1
|
Chen S, Wang L, Zou Y, Li Y, Zhong X, Li G. Pathogenesis of Focal Segmental Glomerulosclerosis Caused by a Leu754Val Mutation in ARHGAP32. FASEB J 2025; 39:e70534. [PMID: 40231370 DOI: 10.1096/fj.202403242r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Focal segmental glomerulosclerosis (FSGS) shows a poor response to hormones and other treatment schemes and rapidly progresses to end-stage renal disease. Genetic factors are important causes of FSGS. We recently identified a new candidate pathogenic ARHGAP32 mutation in a family affected by FSGS and further investigated its functional impact through in vivo and in vitro studies. We established in vitro models of ARHGAP32 overexpression in podocytes and COS-7 kidney cells by plasmid transfection. Mice with the point mutation were established using CRISPR/Cas9 technology, followed by the establishment of a kidney injury model by adriamycin administration via the tail vein. The ARHGAP32 protein was found to be expressed in human kidney tissues. Podocytes transfected with mutant ARHGAP32 showed a significant decrease in the expression of the podocyte markers nephrin. Similarly, COS-7 cells transfected with mutant ARHGAP32 showed decreased expression of the cytoskeletal protein F-actin. The ARHGAP32 mutant protein had 20-fold higher affinity for Cdc42 than the wild-type protein. Adriamycin-induced L405V mutant mice showed slow growth, proteinuria, increased serum creatinine and blood urea nitrogen levels, and pathological kidney damage. RhoA, Rac1, and Cdc42 all showed decreased expression in podocytes overexpressing mutant ARHGAP32 and in the kidneys of mutant mice. These findings suggest that the ARHGAP32 L754V mutation induces podocyte damage, leading to kidney damage and the potential development of FSGS. This study provides a new basis for elucidating the pathogenesis of FSGS and the exploration of new therapeutic measures.
Collapse
Affiliation(s)
- Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Li Wang
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Yang Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Xiang Zhong
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Guisen Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| |
Collapse
|
2
|
Schulz K, Hazelton-Cavill P, Alornyo KK, Edenhofer I, Lindenmeyer M, Lohr C, Huber TB, Denholm B, Koehler S. Piezo activity levels need to be tightly regulated to maintain normal morphology and function in pericardial nephrocytes. Sci Rep 2024; 14:28254. [PMID: 39548228 PMCID: PMC11568303 DOI: 10.1038/s41598-024-79352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly. Loss of function analysis in Piezo depleted nephrocytes reveal a severe morphological and functional phenotype. Further, pharmacological activation of endogenous Piezo with Yoda1 causes a significant increase of intracellular Ca++ upon exposure to a mechanical stimulus in nephrocytes, as well as filtration disturbances. Elevated Piezo expression levels also result in a severe nephrocyte phenotype. Interestingly, expression of Piezo which lacks mechanosensitive channel activity, does not result in a severe nephrocyte phenotype, suggesting the observed changes in Piezo wildtype overexpressing cells are caused by the mechanosensitive channel activity. Moreover, blocking Piezo activity using the tarantula toxin GsMTx4 reverses the phenotypes observed in nephrocytes overexpressing Piezo. Taken together, here we provide evidence that Piezo activity levels need to be tightly regulated to maintain normal pericardial nephrocyte morphology and function.
Collapse
Affiliation(s)
- Kristina Schulz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paris Hazelton-Cavill
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl K Alornyo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
3
|
Gyarmati G, Shroff UN, Izuhara A, Deepak S, Komers R, Bedard PW, Peti-Peterdi J. Sparsentan improves glomerular hemodynamics, cell functions, and tissue repair in a mouse model of FSGS. JCI Insight 2024; 9:e177775. [PMID: 39226116 PMCID: PMC11466195 DOI: 10.1172/jci.insight.177775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Dual endothelin-1 (ET-1) and angiotensin II (AngII) receptor antagonism with sparsentan has strong antiproteinuric actions via multiple potential mechanisms that are more pronounced, or additive, compared with current standard of care using angiotensin receptor blockers (ARBs). Considering the many actions of ET-1 and AngII on multiple cell types, this study aimed to determine glomeruloprotective mechanisms of sparsentan compared to the ARB losartan by direct visualization of its effects in the intact kidney in focal segmental glomerulosclerosis (FSGS) using intravital multiphoton microscopy. In both healthy and FSGS models, sparsentan treatment increased afferent/efferent arteriole diameters; increased or preserved blood flow and single-nephron glomerular filtration rate; attenuated acute ET-1 and AngII-induced increases in podocyte calcium; reduced proteinuria; preserved podocyte number; increased both endothelial and renin lineage cells and clones in vasculature, glomeruli, and tubules; restored glomerular endothelial glycocalyx; and attenuated mitochondrial stress and immune cell homing. These effects were either not observed or of smaller magnitude with losartan. The pleiotropic nephroprotective effects of sparsentan included improved hemodynamics, podocyte and endothelial cell functions, and tissue repair. Compared with losartan, sparsentan was more effective in the sustained preservation of kidney structure and function, which underscores the importance of the ET-1 component in FSGS pathogenesis and therapy.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Urvi Nikhil Shroff
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Audrey Izuhara
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Sachin Deepak
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Radko Komers
- Travere Therapeutics, San Diego, California, USA
| | | | - Janos Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Kliewe F, Siegerist F, Hammer E, Al-Hasani J, Amling TRJ, Hollemann JZE, Schindler M, Drenic V, Simm S, Amann K, Daniel C, Lindenmeyer M, Hecker M, Völker U, Endlich N. Zyxin is important for the stability and function of podocytes, especially during mechanical stretch. Commun Biol 2024; 7:446. [PMID: 38605154 PMCID: PMC11009394 DOI: 10.1038/s42003-024-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | | | | | - Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Vedran Drenic
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| |
Collapse
|
5
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Tian X, Pedigo CE, Li K, Ma X, Bunda P, Pell J, Lek A, Gu J, Zhang Y, Medina Rangel PX, Li W, Schwartze E, Nagata S, Lerner G, Perincheri S, Priyadarshini A, Zhao H, Lek M, Menon MC, Fu R, Ishibe S. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J Clin Invest 2023; 133:e171237. [PMID: 37847555 PMCID: PMC10721156 DOI: 10.1172/jci171237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Collapse
Affiliation(s)
- Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E. Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Patricia Bunda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Pell
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yan Zhang
- Bioinformation Department, Suzhou SITRI Institute of Immunology Co. Ltd., Suzhou, Jiangsu, China
| | - Paulina X. Medina Rangel
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eike Schwartze
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Soichiro Nagata
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Lerner
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anupama Priyadarshini
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Madhav C. Menon
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Odenthal J, Dittrich S, Ludwig V, Merz T, Reitmeier K, Reusch B, Höhne M, Cosgun ZC, Hohenadel M, Putnik J, Göbel H, Rinschen MM, Altmüller J, Koehler S, Schermer B, Benzing T, Beck BB, Brinkkötter PT, Habbig S, Bartram MP. Modeling of ACTN4-Based Podocytopathy Using Drosophila Nephrocytes. Kidney Int Rep 2022; 8:317-329. [PMID: 36815115 PMCID: PMC9939316 DOI: 10.1016/j.ekir.2022.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Genetic disorders are among the most prevalent causes leading to progressive glomerular disease and, ultimately, end-stage renal disease (ESRD) in children and adolescents. Identification of underlying genetic causes is indispensable for targeted treatment strategies and counseling of affected patients and their families. Methods Here, we report on a boy who presented at 4 years of age with proteinuria and biopsy-proven focal segmental glomerulosclerosis (FSGS) that was temporarily responsive to treatment with ciclosporin A. Molecular genetic testing identified a novel mutation in alpha-actinin-4 (p.M240T). We describe a feasible and efficient experimental approach to test its pathogenicity by combining in silico, in vitro, and in vivo analyses. Results The de novo p.M240T mutation led to decreased alpha-actinin-4 stability as well as protein mislocalization and actin cytoskeleton rearrangements. Transgenic expression of wild-type human alpha-actinin-4 in Drosophila melanogaster nephrocytes was able to ameliorate phenotypes associated with the knockdown of endogenous actinin. In contrast, p.M240T, as well as other established disease variants p.W59R and p.K255E, failed to rescue these phenotypes, underlining the pathogenicity of the novel alpha-actinin-4 variant. Conclusion Our data highlight that the newly identified alpha-actinin-4 mutation indeed encodes for a disease-causing variant of the protein and promote the Drosophila model as a simple and convenient tool to study monogenic kidney disease in vivo.
Collapse
Affiliation(s)
- Johanna Odenthal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Sebastian Dittrich
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Vivian Ludwig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Tim Merz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Katrin Reitmeier
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Björn Reusch
- Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Institute of Human Genetics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Zülfü C. Cosgun
- Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Maximilian Hohenadel
- Department of Pediatrics, Division of Pediatric Nephrology, University of Bonn, Bonn, Germany
| | - Jovana Putnik
- Mother and Child Health Care Institute of Serbia “Dr Vukan Čupić,” Department of Nephrology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,III Medical Clinic, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Bodo B. Beck
- Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Institute of Human Genetics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Paul T. Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Correspondence: Paul T. Brinkkoetter, Department II of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Street 62, Cologne 50935, Germany.
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
8
|
Mulla Y, Avellaneda MJ, Roland A, Baldauf L, Jung W, Kim T, Tans SJ, Koenderink GH. Weak catch bonds make strong networks. NATURE MATERIALS 2022; 21:1019-1023. [PMID: 36008604 PMCID: PMC7613626 DOI: 10.1038/s41563-022-01288-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/11/2022] [Indexed: 05/12/2023]
Abstract
Molecular catch bonds are ubiquitous in biology and essential for processes like leucocyte extravasion1 and cellular mechanosensing2. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this feature provides 'strength on demand3', thus enabling cells to increase rigidity under stress1,4-6. However, catch bonds are often weaker than slip bonds because they have cryptic binding sites that are usually buried7,8. Here we show that catch bonds render reconstituted cytoskeletal actin networks stronger than slip bonds, even though the individual bonds are weaker. Simulations show that slip bonds remain trapped in stress-free areas, whereas weak binding allows catch bonds to mitigate crack initiation by moving to high-tension areas. This 'dissociation on demand' explains how cells combine mechanical strength with the adaptability required for shape change, and is relevant to diseases where catch bonding is compromised7,9, including focal segmental glomerulosclerosis10 caused by the α-actinin-4 mutant studied here. We surmise that catch bonds are the key to create life-like materials.
Collapse
Affiliation(s)
- Yuval Mulla
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Mario J Avellaneda
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Antoine Roland
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
| | - Lucia Baldauf
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Sander J Tans
- Living Matter Department, AMOLF, Amsterdam, The Netherlands.
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Gijsje H Koenderink
- Living Matter Department, AMOLF, Amsterdam, The Netherlands.
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
9
|
Martin CE, Phippen NJ, Keyvani Chahi A, Tilak M, Banerjee SL, Lu P, New LA, Williamson CR, Platt MJ, Simpson JA, Krendel M, Bisson N, Gingras AC, Jones N. Complementary Nck1/2 Signaling in Podocytes Controls α Actinin-4-Mediated Actin Organization, Adhesion, and Basement Membrane Composition. J Am Soc Nephrol 2022; 33:1546-1567. [PMID: 35906089 PMCID: PMC9342632 DOI: 10.1681/asn.2021101343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Noah J Phippen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sara L Banerjee
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Nicolas Bisson
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada.,PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
11
|
Rogg M, Maier JI, Van Wymersch C, Helmstädter M, Sammarco A, Lindenmeyer M, Zareba P, Montanez E, Walz G, Werner M, Endlich N, Benzing T, Huber TB, Schell C. α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. J Am Soc Nephrol 2022; 33:786-808. [PMID: 35260418 PMCID: PMC8970443 DOI: 10.1681/asn.2021101319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulina Zareba
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona and Health Sciences and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Tomita N, Hotta Y, Naiki-Ito A, Sanagawa A, Kataoka T, Furukawa-Hibi Y, Takahashi S, Kimura K. Protective effects of tadalafil on damaged podocytes in an adriamycin-induced nephrotic syndrome model. J Pharmacol Sci 2022; 149:53-59. [DOI: 10.1016/j.jphs.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
|
13
|
Zhang H, Lin L, Liu J, Pan L, Lin Z, Zhang M, Zhang J, Cao Y, Zhu J, Zhang R. Phase Separation of MAGI2-Mediated Complex Underlies Formation of Slit Diaphragm Complex in Glomerular Filtration Barrier. J Am Soc Nephrol 2021; 32:1946-1960. [PMID: 34330769 PMCID: PMC8455267 DOI: 10.1681/asn.2020111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Slit diaphragm is a specialized adhesion junction between the opposing podocytes, establishing the final filtration barrier to urinary protein loss. At the cytoplasmic insertion site of each slit diaphragm there is an electron-dense and protein-rich cellular compartment that is essential for slit diaphragm integrity and signal transduction. Mutations in genes that encode components of this membrane-less compartment have been associated with glomerular diseases. However, the molecular mechanism governing formation of compartmentalized slit diaphragm assembly remains elusive. METHODS We systematically investigated the interactions between key components at slit diaphragm, such as MAGI2, Dendrin, and CD2AP, through a combination of biochemical, biophysical, and cell biologic approaches. RESULTS We demonstrated that MAGI2, a unique MAGUK family scaffold protein at slit diaphragm, can autonomously undergo liquid-liquid phase separation. Multivalent interactions among the MAGI2-Dendrin-CD2AP complex drive the formation of the highly dense slit diaphragm condensates at physiologic conditions. The reconstituted slit diaphragm condensates can effectively recruit Nephrin. A nephrotic syndrome-associated mutation of MAGI2 interfered with formation of the slit diaphragm condensates, thus leading to impaired enrichment of Nephrin. CONCLUSIONS Key components at slit diaphragm (e.g., MAGI2 and its complex) can spontaneously undergo phase separation. The reconstituted slit diaphragm condensates can be enriched in adhesion molecules and cytoskeletal adaptor proteins. Therefore, the electron-dense slit diaphragm assembly might form via phase separation of core components of the slit diaphragm in podocytes.
Collapse
Affiliation(s)
- Haijiao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China,School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jiong Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Rongguang Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Su Z, Li Y, Lv H, Cui X, Liu M, Wang Z, Zhang Y, Zhen J, Tang W, Wang X, Yi F. CLEC14A protects against podocyte injury in mice with adriamycin nephropathy. FASEB J 2021; 35:e21711. [PMID: 34107098 DOI: 10.1096/fj.202100283r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Podocyte injury is a major determinant of focal segmental glomerular sclerosis (FSGS) and the identification of potential therapeutic targets for preventing podocyte injury has clinical importance for the treatment of FSGS. CLEC14A is a single-pass transmembrane glycoprotein belonging to the vascular expressed C-type lectin family. CLEC14A is found to be expressed in vascular endothelial cells during embryogenesis and is also implicated in tumor angiogenesis. However, the current understanding of the biological functions of CLEC14A in podocyte is very limited. In this study, we found that CLEC14A was expressed in podocyte and protected against podocyte injury in mice with Adriamycin (ADR)-induced FSGS. First, we observed that CLEC14A was downregulated in mice with ADR nephropathy and renal biopsies from individuals with FSGS and other forms of podocytopathies. Moreover, CLEC14A deficiency exacerbated podocyte injury and proteinuria in mice with ADR nephropathy accompanied by enhanced inflammatory cell infiltration and inflammatory responses. In vitro, overexpression of CLEC14A in podocyte had pleiotropic protective actions, including anti-inflammatory and anti-apoptosis effects. Mechanistically, CLEC14A inhibited high-mobility group box 1 protein (HMGB1) release, at least in part by directly binding HMGB1, and suppressed HMGB1-mediated signaling, including NF-κB signaling and early growth response protein 1 (EGR1) signaling. Taken together, our findings provide new insights into the pivotal role of CLEC14A in maintaining podocyte function, indicating that CLEC14A may be an innovative therapeutic target in FSGS.
Collapse
Affiliation(s)
- Zeyu Su
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyang Cui
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
15
|
Richfield O, Cortez R, Navar LG. Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat. Microcirculation 2021; 28:e12721. [PMID: 34192389 PMCID: PMC9285434 DOI: 10.1111/micc.12721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Objective Chronic glomerular hypertension is associated with glomerular injury and sclerosis; however, the mechanism by which increases in pressure damage glomerular podocytes remains unclear. We tested the hypothesis that increases in glomerular pressure may deleteriously affect podocyte structural integrity by increasing the strain of the glomerular capillary walls, and that glomerular capillary wall strain may play a significant role in the perpetuation of glomerular injury in disease states that are associated with glomerular hypertension. Methods We developed an anatomically accurate mathematical model of a compliant, filtering rat glomerulus to quantify the strain of the glomerular capillary walls in a remnant glomerulus of the 5/6‐nephrectomized rat model of chronic kidney disease. In terms of estimating the mechanical stresses and strains in the glomerular capillaries, this mathematical model is a substantial improvement over previous models which do not consider pressure‐induced alterations in glomerular capillary diameters in distributing plasma and erythrocytes throughout the network. Results Using previously reported data from experiments measuring the change of glomerular volume as a function of perfusion pressure, we estimated the Young's modulus of the glomerular capillary walls in both control and 5/6‐nephrectomized conditions. We found that in 5/6‐nephrectomized conditions, the Young's modulus increased to 8.6 MPa from 7.8 MPa in control conditions, but the compliance of the capillaries increased in 5/6‐nephrectomized conditions due to a 23.3% increase in the baseline glomerular capillary diameters. We found that glomerular capillary wall strain was increased approximately threefold in 5/6‐nephrectomized conditions over control, which may deleteriously affect both mesangial cells and podocytes. The magnitudes of strain in model simulations of 5/6‐nephrectomized conditions were consistent with magnitudes of strain that elicit podocyte hypertrophy and actin cytoskeleton reorganization in vitro. Conclusions Our findings indicate that glomerular capillary wall strain may deleteriously affect podocytes directly, as well as act in concert with other mechanical changes and environmental factors inherent to the in vivo setting to potentiate glomerular injury in severe renoprival conditions.
Collapse
Affiliation(s)
- Owen Richfield
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA.,Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| | - Ricardo Cortez
- Department of Mathematics, Tulane University, New Orleans, LA, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
16
|
Cytoskeleton Rearrangements Modulate TRPC6 Channel Activity in Podocytes. Int J Mol Sci 2021; 22:ijms22094396. [PMID: 33922367 PMCID: PMC8122765 DOI: 10.3390/ijms22094396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.
Collapse
|
17
|
Kim SY, Park S, Lee SW, Lee JH, Lee ES, Kim M, Kim Y, Kang JS, Chung CH, Moon JS, Lee EY. RIPK3 Contributes to Lyso-Gb3-Induced Podocyte Death. Cells 2021; 10:245. [PMID: 33513913 PMCID: PMC7911493 DOI: 10.3390/cells10020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
Fabry disease is a lysosomal storage disease with an X-linked heritage caused by absent or decreased activity of lysosomal enzymes named alpha-galactosidase A (α-gal A). Among the various manifestations of Fabry disease, Fabry nephropathy significantly affects patients' morbidity and mortality. The cellular mechanisms of kidney damage have not been elusively described. Necroptosis is one of the programmed necrotic cell death pathways and is known to play many important roles in kidney injury. We investigated whether RIPK3, a protein phosphokinase with an important role in necroptosis, played a crucial role in the pathogenesis of Fabry nephropathy both in vitro and in vivo. The cell viability of podocytes decreased after lyso-Gb3 treatment in a dose-dependent manner, with increasing RIPK3 expression. Increased reactive oxygen species (ROS) generation after lyso-Gb3 treatment, which was alleviated by GSK'872 (a RIPK3 inhibitor), suggested a role of oxidative stress via a RIPK3-dependent pathway. Cytoskeleton rearrangement induced by lyso-Gb3 was normalized by the RIPK3 inhibitor. When mice were injected with lyso-Gb3, increased urine albuminuria, decreased podocyte counts in the glomeruli, and effaced foot processes were observed. Our results showed that lyso-Gb3 initiated albuminuria, a clinical manifestation of Fabry nephropathy, by podocyte loss and subsequent foot process effacement. These findings suggest a novel pathway in Fabry nephropathy.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea; (S.-Y.K.); (S.P.); (S.-W.L.); (J.S.K.)
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea; (S.-Y.K.); (S.P.); (S.-W.L.); (J.S.K.)
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea; (M.K.); (Y.K.)
| | - Seong-Woo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea; (S.-Y.K.); (S.P.); (S.-W.L.); (J.S.K.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 03722, Korea; (E.S.L.); (C.H.C.)
| | - Miri Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea; (M.K.); (Y.K.)
| | - Youngjo Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea; (M.K.); (Y.K.)
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea; (S.-Y.K.); (S.P.); (S.-W.L.); (J.S.K.)
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 03722, Korea; (E.S.L.); (C.H.C.)
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea; (M.K.); (Y.K.)
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea; (S.-Y.K.); (S.P.); (S.-W.L.); (J.S.K.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
18
|
Feng D. Phosphorylation of key podocyte proteins and the association with proteinuric kidney disease. Am J Physiol Renal Physiol 2020; 319:F284-F291. [PMID: 32686524 DOI: 10.1152/ajprenal.00002.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Podocyte dysfunction contributes to proteinuric chronic kidney disease. A number of key proteins are essential for podocyte function, including nephrin, podocin, CD2-associated protein (CD2AP), synaptopodin, and α-actinin-4 (ACTN4). Although most of these proteins were first identified through genetic studies associated with human kidney disease, subsequent studies have identified phosphorylation of these proteins as an important posttranslational event that regulates their function. In this review, a brief overview of the function of these key podocyte proteins is provided. Second, the role of phosphorylation in regulating the function of these proteins is described. Third, the association between these phosphorylation pathways and kidney disease is reviewed. Finally, challenges and future directions in studying phosphorylation are discussed. Better characterization of these phosphorylation pathways and others yet to be discovered holds promise for translating this knowledge into new therapies for patients with proteinuric chronic kidney disease.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Feng D, Kumar M, Muntel J, Gurley SB, Birrane G, Stillman IE, Ding L, Wang M, Ahmed S, Schlondorff J, Alper SL, Ferrante T, Marquez SL, Ng CF, Novak R, Ingber DE, Steen H, Pollak MR. Phosphorylation of ACTN4 Leads to Podocyte Vulnerability and Proteinuric Glomerulosclerosis. J Am Soc Nephrol 2020; 31:1479-1495. [PMID: 32540856 PMCID: PMC7351002 DOI: 10.1681/asn.2019101032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genetic mutations in α-actinin-4 (ACTN4)-an important actin crosslinking cytoskeletal protein that provides structural support for kidney podocytes-have been linked to proteinuric glomerulosclerosis in humans. However, the effect of post-translational modifications of ACTN4 on podocyte integrity and kidney function is not known. METHODS Using mass spectrometry, we found that ACTN4 is phosphorylated at serine (S) 159 in human podocytes. We used phosphomimetic and nonphosphorylatable ACTN4 to comprehensively study the effects of this phosphorylation in vitro and in vivo. We conducted x-ray crystallography, F-actin binding and bundling assays, and immunofluorescence staining to evaluate F-actin alignment. Microfluidic organ-on-a-chip technology was used to assess for detachment of podocytes simultaneously exposed to fluid flow and cyclic strain. We then used CRISPR/Cas9 to generate mouse models and assessed for renal injury by measuring albuminuria and examining kidney histology. We also performed targeted mass spectrometry to determine whether high extracellular glucose or TGF-β levels increase phosphorylation of ACTN4. RESULTS Compared with the wild type ACTN4, phosphomimetic ACTN4 demonstrated increased binding and bundling activity with F-actin in vitro. Phosphomimetic Actn4 mouse podocytes exhibited more spatially correlated F-actin alignment and a higher rate of detachment under mechanical stress. Phosphomimetic Actn4 mice developed proteinuria and glomerulosclerosis after subtotal nephrectomy. Moreover, we found that exposure to high extracellular glucose or TGF-β stimulates phosphorylation of ACTN4 at S159 in podocytes. CONCLUSIONS These findings suggest that increased phosphorylation of ACTN4 at S159 leads to biochemical, cellular, and renal pathology that is similar to pathology resulting from human disease-causing mutations in ACTN4. ACTN4 may mediate podocyte injury as a consequence of both genetic mutations and signaling events that modulate phosphorylation.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Mukesh Kumar
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Susan B. Gurley
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Gabriel Birrane
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Isaac E. Stillman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts,Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lai Ding
- NeuroTechnology Studio, Program for Interdisciplinary Neuroscience, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Minxian Wang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Saima Ahmed
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Johannes Schlondorff
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tom Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Susan L. Marquez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Carlos F. Ng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts,Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
20
|
Protective Effect of Hydroxysafflor Yellow A on Nephropathy by Attenuating Oxidative Stress and Inhibiting Apoptosis in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7805393. [PMID: 32256962 PMCID: PMC7091558 DOI: 10.1155/2020/7805393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, and its prevalence has been increasing all over the world, which is also the leading cause of end-stage renal failure. Hydroxysafflor yellow A (HSYA) is the main active chemical component of Carthamus tinctorius L., and it is commonly used in patients with cardiovascular and cerebrovascular diseases in China. The aim of this study was to investigate the renal protective effects and molecular mechanisms of HSYA on high-fat diet (HFD) and streptozotocin- (STZ-) induced DN in rats. The DN rats were treated with HSYA for eight weeks. We assessed creatinine (CR), urea nitrogen (UN), glomerular volume, podocyte number, renal inflammation, oxidative stress, and cells apoptosis markers after HSYA treatment. The number of apoptotic cells was measured by the TUNEL assay, and apoptosis-related proteins BAX, caspase-3, and BCL-2 in the renal tissue were analyzed by western blot. The treatment with HSYA significantly decreased fasting blood glucose, CR, UN, and blood lipid profile, including triglyceride and total and low-density lipoprotein cholesterol, even though it did not change the rats' body weights. The western blot results indicated that HSYA reversed the upregulation of BAX and caspase-3 and significantly increased BCL-2 in renal tissue. Moreover, the levels of TNF-α and the inflammatory products, including free fatty acids (FFA) and lactic dehydrogenase (LDH) in the HSYA group, were significantly decreased. For the oxidative stress marker, the superoxide dismutase (SOD) markedly increased in the HSYA treatment group, while the malondialdehyde (MDA) in the serum and kidney tissue evidently decreased. In conclusion, HSYA treatment preserved kidney function in diabetic nephropathy in the HFD- and STZ-induced rats. The potential mechanism of renal protective effect of HSYA might be through inhibiting oxidative stress, reducing inflammatory reaction, and attenuating renal cell apoptosis. Our studies present a promising use for Hydroxysafflor yellow A in the treatment of type 2 diabetes mellitus.
Collapse
|