1
|
Ji J, Zhang Y, Wang D, Wang Y. Efficient removal of PAHs from peanut oil using coconut shell-based activated charcoal decorated by cationic (CTAB), anionic (SDS), non-ionic surfactant (Triton X-100). Food Chem 2024; 438:137962. [PMID: 37976872 DOI: 10.1016/j.foodchem.2023.137962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The coconut shell-based activated charcoal was decorated by three different electronegativities of surfactants (CTAB, SDS, and Triton X-100) through the impregnation method, and the decorated activated charcoal adsorbents were used for the removal of PAHs from peanut oil, respectively. The influence of surfactant decoration on the adsorption and detoxification effect of coconut shell-based activated charcoal was discussed. The thermodynamic and kinetic behaviors of PAHs adsorption on the surfactant-modified activated charcoal were investigated, and the adsorption mechanism was analyzed in-depth. Notably, the prepared modified coconut shell activated charcoal could not only remove more than 90% of PAHs from the peanut oil but also keep the cytotoxicity of the treated peanut oil low. Meanwhile, the detoxification procedure has little effect on the nutritional quality and flavor of the peanut oil. The results of this fundamental study demonstrate that the low-cost surfactant-modified coconut shell-based activated charcoal was effective and feasible.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yaxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Dan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Zhang Y, Ji J, Sun S. Application of sodium dodecyl sulfate and cetyltrimethylammonium bromide-modified activated carbon for removal of PAHs from peanut oil. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Emam H, Ahmed E, Abdel-Daim M. Antioxidant capacity of omega-3-fatty acids and vitamin E against imidacloprid-induced hepatotoxicity in Japanese quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11694-11702. [PMID: 29442305 DOI: 10.1007/s11356-018-1481-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Imidacloprid (IM) is a neonicotinoid insecticide, used in a wide range of agricultural activities worldwide. However, it results in ecosystem disturbances and signs of toxicity in human and animals. The current study was designed to elucidate the protective effects of omega-3-fatty acids (OFAs) and vitamin E (Vit E) against IM hepatotoxicity in Japanese quails. Seventy male quails (30 days old) were divided into seven groups (n = 10); G1 -ve control; G2 received IM (+ve control); G3 received OFA; G4 received Vit E; and G5, G6, and G7 received OFA and/or Vit E with IM for 30 days, respectively. Blood and liver tissue samples were collected. Imidacloprid significantly (p < 0.05) increased serum levels of alanine transferase (ALT), aspartate transferase (AST), triglycerides (TGC), and low-density lipoprotein cholesterol (LDL-C), as well as liver tissue malondialdehyde (MDA) concentration. Moreover, IM caused a significant (p < 0.05) decrease in the levels of serum high-density lipoprotein cholesterol (HDL-C), as well as liver superoxide dismutase (SOD) enzyme activity and reduced-glutathione (GSH) concentration in comparison to the -ve control group. Histopathological changes in hepatocytes, including thick cell trabeculae with marked hydropic vacuolar degeneration of cytoplasm, were found in IM-treated group. Treatment with OFA and/or Vit E resulted in significant improvements in general body condition, serum HDL-C level, and liver tissue SOD enzyme activity and GSH concentration, as well as significant decreases in the levels of serum AST, ALT, TGC, LDL-C, and hepatic tissue MDA. In conclusion, OFA and Vit E have a protective effect against IM toxicity, especially in their combination.
Collapse
Affiliation(s)
- Hazem Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
5
|
Abstract
SummaryWhile the Inuit diet was highly cardio-protective and consuming oily fish within a Western diet is to a lesser degree, the case for purified fish oil supplements is less convincing. Purification of fish oil removes lipophilic polyphenols which likely contribute to the health benefits of oily fish; leaving the ω3 highly unsaturated fatty acids exposed and prone to conferring oxidative and inflammatory stress. The authors believe that due to such issues as dietary shift, it may now be inadvisable to prescribe or sell purified ω3 highly unsaturated fatty acids supplements, unless the appropriate co-factors are included.
Collapse
Affiliation(s)
- Paul R Clayton
- Institute of Food, Brain & Behaviour, Oxford OX4 1JE, UK
| | - Szabolcs Ladi
- Deparment of Public Health, University of Pecs, Hungary
| |
Collapse
|
6
|
Ascensão A, Martins MJ, Santos-Alves E, Gonçalves IO, Portincasa P, Oliveira PJ, Magalhães J. Modulation of hepatic redox status and mitochondrial metabolism by exercise: therapeutic strategy for liver diseases. Mitochondrion 2013; 13:862-870. [PMID: 23880173 DOI: 10.1016/j.mito.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Liver steatosis (non-alcoholic fatty liver disease, NAFLD) is deemed as the hepatic face of the metabolic syndrome, with both physical inactivity and hypercaloric/unbalanced diet, together with increasing age playing a role as predisposing factors. Consequently, one of the most effective strategies used to counteract this scenario is physical exercise. Given the importance of redox signaling in cellular remodeling, in which mitochondria are closely implicated along with important roles on substrate oxidation, here we briefly review the effects of both acute and chronic forms of physical exercise on the modulation of hepatic redox state, highlighting the relevance of mitochondrial metabolism and function in the induction of liver phenotypes that antagonize metabolic alterations associated with liver metabolic diseases.
Collapse
Affiliation(s)
- António Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
7
|
Dalla Corte CL, de Carvalho NR, Amaral GP, Puntel GO, Silva LFA, Retamoso LT, Royes LFF, Bresciani GB, da Cruz IB, Rocha JB, Barrio Lera JP, Soares FA. Antioxidant effect of organic purple grape juice on exhaustive exercise. Appl Physiol Nutr Metab 2013; 38:558-65. [DOI: 10.1139/apnm-2012-0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to assess the potential protective effect of organic purple grape juice (PGJ) on oxidative stress produced by an exhaustive exercise bout in rats. To test this hypothesis, rats were acutely treated with organic PGJ (Vitis labrusca) and subsequently submitted to an exhaustive exercise bout. Parameters of oxidative stress, such as thiobarbituric acid reactive species (TBARS) levels, 2′,7′,-dichlorofluorescein diacetate (DCFH-DA) oxidation, and nonprotein sulfhydryl levels (NP-SH) in the brain, skeletal muscle, and blood, were evaluated. Enzyme activity of Na+,K+-ATPase, Ca2+-ATPase, and δ-aminolevulinate dehydratase (δ-ALA-D) in the brain, skeletal muscle, and blood were also assayed. Statistical analysis showed that the exhaustive exercise bout increased TBARS levels and DCFH-DA oxidation, and decreased NP-SH levels in rat tissue. Ca2+-ATPase activity was increased in groups exposed to both exercise and PGJ treatment. The results indicate that organic PGJ intake was able to protect against the oxidative damage caused by an exhaustive exercise bout in different rat tissues.
Collapse
Affiliation(s)
- Cristiane L. Dalla Corte
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Nélson R. de Carvalho
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Guilherme P. Amaral
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Gustavo O. Puntel
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Luiz Fernando A. Silva
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Leandro T. Retamoso
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Luiz Fernando F. Royes
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Guilherme B. Bresciani
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Ivana B.M. da Cruz
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - João B.T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Juan Pablo Barrio Lera
- Instituto de Biomedicina (IBIOMED), Universidad de León, León, Castilla y León, 24071, Spain
| | - Félix A.A. Soares
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| |
Collapse
|
8
|
Luehring M, Blank R, Wolffram S. Vitamin E-sparing and vitamin E-independent antioxidative effects of the flavonol quercetin in growing pigs. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Increasing intake of long-chain n-3 PUFA enhances lipoperoxidation and modulates hepatic gene expression in a dose-dependent manner. Br J Nutr 2011; 107:1254-73. [PMID: 21914239 DOI: 10.1017/s0007114511004259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation. The present study aimed to investigate the dose-response effects of LC n-3 PUFA on the production of peroxidised metabolites, as potential bioactive molecules, and on global gene expression in liver. Hypercholesterolaemic rabbits received by daily oral administration (7 weeks) either oleic acid-rich oil or a mixture of oils providing 0.1, 0.5 or 1 % (groups 1, 2 and 3 respectively) of energy as DHA. Levels of specific peroxidised metabolites, namely 4-hydroxyhexenal (4-HHE)-protein adducts, issued from LC n-3 PUFA were measured by GC/MS/MS in liver in parallel to transcription profiling. The intake of LC n-3 PUFA increased, in a dose-dependent manner, the hepatic production of 4-HHE. At the highest dose, LC n-3 PUFA provoked an accumulation of TAG in liver, which can be directly linked to increased mRNA levels of lipoprotein hepatic receptors (LDL-receptor and VLDL-receptor). In groups 1 and 2, the mRNA levels of microsomal TAG transfer protein decreased, suggesting a possible new mechanism to reduce VLDL secretion. These modulations of genes related to lipoprotein metabolism were independent of PPARα signalling but were probably linked to the activation of the farnesol X receptor pathway by LC n-3 PUFA and/or their metabolites such as HHE.
Collapse
|
10
|
Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. Int J Mol Sci 2011; 12:1081-8. [PMID: 21541044 PMCID: PMC3083691 DOI: 10.3390/ijms12021081] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/05/2022] Open
Abstract
The purpose of the present study was to investigate the effects of Lycium barbarum polysaccharides (LBP) on exercise-induced oxidative stress in rats. Rats were divided into four groups, i.e., one control group and three LBP treated groups. The animals received an oral administration of physiological saline or LBP (100, 200 and 400 mg/kg body weight) for 28 days. On the day of the exercise test, rats were required to run to exhaustion on the treadmill. Body weight, endurance time, malondialdehyde (MDA), super oxide dismutase (SOD) and glutathione peroxidase (GPX) level of rats were measured. The results showed that the body weight of rats in LBP treated groups were not significantly different from that in the normal control group before and after the experiment (P > 0.05). After exhaustive exercise, the mean endurance time of treadmill running to exhaustion of rats in LBP treated groups were significantly prolonged compared with that in the normal control group. MDA levels of rats in LBP treated groups were significantly decreased compared with that in the normal control group (P < 0.05). SOD and GPX levels of rats in LBP treated groups were significantly increased compared with that in the normal control group (P < 0.05). Together, these results indicate that LBP was effective in preventing oxidative stress after exhaustive exercise.
Collapse
|
11
|
Kavouras SA, Panagiotakos DB, Pitsavos C, Chrysohoou C, Arnaoutis G, Skoumas Y, Stefanadis C. Physical Activity and Adherence to Mediterranean Diet Increase Total Antioxidant Capacity: The ATTICA Study. Cardiol Res Pract 2010; 2011:248626. [PMID: 20981278 PMCID: PMC2963115 DOI: 10.4061/2011/248626] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022] Open
Abstract
We studied the association of physical activity and adherence to the Mediterranean diet, in total antioxidant capacity (TAC). A random sample of 1514 men and 1528 women was selected from Attica region. Physical activity was assessed with a translated version of the validated "International Physical Activity Questionnaire" (iPAQ), and dietary intake through a validated Food Frequency Questionnaire (FFQ). Adherence to the Mediterranean diet was assessed by the MedDietScore that incorporated the inherent characteristics of this diet. TAC was positively correlated with the degree of physical activity (P < .05). TAC was also positively correlated with MedDietScore (r = 0.24, P < .001). Stratified analysis by diet status revealed that the most beneficial results were observed to highly active people as compared to inactive, who also followed the Mediterranean diet (288 ± 70 μmol/L, 230 ± 50 μmol/L, resp.), after adjusting for various confounders. Increased physical activity and greater adherence to the Mediterranean diet were associated with increased total antioxidant capacity.
Collapse
Affiliation(s)
- Stavros A Kavouras
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
12
|
Çakır B, Kasımay Ö, Kolgazi M, Ersoy Y, Ercan F, Yeğen BÇ. Stress-induced multiple organ damage in rats is ameliorated by the antioxidant and anxiolytic effects of regular exercise. Cell Biochem Funct 2010; 28:469-79. [DOI: 10.1002/cbf.1679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Abstract
The purpose of the present study was to examine the relationship between oxidative stress and overtraining syndrome. Indicators of oxidative stress (plasma protein carbonyls, nitrotyrosine, and malondialdehyde) and antioxidant status (oxygen radical absorbance capacity) were measured in severely overtrained (two women, five men) and control athletes (five women, five men). Samples were collected from both groups at baseline (i.e. in the overtraining state of overtrained athletes) and after 6 months of recovery, both at rest and immediately after an exercise test to volitional exhaustion. At baseline, overtrained athletes had higher plasma protein carbonyls at rest than controls (mean difference 0.03 nmol . mg(-1), 95% CI = 0.01-0.05 nmol . mg(-1), P = 0.003, effect size = 0.40). Both at baseline and after recovery, exercise to exhaustion led to an increase in oxygen radical absorbance capacity and malondialdehyde (P = 0.001-0.006) in the controls but not in the overtrained athletes. Furthermore, at baseline, only overtrained athletes showed negative correlations between oxygen radical absorbance capacity at rest and protein carbonyls after exhaustive exercise (r = -0.98, P = 0.0001). These results suggest that increased oxidative stress has a role in the pathophysiology of overtraining syndrome. The attenuated responses of oxidative stress and antioxidant capacity to exercise in the overtrained state could be related to an inability to perform exercise effectively and impaired adaptation to exercise.
Collapse
|
14
|
Patel BP, Safdar A, Raha S, Tarnopolsky MA, Hamadeh MJ. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One 2010; 5:e9386. [PMID: 20195368 PMCID: PMC2827549 DOI: 10.1371/journal.pone.0009386] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/09/2009] [Indexed: 01/24/2023] Open
Abstract
Caloric restriction (CR) extends lifespan through a reduction in oxidative stress, delays the onset of morbidity and prolongs lifespan. We previously reported that long-term CR hastened clinical onset, disease progression and shortened lifespan, while transiently improving motor performance in G93A mice, a model of amyotrophic lateral sclerosis (ALS) that shows increased free radical production. To investigate the long-term CR-induced pathology in G93A mice, we assessed the mitochondrial bioenergetic efficiency and oxidative capacity (CS--citrate synthase content and activity, cytochrome c oxidase--COX activity and protein content of COX subunit-I and IV and UCP3-uncoupling protein 3), oxidative damage (MDA--malondialdehyde and PC--protein carbonyls), antioxidant enzyme capacity (Mn-SOD, Cu/Zn-SOD and catalase), inflammation (TNF-alpha), stress response (Hsp70) and markers of apoptosis (Bax, Bcl-2, caspase 9, cleaved caspase 9) in their skeletal muscle. At age 40 days, G93A mice were divided into two groups: Ad libitum (AL; n = 14; 7 females) or CR (n = 13; 6 females), with a diet equal to 60% of AL. COX/CS enzyme activity was lower in CR vs. AL male quadriceps (35%), despite a 2.3-fold higher COX-IV/CS protein content. UCP3 was higher in CR vs. AL females only. MnSOD and Cu/Zn-SOD were higher in CR vs. AL mice and CR vs. AL females. MDA was higher (83%) in CR vs. AL red gastrocnemius. Conversely, PC was lower in CR vs. AL red (62%) and white (30%) gastrocnemius. TNF-alpha was higher (52%) in CR vs. AL mice and Hsp70 was lower (62%) in CR vs. AL quadriceps. Bax was higher in CR vs. AL mice (41%) and CR vs. AL females (52%). Catalase, Bcl-2 and caspases did not differ. We conclude that CR increases lipid peroxidation, inflammation and apoptosis, while decreasing mitochondrial bioenergetic efficiency, protein oxidation and stress response in G93A mice.
Collapse
Affiliation(s)
- Barkha P. Patel
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Lee SP, Mar GY, Ng LT. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats. Eur J Appl Physiol 2009; 107:587-95. [PMID: 19705143 DOI: 10.1007/s00421-009-1159-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
The present study aimed to examine the effects of tocotrienol-rich fraction (TRF) on exercise endurance and oxidative stress in forced swimming rats. Rats fed on isocaloric diet were orally given 25 (TRF-25) and 50 (TRF-50) mg/kg of TRF, or 25 mg/kg D-alpha-tocopherol (T-25) whilst the control group received only the vehicle for 28 days, followed by being forced to undergo swimming endurance tests, with measurements taken of various biochemical parameters, including blood glucose, lactate and urea nitrogen, glycogen, total antioxidant capacity, antioxidant enzymes, thiobarbituric acid-reactive substances (TBARS), and protein carbonyl. Results showed that the TRF-treated animals (268.0 +/- 24.1 min for TRF-25 and 332.5 +/- 24.3 min for TRF-50) swam significantly longer than the control (135.5 +/- 32.9 min) and T-25-treated (154.1 +/- 36.4 min) animals, whereas there was no difference in the performance between the T-25 and control groups. The TRF-treated rats also showed significantly higher concentrations of liver glycogen, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as of muscle glycogen and SOD than the control and the T-25-treated animals, but lower levels in blood lactate, plasma and liver TBARS, and liver and muscle protein carbonyl. Taken together, these results suggest that TRF is able to improve the physiological condition and reduce the exercise-induced oxidative stress in forced swimming rats.
Collapse
Affiliation(s)
- Shu-Ping Lee
- Ping Tin Enterprise Co., Ltd., Kaohsiung, Taiwan
| | | | | |
Collapse
|
16
|
Park JM, Shin JH, Bak DJ, Lee DW, Jeon WM, Song JC, SunWoo SY, Lyoo YS, Kim JM. The Effect of Dietary Fermented Soybean on the Growth Performance and Meat Quality of Pigs. Korean J Food Sci Anim Resour 2009. [DOI: 10.5851/kosfa.2009.29.3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Ochiai M, Matsuo T. Effects of Short-Term Dietary Change from High-Carbohydrate Diet to High-Fat Diet on Storage, Utilization, and Fatty Acid Composition of Rat Muscle Triglyceride during Swimming Exercise. J Clin Biochem Nutr 2009; 44:168-77. [PMID: 19308271 PMCID: PMC2654473 DOI: 10.3164/jcbn.08-237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/04/2008] [Indexed: 12/04/2022] Open
Abstract
The purpose was to examine the effects of a 3-day dietary change from a high-carbohydrate (C) to high-fat (F) diet on muscle triglyceride (MTG) storage and utilization during the swimming exercise in rats. Rats were meal-fed on either the F diet or the C diet for 11 days. For an additional 3 days, half of the rats in each group were fed the same diets and the other rats were switched to counterpart diets. On the final day, half of the rats in each group were killed before the exercise and the others were killed after the exercise. Serum concentrations of glucose and free fatty acids (FFA) were higher in the post-exercise groups than in the pre-exercise groups. The tissue glycogen contents were lower in the post-exercise groups. However, the MTG contents and fatty acid (FA) compositions were not influenced by the exercise and dietary change. The F diet increased the FFA concentration and slightly increased the MTG content. Moreover, the dietary FA composition influenced the FA composition of the MTG. These results suggest that the exercise did not affect the contents and FA composition of MTG, but that the F diet had an effect on the MTG contents and FA composition.
Collapse
Affiliation(s)
- Masaru Ochiai
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0795, Japan
| | | |
Collapse
|
18
|
Jiang ZY, Jiang SQ, Lin YC, Xi PB, Yu DQ, Wu TX. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult Sci 2007; 86:1356-62. [PMID: 17575182 DOI: 10.1093/ps/86.7.1356] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the effects of a synthetic soybean isoflavone (ISF) on growth performance, meat quality, and antioxidation in male broilers, 1,500 birds that were 42 d old were allotted to 5 treatments with 6 replicates per treatment (50 birds per replicate). Birds were fed diets supplemented with 0, 10, 20, 40, or 80 mg of ISF/kg, respectively, for a period of 3 wk ad libitum. The results showed that dietary supplementations with 10 or 20 mg of ISF/kg increased weight gain by 13.6 and 16.2% (P < 0.01) and elevated feed intake by 7.37% (P < 0.05) and 11.2% (P < 0.01), respectively. Addition of 10 mg of ISF/kg decreased feed:gain by 5.5% (P < 0.05). Supplementation with 40 mg of ISF/kg in the diet slightly increased water-holding capacity by 17.24% (P < 0.1), and the addition of 20 or 40 mg/kg of ISF significantly increased the pH value of meat (P < 0.01), although adding 40 or 80 mg of ISF/kg increased the lightness of meat color (P < 0.05). Malondialdehyde production was slightly reduced in plasma of 20 mg of ISF/kg supplemented chickens (P < 0.1) and significantly decreased in breast muscles of 20, 40, or 80 mg of ISF/kg supplemented chickens (P < 0.01). The addition of 40 or 80 mg of ISF/kg significantly increased total antioxidant capability (P < 0.01) and slightly elevated total superoxide dismutase activity (P < 0.1) in plasma of chickens. The dose of 80 mg of ISF/kg slightly improved catalase activity in plasma (P < 0.06). In breast muscle, treatment of birds with 40 or 80 mg of ISF/kg caused an increase of total superoxide dismutase activity by 25.36% (P < 0.05) or 63.93% (P < 0.01). Catalase activity significantly increased by 70.61% by the supplemental ISF at the 40-mg level (P < 0.05). Also, 10, 20, or 40 mg doses of ISF/kg decreased lactic acid production (P < 0.05). The results of this study indicate that dietary ISF could improve growth performance and meat quality by decreasing lipid peroxidation and improving antioxidative status in male broilers.
Collapse
Affiliation(s)
- Z Y Jiang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 510640, China.
| | | | | | | | | | | |
Collapse
|
19
|
You T, Goldfarb AH, Bloomer RJ, Nguyen L, Sha X, McKenzie MJ. Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. ACTA ACUST UNITED AC 2006; 30:677-89. [PMID: 16485519 DOI: 10.1139/h05-148] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine if changes in oxidative stress biomarkers in blood and skeletal muscles are similar in normal and antioxidant supplemented rats after a downhill run. Sixty-six male Sprague-Dawley rats were pretreated with a normal rat diet or diet + antioxidants (2,000 mg vitamin C + 1,000 IU vitamin E/kg diet) for 2 weeks. Exercised rats ran 90 min on a rodent treadmill at a speed of 16 m/min at -16 degrees grade. Rats were sacrificed either at rest, immediately, 2 hrs, or 48 hrs postexercise. Malondialdehyde (MDA) and protein carbonyl (PC) concentrations and glutathione status in blood, vastus lateralis (white fast-twitch), vastus intermedius (red fast-twitch), and soleus (slow-twitch) muscles were determined. A significant increase from rest in PC occurred in plasma, vastus intermedius and soleus muscle 2 hrs after the downhill run (p < 0.05), with no changes observed at any other times postexercise. Antioxidant supplementation significantly decreased PC concentrations in both vastus intermedius and soleus muscles at all times combined (p < 0.05). MDA and glutathione status in blood and muscles were unaffected by either the downhill run or antioxidant treatment. For PC and MDA, the concentrations were lower in blood as compared to skeletal muscle, with the opposite finding for oxidized glutathione; however, the pattern of response postexercise was similar. These data indicate that (a) PC, but not MDA or oxidized glutathione, is elevated transiently following downhill running in male rats; (b) the elevation in PC postexercise occurs in plasma, vastus intermedius, and soleus muscles; (c) antioxidant therapy can attenuate PC in vastus intermedius, and soleus muscles; and (d) while the concentrations of oxidative stress biomarkers differ between blood and the various skeletal muscles, the pattern of response postexercise is similar.
Collapse
Affiliation(s)
- Tongjian You
- Gerontology and Geriatric Medicine, Wake Forest U School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kinnunen S, Hyyppä S, Lehmuskero A, Oksala N, Mäenpää P, Hänninen O, Atalay M. Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters. Eur J Appl Physiol 2005; 95:550-6. [PMID: 16136323 DOI: 10.1007/s00421-005-0034-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2005] [Indexed: 11/28/2022]
Abstract
Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Susanna Kinnunen
- Department of Physiology, University of Kuopio, P.O. Box 1627, Kuopio, FIN-70211, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This article reviews the effects of acute and chronic exercise on the fatty-acid composition of animal and human tissues (plasma, skeletal muscle, heart, adipose tissue, liver, artery and erythrocytes), as reported in 68 studies spanning four decades. The most consistently observed effect has been an increase in the relative amount of unsaturated, especially monounsaturated, non-esterified fatty acids in plasma of both animals and humans after acute exercise. Chronic exercise seems to increase the proportion of polyunsaturated fatty acids and omega6 fatty acids, while decreasing the proportion of monounsaturated fatty acids in animal and human adipose tissue. Additionally, chronic exercise seems to decrease the relative amount of unsaturated fatty acids in liver lipids of animals and humans. There is no consensus regarding the effect of exercise on the fatty-acid composition of lipids in any other tissue. In general, the effects of exercise are independent of nutrition and, regarding skeletal muscle, muscle fibre type. The available literature shows that, in addition to modifying the concentrations of animal and human tissue lipids, exercise also changes their fatty-acid profile. Unfortunately, the available studies are so much divided among exercise models, species and biological samples that a cohesive picture of the plasticity of the fatty-acid pattern of most tissues toward exercise has not emerged. Future studies should focus on determining the fatty-acid profile of separate lipid classes (rather than total lipids) in separate subcellular fractions (rather than whole tissues), examining tissues and organs on which no data are available and exploring the mechanisms of the exercise-induced changes in fatty-acid composition.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
22
|
Abstract
Pre-exercise fat ingestion (i.e., long chain triacylglycerol ingestion 1 to 4 h before exercise), medium-chain triacylglycerols, fish oil, and conjugated linoleic acid have been suggested to alter metabolism to achieve weight loss, alter lipid profiles, or improve performance. However, studies have demonstrated that ingestion of meals with long-chain triacylglycerols before exercise has little or no effect on metabolism and does not alter subsequent exercise performance. Also, medium-chain triacylglycerol supplementation before or during exercise has not been shown to be ergogenic, although this could be related to the small amounts of medium-chain triacylglycerol that can be ingested before gastrointestinal discomfort occurs. Fish oil may improve red blood cell deformability, but these effects are likely to be small and do not seem to influence maximum oxygen delivery or exercise performance. Conjugated linoleic acid has been implicated in weight loss, but based on the results of human studies it must be concluded that the effects of conjugated linoleic acid on body weight loss are far less clear than those observed in animal studies. Most studies have not found any evidence for a beneficial effect of conjugated linoleic acid.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | |
Collapse
|
23
|
Kinnunen S, Hyyppä S, Lappalainen J, Oksala N, Venojärvi M, Nakao C, Hänninen O, Sen CK, Atalay M. Exercise-induced oxidative stress and muscle stress protein responses in trotters. Eur J Appl Physiol 2004; 93:496-501. [PMID: 15221402 DOI: 10.1007/s00421-004-1162-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 12/01/2022]
Abstract
Acute exercise induces oxidative stress and heat shock protein (HSP) expression. Information on the protection of stress proteins against oxidant insult and muscle damage during moderate exercise is scanty. We aimed to show how a single bout of moderate exercise affects the markers of oxidative stress and heat shock factor-1 (HSF1; the transcriptional regulator of HSP synthesis), and HSP70, HSP90 and glucose-regulated protein (GRP75) expression in horses. Eight clinically normal and regularly trained standardbred trotters were treadmill-exercised for 45 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsy samples from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute exercise did not activate HSF1 or induce expression of HSP70, HSP90 or GRP75 in skeletal muscle. One bout of acute exercise increased protein oxidation, which was measured by protein carbonyls in plasma and muscle, but it did not effect 4-hydroxynonenal protein adducts, which are markers of lipid peroxidation. Furthermore, mild muscle damage was observed 4 h after exercise. Our results showed that horses are susceptible to oxidative stress. One bout of exercise at moderate intensity and duration did not induce HSP responses despite the increased protein oxidation and tissue inflammation in equine muscle.
Collapse
Affiliation(s)
- Susanna Kinnunen
- Department of Physiology, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Isoflavones restore altered redox homeostasis of antioxidant enzymes in healthy young men undergoing 80% peak oxygen consumption (VO2pk) exercise. Nutr Res 2004. [DOI: 10.1016/j.nutres.2004.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Chai YM, Rhee SJ. Green Tea Maintains Antioxidative Defense Enzyme Activities and Protects Against Lipid Peroxidation in Rat Gastrocnemius Muscles After Aerobic Exercise. Prev Nutr Food Sci 2003. [DOI: 10.3746/jfn.2003.8.4.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Young JF, Stagsted J, Jensen SK, Karlsson AH, Henckel P. Ascorbic acid, alpha-tocopherol, and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poult Sci 2003; 82:1343-51. [PMID: 12943308 DOI: 10.1093/ps/82.8.1343] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to ameliorate a negative effect of stress on meat quality characteristics, chickens were fed a diet supplemented with a combination of ascorbic acid (1,000 ppm) and alpha-tocopherol (200 ppm) or oregano (3%), which has a high content of antioxidants. Chickens were slaughtered by cervical dislocation in the stable (no stress) or after transport and electrical stunning at the slaughter plant (stress). Activities of antioxidative enzymes (catalase, superoxide dismutase, and glutathion peroxidase) in pectoralis major (PM), iliotibialis (IL), and liver were unaffected by supplementation. However, erythrocyte stability, which is a more complex model system for determining oxidative status, increased with ascorbic acid-alpha-tocopherol supplementation and tended to increase after oregano supplementation. In nonstressed birds, this improved antioxidative status was reflected in decreased TBA-reactive substances (TBARS) in PM and liver of ascorbic acid-alpha-tocopherol-supplemented chickens and likewise in liver from oregano-supplemented chickens compared to that of nonstressed control birds. However, postmortem temperature, pH, and water-holding capacity were not affected by supplementation. Drip loss from oregano-supplemented chickens showed increased protein oxidation in specific bands, but this did not relate to water-holding capacity or antioxidative status. When exposed to stress, the concentration of TBARS in the control animals increased in PM and IL. Ascorbic acid-alpha-tocopherol supplementation protected IL, and oregano supplementation protected PM from stress-induced increases in TBARS. This differential effect between muscles may indicate differences in protection mechanisms. In conclusion, ascorbic acid-alpha-tocopherol and oregano supplements to chickens protect against stress-induced increase in TBARS, in different muscles.
Collapse
Affiliation(s)
- J F Young
- Department of Animal Product Quality, Research Centre Foulum, Danish Institute of Agricultural Sciences, 8830 Tjele, Denmark.
| | | | | | | | | |
Collapse
|
27
|
de Oliveira SL, Diniz DB, Amaya-Farfan J. Carbohydrate-energy restriction may protect the rat brain against oxidative damage and improve physical performance. Br J Nutr 2003; 89:89-96. [PMID: 12568668 DOI: 10.1079/bjn2002749] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic energy restriction, alpha-tocopherol supplementation and their interaction with exhaustive exercise were investigated. Eleven-week-old male Wistar rats (n 6x 10) were fed either a control (C), a 30 % carbohydrate-energy-restricted control (R) or an alpha-tocopherol-supplemented (S) diet for 5 months. The animals in each diet were divided into exercised (E) and non-exercised (NE) groups. Before killing, the exercised rats were required to run to exhaustion (39 (se 6), 69 (se 11) and 18 (se 2) min for the C, R and S groups, respectively). Lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), protein damage (reactive carbonyls) and alpha-tocopherol were determined in gastrocnemius, liver, brain and/or plasma. There was no difference in lipid peroxidation between the R and C groups, but in liver and muscle peroxidation appeared significantly lower in the S than the other two diets. TBARS in the brain were similar in all groups. On the other hand, reactive carbonyls showed that both the R and S diets reduced protein damage in the brain, while exhaustive exercise increased it. For liver and muscle, however, reactive carbonyl levels were similar in all groups. alpha-Tocopherol supplementation increased the vitamin concentrations in liver, muscle and plasma, but exercise decreased them in plasma and brain. Carbohydrate-energy restriction increased (P=0.0025) resistance to exhaustive exercise considerably without depleting stores of alpha-tocopherol or exacerbating oxidative damage in monitored tissues. It is concluded that while exhaustive exercise promotes a tissue-specific oxidative damage detectable only in brain proteins, both experimental diets tended to ameliorate this condition.
Collapse
Affiliation(s)
- S L de Oliveira
- Department of Nutrition, Federal University of Alagoas, Maceió, AL, Brazil
| | | | | |
Collapse
|
28
|
Metin G, Atukeren P, Gümüştaş MK, Belce A, Kayserilioglu A. The effect of vitamin E treatment on oxidative stress generated in trained rats. TOHOKU J EXP MED 2002; 198:47-53. [PMID: 12498314 DOI: 10.1620/tjem.198.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effect of vitamin E treatment on increased oxidative stress in rats exposed to a swimming exercise protocol. In order to examine the effects of physical swimming training on the antioxidant defences of tissues and on their susceptibility to damage induced by exercise, the levels of glutathione (GSH) and thiobarbituric acid reacting substances (TBARS) levels, on indicator of lipid peroxidation in various tissues, have been determined. In this study, four groups of female rats were used while the rats were trained to swim for 30 minutes a day and five days a week which lasted eight weeks and vitamin E (vit. E) supplementation (30 mg/kg/day) has been carried out for five days a week. TBARS levels are significantly found lower in both trained and sedentary vit. E supplemented groups, since vit. E is the most important antioxidant in an earlier line of defence in lipid peroxidation. Also, in vit. E supplemented trained rats, the glutathione response is observed to be significantly higher, supporting with the TBARS levels and in accordance with the literature. But in the sedentary group without vit. E supplementation, the GSH levels of the liver and the heart tissues were significantly lower than both vit. E supplemented sedentary and trained groups. These results evaluate that vit. E confers protection to GSH levels in these tissues where the GSH levels were found significantly lower in the groups not supplemented with vit. E.
Collapse
Affiliation(s)
- Gökhan Metin
- Department of Physiology, Cerrahpaşa Faculty of Medicine, University of Istanbul, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
29
|
OLIVEIRA SLD, DINIZ DB, AMAYA-FARFAN J. Alterações metabólicas induzidas pela restrição energética e pela suplementação com vitamina E em ratos submetidos ao exercício. REV NUTR 2002. [DOI: 10.1590/s1415-52732002000300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Este estudo investigou os efeitos da restrição energética (em carboidratos) e da suplementação com vitamina E em parâmetros metabólicos associados ao exercício físico. Ratos machos Wistar, de onze semanas de idade, após receberem dieta controle, restrita (controle modificada) ou suplementada (controle, adicionada de vitamina E), por cinco meses, foram subdivididos em duas categorias: exercitados e não exercitados. Antes do sacrifício, os ratos do grupo exercitado foram submetidos a exercício em esteira até a exaustão. Determinaram-se glicogênio hepático e muscular, glicemia, insulina plasmática e lactato sanguíneo, e registrou-se o tempo para alcançar a exaustão. A restrição energética aumentou o glicogênio hepático e a resistência ao exercício exaustivo e, quando associada ao exercício, reduziu a glicemia. A suplementação com vitamina E reduziu a resistência à exaustão, quando comparada à restrição energética, mas esta redução não foi significativa em relação à dieta controle. Estes resultados indicam que a restrição energética melhorou o desempenho físico, mas a suplementação com vitamina E não apresentou o mesmo efeito.
Collapse
|
30
|
Hudson NJ, Franklin CE. Maintaining muscle mass during extended disuse: aestivating frogs as a model species. J Exp Biol 2002; 205:2297-303. [PMID: 12110663 DOI: 10.1242/jeb.205.15.2297] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARYProlonged muscle disuse in vertebrates can lead to a pathological change resulting in muscle wasting and a loss of muscle strength. In this paper, we review muscle disuse atrophy in the vertebrates and examine the factors that influence the magnitude of the atrophic response during extended periods of inactivity, both artificially imposed (e.g. limb immobilisation) and naturally occurring, such as the quiescence associated with dormancy (e.g. hibernation and aestivation). The severity of muscle atrophy is positively correlated with mass-specific metabolic rate, and the metabolic depression that occurs during dormancy would appear to have a protective role, reducing or preventing muscle atrophy despite periods of inactivity lasting 6-9 months. In the light of these findings, the role of reactive oxygen species and antioxidants during muscle disuse is emphasised.
Collapse
Affiliation(s)
- Nicholas J Hudson
- Physiological Ecology Laboratory, Department of Zoology and Entomology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
31
|
Gul M, Laaksonen DE, Atalay M, Vider L, Hänninen O. Effects of endurance training on tissue glutathione homeostasis and lipid peroxidation in streptozotocin-induced diabetic rats. Scand J Med Sci Sports 2002; 12:163-70. [PMID: 12135449 DOI: 10.1034/j.1600-0838.2002.120307.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aims of our study were to assess whether endurance training strengthens glutathione-dependent antioxidant defenses and decreases oxidative stress in experimental diabetes. Streptozotocin-induced diabetic rats were divided into trained and untrained groups, which were further divided into resting and acute exercise groups. Endurance training consisted of treadmill running for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted until exhaustion. Eight weeks' treadmill training increased the endurance, favorably decreased lipid peroxidation as measured by thiobarbituric acid reactive substances but not conjugated dienes levels in kidney and vastus lateralis muscle and upregulated glutathione peroxidase in red gastrocnemius muscle. However, it adversely decreased total glutathione level and glutathione peroxidase activity in kidney. Acute exhaustive exercise up-regulated glutathione peroxidase activity in liver. Endurance training did not prevent the increase in thiobarbituric acid reactive substances level in liver due to acute exhaustive exercise. Activities of glutathione disulfide reductase and glutathione S-transferase were not affected. Even though endurance training appeared to upregulate glutathione dependent antioxidant defense in skeletal muscle and to decrease lipid peroxidation in kidney and vastus lateralis muscle as measured by TBARS, our results suggests that beneficial effects of 8 weeks of endurance training are limited in this rat model of uncontrolled diabetes mellitus.
Collapse
Affiliation(s)
- Mustafa Gul
- Department of Physiology, University of Kuopio, Finland.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Exercise-induced muscle damage is a well documented phenomenon that often follows unaccustomed and sustained metabolically demanding activities. This is a well researched, but poorly understood area, including the actual mechanisms involved in the muscle damage and repair cycle. An integrated model of muscle damage has been proposed by Armstrong and is generally accepted. A more recent aspect of exercise-induced muscle damage to be investigated is the potential of estrogen to have a protective effect against skeletal muscle damage. Estrogen has been demonstrated to have a potent antioxidant capacity that plays a protective role in cardiac muscle, but whether this antioxidant capacity has the ability to protect skeletal muscle is not fully understood. In both human and rat studies, females have been shown to have lower creatine kinase (CK) activity following both eccentric and sustained exercise compared with males. As CK is often used as an indirect marker of muscle damage, it has been suggested that female muscle may sustain less damage. However, these findings may be more indicative of the membrane stabilising effect of estrogen as some studies have shown no histological differences in male and female muscle following a damaging protocol. More recently, investigations into the potential effect of estrogen on muscle damage have explored the possible role that estrogen may play in the inflammatory response following muscle damage. In light of these studies, it may be suggested that if estrogen inhibits the vital inflammatory response process associated with the muscle damage and repair cycle, it has a negative role in restoring normal muscle function after muscle damage has occurred. This review is presented in two sections: firstly, the processes involved in the muscle damage and repair cycle are reviewed; and secondly, the possible effects that estrogen has upon these processes and muscle damage in general is discussed. The muscle damage and repair cycle is presented within a model, with particular emphasis on areas that are important to understanding the potential effect that estrogen has upon these processes.
Collapse
Affiliation(s)
- Becky Kendall
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
33
|
Abstract
Physical exercise may be associated with a 10- to 20-fold increase in whole body oxygen uptake. Oxygen flux in the active peripheral skeletal muscle fibres may increase by as much as 100- to 200-fold during exercise. Studies during the past 2 decades suggest that during strenuous exercise, generation of reactive oxygen species (ROS) is elevated to a level that overwhelms tissue antioxidant defence systems. The result is oxidative stress. The magnitude of the stress depends on the ability of the tissues to detoxify ROS, that is, antioxidant defences. Antioxidants produced by the body act in concert with their exogenous, mainly dietary, counterparts to provide protection against the ravages of reactive oxygen as well as nitrogen species. Antioxidant supplementation is likely to provide beneficial effects against exercise-induced oxidative tissue damage. While universal recommendations specifying types and dosages of antioxidants are difficult to make, it would be prudent for competitive athletes routinely engaged in strenuous exercise to seek an estimate of individual requirement. A new dimension in oxidant biology has recently unfolded. Although excessive oxidants may cause damage to tissues, lower levels of oxidants in biological cells may act as messenger molecules enabling the function of numerous physiological processes. It is plausible that some exercise-induced beneficial effects are actually oxidant-mediated. Such developments call for an even more careful analysis of the overall significance of types and amounts of antioxidants in diet. While these complexities pose significant challenges, experts agree that if used prudently, oxidants and antioxidants may serve as potent therapeutic tools. Efforts to determine individual needs of athletes and a balanced diet rich in antioxidant supplements are highly recommended.
Collapse
Affiliation(s)
- C K Sen
- Department of Surgery and Molecular and Cellular Biochemistry, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus 43210, USA.
| |
Collapse
|
34
|
Montero D, Tort L, Robaina L, Vergara JM, Izquierdo MS. Low vitamin E in diet reduces stress resistance of gilthead seabream (Sparus aurata) juveniles. FISH & SHELLFISH IMMUNOLOGY 2001; 11:473-490. [PMID: 11556478 DOI: 10.1006/fsim.2000.0324] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study investigates the effect of dietary vitamin E on juveniles of gilthead seabream under stressful situations, focusing on the effects on growth, haematology, some immune parameters and plasma cortisol as indicators of stress. Two sardine meal-based experimental diets, one of them supplemented with 150 mg of alpha tocopherol kg(-1) of diet (control) and another one without vitamin E supplementation (diet NE), were assayed under two different stress conditions: overcrowding as a chronic stressor (during 15 weeks) and repetitive chasing as an acute repetitive stressor. Low levels of vitamin E in the diet depleted alternative complement pathway activity [from 167.23 U ml(-1) (control fish) down to 100.99 U ml(-1)] and also nonspecific haemagglutination. Also, fish fed a non-supplemented diet showed an elevation of plasma cortisol basal levels without a stressor influence [from 3.91 ng cortisol ml(-1) plasma (control fish) up to 21.70 ng cortisol ml(-1) plasma]. Low levels of vitamin E in the diet also produced an increase of erythrocyte fragility. Under chronic stress, fish fed the vitamin E-deficient diet showed a reduction in growth and survival, and alterations in haematological parameters, such as an additional haemoconcentration in response to overcrowding when compared with control fish. Under repetitive stress, fish fed the vitamin E deficient diet showed faster elevation of plasma cortisol levels in response to stress and a lower survival rate than control fish. Production of oxygen radicals by blood neutrophils was reduced under repetitive stress in fish fed the non-supplemented diet. These results suggest that fish fed the vitamin E-deficient diet had lower stress resistance.
Collapse
Affiliation(s)
- D Montero
- Instituto Canario de Ciencias Marinas, Gobierno de Canarias, Las Palmas, Canary Islands, Spain
| | | | | | | | | |
Collapse
|
35
|
Coombes JS, Powers SK, Rowell B, Hamilton KL, Dodd SL, Shanely RA, Sen CK, Packer L. Effects of vitamin E and alpha-lipoic acid on skeletal muscle contractile properties. J Appl Physiol (1985) 2001; 90:1424-30. [PMID: 11247943 DOI: 10.1152/jappl.2001.90.4.1424] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha-lipoic acid (alpha-LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha-LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies < or = 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of alpha-LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.
Collapse
Affiliation(s)
- J S Coombes
- Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferré N, Camps J, Paul A, Cabré M, Calleja L, Osada J, Joven J. Effects of high-fat, low-cholesterol diets on hepatic lipid peroxidation and antioxidants in apolipoprotein E-deficient mice. Mol Cell Biochem 2001; 218:165-9. [PMID: 11330832 DOI: 10.1023/a:1007296919243] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study describes the effects of several high-fat low-cholesterol antiatherogenic diets on the hepatic lipid peroxidation and hepatic antioxidant systems in apolipoprotein E-deficient mice. Eighty mice were distributed into five groups and fed with regular mouse chow or chow supplemented with coconut, palm, olive and sunflower seed oils. After ten weeks, they were sacrificed and the livers were removed so that lipid peroxidation and alpha-tocopherol concentrations, and superoxide dismutase, glutathione peroxidase and glutathione reductase activities could be measured. The size of the atherosclerotic lesions in the aortas was also measured. Results showed that the diets supplemented with olive oil, palm oil or sunflower seed oil significantly decreased the size of the lesion. However, there was an association between those mice that were on diets supplemented with palm or coconut oils and a significant increase in hepatic lipid peroxidation. This association was not found in animals fed with olive or sunflower seed oils, the diets with the highest content of vitamin E. The dietary content of vitamin E was significantly correlated (r = 0.98; p < 0.05) with the hepatic concentration of this compound. Our study suggests that the high content of vitamin E in olive oil or sunflower seed oil may protect from the undesirable hepatotoxic effects of high-fat diets in apo E-deficient mice and that this should be taken into account when these diets are used to prevent atherosclerosis.
Collapse
Affiliation(s)
- N Ferré
- Centre de Recerca Biomèdica, Hospital Universitari de Sant Joan, Cantalunya, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, Ames BN, Chu DW. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985) 2000; 89:21-8. [PMID: 10904031 DOI: 10.1152/jappl.2000.89.1.21] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.
Collapse
Affiliation(s)
- J Liu
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 74720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 2000; 71:1033-47. [PMID: 10799364 DOI: 10.1093/ajcn/71.5.1033] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low exercise tolerance has a large influence on health status in chronic obstructive pulmonary disease and chronic heart failure. In addition to primary organ dysfunction, impaired skeletal muscle performance is a strong predictor of low exercise capacity. There are striking similarities between both disorders with respect to the muscular alterations underlying the impairment. However, different alterations occur in different muscle types. Histologic and metabolic data show that peripheral muscles undergo a shift from oxidative to glycolytic energy metabolism, whereas the opposite is observed in the diaphragm. These findings are in line with the notion that peripheral and diaphragm muscle are limited mainly by endurance and strength capacity, respectively. In both diseases, muscular impairment is multifactorially determined; hypoxia, oxidative stress, disuse, medication, nutritional depletion, and systemic inflammation may contribute to the observed muscle abnormalities and each factor has its own potential for innovative treatment approaches.
Collapse
Affiliation(s)
- H R Gosker
- Departments of Pulmonology and Physiology, Maastricht University, Maastricht, Netherlands.
| | | | | | | |
Collapse
|
39
|
Atalay M, Laaksonen DE, Khanna S, Kaliste-Korhonen E, Hänninen O, Sen CK. Vitamin E regulates changes in tissue antioxidants induced by fish oil and acute exercise. Med Sci Sports Exerc 2000; 32:601-7. [PMID: 10731001 DOI: 10.1097/00005768-200003000-00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Prooxidant effects of fish oil supplementation could unfavorably affect the cardiovascular benefits of fish oil. We tested the effects of 8 wk vitamin E cosupplementation with fish oil on antioxidant defenses at rest and in response to exhaustive exercise in rats. METHODS Rats (N = 80) were divided into fish oil, fish oil and vitamin E (FOVE), soy oil, and soy oil and vitamin E (SOVE) supplemented groups. For the vitamin E supplemented rats, corresponding groups (FOVE-Ex and SOVE-Ex) performed an acute bout of exhaustive exercise after the supplementation period. RESULTS Fish oil supplementation increased the activity of catalase, glutathione peroxidase, and glutathione-S-transferase in the liver and red gastrocnemius (RG) muscle. Fish oil decreased liver total glutathione (TGSH) levels. Vitamin E supplementation decreased antioxidant enzyme activities to levels at or near those in SOVE in a tissue specific pattern. Vitamin E increased TGSH in liver, heart, and RG. Regression analysis showed TGSH to be a negative determinant of protein oxidative damage as measured by protein carbonyl levels in both liver and RG. Catalase activity was associated with liver lipid peroxidation as measured by thiobarbituric acid-reacting substances. The exercise-induced decrease in hepatic TGSH tended to be less in FOVE versus SOVE. Exhaustive exercise also modulated tissue antioxidant enzymes. CONCLUSIONS Vitamin E supplementation markedly decreased fish oil induced antioxidant enzyme activities in all tissues. Sparing of glutathione may be an important mechanism by which vitamin E decreased tissue protein oxidative damage.
Collapse
Affiliation(s)
- M Atalay
- Department of Physiology and National Laboratory Animal Center University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
40
|
Ronsen O, Sundgot-Borgen J, Maehlum S. Supplement use and nutritional habits in Norwegian elite athletes. Scand J Med Sci Sports 1999; 9:28-35. [PMID: 9974194 DOI: 10.1111/j.1600-0838.1999.tb00203.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to examine nutritional and supplemental habits among international alpine- and cross-country skiers and power sport athletes in Norway. Data from all the athletes of the National alpine skiing team (ALP; n = 33, 19 men and 14 women) and the National cross-country skiing team (CRO; n = 34, 17 men and 17 women) plus a mixed group of power sport athletes (POW: n = 33, all men) from the National teams of boxers, weightlifters and track and field athletes, were collected through a semi-structured interview during their annual medical examination. Twenty percent of all the athletes reported unsatisfactory nutritional habits (CRO 6%, ALP 27% and POW 27%; CRO vs. ALP/POW P < 0.05). Eight-four percent used one or more micronutrient supplement (ALP 70%, POW 88%, CRO 95%; ALP vs. CRO/POW P < 0.01). Power sport athletes had the most frequent use of supplemental creatine (45%), proteins/amino acids (30%), vitamins (88%) and minerals (82%), and CRO had the most frequent intake of iron (94%), vitamin C (88%) and fish oils (91%). Among ALP, only 7% of the female athletes supplemented iron regularly compared to 37% of male ALP (P < 0.05) Overall, male athletes supplemented mostly on a regular basis and female athletes more on an occasional basis. The results show that in spite of differences between sport groups, many elite athletes report unsatisfactory nutritional habits. Micronutrient supplementation was prevalent, but varied between both groups of sports and gender.
Collapse
Affiliation(s)
- O Ronsen
- Norwegian National Sports Center, Oslo, Norway
| | | | | |
Collapse
|