1
|
Bejoy J, Welch RC, Qian ES, Williams FM, Gibson-Corley KN, Wilson MH, Paragas N, Woodard LE. Urine-derived stem cells display homing, incorporation, and regeneration in human organoid and mouse models of acute kidney injury. Mol Ther 2025:S1525-0016(25)00219-9. [PMID: 40158205 DOI: 10.1016/j.ymthe.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/03/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Urine-derived stem cells (USCs) are adult human stem cells that can be collected noninvasively from urine and cultured in vitro. Because of their renal origin and reported therapeutic effects, we hypothesized that USCs would home to the injured kidney in acute kidney injury (AKI) models. We used mouse models of glycerol-induced rhabdomyolysis or unilateral nephrectomy with clamping ischemia reperfusion injury to model AKI. To track USC homing by live animal imaging, we administered luciferase-expressing (Luc) USCs to mice by intraperitoneal injection. We observed USC localization to both the tubules and glomeruli of injured mice within 3 h by histology. We confirmed the presence of Luc-USCs in the kidney at 3 h, 24 h, and 48 h after the injection using biodistribution analysis of quantitative bioluminescence tomography imaging. We performed immunostaining for kidney injury molecule-1 (KIM-1/HAVCR1/TIM-1) for kidney injury and found reduced expression in USC-treated group at 24 h after injection. To evaluate the effects of the human USCs on injured human nephrons, we injured human kidney organoids with the nephrotoxin cisplatin (5 μM) followed by 5 × 104 USC treatment. USCs were incorporated and lowered expression of KIM-1 in the organoids. USCs home to injured nephrons and reduce measures of kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Richard C Welch
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eddie S Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Felisha M Williams
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katherine N Gibson-Corley
- Department of Medicine, Division of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Comparative Pathology and Research Histology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Nashville, TN 37212, USA; Departments of Pharmacology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Neal Paragas
- Department of Radiology, University of Washington, Seattle, WA 98109, USA
| | - Lauren E Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Khalil A, Al Toufaily S, Shebaby W, Hage ME, Mroue D, Faour W, Mroueh M. Lebanese Cannabis sativa L. extract protects from cisplatin-induced nephrotoxicity in mice by inhibiting podocytes apoptosis. J Cannabis Res 2025; 7:3. [PMID: 39819647 PMCID: PMC11737194 DOI: 10.1186/s42238-025-00260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Cisplatin is an anti-cancer drug used to treat a plethora of solid tumors. However, it is associated with dose dependent nephrotoxicity limiting its use as anticancer agent. OBJECTIVE The current study aimed to investigate the nephroprotective effect of native Lebanese Cannabis sativa in both in vitro and in vivo mice model of cisplatin-induced nephrotoxicity. METHODS Podocytes cell viability was assessed using MTS assay with cisplatin (30µM) in presence or absence of Cannabis oil extract (COE) at 0.5, 1 and 2µg/ml for 24h. Acute renal injury was established in adult female C57BL/6 mice with 20mg/kg, i.p. single dose cisplatin. Mice were divided into control group (vehicle), COE group, cisplatin group and cisplatin plus COE (2.5, 5 and 20mg/kg, i.p.). Animal body weight, serum creatinine, blood urea nitrogen (BUN), and proteinuria were measured. RESULTS Cell viability assay and western blot analysis revealed that COE prevented apoptosis induced by cisplatin in cultured immortalized rat podocytes. In addition, in vitro scratch assay demonstrated the ability of COE to promote and restore the migratory capacity of podocytes in cisplatin-treated cells. Interestingly, COE treatment improved urinary and serum parameters characterized by a significant decrease in serum creatinine, urea, and proteinuria at various COE doses. Western blot analysis showed that COE inhibited COX-2 protein induction as well as apoptosis marker production (Bax/Bcl2 ratio) in cisplatin-treated mice when compared to mice treated with cisplatin alone. CONCLUSION Collectively, the aforementioned findings indicate that COE could be a promising approach to protect against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Alia Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box36, Byblos, Lebanon
| | - Sahar Al Toufaily
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
| | - Wassim Shebaby
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
| | - Marissa El Hage
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Dima Mroue
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Wissam Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box36, Byblos, Lebanon.
| | - Mohamad Mroueh
- School of Pharmacy, Pharmaceutical Sciences Department, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Wang Y, Xue P, Gao L, Wang X, Zhou S, Wu X, Guo C. Improved bioavailability of polydatin and its protective effect against cisplatin induced nephrotoxicity through self-assembled fucoidan and carboxymethyl chitosan delivery system. Int J Biol Macromol 2025; 287:138577. [PMID: 39657878 DOI: 10.1016/j.ijbiomac.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Cisplatin induced acute kidney injury (AKI) is clinically prevalent, with a complex pathogenesis and a lack of effective therapeutic drugs. Polydatin (Po) has excellent biological activity, but its low solubility and bioavailability limit its application. In this study, fucoidan (Fu) and carboxymethyl chitosan (Cs) self-assembled into nanoparticles through electrostatic interactions/hydrogen bonding and loaded Po (Fu/Cs Po NPs). In vitro studies found that Fu/Cs Po NPs protected human renal tubular epithelial (HK-2) cells from cisplatin induced damage and accumulation of reactive oxygen species (ROS). Mechanistic studies showed that Fu/Cs Po NPs inhibited cisplatin induced DNA damage and activation of cyclic guanosine monophosphate synthase (cGAS) and intron gene stimulator (STING) pathways. In vivo studies showed that Fu/Cs Po NPs treatment alleviated cisplatin induced AKI symptoms, including elevated blood urea nitrogen (BUN) and serum creatinine (SCr), as well as pathological damage to kidney tissues. In vivo mechanism studies also showed that Fu/Cs Po NPs treatment inhibited cisplatin induced DNA damage and activation of the cGAS-STING pathway. The pharmacokinetic and tissue distribution results demonstrated that the Fu/Cs delivery system enhanced the bioavailability and kidney accumulation of Po in vivo. In summary, our study provided potential drugs for the treatment of cisplatin induced AKI.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengyu Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuefei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shilin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Sahara Y, Fukui C, Kuniyoshi Y, Takasato M. Proximal tubule cell maturation rate and function are controlled by PPARα signaling in kidney organoids. Commun Biol 2024; 7:1532. [PMID: 39604738 PMCID: PMC11603349 DOI: 10.1038/s42003-024-07069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Human pluripotent stem cell-derived kidney organoids are expected to be a useful tool for new drug discoveries, however, the immaturation of kidney organoids causes difficulties in recapitulating renal pharmacokinetics using organoids. Here, we performed time-course single-cell RNA sequencing of kidney organoids and revealed cell heterogeneity in the maturation rate of the proximal tubule. An unbiased analysis to identify upstream targets of genes that are expressed differentially between cells with low and high maturation rates revealed a higher activation of PPARα signaling in rapidly maturing cells. Treatment with a combination of a PPARα agonist and an RXRα agonist induced genes related to proximal tubule maturation and increased the capacity for protein uptake as well as the sensitivity to nephrotoxicity by cisplatin. This method to promote the maturation rate of proximal tubule cells has the potential to be utilized in microphysiological systems to recapitulate proximal tubule functions and to screen nephrotoxic drugs.
Collapse
Affiliation(s)
- Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Chie Fukui
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Development and Regeneration, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
6
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
7
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
8
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
10
|
Liu Q, Yue L, Deng J, Tan Y, Wu C. Progress and breakthroughs in human kidney organoid research. Biochem Biophys Rep 2024; 39:101736. [PMID: 38910872 PMCID: PMC11190488 DOI: 10.1016/j.bbrep.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
The three-dimensional (3D) kidney organoid is a breakthrough model for recapitulating renal morphology and function in vitro, which is grown from stem cells and resembles mammalian kidney organogenesis. Currently, protocols for cultivating this model from induced pluripotent stem cells (iPSCs) and patient-derived adult stem cells (ASCs) have been widely reported. In recent years, scientists have focused on combining cutting-edge bioengineering and bioinformatics technologies to improve the developmental accuracy of kidney organoids and achieve high-throughput experimentation. As a remarkable tool for mechanistic research of the renal system, kidney organoid has both potential and challenges. In this review, we have described the evolution of kidney organoid establishment methods and highlighted the latest progress leading to a more sophisticated kidney transformation research model. Finally, we have summarized the main applications of renal organoids in exploring kidney disease.
Collapse
Affiliation(s)
- Qi Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Liang Yue
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jiu Deng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yingxia Tan
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
13
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
14
|
Juliar BA, Stanaway IB, Sano F, Fu H, Smith KD, Akilesh S, Scales SJ, El Saghir J, Bhatraju PK, Liu E, Yang J, Lin J, Eddy S, Kretzler M, Zheng Y, Himmelfarb J, Harder JL, Freedman BS. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep 2024; 43:114310. [PMID: 38838223 PMCID: PMC11216883 DOI: 10.1016/j.celrep.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ian B Stanaway
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Fumika Sano
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Hematology, Department of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Bloodworks Northwest Research Institute, Seattle, WA 98102, USA; Plurexa, Seattle, WA 98109, USA
| | - Kelly D Smith
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Suzie J Scales
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Esther Liu
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Johnson Yang
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Benjamin S Freedman
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Oishi H, Tabibzadeh N, Morizane R. Advancing preclinical drug evaluation through automated 3D imaging for high-throughput screening with kidney organoids. Biofabrication 2024; 16:10.1088/1758-5090/ad38df. [PMID: 38547531 PMCID: PMC11304660 DOI: 10.1088/1758-5090/ad38df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
High-throughput drug screening is crucial for advancing healthcare through drug discovery. However, a significant limitation arises from availablein vitromodels using conventional 2D cell culture, which lack the proper phenotypes and architectures observed in three-dimensional (3D) tissues. Recent advancements in stem cell biology have facilitated the generation of organoids-3D tissue constructs that mimic human organsin vitro. Kidney organoids, derived from human pluripotent stem cells, represent a significant breakthrough in disease representation. They encompass major kidney cell types organized within distinct nephron segments, surrounded by stroma and endothelial cells. This tissue allows for the assessment of structural alterations such as nephron loss, a characteristic of chronic kidney disease. Despite these advantages, the complexity of 3D structures has hindered the use of organoids for large-scale drug screening, and the drug screening pipelines utilizing these complexin vitromodels remain to be established for high-throughput screening. In this study, we address the technical limitations of kidney organoids through fully automated 3D imaging, aided by a machine-learning approach for automatic profiling of nephron segment-specific epithelial morphometry. Kidney organoids were exposed to the nephrotoxic agent cisplatin to model severe acute kidney injury. An U.S. Food and Drug Administration (FDA)-approved drug library was tested for therapeutic and nephrotoxicity screening. The fully automated pipeline of 3D image acquisition and analysis identified nephrotoxic or therapeutic drugs during cisplatin chemotherapy. The nephrotoxic potential of these drugs aligned with previousin vivoand human reports. Additionally, Imatinib, a tyrosine kinase inhibitor used in hematological malignancies, was identified as a potential preventive therapy for cisplatin-induced kidney injury. Our proof-of-concept report demonstrates that the automated screening process, using 3D morphometric assays with kidney organoids, enables high-throughput screening for nephrotoxicity and therapeutic assessment in 3D tissue constructs.
Collapse
Affiliation(s)
- Haruka Oishi
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Nahid Tabibzadeh
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, United States of America
| |
Collapse
|
16
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
17
|
Yu P, Zhu H, Bosholm CC, Beiner D, Duan Z, Shetty AK, Mou SS, Kramer PA, Barroso LF, Liu H, Cheng K, Ihnat M, Gorris MA, Aloi JA, Woldemichael JA, Bleyer A, Zhang Y. Precision nephrotoxicity testing using 3D in vitro models. Cell Biosci 2023; 13:231. [PMID: 38129901 PMCID: PMC10740310 DOI: 10.1186/s13578-023-01187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Nephrotoxicity is a significant concern during the development of new drugs or when assessing the safety of chemicals in consumer products. Traditional methods for testing nephrotoxicity involve animal models or 2D in vitro cell cultures, the latter of which lack the complexity and functionality of the human kidney. 3D in vitro models are created by culturing human primary kidney cells derived from urine in a 3D microenvironment that mimics the fluid shear stresses of the kidney. Thus, 3D in vitro models provide more accurate and reliable predictions of human nephrotoxicity compared to existing 2D models. In this review, we focus on precision nephrotoxicity testing using 3D in vitro models with human autologous urine-derived kidney cells as a promising approach for evaluating drug safety.
Collapse
Affiliation(s)
- Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- The Fourth Department of Liver Disease, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Daniella Beiner
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Avinash K Shetty
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steve S Mou
- Department of Anesthesiology and Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Philip Adam Kramer
- Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Luis F Barroso
- Internal Medicine/Infectious Diseases, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Hongbing Liu
- Department of Pediatrics and The Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, Tulane Avenue, New Orleans, LA, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew A Gorris
- Division of Endocrinology and Metabolism at Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Joseph A Aloi
- Division of Endocrinology and Metabolism at Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Jobira A Woldemichael
- Division of Nephrology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Anthony Bleyer
- Division of Nephrology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
18
|
Bejoy J, Farry JM, Qian ES, Dearing CH, Ware LB, Bastarache JA, Woodard LE. Ascorbate protects human kidney organoids from damage induced by cell-free hemoglobin. Dis Model Mech 2023; 16:dmm050342. [PMID: 37942584 PMCID: PMC10695115 DOI: 10.1242/dmm.050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Farry
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eddie S. Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis H. Dearing
- Vanderbilt Experimental Research Training Inclusion Community Engagement Skills (VERTICES) program, Vanderbilt University, Nashville, TN 37232, USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Lauren E. Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| |
Collapse
|
19
|
Sun Z, Ning Y, Wu H, Guo S, Jiao X, Ji J, Ding X, Yu X. 14-3-3ζ targets β-catenin nuclear translocation to maintain mitochondrial homeostasis and promote the balance between proliferation and apoptosis in cisplatin-induced acute kidney injury. Cell Signal 2023; 111:110878. [PMID: 37657586 DOI: 10.1016/j.cellsig.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cisplatin is a chemotherapeutic agent that is used extensively to treat solid tumors; however, its clinical application is limited by side effects, especially nephrotoxicity. Cisplatin-induced acute kidney injury (AKI) is characterized by DNA damage, cell-cycle arrest, and mitochondrial oxidative stress. Recent research demonstrated that 14-3-3ζ plays an important role in cancers, nerve disease, and kidney disease, although the regulatory mechanisms underlying cisplatin-induced AKI have yet to be fully elucidated. In the present study, we found that 14-3-3ζ mRNA was upregulated in human kidney organoids (GSE145085) when treated with cisplatin; subsequently, this was confirmed in experimental mice. The application of a protein interaction inhibitor for 14-3-3 (BV02) resulted in a decline in renal function, along with apoptosis, mitochondrial dysfunction, and oxidative stress in cisplatin-induced AKI. Accordingly, the knockdown of 14-3-3ζ in cisplatin-treated NRK-52E cells led to increased apoptosis, cell-cycle arrest, the production of reactive oxygen species (ROS), and lipid dysbolism. Furthermore, the blockade of 14-3-3ζ, both in vivo and in vitro, suppressed β-catenin and its nuclear translocation, thus downregulating expression of the downstream gene cyclin D1 in cisplatin-induced damage. In contrast, the overexpression of 14-3-3ζ alleviated the injury caused by cisplatin both in vivo and in vitro. Furthermore, a non-specific agonist of β-catenin, BIO, reversed the effects of 14-3-3ζ knockdown in terms of cisplatin-induced damage in NRK-52E cells by activating β-catenin. Next, we verified the direct interaction between 14 - 3-3ζ and β-catenin by CO-IP and immunofluorescence. Collectively, these findings indicate that 14-3-3ζ protects against cisplatin-induced AKI by improving mitochondrial function and the balance between proliferation and apoptosis by facilitating the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Ji Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
20
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
21
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
22
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Nikonorova VG, Chrishtop VV, Mironov VA, Prilepskii AY. Advantages and Potential Benefits of Using Organoids in Nanotoxicology. Cells 2023; 12:cells12040610. [PMID: 36831277 PMCID: PMC9954166 DOI: 10.3390/cells12040610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
Collapse
|
24
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
25
|
Liver Organoids, Novel and Promising Modalities for Exploring and Repairing Liver Injury. Stem Cell Rev Rep 2023; 19:345-357. [PMID: 36199007 PMCID: PMC9534590 DOI: 10.1007/s12015-022-10456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed great advances in organoid technology. Liver is the biggest solid organ, performing multifaceted physiological functions. Nowadays, liver organoids have been applied in many fields including pharmaceutical research, precision medicine and disease models. Compared to traditional 2-dimensional cell line cultures and animal models, liver organoids showed the unique advantages. More importantly, liver organoids can well model the features of the liver and tend to be novel and promising modalities for exploring liver injury, thus finding potential treatment targets and repairing liver injury. In this review, we reviewed the history of the development of liver organoids and summarized the application of liver organoids and recent studies using organoids to explore and further repair the liver injury. These novel modalities could provide new insights about the process of liver injury.
Collapse
|
26
|
Sander V, Przepiorski A, Hukriede NA, Davidson AJ. Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells. Methods Mol Biol 2023; 2664:69-83. [PMID: 37423983 DOI: 10.1007/978-1-0716-3179-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Kidney organoids differentiated from human pluripotent stem cells (hPSC) have advanced the study of kidney diseases by providing an in vitro system that outperforms traditional monolayer cell culture and complements animal models. This chapter describes a simple two-stage protocol that generates kidney organoids in suspension culture in less than 2 weeks. In the first stage, hPSC colonies are differentiated into nephrogenic mesoderm. In the second stage of the protocol, renal cell lineages develop and self-organize into kidney organoids that contain fetal-like nephrons with proximal and distal tubule segmentation. A single assay generates up to 1000 organoids, thereby providing a rapid and cost-efficient method for the bulk production of human kidney tissue. Applications include the study of fetal kidney development, genetic disease modelling, nephrotoxicity screening, and drug development.
Collapse
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.
| | - Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Gao X, Wang J, Wang Y, Liu S, Dong K, Wu J, Wu X, Shi D, Wang F, Guo C. Fucoidan-ferulic acid nanoparticles alleviate cisplatin-induced acute kidney injury by inhibiting the cGAS-STING pathway. Int J Biol Macromol 2022; 223:1083-1093. [PMID: 36372101 DOI: 10.1016/j.ijbiomac.2022.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Fucoidan (FU) is a natural sulfated polysaccharide with certain biological activity and has been shown to be an excellent nano-delivery material. In this study, ferulic acid (FA)-loaded FU nanoparticles (FA/FU NPs) were prepared and their nephroprotective mechanism was investigated. With a particle size of 158.6 ± 4.5 nm, FA/FU NPs increased the antioxidant activity of FA in vitro, possibly related to the increased dispersity of FA. In vitro results demonstrated that FA/FU NPs significantly protected human renal proximal tubule (HK-2) cells from cisplatin-induced damage, possibly by suppressing cisplatin-induced DNA damage and activating the cGAS-STING pathway. Furthermore, in vivo experiments confirmed that FA/FU NPs protected mice from cisplatin-induced acute kidney injury (AKI). Mechanistic studies confirmed that FA/FU NPs exerted nephroprotective effects by reducing MDA activity and increasing GSH and SOD activity. Our results demonstrated the potential of FU for delivering poorly soluble drug FA and protecting against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Yaqi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China
| | - Fanye Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China.
| |
Collapse
|
28
|
Harris PWR, Siow A, Yang SH, Wadsworth AD, Tan L, Hermant Y, Mao Y, An C, Hanna CC, Cameron AJ, Allison JR, Chakraborty A, Ferguson SA, Mros S, Hards K, Cook GM, Williamson DA, Carter GP, Chan STS, Painter GA, Sander V, Davidson AJ, Brimble MA. Synthesis, Antibacterial Activity, and Nephrotoxicity of Polymyxin B Analogues Modified at Leu-7, d-Phe-6, and the N-Terminus Enabled by S-Lipidation. ACS Infect Dis 2022; 8:2413-2429. [PMID: 36413173 DOI: 10.1021/acsinfecdis.1c00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew D Wadsworth
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Lyndia Tan
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yubing Mao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Chalice An
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Cameron C Hanna
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Jane R Allison
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Kiel Hards
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Gavin A Painter
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Pearson A, Gafner S, Rider CV, Embry M, Ferguson SS, Mitchell CA. Plant vs. Kidney: Evaluating Nephrotoxicity of Botanicals with the Latest Toxicological Tools. CURRENT OPINION IN TOXICOLOGY 2022; 32:100371. [PMID: 36311298 PMCID: PMC9601601 DOI: 10.1016/j.cotox.2022.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Botanicals can cause nephrotoxicity via numerous mechanisms, including disrupting renal blood flow, damaging compartments along the nephron, and obstructing urinary flow. While uncommon, there are various reports of botanical-induced nephrotoxicity in the literature, such as from aristolochia (Aristolochia spp.) and rhubarb (Rheum spp.). However, at present, it is a challenge to assess the toxic potential of botanicals because their chemical composition is variable due to factors such as growing conditions and extraction techniques. Therefore, selecting a single representative sample for an in vivo study is difficult. Given the increasing use of botanicals as dietary supplements and herbal medicine, new approach methodologies (NAMs) are needed to evaluate the potential for renal toxicity to ensure public safety. Such approaches include in vitro models that use layers of physiological complexity to emulate the in vivo microenvironment, enhance the functional viability and differentiation of cell cultures, and improve sensitivity to nephrotoxic insults. Furthermore, computational tools such as physiologically based pharmacokinetic (PBPK) modeling can add confidence to these tools by simulating absorption, distribution, metabolism, and excretion. The development and implementation of NAMs for renal toxicity testing will allow specific mechanistic data to be generated, leading to a better understanding of the nephrotoxic potential of botanicals.
Collapse
Affiliation(s)
- Adam Pearson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
30
|
Gu S, Wu G, Lu D, Wang Y, Tang L, Zhang W. Human kidney organoids model of Esculentoside A nephrotoxicity to investigate the role of epithelial-mesenchymal transition via STING signaling. Toxicol Lett 2022; 373:172-183. [PMID: 36460195 DOI: 10.1016/j.toxlet.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Radix Phytolaccae (RP) has a long medicinal history and is commonly used to treat systemic edema and ascites in Asia. Although RP is known to cause nephrotoxicity, the role of its main constituent, Esculentoside A (EsA), in nephrotoxicity remains undetermined. We used kidney organoids derived from human inducible pluripotent stem cells (iPSCs) to model EsA nephrotoxicity accurately. Kidney organoids were differentiated and treated with EsA at doses of 0, 15, 30, or 60 μM for 48 h. The in vitro model was compared to a mouse model of EsA nephrotoxicity (intraperitoneally injected, 25 mg·kg-1). The mechanisms were investigated. Cell viability decreased dose-dependently after treatment with EsA. As polarity was lost, tubular cells decreased, similar to mouse EsA nephrotoxicity with upregulated vimentin expression and a stimulator of the interferon gene (STING). Furthermore, 60 μM EsA could induce endothelial inflammation, lead to mitochondrial damage and activate STING by translocating mtDNA into the cytoplasm to develop an inflammatory cascade and destroy renal endothelial cells with interstitial changes. The data suggest that kidney organoids derived from iPSCs are promising for investigating nephrotoxicity. EsA nephrotoxicity involves the epithelial-mesenchymal transition via STING signaling.
Collapse
Affiliation(s)
- Shuyi Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Frontiers Science Center of TCM Chemical Biology, 201203, PR China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Frontiers Science Center of TCM Chemical Biology, 201203, PR China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Frontiers Science Center of TCM Chemical Biology, 201203, PR China
| | - Yu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Frontiers Science Center of TCM Chemical Biology, 201203, PR China.
| |
Collapse
|
31
|
Xiao Y, Peng Y, Zhang C, Liu W, Wang K, Li J. hucMSC-derived exosomes protect ovarian reserve and restore ovarian function in cisplatin treated mice. J Biomed Res 2022; 37:382-393. [PMID: 37198178 PMCID: PMC10541778 DOI: 10.7555/jbr.36.20220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Anti-cancer therapy often causes premature ovarian insufficiency and infertility as the ovarian follicle reserve is extremely sensitive to chemotherapy drugs, such as cisplatin. Various fertility preservation methods have been explored for women, especially prepubertal girls undergoing radiotherapy and chemotherapy due to cancer. In recent years, mesenchymal stem cell-derived exosomes (MSC-exos) have been reported to play an important role in tissue repair and the treatment of various diseases. In the current study, we observed that human umbilical cord-derived MSC-exos (hucMSC-exos) after short-term culture improved follicular survival and development while receiving cisplatin treatment. Moreover, intravenous injection of hucMSC-exos improved ovarian function and ameliorated inflammatory environment within the ovary. The underlying mechanism of hucMSC-exos on fertility preservation was associated with the down-regulation of p53-related apoptosis and their anti-inflammatory function. Based on these findings, we propose that hucMSC-exos may be a potential approach to improve fertility in women diagnosed with cancer.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
32
|
Dorison A, Forbes TA, Little MH. What can we learn from kidney organoids? Kidney Int 2022; 102:1013-1029. [PMID: 35970244 DOI: 10.1016/j.kint.2022.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
The ability to generate 3-dimensional models of the developing human kidney via the directed differentiation of pluripotent stem cells-termed kidney organoids-has been hailed as a major advance in experimental nephrology. Although these provide an opportunity to interrogate human development, model-specific kidney diseases facilitate drug screening and even deliver bioengineered tissue; most of these prophetic end points remain to be realized. Indeed, at present we are still finding out what we can learn and what we cannot learn from this approach. In this review, we will summarize the approaches available to generate models of the human kidney from stem cells, the existing successful applications of kidney organoids, their limitations, and remaining challenges.
Collapse
Affiliation(s)
- Aude Dorison
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas A Forbes
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Department of Nephrology, Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
33
|
Montalbetti N, Przepiorski AJ, Shi S, Sheng S, Baty CJ, Maggiore JC, Carattino MD, Vanichapol T, Davidson AJ, Hukriede NA, Kleyman TR. Functional characterization of ion channels expressed in kidney organoids derived from human induced pluripotent stem cells. Am J Physiol Renal Physiol 2022; 323:F479-F491. [PMID: 35979965 PMCID: PMC9529267 DOI: 10.1152/ajprenal.00365.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.
Collapse
Affiliation(s)
| | - Aneta J Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph C Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
35
|
Rizki-Safitri A, Gupta N, Hiratsuka K, Kobayashi K, Zhang C, Ida K, Satlin LM, Morizane R. Live functional assays reveal longitudinal maturation of transepithelial transport in kidney organoids. Front Cell Dev Biol 2022; 10:978888. [PMID: 36046340 PMCID: PMC9420851 DOI: 10.3389/fcell.2022.978888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Kidney organoids derived from hPSCs have opened new opportunities to develop kidney models for preclinical studies and immunocompatible kidney tissues for regeneration. Organoids resemble native nephrons that consist of filtration units and tubules, yet little is known about the functional capacity of these organoid structures. Transcriptomic analyses provide insight into maturation and transporter activities that represent kidney functions. However, functional assays in organoids are necessary to demonstrate the activity of these transport proteins in live tissues. The three-dimensional (3D) architecture adds complexity to real-time assays in kidney organoids. Here, we develop a functional assay using live imaging to assess transepithelial transport of rhodamine 123 (Rh123), a fluorescent substrate of P-glycoprotein (P-gp), in organoids affixed to coverslip culture plates for accurate real-time observation. The identity of organoid structures was probed using Lotus Tetragonolobus Lectin (LTL), which binds to glycoproteins present on the surface of proximal tubules. Within 20 min of the addition of Rh123 to culture media, Rh123 accumulated in the tubular lumen of organoids. Basolateral-to-apical accumulation of the dye/marker was reduced by pharmacologic inhibition of MDR1 or OCT2, and OCT2 inhibition reduced the Rh123 uptake. The magnitude of Rh123 transport was maturation-dependent, consistent with MDR1 expression levels assessed by RNA-seq and immunohistochemistry. Specifically, organoids on day 21 exhibit less accumulation of Rh123 in the lumen unlike later-stage organoids from day 30 of differentiation. Our work establishes a live functional assessment in 3D kidney organoids, enabling the functional phenotyping of organoids in health and disease.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Navin Gupta
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ken Hiratsuka
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
| | - Kenichi Kobayashi
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Chengcheng Zhang
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kazumi Ida
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Lisa M. Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States,Harvard Stem Cell Institute, Cambridge, MA, United States,*Correspondence: Ryuji Morizane, ,
| |
Collapse
|
36
|
Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res Ther 2022; 13:355. [PMID: 35883199 PMCID: PMC9327311 DOI: 10.1186/s13287-022-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.
Collapse
Affiliation(s)
- Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M Farry
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer L Peek
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mariana C Cabatu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Richard C Welch
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eddie S Qian
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
37
|
Wang Q, Lu J, Fan K, Xu Y, Xiong Y, Sun Z, Zhai M, Zhang Z, Zhang S, Song Y, Luo J, You M, Guo M, Zhang X. High-throughput "read-on-ski" automated imaging and label-free detection system for toxicity screening of compounds using personalised human kidney organoids. J Zhejiang Univ Sci B 2022; 23:564-577. [PMID: 35794686 PMCID: PMC9264113 DOI: 10.1631/jzus.b2100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
Organoid models are used to study kidney physiology, such as the assessment of nephrotoxicity and underlying disease processes. Personalized human pluripotent stem cell-derived kidney organoids are ideal models for compound toxicity studies, but there is a need to accelerate basic and translational research in the field. Here, we developed an automated continuous imaging setup with the "read-on-ski" law of control to maximize temporal resolution with minimum culture plate vibration. High-accuracy performance was achieved: organoid screening and imaging were performed at a spatial resolution of 1.1 μm for the entire multi-well plate under 3 min. We used the in-house developed multi-well spinning device and cisplatin-induced nephrotoxicity model to evaluate the toxicity in kidney organoids using this system. The acquired images were processed via machine learning-based classification and segmentation algorithms, and the toxicity in kidney organoids was determined with 95% accuracy. The results obtained by the automated "read-on-ski" imaging device, combined with label-free and non-invasive algorithms for detection, were verified using conventional biological procedures. Taking advantage of the close-to-in vivo-kidney organoid model, this new development opens the door for further application of scaled-up screening using organoids in basic research and drug discovery.
Collapse
Affiliation(s)
- Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ke Fan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Man Zhai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianzhong Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. ,
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
38
|
Trush O, Takasato M. Kidney organoid research: current status and applications. Curr Opin Genet Dev 2022; 75:101944. [PMID: 35785592 DOI: 10.1016/j.gde.2022.101944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
Organoids are being widely introduced as novel research models in multiple research fields. Human-induced pluripotent stem cells-derived kidney organoids became an indispensable tool to study human kidney development, model various diseases and infections leading to kidney damage, and offer a new route towards better drug development and validation, personalized drug screening, and regenerative medicine. In this review, we provide an update of the most recent developments in kidney organoid induction: their main goals, advantages, and shortcomings. We further discuss their current applications in providing modeling and treatment avenues to various kidney injuries, their use in genome-wide screening of kidney diseases, and the cell interactions occurring in these kidney structures.
Collapse
Affiliation(s)
- Olena Trush
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Development and Regeneration, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
39
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
40
|
Pode-Shakked N, Devarajan P. Human Stem Cell and Organoid Models to Advance Acute Kidney Injury Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23137211. [PMID: 35806216 PMCID: PMC9266524 DOI: 10.3390/ijms23137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in over 20% of non-critically ill hospitalized patients and >30% of children and >50% of adults in critical care units. AKI is associated with serious short-term and long-term consequences, and current therapeutic options are unsatisfactory. Large gaps remain in our understanding of human AKI pathobiology, which have hindered the discovery of novel diagnostics and therapeutics. Although animal models of AKI have been extensively studied, these differ significantly from human AKI in terms of molecular and cellular responses. In addition, animal models suffer from interspecies differences, high costs and ethical considerations. Static two-dimensional cell culture models of AKI also have limited utility since they have focused almost exclusively on hypoxic or cytotoxic injury to proximal tubules alone. An optimal AKI model would encompass several of the diverse specific cell types in the kidney that could be targets of injury. Second, it would resemble the human physiological milieu as closely as possible. Third, it would yield sensitive and measurable readouts that are directly applicable to the human condition. In this regard, the past two decades have seen a dramatic shift towards newer personalized human-based models to study human AKI. In this review, we provide recent developments using human stem cells, organoids, and in silico approaches to advance personalized AKI diagnostics and therapeutics.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
41
|
Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201287. [PMID: 35783188 PMCID: PMC9249506 DOI: 10.1155/2022/4201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Objective Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.
Collapse
|
42
|
Freedman BS. Physiology assays in human kidney organoids. Am J Physiol Renal Physiol 2022; 322:F625-F638. [PMID: 35379001 PMCID: PMC9076410 DOI: 10.1152/ajprenal.00400.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
Kidney organoids derived from human pluripotent stem cells constitute a novel model of disease, development, and regenerative therapy. Organoids are human, experimentally accessible, high throughput, and enable reconstitution of tissue-scale biology in a petri dish. Although gene expression patterns in organoid cells have been analyzed extensively, less is known about the functionality of these structures. Here, we review assays of physiological function in human kidney organoids, including best practices for quality control, and future applications. Tubular structures in organoids accumulate specific molecules through active transport, including dextran and organic anions, and swell with fluid in response to cAMP stimulation. When engrafted into animal models in vivo, organoids form vascularized glomerulus-like structures capable of size-selective filtration. Organoids exhibit metabolic, endocrine, injury, and infection phenotypes, although their specificity is not yet fully clear. To properly interpret organoid physiology assays, it is important to incorporate appropriate negative and positive controls, statistical methods, data presentation, molecular mechanisms, and clinical data sets. Improvements in organoid perfusion, patterning, and maturation are needed to enable branching morphogenesis, urine production, and renal replacement. Reconstituting renal physiology with kidney organoids is a new field with potential to provide fresh insights into classical phenomena.
Collapse
Affiliation(s)
- Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, Department of Laboratory Medicine and Physiology (adjunct), and Department of Bioengineering (adjunct), University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
43
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
44
|
Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity. Cell Mol Life Sci 2022; 79:296. [PMID: 35570209 PMCID: PMC9108107 DOI: 10.1007/s00018-022-04316-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.
Collapse
|
45
|
Gerhardt LMS, McMahon AP. Identifying Common Molecular Mechanisms in Experimental and Human Acute Kidney Injury. Semin Nephrol 2022; 42:151286. [PMID: 36402654 PMCID: PMC11017289 DOI: 10.1016/j.semnephrol.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.
Collapse
Affiliation(s)
- Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
46
|
Wu M, Hu T, Zhu P, Nasser MI, Shen J, Sun F, He Q, Zhao M. Kidney organoids as a promising tool in nephrology. Genes Dis 2022; 9:585-597. [PMID: 35782972 PMCID: PMC9243316 DOI: 10.1016/j.gendis.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
Kidney disease has become a global public health problem affecting over 750 million people worldwide and imposing a heavy economic burden on patients. The complex architecture of the human kidney makes it very difficult to study the pathophysiology of renal diseases in vitro and to develop effective therapeutic options for patients. Even though cell lines and animal models have enriched our understanding, they fail to recapitulate key aspects of human kidney development and renal disease at cellular and functional levels. Organoids can be derived from either pluripotent stem cells or adult stem cells by strictly regulating key signalling pathways. Today, these self-differentiated organoids represent a promising technology to further understand the human kidney, one of the most complex organs, in an unprecedented way. The newly established protocols improved by organ-on-chip and coculture with immune cells will push kidney organoids towards the next generation. Herein, we focus on recent achievements in the application of kidney organoids in disease modelling, nephrotoxic testing, precision medicine, biobanking, and regenerative therapy, followed by discussions of novel strategies to improve their utility for biomedical research. The applications we discuss may help to provide new ideas in clinical fields.
Collapse
|
47
|
Nunez-Nescolarde AB, Nikolic-Paterson DJ, Combes AN. Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:738-749. [PMID: 35181335 DOI: 10.1016/j.ajpath.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.
Collapse
Affiliation(s)
- Ana B Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
48
|
Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tremendous progress has been made in the field of toxicology leading to the advance of developmental toxicity assessment. Conventional animal models and in vitro two-dimensional models cannot accurately describe toxic effects and predict actual in vivo responses due to obvious inter-species differences between humans and animals, as well as the lack of a physiologically relevant tissue microenvironment. Human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived three-dimensional organoids are ideal complex and multicellular organotypic models, which are indispensable in recapitulating morphogenesis, cellular interactions, and molecular processes of early human organ development. Recently, human organoids have been used for drug discovery, chemical toxicity and safety in vitro assessment. This review discusses the recent advances in the use of human organoid models, (i.e., brain, retinal, cardiac, liver, kidney, lung, and intestinal organoid models) for developmental toxicity and teratogenicity assessment of distinct tissues/organs following exposure to pharmaceutical compounds, heavy metals, persistent organic pollutants, nanomaterials, and ambient air pollutants. Combining next-generation organoid models with innovative engineering technologies generates novel and powerful tools for developmental toxicity and teratogenicity assessment, and the rapid progress in this field is expected to continue.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
49
|
Lee S, McCabe EM, Rasmussen TP. Modeling the Kidney with Human Pluripotent cells: Applications for Toxicology and Organ Repair. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|