role in development.
Collapse
Affiliation(s)
| | | | | | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Ilyaskin AV, Korbmacher C, Diakov A. Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem 2021; 296:100404. [PMID: 33577799 PMCID: PMC7973139 DOI: 10.1016/j.jbc.2021.100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αβγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of β- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of β- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
5
|
Zangerl-Plessl EM, Qile M, Bloothooft M, Stary-Weinzinger A, van der Heyden MAG. Disease Associated Mutations in K IR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 2019; 9:biom9110650. [PMID: 31731488 PMCID: PMC6920955 DOI: 10.3390/biom9110650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain. Surprisingly, only few mutations were observed in experimentally determined Endoplasmic Reticulum (ER)exit-, export-, or ER-retention motifs. Structural mapping of the trafficking defect causing mutations provided a 3D framework, which indicates that trafficking deficient mutations form clusters. These “mutation clusters” affect trafficking by different mechanisms, including protein stability.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Muge Qile
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Meye Bloothooft
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
- Correspondence: ; Tel.: +31-887558901
| |
Collapse
|
6
|
Mackie TD, Kim BY, Subramanya AR, Bain DJ, O'Donnell AF, Welling PA, Brodsky JL. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). J Biol Chem 2018; 293:3201-3217. [PMID: 29311259 PMCID: PMC5836112 DOI: 10.1074/jbc.m117.819086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Indexed: 11/06/2022] Open
Abstract
Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the renal outer medullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.
Collapse
Affiliation(s)
| | - Bo-Young Kim
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | - Arohan R Subramanya
- the Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Medicine and Research Services, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, and
| | - Daniel J Bain
- Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Allyson F O'Donnell
- the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Paul A Welling
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | | |
Collapse
|
7
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
8
|
Sopjani M, Dërmaku-Sopjani M. Klotho-Dependent Cellular Transport Regulation. VITAMINS AND HORMONES 2016; 101:59-84. [PMID: 27125738 DOI: 10.1016/bs.vh.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klotho is a transmembrane protein that in humans is encoded by the hKL gene. This protein is known to have aging suppressor effects and is predominantly expressed in the distal convoluted tubule of the kidney, parathyroid glands, and choroid plexus of the brain. The Klotho protein exists in both full-length membrane form and a soluble secreted form, which exerts numerous distinct functions. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it functions as β-glucuronidase and a hormone. Soluble Klotho is a multifunction protein present in the biological fluids including blood, urine, and cerebrospinal fluid of mammals. Klotho deficiency leads to multiple organ failure accompanied by early appearance of multiple age-related disorders and early death, whereas overexpression of Klotho results in the opposite effects. Klotho, an enzyme and hormone, has been reported to participate in the regulation of cellular transport processes across the plasma membrane either indirectly through inhibiting calcitriol (1,25(OH)2D3) formation or other mechanism, or by directly affecting transporter proteins, including ion channels, cellular carriers, and Na(+)/K(+)-ATPase. Accordingly, Klotho protein serves as a powerful regulator of cellular transport across the plasma membrane. Importantly, Klotho-dependent cellular transport regulation implies stimulatory or inhibitory effects. Klotho has been shown to play a key role in the regulation of multiple calcium and potassium ion channels, and various cellular carriers including the Na(+)-coupled cotransporters such as NaPi-IIa, NaPi-IIb, EAAT3, and EAAT4, CreaT1 as well as Na(+)/K(+)-ATPase. These regulations are parts of the antiaging function of Klotho, which will be discussing throughout this chapter. Clearly, further experimental efforts are required to investigate the effect of Klotho on other transport proteins and underlying molecular mechanisms by which Klotho exerts its effect.
Collapse
Affiliation(s)
- M Sopjani
- University of Prishtina, Prishtinë, Republic of Kosova.
| | | |
Collapse
|
9
|
Dong K, Yan Q, Lu M, Wan L, Hu H, Guo J, Boulpaep E, Wang W, Giebisch G, Hebert SC, Wang T. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion. J Biol Chem 2016; 291:5259-69. [PMID: 26728465 DOI: 10.1074/jbc.m115.707877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule.
Collapse
Affiliation(s)
- Ke Dong
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Qingshang Yan
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Ming Lu
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Laxiang Wan
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Haiyan Hu
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Junhua Guo
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Emile Boulpaep
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - WenHui Wang
- the Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Gerhard Giebisch
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Steven C Hebert
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Tong Wang
- From the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| |
Collapse
|
10
|
Abstract
More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes KCNJ1, KCNJ10, KCNJ16, KCNMA1, and KCNN3. Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
11
|
Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 2015; 310:C243-59. [PMID: 26632600 DOI: 10.1152/ajpcell.00328.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow-induced K secretion (FIKS) in the aldosterone-sensitive distal nephron (ASDN) is mediated by large-conductance, Ca(2+)/stretch-activated BK channels composed of pore-forming α-subunits (BKα) and accessory β-subunits. This channel also plays a critical role in the renal adaptation to dietary K loading. Within the ASDN, the cortical collecting duct (CCD) is a major site for the final renal regulation of K homeostasis. Principal cells in the ASDN possess a single apical cilium whereas the surfaces of adjacent intercalated cells, devoid of cilia, are decorated with abundant microvilli and microplicae. Increases in tubular (urinary) flow rate, induced by volume expansion, diuretics, or a high K diet, subject CCD cells to hydrodynamic forces (fluid shear stress, circumferential stretch, and drag/torque on apical cilia and presumably microvilli/microplicae) that are transduced into increases in principal (PC) and intercalated (IC) cell cytoplasmic Ca(2+) concentration that activate apical voltage-, stretch- and Ca(2+)-activated BK channels, which mediate FIKS. This review summarizes studies by ourselves and others that have led to the evolving picture that the BK channel is localized in a macromolecular complex at the apical membrane, composed of mechanosensitive apical Ca(2+) channels and a variety of kinases/phosphatases as well as other signaling molecules anchored to the cytoskeleton, and that an increase in tubular fluid flow rate leads to IC- and PC-specific responses determined, in large part, by the cell-specific composition of the BK channels.
Collapse
Affiliation(s)
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
12
|
Martínez-Mármol R, Comes N, Styrczewska K, Pérez-Verdaguer M, Vicente R, Pujadas L, Soriano E, Sorkin A, Felipe A. Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cell Mol Life Sci 2015; 73:1515-28. [PMID: 26542799 DOI: 10.1007/s00018-015-2082-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain.,Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Katarzyna Styrczewska
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluís Pujadas
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d´Hebron Institute of Research (VHIR) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Abstract
A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, MD, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Potassium channels in the distal nephron are precisely controlled to regulate potassium secretion in accord with physiological demands. In recent years, it has become evident that membrane trafficking processes play a fundamental role. This short review highlights recent developments in elucidating the underlying mechanisms. RECENT FINDINGS Novel sorting signals in the renal potassium channels, and the elusive intracellular trafficking machinery that read and act on these signals have recently been identified. These new discoveries reveal that independent signals sequentially interact with different intracellular sorting, retention and internalization machineries to appropriately ferry the channels to and from the apical and basolateral membrane domains in sufficient numbers to regulate potassium balance. SUMMARY A new understanding of the basic mechanisms that control potassium channel density at polarized membrane domains has emerged, providing new insights into how potassium balance is achieved and how it goes awry in disease.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, Maryland 21201, USA.
| |
Collapse
|
15
|
Frindt G, Li H, Sackin H, Palmer LG. Inhibition of ROMK channels by low extracellular K+ and oxidative stress. Am J Physiol Renal Physiol 2013; 305:F208-15. [PMID: 23678039 DOI: 10.1152/ajprenal.00185.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that low luminal K⁺ inhibits the activity of ROMK channels in the rat cortical collecting duct. Whole-cell voltage-clamp measurements of the component of outward K⁺ current inhibited by the bee toxin Tertiapin-Q (ISK) showed that reducing the bath concentration ([K⁺]o) to 1 mM resulted in a decline of current over 2 min compared with that observed at 10 mM [K⁺]o. However, maintaining tubules in 1 mM [K⁺]o without establishing whole-cell clamp conditions did not affect ISK. The [K⁺]o-dependent decline was not prevented by increasing cytoplasmic-side pH or by inhibition of phosphatase activity. It was, however, abolished by the inclusion of 0.5 mM DTT in the pipette solution to prevent oxidation of the intracellular environment. Conversely, treatment of intact tubules with the oxidant H₂O₂ (100 μM) decreased ISK in a [K⁺]o-dependent manner. Treatment of the tubules with the phospholipase C inhibitor U73122 prevented the effect of low [K⁺]o, suggesting the involvement of this enzyme in the process. We examined these effects further using Xenopus oocytes expressing ROMK2 channels. A 50-min exposure to the permeant oxidizing agent tert-butyl hydroperoxide (t-BHP; 500 μM) did not affect outward K⁺ currents with [K⁺]o = 10 mM but reduced currents by 50% with [K⁺]o = 1 mM and by 75% with [K⁺]o = 0.1 mM. Pretreatment of the oocytes with U73122 prevented the effects of t-BHP. Under conditions of low dietary K intake, K⁺ secretion by distal nephron segments may be suppressed by a combination of low luminal [K⁺]o and oxidative stress.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
16
|
Ortega B, Mason AK, Welling PA. A tandem Di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2 ασ2 subunits. J Biol Chem 2012; 287:26867-75. [PMID: 22711530 DOI: 10.1074/jbc.m112.341990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.
Collapse
Affiliation(s)
- Bernardo Ortega
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
17
|
Lin DH, Yue P, Pan C, Sun P, Wang WH. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol 2011; 22:1087-98. [PMID: 21566059 PMCID: PMC3103728 DOI: 10.1681/asn.2010090927] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/25/2011] [Indexed: 01/09/2023] Open
Abstract
Dietary potassium stimulates the surface expression of ROMK channels in the aldosterone-sensitive distal nephron, but the mechanism by which this occurs is incompletely understood. Here, a high-potassium diet increased the transcription of microRNA (miR) 802 in the cortical collecting duct in mice. In addition, high-potassium intake decreased the expression of caveolin-1, whose 3' untranslated region contains the seed sequence of miR-802. In vitro, expression of miR-802 suppressed the expression of caveolin-1, and conversely, downregulation of endogenous miR-802 increased the expression of caveolin-1. Sucrose-gradient centrifugation suggested that caveolin-1 closely associated with ROMK channels, and immunoprecipitation showed that caveolin-1 interacted with the N terminus of ROMK. Expression of caveolin-1 varied inversely with the expression of ROMK1 in the plasma membrane, and caveolin-1 inhibited ROMK1 channel activity. Removal of the clathrin-dependent endocytosis motif from ROMK1 failed to abolish the effect of caveolin-1 on ROMK1 channel activity. Last, expression of miR-802 increased ROMK1 channel activity, an effect blocked by coexpression of caveolin-1. Taken together, miR-802 mediates the stimulatory effect of a high-potassium diet on ROMK channel activity by suppressing caveolin-1 expression, which leads to increased surface expression of ROMK channels in the distal nephron.
Collapse
MESH Headings
- Animals
- Caveolin 1/metabolism
- Cells, Cultured
- HEK293 Cells
- Humans
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- Models, Animal
- Patch-Clamp Techniques
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium, Dietary/pharmacology
- Rats
- Rats, Sprague-Dawley
- Transfection
Collapse
Affiliation(s)
- Dao-Hong Lin
- Department of Pharmacology, New York Medical College, BSB 538, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
18
|
Cheng CJ, Huang CL. Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1. J Am Soc Nephrol 2011; 22:460-71. [PMID: 21355052 DOI: 10.1681/asn.2010060681] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
WNK kinases stimulate endocytosis of ROMK channels to regulate renal K+ handling. Phosphatidylinositol 3-kinase (PI3K)-activating hormones, such as insulin and IGF 1, phosphorylate WNK1, but how this affects the regulation of ROMK abundance is unknown. Here, serum starvation of ROMK-transfected HEK cells led to an increase of ROMK current density; subsequent addition of insulin or IGF1 inhibited ROMK currents in a PI3K-dependent manner. Serum and insulin also increased phosphorylation of the downstream kinases Akt1 and SGK1 as well as WNK1. A biotinylation assay suggested that insulin and IGF1 inhibit ROMK by enhancing its endocytosis, a process that WNK1 may mediate. Knockdown of WNK1 with siRNA or expression of a phospho-deficient WNK1 mutant (T58A) both prevented insulin-induced inhibition of ROMK currents, suggesting that phosphorylation at Threonine-58 of WNK1 is important to mediate the inhibition of ROMK by PI3K-activating hormones or growth factors. In vitro and in vivo kinase assays supported the notion that Akt1 and SGK1 can phosphorylate WNK1 at this site, and we established that Akt1 and SGK1 synergistically inhibit ROMK through WNK1. We used dominant-negative intersectin and dynamin constructs to show that SGK1-mediated phosphorylation of WNK1 inhibits ROMK by promoting its endocytosis. Taken together, these results suggest that PI3K-activating hormones inhibit ROMK by enhancing its endocytosis via a mechanism that involves phosphorylation of WNK1 by Akt1 and SGK1.
Collapse
Affiliation(s)
- Chih-Jen Cheng
- Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8856, USA
| | | |
Collapse
|
19
|
Abstract
Secondary hyperparathyroidism in chronic kidney disease (CKD) develops in response to disturbances in calcium and phosphate metabolism associated with CKD, including FGF23 and klotho. FGF23 activates its receptor FGFR1, splice variant IIIC, in the parathyroid gland via a klotho-dependent mechanism and suppresses parathyroid hormone (PTH) secretion. Klotho also may regulate PTH secretion in an FGF23-independent mode, by modulating parathyroid Na+/K+-ATPase activity. The persistence of hyperparathyroidism with progressing CKD despite high serum FGF23 is indicative of FGF23 resistance.
Collapse
|
20
|
A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 2010; 460:925-52. [PMID: 20686783 DOI: 10.1007/s00424-010-0863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 12/11/2022]
Abstract
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Collapse
|
21
|
Ko B, Kamsteeg EJ, Cooke LL, Moddes LN, Deen PMT, Hoover RS. RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 2010; 299:F300-9. [PMID: 20392800 DOI: 10.1152/ajprenal.00441.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/2 MAPK and decreasing NCC cell surface expression (Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS. Proc Natl Acad Sci USA 104: 20120-20125, 2007). Little is known about the mechanisms which underlie these effects on NCC activity. Regulation of NCC via changes in NCC surface expression has been reported, but endocytosis of NCC has not been demonstrated. In this study, utilizing biotinylation, internalization assays, and a dynamin dominant-negative construct, we demonstrate that the regulation of NCC by PE occurs via an enhancement in internalization of NCC and is dynamin dependent. In addition, immunoprecipitation of NCC and subsequent immunoblotting for ubiquitin showed increased ubiquitination of NCC with phorbol ester treatment. MEK1/2 inhibitors and gene silencing of RasGRP1 indicated that this effect was dependent on RasGRP1 and ERK1/2 activation. Inhibition of ubiquitination prevents any PE-mediated decrease in NCC surface expression as measured by biotinylation or NCC activity as measured by radiotracer uptake. These findings confirmed that the PE effect on NCC is mediated by endocytosis of NCC. Furthermore, ubiquitination of NCC is essential for this process and this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
22
|
Vanoye CG, Welch RC, Tian C, Sanders CR, George AL. KCNQ1/KCNE1 assembly, co-translation not required. Channels (Austin) 2010; 4:108-14. [PMID: 20139709 DOI: 10.4161/chan.4.2.11141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated potassium channels are often assembled with accessory proteins that increase their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (K(V)) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some K(V) channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (I(Ks)). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of I(Ks). Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent I(Ks) expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
23
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1135] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Ramström C, Chapman H, Viitanen T, Afrasiabi E, Fox H, Kivelä J, Soini S, Korhonen L, Lindholm D, Pasternack M, Törnquist K. Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol. Cell Mol Life Sci 2010; 67:157-69. [PMID: 19859662 PMCID: PMC11115617 DOI: 10.1007/s00018-009-0176-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 01/08/2023]
Abstract
The HERG (KCNH2) channel is a voltage-sensitive potassium channel mainly expressed in cardiac tissue, but has also been identified in other tissues like neuronal and smooth muscle tissue, and in various tumours and tumour cell lines. The function of HERG has been extensively studied, but it is still not clear what mechanisms regulate the surface expression of the channel. In the present report, using human embryonic kidney cells stably expressing HERG, we show that diacylglycerol potently inhibits the HERG current. This is mediated by a protein kinase C-evoked endocytosis of the channel protein, and is dependent on the dynein-dynamin complex. The HERG protein was found to be located only in early endosomes and not lysosomes. Thus, diacylglycerol is an important lipid participating in the regulation of HERG surface expression and function.
Collapse
Affiliation(s)
- Cia Ramström
- Department of Biology, Åbo Akademi University, 20520 Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Hugh Chapman
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Tero Viitanen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Emad Afrasiabi
- Department of Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Heli Fox
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Johanna Kivelä
- Department of Pharmacology and Clinical Pharmacology, University of Turku, 20520 Turku, Finland
| | - Sanna Soini
- Department of Pharmacology and Clinical Pharmacology, University of Turku, 20520 Turku, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Dan Lindholm
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Michael Pasternack
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
| | - Kid Törnquist
- Department of Biology, Åbo Akademi University, 20520 Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland
- Department of Biology, Åbo Akademi University, BioCity, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
25
|
Fang L, Garuti R, Kim BY, Wade JB, Welling PA. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J Clin Invest 2009; 119:3278-89. [PMID: 19841541 DOI: 10.1172/jci37950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 08/26/2009] [Indexed: 11/17/2022] Open
Abstract
Renal outer medullary potassium (ROMK) channels are exquisitely regulated to adjust renal potassium excretion and maintain potassium balance. Clathrin-dependent endocytosis plays a critical role, limiting urinary potassium loss in potassium deficiency. In renal disease, aberrant ROMK endocytosis may contribute to potassium retention and hyperkalemia. Previous work has indicated that ROMK endocytosis is stimulated by with-no-lysine (WNK) kinases, but the endocytotic signal and the internalization machinery have not been defined. Here, we found that ROMK bound directly to the clathrin adaptor molecule autosomal recessive hypercholesterolemia (ARH), and this interaction was mediated by what we believe to be a novel variant of the canonical "NPXY" endocytotic signal, YxNPxFV. ARH recruits ROMK to clathrin-coated pits for constitutive and WNK1-stimuated endocytosis, and ARH knockdown decreased basal rates of ROMK endocytosis, in a heterologous expression system, COS-7 cells. We found that ARH was predominantly expressed in the distal nephron where it coimmunoprecipitated and colocalized with ROMK. In mice, the abundance of kidney ARH protein was modulated by dietary potassium and inversely correlated with changes in ROMK. Furthermore, ARH-knockout mice exhibited an altered ROMK response to potassium intake. These data suggest that ARH marks ROMK for clathrin-dependent endocytosis, in concert with the demands of potassium homeostasis.
Collapse
Affiliation(s)
- Liang Fang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
26
|
Perry C, Baker OJ, Reyland ME, Grichtchenko II. PKC{alpha}{beta}{gamma}- and PKC{delta}-dependent endocytosis of NBCe1-A and NBCe1-B in salivary parotid acinar cells. Am J Physiol Cell Physiol 2009; 297:C1409-23. [PMID: 19783762 DOI: 10.1152/ajpcell.00028.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined membrane trafficking of NBCe1-A and NBCe1-B variants of the electrogenic Na(+)-HCO(3)(-) cotransporter (NBCe1) encoded by the SLC4A4 gene, using confocal fluorescent microscopy in rat parotid acinar cells (ParC5 and ParC10). We showed that yellow fluorescent protein (YFP)-tagged NBCe1-A and green fluorescent protein (GFP)-tagged NBCe1-B are colocalized with E-cadherin in the basolateral membrane (BLM) but not with the apical membrane marker zona occludens 1 (ZO-1). We inhibited constitutive recycling with monensin and W13 and detected that NBCe1-A and NBCe1-B accumulated in vesicles marked with the early endosomal marker early endosome antigen-1 (EEA1), with a parallel loss from the BLM. We observed that NBCe1-A and NBCe1-B undergo massive carbachol (CCh)-stimulated redistribution from the BLM into early endosomes. We showed that internalization of NBCe1-A and NBCe1-B was prevented by the general PKC inhibitor GF-109203X, the PKCalphabetagamma-specific inhibitor Gö-6976, and the PKCdelta-specific inhibitor rottlerin. We verified the involvement of PKCdelta by blocking CCh-induced internalization of NBCe1-A-cyan fluorescent protein (CFP) in cells transfected with dominant-negative kinase-dead (Lys376Arg) PKCdelta-GFP. Our data suggest that NBCe1-A and NBCe1-B undergo constitutive and CCh-stimulated endocytosis regulated by conventional PKCs (PKCalphabetagamma) and by novel PKCdelta in rat epithelial cells. To help develop a more complete model of the role of NBCe1 in parotid acinar cells we also investigated the initial phase of the secretory response to cholinergic agonist. In an Ussing chamber study we showed that inhibition of basolateral NBCe1 with 5-chloro-2,3-dihydro-3-(hydroxy-2-thienylmethylene)-2-oxo-1H-indole-1-carboxamide (tenidap) significantly decreases an initial phase of luminal anion secretion measured as a transient short-circuit current (I(sc)) across ParC10 cell monolayers. Using trafficking and functional data we propose a model that describes a physiological role of NBC in salivary acinar cell secretion.
Collapse
Affiliation(s)
- Clint Perry
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, 80045, USA
| | | | | | | |
Collapse
|
27
|
Lin DH, Yue P, Pan CY, Sun P, Zhang X, Han Z, Roos M, Caplan M, Giebisch G, Wang WH. POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels. J Biol Chem 2009; 284:29614-24. [PMID: 19710010 DOI: 10.1074/jbc.m109.041582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
POSH (plenty of SH3) is a scaffold protein that has been shown to act as an E3 ubiquitin ligase. Here we report that POSH stimulates the ubiquitination of Kir1.1 (ROMK) and enhances the internalization of this potassium channel. Immunostaining reveals the expression of POSH in the renal cortical collecting duct. Immunoprecipitation of renal tissue lysate with ROMK antibody and glutathione S-transferase pulldown experiments demonstrated the association between ROMK and POSH. Moreover, immunoprecipitation of lysates of HEK293T cells transfected with ROMK1 or with constructs encoding the ROMK-N terminus or ROMK1-C-Terminus demonstrated that POSH binds to ROMK1 on its N terminus. To study the effect of POSH on ROMK1 channels, we measured potassium currents with electrophysiological methods in HEK293T cells and in oocytes transfected or injected with ROMK1 and POSH. POSH decreased potassium currents, and the inhibitory effect of POSH on ROMK channels was dose-dependent. Biotinylation assay further showed that POSH decreased surface expression of ROMK channels in HEK293T cells transfected with ROMK1 and POSH. The effect of POSH on ROMK1 channels was specific because POSH did not inhibit sodium current in oocytes injected with ENaC-alpha, beta, and gamma subunits. Moreover, POSH still decreased the potassium current in oocytes injected with a ROMK1 mutant (R1Delta373-378), in which a clathrin-dependent tyrosine-based internalization signal residing between amino acid residues 373 and 378 is deleted. However, the inhibitory effect of POSH on ROMK channels was absent in cells expressing with dominant negative dynamin and POSHDeltaRING, in which the RING domain was deleted. Expression of POSH also increased the ubiquitination of ROMK1, whereas expression of POSHDeltaRING diminished its ubiquitination in HEK293T cells. The notion that POSH may serve as an E3 ubiquitin ligase is also supported by in vitro ubiquitination assays in which adding POSH increased the ROMK ubiquitination. We conclude that POSH inhibits ROMK channels by enhancing dynamin-dependent and clathrin-independent endocytosis and by stimulating ubiquitination of ROMK channels.
Collapse
Affiliation(s)
- Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol 2009; 76:38-46. [PMID: 19349416 PMCID: PMC2701452 DOI: 10.1124/mol.109.055780] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022] Open
Abstract
Klotho is an aging-suppression protein predominantly expressed in kidney, parathyroid glands, and choroids plexus of the brain. The extracellular domain of Klotho, a type-1 membrane protein, is secreted into urine and blood and may function as an endocrine or paracrine hormone. The functional role of Klotho in the kidney remains largely unknown. Recent studies reported that treatment by the extracellular domain of Klotho (KLe) increases cell-surface abundance of transient receptor potential vanilloid type isoform 5, an epithelial Ca(2+) channel critical for Ca(2+) reabsorption in the kidney. Whether Klotho regulates surface expression of other channels in the kidney is not known. Here, we report that KLe treatment increases the cell-membrane abundance of the renal K(+) channel renal outer medullary potassium channel 1 (ROMK1) by removing terminal sialic acids from N-glycan of the channel. Removal of sialic acids exposes underlying disaccharide galactose-N-acetylglucosamine, a ligand for a ubiquitous galactoside-binding lectin galectin-1. Binding to galectin-1 at the extracellular surface prevents clathrin-mediated endocytosis of ROMK1 and leads to accumulation of functional channel on the plasma membrane. Intravenous administration of KLe increases the level of Klotho in urine and increases urinary excretion of K(+). These results suggest that Klotho may have a broader function in the regulation of ion transport in the kidney.
Collapse
Affiliation(s)
- Seung-Kuy Cha
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | | | | | | | | | | |
Collapse
|
29
|
Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-63. [PMID: 19458126 DOI: 10.1152/ajprenal.00181.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of the renal outer medullary K+ channel (ROMK, K(ir)1.1), the founding member of the inward-rectifying K+ channel (K(ir)) family, by Ho and Hebert in 1993 revolutionized our understanding of potassium channel biology and renal potassium handling. Because of the central role that ROMK plays in the regulation of salt and potassium homeostasis, considerable efforts have been invested in understanding the underlying molecular mechanisms. Here we provide a comprehensive guide to ROMK, spanning from the physiology in the kidney to the organization and regulation by intracellular factors to the structural basis of its function at the atomic level.
Collapse
Affiliation(s)
- Paul A Welling
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
30
|
Liu Z, Wang HR, Huang CL. Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase. J Biol Chem 2009; 284:12198-206. [PMID: 19244242 DOI: 10.1074/jbc.m806551200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. WNK1, the first member discovered, has multiple alternatively spliced isoforms, including a ubiquitously expressed full-length long form (L-WNK1) and a kidney-specific form (KS-WNK1) predominantly expressed in the kidney. Intronic deletions of WNK1 that increase WNK1 transcript cause pseudohypoaldosteronism type 2, an autosomal-dominant disease characterized by hypertension and hyperkalemia. L-WNK1 inhibits renal K(+) channel ROMK, likely contributing to hyperkalemia in PHAII. Previously, we reported that KS-WNK1 by itself has no effect on ROMK1 but antagonizes L-WNK1-mediated inhibition of ROMK1. Amino acids 1-253 of KS-WNK1 (KS-WNK1(1-253)) are sufficient for reversing the inhibition of ROMK1 caused by L-WNK1(1-491). Here, we further investigated the mechanisms by which KS-WNK1 counteracts L-WNK1 regulation of ROMK1. We reported that two regions of KS-WNK1(1-253) are involved in the antagonism of L-WNK1; one includes the first 30 amino acids unique for KS-WNK1 encoded by the alternatively spliced initiating exon 4A, and the other is equivalent to the autoinhibitory domain (AID) of L-WNK1. Mutations of two phenylalanine residues known to be critical for autoinhibitory function of AID abolish the ability of the AID region of KS-WNK1 to antagonize L-WNK1. To examine the physiological role of KS-WNK1 in the regulation of renal K(+) secretion, we generated transgenic mice that overexpress amino acids 1-253 of KS-WNK1 under the control of a kidney-specific promoter. Transgenic mice have lower serum K(+) levels and higher urinary fractional excretion of K(+) compared with wild type littermates despite the same amount of daily urinary K(+) excretion. Moreover, transgenic mice (compared with wild type littermates) displayed a higher abundance of ROMK on the apical membrane of distal nephron. Thus, KS-WNK1 is an important physiological regulator of renal K(+) excretion, likely through its effects on the ROMK1 channel.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Medicine (Division of Nephrology), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA
| | | | | |
Collapse
|
31
|
Liu Y, Templeton DM. Iron-loaded cardiac myocytes stimulate cardiac myofibroblast DNA synthesis. Mol Cell Biochem 2009; 281:77-85. [PMID: 16328959 DOI: 10.1007/s11010-006-0388-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022]
Abstract
Cardiac fibrosis in iron overload disorders may arise from activation of the interstitial fibroblast. However, the cardiac myocyte, and not the fibroblast, is the main target for iron deposition. We hypothesized that fibroblasts respond to the presence of iron-loaded myocytes with increased proliferative capacity. Cardiac fibroblasts were either co-cultured with myocytes on porous filters or treated with medium conditioned by growth of myocyte cultures. In both circumstances myocytes suppressed [(3)H]thymidine incorporation by fibroblasts over 24 h, compared to stimulation of quiescent fibroblasts with fresh, unconditioned medium. However, when the myocytes were preloaded with iron, the suppressive effect was lost and DNA synthesis was restored to levels seen in unconditioned medium. This effect was not due to early events in cell cycle entry; activation of Erk at 15 min and expression of c-fos mRNA at 30 min were similar in media from control and iron-loaded myocytes. Early markers of progression of G1, namely cyclin D and phosphoretinoblastoma protein, were not significantly different in fibroblasts treated with either conditioned medium. However, cyclin E expression, a marker of the G1/S transition, was significantly increased by conditioned medium from the iron-loaded cells, compared to control-conditioned medium. We conclude that myocytes can suppress proliferation of fibroblasts by cumulative effects on late G1 events leading to DNA synthesis, and these effects are diminished with myocyte iron accumulation.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Toronto, Canada
| | | |
Collapse
|
32
|
Mertl M, Daniel H, Kottra G. Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes. Am J Physiol Cell Physiol 2008; 295:C1332-43. [PMID: 18799652 DOI: 10.1152/ajpcell.00241.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptation of the capacity of the intestinal peptide transporter PEPT1 to varying substrate concentrations may be important with respect to its role in providing bulk quantities of amino acids for growth, development, and other nutritional needs. In the present study, we describe a novel phenomenon of the regulation of PEPT1 in the Xenopus oocyte system. Using electrophysiological and immunofluorescence methods, we demonstrate that a prolonged substrate exposure of rabbit PEPT1 (rPEPT1) caused a retrieval of transporters from the membrane. Capacitance as a measure of membrane surface area was increased in parallel with the increase in rPEPT1-mediated transport currents with a slope of approximately 5% of basal surface per 100 nA. Exposure of oocytes to the model peptide Gly-l-Gln for 2 h resulted in a decrease in maximal transport currents with no change of membrane capacitance. However, exposure to substrate for 5 h decreased transport currents but also, in parallel, surface area by endocytotic removal of transporter proteins from the surface. The reduction of the surface expression of rPEPT1 was confirmed by presteady-state current measurements and immunofluorescent labeling of rPEPT1. A similar simultaneous decrease of current and surface area was also observed when endocytosis was stimulated by the activation of PKC. Cytochalasin D inhibited all changes evoked by either dipeptide or PKC stimulation, whereas the PKC-selective inhibitor bisindolylmaleimide only affected PKC-stimulated endocytotic processes but not substrate-dependent retrieval of rPEPT1. Coexpression experiments with human Na(+)-glucose transporter 1 (hSGLT1) revealed that substrate exposure selectively affected PEPT1 but not the activity of hSGLT1.
Collapse
Affiliation(s)
- Manuela Mertl
- Molecular Nutrition Unit, Am Forum 5, Freising 85350, Germany
| | | | | |
Collapse
|
33
|
Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A 2008; 105:9805-10. [PMID: 18606998 DOI: 10.1073/pnas.0803223105] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Klotho is a mammalian senescence-suppression protein that has homology with glycosidases. The extracellular domain of Klotho is secreted into urine and blood and may function as a humoral factor. Klotho-deficient mice have accelerated aging and imbalance of ion homeostasis. Klotho treatment increases cell-surface abundance of the renal epithelial Ca(2+) channel TRPV5 by modifying its N-linked glycans. However, the precise sugar substrate and mechanism for regulation by Klotho is not known. Here, we report that the extracellular domain of Klotho activates plasma-membrane resident TRPV5 through removing terminal sialic acids from their glycan chains. Removal of sialic acids exposes underlying disaccharide galactose-N-acetylglucosamine, a ligand for a ubiquitous galactoside-binding lectin galectin-1. Binding to galectin-1 lattice at the extracellular surface leads to accumulation of functional TRPV5 on the plasma membrane. Knockdown of beta-galactoside alpha2,6-sialyltransferase (ST6Gal-1) by RNA interference, but not other sialyltransferases, in a human cell line prevents the regulation by Klotho. Moreover, the regulation by Klotho is absent in a hamster cell line that lacks endogenous ST6Gal-1, but is restored by forced expression of recombinant ST6Gal-1. Thus, Klotho participates in specific removal of alpha2,6-linked sialic acids and regulates cell surface retention of TRPV5 through this activity. This action of Klotho represents a novel mechanism for regulation of the activity of cell-surface glycoproteins and likely contributes to maintenance of calcium balance by Klotho.
Collapse
|
34
|
Wang HR, Liu Z, Huang CL. Domains of WNK1 kinase in the regulation of ROMK1. Am J Physiol Renal Physiol 2008; 295:F438-45. [PMID: 18550644 DOI: 10.1152/ajprenal.90287.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
WNK1 kinase belongs to a family of serine-threonine protein kinases with an atypical placement of the catalytic lysine. Increased expression of WNK1 causes hypertension and hyperkalemia in humans. WNK1 inhibits renal potassium channel ROMK1 by enhancing its endocytosis, likely contributing to hyperkalemia in affected patients. The domains of WNK1 involved in inhibition of ROMK1 have not been completely elucidated. Here, we reported that an NH2-terminal proline-rich domain (N-PRD; amino acids 1-119) is necessary and sufficient for WNK1 inhibition of ROMK1. A region (named "NL" for N-linker; amino acids 120-220) located between N-PRD and the kinase domain of WNK1 (amino acids 220-491) antagonized the inhibition of ROMK1 caused by N-PRD. The WNK1 kinase domain reversed the antagonism of NL on N-PRD. Mutagenesis studies revealed that charge-charge interactions between two conserved catalytic residues (Lys-233 and Asp-368) within the kinase domain (not the kinase activity) are critical for kinase domain to reverse the antagonism of NL domain. The WNK1 autoinhibitory domain (AID; amino acids 491-555) also affected ROMK, presumably by modulating the kinase domain conformation. Mutations of two conserved phenylalanine abolished the ability of AID to modulate ROMK1. Finally, the first coiled-coil domain (CC1; amino acids 555-640) of WNK1 alleviated the effect of AID domain toward kinase domain. Thus, multiple intra- and/or intermolecular interactions of WNK1 domains are at play for regulation of ROMK1 by WNK1.
Collapse
Affiliation(s)
- Hao-Ran Wang
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
35
|
Lörinczi E, Tsivkovskii R, Haase W, Bamberg E, Lutsenko S, Friedrich T. Delivery of the Cu-transporting ATPase ATP7B to the plasma membrane in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:896-906. [PMID: 18222167 DOI: 10.1016/j.bbamem.2007.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/11/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Cu-transporting ATPase ATP7B (Wilson disease protein) is essential for the maintenance of intracellular copper concentration. In hepatocytes, ATP7B is required for copper excretion, which is thought to occur via a transient delivery of the ATP7B- and copper-containing vesicles to the apical membrane. The currently available experimental systems do not allow analysis of ATP7B at the cell surface. Using epitope insertion, we identified an extracellular loop into which the HA-epitope can be introduced without inhibiting ATP7B activity. The HA-tagged ATP7B was expressed in Xenopus oocytes and the presence of ATP7B at the plasma membrane was demonstrated by electron microscopy, freeze-fracture experiments, and surface luminescence measurements in intact cells. Neither the deletion of the entire N-terminal copper-binding domain nor the inactivating mutation of catalytic Asp1027 affected delivery to the plasma membrane of oocytes. In contrast, surface targeting was decreased for the ATP7B variants with mutations in the ATP-binding site or the intra-membrane copper-binding site, suggesting that ligand-stabilized conformation(s) are important for ATP7B trafficking. The developed system provides significant advantages for studies that require access to both sides of ATP7B in the membrane.
Collapse
Affiliation(s)
- Eva Lörinczi
- Max-Planck-Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
36
|
van de Graaf SFJ, Rescher U, Hoenderop JGJ, Verkaart S, Bindels RJM, Gerke V. TRPV5 is internalized via clathrin-dependent endocytosis to enter a Ca2+-controlled recycling pathway. J Biol Chem 2007; 283:4077-86. [PMID: 18077461 DOI: 10.1074/jbc.m706959200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The epithelial Ca(2+) channel TRPV5 plays an essential role in transcellular Ca(2+) transport and is one of the most Ca(2+)-selective members of the transient receptor potential superfamily. Regulation of the abundance of TRPV5 at the cell surface is critical in body Ca(2+) homeostasis. However, little is known about the mechanisms underlying TRPV5 endo- and exocytosis. Here, we show that TRPV5 is constitutively internalized in a dynamin- and clathrin-dependent manner. Internalized TRPV5 first appears in small vesicular structures and then localizes to perinuclear structures positive for Rab11a. TRPV5 has a half-life of more than 8 h and is stable even after internalization from the cell surface for more than 3 h. Disruption of cell surface delivery of newly synthesized TRPV5 by brefeldin A does not reduce TRPV5-mediated Ca(2+) influx in cells, suggesting the presence of a stable intracellular pool of the channel capable of recycling back to the surface. Furthermore, the endocytic recycling kinetics is decreased upon treatment with Ca(2+) chelator BAPTA-AM, indicating that the channel's trafficking pathways are dynamically controlled by Ca(2+).
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, von-Esmarch-Strasse 56, Münster 48149, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Rojas A, Cui N, Su J, Yang L, Muhumuza JP, Jiang C. Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2030-42. [PMID: 17585871 PMCID: PMC2228331 DOI: 10.1016/j.bbamem.2007.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 11/13/2022]
Abstract
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Ningren Cui
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Junda Su
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Liang Yang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Jean-Pierre Muhumuza
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| |
Collapse
|
38
|
Abstract
Point mutations in WNK4 [for With No K (lysine)], a serine-threonine kinase that is expressed in the distal nephron of the kidney, are linked to familial hyperkalemic hypertension (FHH). The imbalanced electrolyte homeostasis in FHH has led to studies toward an understanding of WNK4-mediated regulation of ion transport proteins in the kidney. A growing number of ion transport proteins for Na(+), K(+), Ca(2+), and Cl(-), including ion channels and transporters in the transcellular pathway and claudins in the paracellular pathway, are shown to be regulated by WNK4 from studies using models ranging from Xenopus laevis oocytes to transgenic and knockin mice. WNK4 regulates these transport proteins in different directions and by different cellular mechanisms. The common theme of WNK4-mediated regulation is to alter the abundance of ion transport proteins at the plasma membrane, with the exception of claudins, which are phosphorylated in the presence of WNK4. The regulation of WNK4 can be blocked by the full-length WNK1, whose action is in turn antagonized by a kidney-specific WNK1 variant lacking the kinase domain. In addition, WNK4 also activates stress-related serine-threonine kinases to regulate members of the SLC12 family members of cation-chloride cotransporters. In many cases, the FHH-causing mutants of WNK4 exhibit differences from wild-type WNK4 in regulating ion transport proteins. These regulations well explain the clinical features of FHH and provide insights into the multilayered regulation of ion transport processes in the distal nephron.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA.
| | | |
Collapse
|
39
|
Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol 2007; 22:915-25. [PMID: 17333000 DOI: 10.1007/s00467-007-0432-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/12/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
The distal nephron and colon are the primary sites of regulation of potassium (K(+)) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K(+) depending on the metabolic needs of the organism. In the healthy adult kidney, K(+) secretion predominates over K(+) absorption. Baseline K(+) secretion occurs via the apical low-conductance secretory K(+) (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K(+) secretion. The K(+) retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K(+) channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K(+) absorption. Both luminal and peritubular factors regulate the balance between K(+) secretion and absorption. Perturbation in any of these factors can lead to K(+) imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K(+) transport in the maturing kidney.
Collapse
Affiliation(s)
- Sevgi Gurkan
- Department of Pediatrics, Division of Nephrology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1664, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
40
|
He G, Wang HR, Huang SK, Huang CL. Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 2007; 117:1078-87. [PMID: 17380208 PMCID: PMC1821066 DOI: 10.1172/jci30087] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/30/2007] [Indexed: 11/17/2022] Open
Abstract
With-no-lysine (WNK) kinases are a novel family of protein kinases characterized by an atypical placement of the catalytic lysine. Mutations of 2 family members, WNK1 and WNK4, cause pseudohypoaldosteronism type 2 (PHA2), an autosomal-dominant disease characterized by hypertension and hyperkalemia. WNK1 and WNK4 stimulate clathrin-dependent endocytosis of renal outer medullar potassium 1 (ROMK1), and PHA2-causing mutations of WNK4 increase the endocytosis. How WNKs stimulate endocytosis of ROMK1 and how mutations of WNK4 increase the endocytosis are unknown. Intersectin (ITSN) is a multimodular endocytic scaffold protein. Here we show that WNK1 and WNK4 interacted with ITSN and that the interactions were crucial for stimulation of endocytosis of ROMK1 by WNKs. The stimulation of endocytosis of ROMK1 by WNK1 and WNK4 required specific proline-rich motifs of WNKs, but did not require their kinase activity. WNK4 interacted with ROMK1 as well as with ITSN. Disease-causing WNK4 mutations enhanced interactions of WNK4 with ITSN and ROMK1, leading to increased endocytosis of ROMK1. These results provide a molecular mechanism for stimulation of endocytosis of ROMK1 by WNK kinases.
Collapse
Affiliation(s)
- Guocheng He
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA
| | | | | | | |
Collapse
|
41
|
Perry C, Le H, Grichtchenko II. ANG II and calmodulin/CaMKII regulate surface expression and functional activity of NBCe1 via separate means. Am J Physiol Renal Physiol 2007; 293:F68-77. [PMID: 17376763 DOI: 10.1152/ajprenal.00454.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently reported that ANG II inhibits NBCe1 current and surface expression in Xenopus laevis oocytes (Perry C, Blaine J, Le H, and Grichtchenko II. Am J Physiol Renal Physiol 290: F417-F427, 2006). Here, we investigated mechanisms of ANG II-induced changes in NBCe1 surface expression. We showed that the PKC inhibitor GF109203X blocks and EGTA reduces surface cotransporter loss in ANG II-treated oocytes, suggesting roles for PKC and Ca(2+). Using the endosomal marker FM 4-64 and enhanced green fluorescent protein (EGFP)-tagged NBCe1, we showed that ANG II stimulates endocytosis of NBCe1. To eliminate the possibility that ANG II inhibits NBCe1 recycling, we demonstrated that the recycling inhibitor monensin decreases surface expression, accumulates NBCe1-EGFP in endosomes, and inhibits NBCe1 current. Monensin and ANG II applied together produce greater inhibition of NBCe1 current than either did alone. This additive effect of monensin and ANG II suggests that ANG II stimulates internalization of NBCe1. We used the calmodulin (CaM) antagonist W13, which controls recycling by blocking the exit of the endocytosed cargo from early endosomes, to determine the role of CaM in NBCe1 trafficking. We demonstrated that W13 decreases surface expression of NBCe1, accumulates NBCe1-EGFP in endosomal-like formations, and inhibits NBCe1 current. W13 and ANG II applied together produce greater inhibition of NBCe1 current than either does alone, while W13 and monensin applied together do not. The additive effect of ANG II and W13 and lack of additive effect of monensin and W13 suggest that CaM is not involved in ANG II stimulation of internalization but controls recycling of endocytosed NBCe1. The CaM-activated enzyme CaM kinase II (CaMKII) applied with ANG II also gives an additive inhibitory effect, suggesting a role for CaMKII in NBCe1 recycling.
Collapse
Affiliation(s)
- Clint Perry
- Department of Physiology and Biophysics, University of Colorado and Denver Health Sciences Center, Aurora, CO 80045, USA
| | | | | |
Collapse
|
42
|
Weber B, Schaper C, Scholz J, Bein B, Rodde C, H Tonner P. Interaction of the amyloid precursor like protein 1 with the alpha2A-adrenergic receptor increases agonist-mediated inhibition of adenylate cyclase. Cell Signal 2006; 18:1748-57. [PMID: 16531006 DOI: 10.1016/j.cellsig.2006.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
Alpha2-adrenergic receptor agonists exert potent analgesic and sedative/hypnotic effects. In addition, they have been shown to be neuroprotective, but the mechanisms of these actions are still poorly defined. To isolate proteins that may control alpha2-adrenergic receptor function or trafficking, we performed a two-hybrid screen using the carboxy-terminal fourth intracellular tail of the alpha2A-adrenergic receptor as bait. This screen identified the amyloid precursor like protein 1 (APLP1), a homologue of the beta-amyloid precursor protein involved in Alzheimer's disease, as alpha2A-adrenergic receptor-binding protein. GST affinity chromatography revealed that APLP1 specifically interacts with all three human alpha2-adrenergic receptor subtypes and deletion mutant analysis confined the APLP1 domain involved in binding to alpha2-adrenergic receptors to the 13 amino acid residues Ser599-Ala611. Coimmunoprecipitations of transiently transfected cells with epitope-tagged APLP1 and alpha2-adrenergic receptors confirmed the interaction. Agonist treatment tended to increase the amount of alpha2A-adrenergic receptor associated with APLP1 while coimmunoprecipitations were not affected by the state of receptor phosphorylation or cotransfection of arrestin-3. Confocal laser microscopy showed that APLP1 causes a considerable shift of the alpha2A-adrenergic receptor localization from plasma membrane to intracellular compartments. Furthermore, cotransfection of alpha2A-adrenergic receptor and APLP1 into HEK293 cells significantly increased norepinephrine mediated inhibition of adenylate cyclase activity. These results suggest a possible role of APLP1 in regulation of alpha2A-adrenergic receptor trafficking. Moreover, we speculate that this interaction may present one mechanism by which alpha2-adrenergic receptor agonists exert their neuroprotective effects.
Collapse
Affiliation(s)
- Bernd Weber
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Golbang AP, Cope G, Hamad A, Murthy M, Liu CH, Cuthbert AW, O'shaughnessy KM. Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Renal Physiol 2006; 291:F1369-76. [PMID: 16788137 DOI: 10.1152/ajprenal.00468.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The novel serine/threonine kinases (with no lysine kinases or WNKs), WNK1 and WNK4, are encoded by the disease genes for Gordon syndrome (PRKWNK1 and PRKWNK4), a rare monogenic syndrome of hypertension and hyperkalemia. These proteins alter the expression of the thiazide-sensitive Na/Cl cotransporter (NCCT) in Xenopus laevis oocytes, although the details are controversial. We describe here our own experience and confirm that kinase-dead WNK4 (318D>A) is unable to affect Na+ fluxes through the thiazide-sensitive Na/Cl transporter (NCCT) or its membrane expression as an ECFP-NCCT fusion protein. However, the kinase domain is not sufficient for a functional WNK4 since deletion of the acidic motif (a motif unique to WNK family members) completely abolishes functional activity. Indeed, the NH2 terminal of WNK4 (1-620) containing the kinase domain and acidic motif retains full activity, but does not interact directly with NCCT in pull-down assays. Coexpression of WNK1 antagonizes the action of WNK4, and kinase-dead WNK1 (368D>A) or WNK1 carrying a WNK4 disease mutation (565Q>E) behaves in the same way as wild-type WNK1. This suggests kinase activity and charge conservation within the acidic motif are not essential for the WNK1-WNK4 interaction. We also report that WNK4 probably reduces surface expression largely through an effect on forward trafficking. Hence, the effect of WNK4 on NCCT expression is mimicked by dynamin, but the dominant-negative K44A dynamin mutant does not block the action of WNK4 itself. These results further highlight important differences in the mechanism by which WNK kinases affect expression of NCCT vs. other membrane proteins such as ROMK.
Collapse
|
44
|
Bundis F, Neagoe I, Schwappach B, Steinmeyer K. Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents. Cell Physiol Biochem 2006; 17:1-12. [PMID: 16543716 DOI: 10.1159/000091454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The weak inward rectifier potassium channel ROMK is important for water and salt reabsorption in the kidney. Here we identified Golgin-160 as a novel interacting partner of the ROMK channel. By using yeast two-hybrid assays and co-immunoprecipitations from transfected cells, we demonstrate that Golgin-160 associates with the ROMK C-terminus. Immunofluorescence microscopy confirmed that both proteins are co-localized in the Golgi region. The interaction was further confirmed by the enhancement of ROMK currents by the co-expressed Golgin-160 in Xenopus oocytes. The increase in ROMK current amplitude was due to an increase in cell surface density of ROMK protein. Golgin-160 also stimulated current amplitudes of the related Kir2.1, and of voltage-gated Kv1.5 and Kv4.3 channels, but not the current amplitude of co-expressed HERG channel. These results demonstrate that the Golgi-associated Golgin-160 recognizes the cytoplasmic C-terminus of ROMK, thereby facilitating the transport of ROMK to the cell surface. However, the stimulatory effect on the activity of more distantly-related potassium channels suggests a more general role of Golgin-160 in the trafficking of plasma membrane proteins.
Collapse
Affiliation(s)
- Florian Bundis
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
45
|
Lazrak A, Liu Z, Huang CL. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci U S A 2006; 103:1615-20. [PMID: 16428287 PMCID: PMC1360592 DOI: 10.1073/pnas.0510609103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KS-WNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K(+) restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K(+) during K(+) deficiency. We found that K(+) restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | | | | |
Collapse
|
46
|
Abstract
This brief review attempts to provide an overview regarding recent developments in the regulation of ROMK channels. Studies performed in ROMK null mice suggest that ROMK cannot only form hometetramers such as the small-conductance (30-pS) K channels but also construct heterotetramers such as the 70-pS K channel in the thick ascending limb (TAL). The expression of ROMK channels in the plasma membrane is regulated by protein tyrosine kinase (PTK), serum and glucorticoid-induced kinase (SGK), and with-no-lysine-kinase 4. PTK is involved in mediating the effect of low K intake on ROMK channel activity. Increases in superoxide anions induced by low dietary K intake are responsible for the stimulation of PTK expression and tyrosine phosphorylation of ROMK channels. Finally, a recent study indicated that ROMK channels can be monoubiquitinated and monoubiquitination regulates the surface expression of ROMK channels.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
47
|
O'Connell AD, Leng Q, Dong K, MacGregor GG, Giebisch G, Hebert SC. Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK). Proc Natl Acad Sci U S A 2005; 102:9954-9. [PMID: 15987778 PMCID: PMC1175014 DOI: 10.1073/pnas.0504332102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The renal outer-medullary K+ channel (ROMK; Kir1.1) mediates K+ secretion in the renal mammalian nephron that is critical to both sodium and potassium homeostasis. The posttranscriptional expression of ROMK in the plasma membrane of cells is regulated by delivery of protein from endoplasmic reticulum (ER) to the cell surface and by retrieval by dynamin-dependent endocytic mechanisms in clathrin-coated pits. The S44 in the NH(2) terminus of ROMK1 can be phosphorylated by PKA and serum- and glucocorticoid-inducible kinase-1, and this process increases surface expression of functional channels. We present evidence that phosphorylation of S44 modulates channel expression by increasing its cell surface delivery consequent to suppression of a COOH-terminal ER retention signal. This phosphorylation switch of the ER retention signal could provide a pool of mature and properly folded channels for rapid delivery to the plasma membrane. The x-ray crystal structures of inward rectifier K+ channels have shown a close apposition of the NH(2) terminus with the distal COOH terminus of the adjacent subunit in the channel homotetramer, which is important to channel gating. Thus, NH(2)-terminal phosphorylation modifying a COOH-terminal ER retention signal in ROMK1 could serve as a checkpoint for proper subunit folding critical to channel gating.
Collapse
Affiliation(s)
- Anthony D O'Connell
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | | | | | | | | | | |
Collapse
|
48
|
Yang CL, Zhu X, Wang Z, Subramanya AR, Ellison DH. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest 2005; 115:1379-87. [PMID: 15841204 PMCID: PMC1074678 DOI: 10.1172/jci22452] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 02/15/2005] [Indexed: 11/17/2022] Open
Abstract
With-no-lysine (WNK) kinases are highly expressed along the mammalian distal nephron. Mutations in either WNK1 or WNK4 cause familial hyperkalemic hypertension (FHHt), suggesting that the protein products converge on a final common pathway. We showed previously that WNK4 downregulates thiazide-sensitive NaCl cotransporter (NCC) activity, an effect suppressed by WNK1. Here we investigated the mechanisms by which WNK1 and WNK4 interact to regulate ion transport. We report that WNK1 suppresses the WNK4 effect on NCC activity and associates with WNK4 in a protein complex involving the kinase domains. Although a kinase-dead WNK1 also associates with WNK4, it fails to suppress WNK4-mediated NCC inhibition; the WNK1 kinase domain alone, however, is not sufficient to block the WNK4 effect. The carboxyterminal 222 amino acids of WNK4 are sufficient to inhibit NCC, but this fragment is not blocked by WNK1. Instead, WNK1 inhibition requires an intact WNK4 kinase domain, the region that binds to WNK1. In summary, these data show that: (a) the WNK4 carboxyl terminus mediates NCC suppression, (b) the WNK1 kinase domain interacts with the WNK4 kinase domain, and (c) WNK1 inhibition of WNK4 is dependent on WNK1 catalytic activity and an intact WNK1 protein. These findings provide insight into the complex interrelationships between WNK1 and WNK4 and provide a molecular basis for FHHt.
Collapse
Affiliation(s)
- Chao-Ling Yang
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, 97239, USA
| | | | | | | | | |
Collapse
|
49
|
Lin DH, Sterling H, Wang Z, Babilonia E, Yang B, Dong K, Hebert SC, Giebisch G, Wang WH. ROMK1 channel activity is regulated by monoubiquitination. Proc Natl Acad Sci U S A 2005; 102:4306-11. [PMID: 15767585 PMCID: PMC555508 DOI: 10.1073/pnas.0409767102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination of proteins can signal their degradation, modify their activity or target them to specific membranes or cellular organelles. Here, we show that monoubiquitination regulates the plasma membrane abundance and function of the potassium channel, ROMK. Immunoprecipitation of proteins obtained from renal cortex and outer medulla with ROMK antibody revealed that this channel was monoubiquitinated. To determine the ubiquitin binding site on ROMK1, all intracellular lysine (Lys) residues of ROMK1 were individually mutated to arginine (Arg), and a two-electrode voltage clamp was used to measure the ROMK1 channel activity in Xenopus oocytes. ROMK1 channel activity increased from 8.1 to 27.2 microA only when Lys-22 was mutated to Arg. Furthermore, Western blotting failed to detect the ubiquitinated ROMK1 in oocytes injected with R1K22R. Patch-clamp experiments showed that biophysical properties of R1K22R were identical to those of wild-type ROMK1. Although total protein expression levels of GFP-ROMK1 and GFP-R1K22R in oocytes were similar, confocal microscopy showed that the surface fluorescence intensity in oocytes injected with GFP-R1K22R was higher than that of GFP-ROMK1. In addition, biotin labeling of ROMK1 and R1K22R proteins expressed in HEK293 cells showed increased surface expression of the Lys-22 mutant channel. Finally, expression of R1K22R in COS7 cells significantly stimulated the surface expression of ROMK1. We conclude that ROMK1 can be monoubiquitinated and that Lys-22 is an ubiquitin-binding site. Thus, monoubiquitination of ROMK1 regulates channel activity by reducing the surface expression of channel protein. This finding implicates the linking of a single ubiquitin molecule to channels as an important posttranslational regulatory signal.
Collapse
Affiliation(s)
- Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
ROMK potassium channels are present in the cortical collecting duct (CCD) of the kidney and serve as apical exit pathways for K+secretion in this nephron segment. K+secretion in the CCD is regulated by multiple factors. In this study, we show that syntaxin 1A, but not syntaxin 3 or 4, inhibited whole cell ROMK currents in Xenopus laevis oocytes. Syntaxin 1A, but not syntaxin 3 or 4, interacted with the COOH-terminal cytoplasmic domain of ROMK in intro. Coexpression with synaptobrevin 2 reversed inhibition of whole cell ROMK currents by syntaxin 1A. In excised inside-out membranes of oocytes, application of fusion proteins containing the cytoplasmic region of syntaxin 1A to the cytoplasmic face caused a dose-dependent inhibition of ROMK. We further examined regulation of the K+channels in the CCD by syntaxin 1A. Application of botulinum toxin C1 to the excised inside-out membranes of the CCD caused an increase in the activity of K+channels. In contrast, application of toxin B had no effects. These results suggest that syntaxin 1A causes a tonic inhibition of the K+channels in the apical membrane of the CCD. Binding of synaptobrevin 2 to syntaxin 1A during docking and fusion of transport vesicles to the plasma membranes of CCD may lead to activation of these channels.
Collapse
Affiliation(s)
- Tie-Jun Sun
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA
| | | | | |
Collapse
|