1
|
Lea TA, Panizza PM, Arthur PG, Bakker AJ, Pinniger GJ. Hypochlorous acid exposure impairs skeletal muscle function and Ca 2+ signalling: implications for Duchenne muscular dystrophy pathology. J Physiol 2023; 601:5257-5275. [PMID: 37864413 DOI: 10.1113/jp285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Lea
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter M Panizza
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Bakker
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
3
|
The water-soluble bicyclic 2-pyridone-based fluorescent probe for fast and selective detection of hypochlorite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Li Y, Zhu B, Han W, Tang W, Duan X. A bright chemiluminescence conjugated polymer-mesoporous silica nanoprobe for imaging of colonic tumors in vivo. Analyst 2022; 147:2060-2067. [PMID: 35437532 DOI: 10.1039/d2an00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypochlorite acid (ClO-) is one of the major reactive oxygen species (ROS) in colon cancer, providing an effective target for colonic tumor in vivo imaging. For detection of ClO- and tumor imaging, poly[(9,9-di(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV-co-MEHPV, namely CP1) was encapsulated in mesoporous silica nanoparticles (MSNs) that were pre-modified with polyphenylenevinylene (PPV) via in situ polymerization to construct bright PPV@MSN-CP1 nanoparticles. The synthesized nanoparticles were size-stable and not cytotoxic as confirmed by FE-TEM, FE-SEM, and MTT assay. Hypochlorite oxidizes the vinylidene bond of CP1 through π2-π2 cycloaddition to form PPV-dioxetane intermediates to generate photons. The CL quantum yield of PPV@MSN-CP1 was 16.7 times higher than that of Pluronic F-127 wrapped CP1. CL nanoparticles PPV@MSN-CP1 have good selectivity for hypochlorite detection among biological oxidants (mainly ROS). The linear range and the LOD of PPV@MSN@CP1 for ClO- detection are 4-90 and 1.02 μM, respectively. Subsequently, we further coated PPV@MSN@CP1 with folic acid for tumor targeting by phospholipid wrapping. PPV@MSN-CP1@FA was successfully applied for in vivo imaging of endogenously produced ClO- of tumor tissue in living animals.
Collapse
Affiliation(s)
- Yukun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Beibei Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
5
|
Qadir Tantry I, Ali A, Mahmood R. Hypochlorous acid decreases antioxidant power, inhibits plasma membrane redox system and pathways of glucose metabolism in human red blood cells. Toxicol Res (Camb) 2021; 10:264-271. [PMID: 33884176 PMCID: PMC8045585 DOI: 10.1093/toxres/tfaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Hypochlorous acid (HOCl) is generated at a high concentration by activated neutrophils at sites of inflammation in a myeloperoxidase catalyzed reaction. The increased and sustained production of HOCl at inflammatory sites may lead to tissue injury and this process is believed to play an important role in the progression of several diseases like chronic inflammation, atherosclerosis and some types of cancers. We have examined the effect of HOCl on human red blood cells (RBCs) under in vitro conditions. Treatment of RBC with different concentrations of HOCl (0.05-2.5 mM) at 37°C resulted in decreased activities of major antioxidant enzymes while the antioxidant power of RBC was weakened, as shown by lowered metal-reducing and free radical quenching ability of HOCl treated cells. RBC plasma membrane redox system was also inhibited suggesting membrane damage. The enzymes of glucose metabolism were inhibited indicating deranged energy metabolism. Electron microscopic images showed gross morphological changes in HOCl treated RBC. These results show that HOCl causes major alterations in the cellular antioxidant defense system and inhibition of glycolytic pathways, which increase the susceptibility of RBC to oxidative damage.
Collapse
Affiliation(s)
- Irfan Qadir Tantry
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Phospholamban and sarcolipin prevent thermal inactivation of sarco(endo)plasmic reticulum Ca2+-ATPases. Biochem J 2020; 477:4281-4294. [PMID: 33111944 DOI: 10.1042/bcj20200346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.
Collapse
|
7
|
Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165823. [PMID: 32360589 PMCID: PMC7188661 DOI: 10.1016/j.bbadis.2020.165823] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline. This review highlights the exercise-induced anti-inflammatory effect on the prevention or treatment of common chronic clinical and experimental settings. It also suggests the use of pterins in biological fluids as sensitive biomarkers to follow the anti-inflammatory effect of physical exercise.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
8
|
A fluorescent probe operating under weak acidic conditions for the visualization of HOCl in solid tumors in vivo. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9737-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Davies MJ, Hawkins CL. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid Redox Signal 2020; 32:957-981. [PMID: 31989833 DOI: 10.1089/ars.2020.8030] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
10
|
Ahmad P, Tantry IQ, Ali A, Siddiqui SA, Rehman SU, Waris S, Jairajpuri MA. Structural alteration in hypochlorous acid modified antithrombin indicates generation of neo-epitopes. Arch Biochem Biophys 2020; 685:108332. [PMID: 32194043 DOI: 10.1016/j.abb.2020.108332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Increased tendency of cancer patients to develop venous thromboembolism (VTE) is associated with high rates of mortality. Elevation of procoagulant proteins and down regulation of naturally occurring coagulation inhibitors appears to form the basis of high risk of VTE in malignancy. A reduced level of anticoagulant protein like antithrombin (AT) will influence both coagulation and angiogenesis, as its cleaved and latent conformations show potent antiangiogenic activity. We show a concentration dependent perturbation in the secondary and tertiary structures of AT conformers exposed to hypochlorous acid (HOCl). Modulated under a very narrow concentration range of HOCl, native AT undergoes oligomerization, aggregation and fragmentation based on spectroscopic, SDS and native-PAGE studies. Factor Xa inhibition assay demonstrated a progressive decrease in inhibition activity of AT on modification by HOCl. Bis-ANS result showed that hydrophobic patches were more exposed in the case of HOCl-modified AT when assessed fluorometrically. Dosage of HOCl-modified AT in experimental animals induced high titer antibodies showing more specificity towards modified forms in comparison to unmodified forms. Auto-antibodies isolated from cancer patients also showed enhanced binding with HOCl-modified AT in comparison to native counterpart. Compared to normal AT, structurally and functionally altered conformation of HOCl-modified AT showed increased immunogenic sensitivity. HOCl modified AT can contribute to prothrombotic and angiogenic environment during cancer progression/development.
Collapse
Affiliation(s)
- Parvez Ahmad
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Irfan Qadir Tantry
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Sana Waris
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
11
|
Ma Q, Wang C, Mao G, Tian M, Sun J, Feng S. An endoplasmic reticulum-targeting and ratiometric fluorescent probe for hypochlorous acid in living cells based on a 1,8-naphthalimide derivative. NEW J CHEM 2020. [DOI: 10.1039/d0nj04045b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel reticulum-targeting and ratiometric fluorescent probe for determining hypochlorous acid has been developed.
Collapse
Affiliation(s)
- Qiujuan Ma
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Chunyan Wang
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Meiju Tian
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jingguo Sun
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Suxiang Feng
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| |
Collapse
|
12
|
A highly selective and ultrafast near-infrared fluorescent turn-on and colorimetric probe for hypochlorite in living cells. Anal Chim Acta 2019; 1078:135-141. [DOI: 10.1016/j.aca.2019.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022]
|
13
|
Reyes L, Hawkins CL, Rayner BS. Characterization of the cellular effects of myeloperoxidase-derived oxidants on H9c2 cardiac myoblasts. Arch Biochem Biophys 2019; 665:132-142. [DOI: 10.1016/j.abb.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
|
14
|
Hou JT, Kim HS, Duan C, Ji MS, Wang S, Zeng L, Ren WX, Kim JS. A ratiometric fluorescent probe for detecting hypochlorite in the endoplasmic reticulum. Chem Commun (Camb) 2019; 55:2533-2536. [DOI: 10.1039/c9cc00066f] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A colorimetric and fluorescent probe ER-ClO was developed to detect cellular hypochlorite with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Ji-Ting Hou
- Hubei Collaboration Innovation Center for Biomass Conversion and Utilization
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan 432000
- P. R. China
| | | | - Chong Duan
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
- Tianjin
- P. R. China
| | - Myung Sun Ji
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Shan Wang
- Hubei Collaboration Innovation Center for Biomass Conversion and Utilization
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan 432000
- P. R. China
| | - Lintao Zeng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
- Tianjin
- P. R. China
| | - Wen Xiu Ren
- Department of Radiology
- The Affiliated Hospital of Southwest Medical University
- Luzhou 646000
- P. R. China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
| | | |
Collapse
|
15
|
Zhu B, Tang W, Ren Y, Duan X. Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite. Anal Chem 2018; 90:13714-13722. [DOI: 10.1021/acs.analchem.8b04109] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Beibei Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Yiqian Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People’s Republic of China
| |
Collapse
|
16
|
Dysfunction of SERCA pumps as novel mechanism of methylglyoxal cytotoxicity. Cell Calcium 2018; 74:112-122. [DOI: 10.1016/j.ceca.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
|
17
|
Tantry IQ, Waris S, Habib S, Khan RH, Mahmood R, Ali A. Hypochlorous acid induced structural and conformational modifications in human DNA: A multi-spectroscopic study. Int J Biol Macromol 2018; 106:551-558. [PMID: 28807688 DOI: 10.1016/j.ijbiomac.2017.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
Hypochlorous acid (HOCl) is generated by activated phagocytes at the site of inflammation. Exposure of DNA to HOCl results in base and nucleotide modifications causing DNA damage, which is one of the leading causes of various pathological conditions including carcinogenesis. In the present work, various biophysical techniques were used to study HOCl induced structural and conformational changes in human placental DNA. The HOCl modified DNA showed hyperchromicity, reduced fluorescence and decrease in melting temperature. Circular dichorism (CD) and Fourier transform infra-red (FT-IR) studies exhibited conformational changes and shift in band positions of DNA, respectively, suggesting structural changes. Agarose gel electrophoresis and scanning electron microscopy showed strand breakage and decreased aggregation. These results suggest that HOCl causes conformational and structural perturbations in mammalian DNA, which may consequentially lead to DNA mutations resulting in perturbation of epigenetic signals leading to cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Irfan Qadir Tantry
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sana Waris
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
18
|
Hydrogen peroxide (H 2O 2) irreversibly inactivates creatine kinase from Pelodiscus sinensis by targeting the active site cysteine. Int J Biol Macromol 2017; 105:1595-1601. [PMID: 28279764 DOI: 10.1016/j.ijbiomac.2017.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 12/30/2022]
Abstract
Creatine kinase (EC 2.7.3.2, CK) plays an important role in cellular energy metabolism and homeostasis by catalysing the transfer of phosphate between ATP and creatine phosphate. In this study, we investigated the effects of H2O2 on PSCKM (muscle type creatine kinase from Pelodiscus sinensis) by the integrating method between enzyme kinetics and docking simulations. We found that H2O2 strongly inactivated PSCKM (IC50=0.25mM) in a first-order kinetic process, and targeted the active site cysteine directly. A conformational study showed that H2O2 did not induce the tertiary structural changes in PSCKM with no extensive exposure of hydrophobic surfaces. Sequential docking simulations between PSCKM and H2O2 indicated that H2O2 interacts with the ADP binding region of the active site, consistent with experimental results that demonstrated H2O2-induced inactivation. Our study demonstrates the effect of H2O2 on PSCKM enzymatic function and unfolding, and provides important insight into the changes undergone by this central metabolic enzyme in ectothermic animals in response to the environment.
Collapse
|
19
|
Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca 2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents. J Membr Biol 2017; 250:225-236. [PMID: 28251264 DOI: 10.1007/s00232-017-9953-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset.
Collapse
Affiliation(s)
- Nina G Golovach
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Vitali T Cheshchevik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Tatsiana V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus.
| |
Collapse
|
20
|
Yue Y, Huo F, Yin C, Escobedo JO, Strongin RM. Recent progress in chromogenic and fluorogenic chemosensors for hypochlorous acid. Analyst 2016; 141:1859-73. [PMID: 26883493 PMCID: PMC4789306 DOI: 10.1039/c6an00158k] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the biological and industrial importance of hypochlorous acid, the development of optical probes for HOCl has been an active research area. Hypochlorous acid and hypochlorite can oxidize electron-rich analytes with accompanying changes in molecular sensor spectroscopic profiles. Probes for such processes may monitor HOCl levels in the environment or in an organism and via bio-labeling or bioimaging techniques. This review summarizes recent developments in the area of chromogenic and fluorogenic chemosensors for HOCl.
Collapse
Affiliation(s)
- Yongkang Yue
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Jorge O Escobedo
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
21
|
Tedesco I, Moccia S, Volpe S, Alfieri G, Strollo D, Bilotto S, Spagnuolo C, Di Renzo M, Aquino RP, Russo GL. Red wine activates plasma membrane redox system in human erythrocytes. Free Radic Res 2016; 50:557-69. [PMID: 26866566 DOI: 10.3109/10715762.2016.1152629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.
Collapse
Affiliation(s)
- Idolo Tedesco
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Stefania Moccia
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Silvestro Volpe
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | - Giovanna Alfieri
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | | | - Stefania Bilotto
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | | | - Rita P Aquino
- d Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| |
Collapse
|
22
|
Kalász J, Pásztor ET, Fagyas M, Balogh Á, Tóth A, Csató V, Édes I, Papp Z, Borbély A. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes. Free Radic Biol Med 2015; 84:116-127. [PMID: 25770662 DOI: 10.1016/j.freeradbiomed.2015.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
Abstract
We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.
Collapse
Affiliation(s)
- Judit Kalász
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Balogh
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Viktória Csató
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Borbély
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
23
|
Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 2015; 93:843-54. [PMID: 25730320 DOI: 10.1139/cjpp-2014-0463] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.
Collapse
Affiliation(s)
- Andrew N Stammers
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - D Scott Kehler
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|
24
|
Yue Y, Huo F, Yin C, Chao J, Yongbin Zhang YZ, Wei X. An ICT based ultraselective and sensitive fluorescent probe for detection of HClO in living cells. RSC Adv 2015. [DOI: 10.1039/c5ra16097a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ICT based ultraselective and sensitive probe for colorimetric and fluorescent detection of HClOviaoxidative cleavage of an alkene linker to epoxide and then to aldehydes was developed through the conjugation of pyridinium with vanilline.
Collapse
Affiliation(s)
- Yongkang Yue
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Jianbin Chao
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | | | - Xing Wei
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
25
|
Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med 2014; 71:240-255. [PMID: 24632382 DOI: 10.1016/j.freeradbiomed.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic T Love
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
26
|
Wada M, Kuratani M, Kanzaki K. Calcium kinetics of sarcoplasmic reticulum and muscle fatigue. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Gebicka L, Banasiak E. Hypochlorous acid-induced heme damage of hemoglobin and its inhibition by flavonoids. Toxicol In Vitro 2012; 26:924-9. [DOI: 10.1016/j.tiv.2012.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/17/2023]
|
28
|
Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine (Phila Pa 1976) 2012; 37:1363-9. [PMID: 22322369 DOI: 10.1097/brs.0b013e31824b9e77] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An animal study using myeloperoxidase-knockout (MPO-KO) mice to examine the in vivo role of myeloperoxidase (MPO) in spinal cord injury (SCI). OBJECTIVE To clarify the influence of MPO on inflammatory cell infiltration, tissue damage, and functional recovery after SCI. SUMMARY OF BACKGROUND DATA MPO is considered to be important in spreading tissue damage after SCI because it generates strong neurotoxic oxidant hypochlorous acid (HOCl). However, the direct involvement of MPO in the pathophysiology of SCI remains to be elucidated. METHODS To compare the inflammatory reaction, tissue damage, and neurological recovery after SCI, a moderate contusion injury was created at the ninth thoracic level in MPO-KO mice and wild-type mice. A HOCl-specific probe solution was injected into the lesion epicenter to assess the spatiotemporal production of MPO-derived HOCl. Inflammatory reactions were quantified by flow cytometry and quantitative real-time polymerase chain reaction, and tissue damage was evaluated by an immunohistochemical analysis. The motor function recovery was assessed by the open-field locomotor score. RESULTS Prominent production of HOCl was observed during the hyperacute phase of SCI at the lesion site in the wild-type mice; however, little expression was observed in the MPO-KO mice. In this phase, the number of infiltrated neutrophils was significantly reduced in the MPO-KO mice compared with the wild-type mice. In addition, significant differences were observed in the expression levels of proinflammatory cytokines and apoptosis-related genes between 2 groups. In the histological sections, fewer terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells and more spared myelin were observed at the lesion site in MPO-KO mice. Consistent with these results, better functional recovery was observed in the MPO-KO mice than in the wild-type mice after SCI. CONCLUSION These results clearly indicated that MPO exacerbated secondary injury and impaired the functional recovery not only by generating strong oxidant HOCl, but also by enhancing neutrophil infiltration after SCI.
Collapse
|
29
|
Cook NL, Viola HM, Sharov VS, Hool LC, Schöneich C, Davies MJ. Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells. Free Radic Biol Med 2012; 52:951-61. [PMID: 22214747 PMCID: PMC3736816 DOI: 10.1016/j.freeradbiomed.2011.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 12/30/2022]
Abstract
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.
Collapse
Affiliation(s)
- Naomi L. Cook
- Free Radical Group, The Heart Research Institute, 7 Eliza St, Newtown NSW 2042, Australia
| | - Helena M. Viola
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Victor S. Sharov
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, USA
| | - Livia C. Hool
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, USA
| | - Michael J. Davies
- Free Radical Group, The Heart Research Institute, 7 Eliza St, Newtown NSW 2042, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Corresponding author. Free Radical Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia. Fax: +61 2 9565 5584. (M.J. Davies)
| |
Collapse
|
30
|
Li C, Sun S, Park D, Jeong HO, Chung HY, Liu XX, Zhou HM. Hydrogen peroxide targets the cysteine at the active site and irreversibly inactivates creatine kinase. Int J Biol Macromol 2011; 49:910-6. [PMID: 21854802 DOI: 10.1016/j.ijbiomac.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 12/18/2022]
Abstract
In our study, we showed that at a relatively low concentration, H(2)O(2) can irreversibly inactivate the human brain type of creatine kinase (HBCK) and that HBCK is inactivated in an H(2)O(2) concentration-dependent manner. HBCK is completely inactivated when incubated with 2mM H(2)O(2) for 1h (pH 8.0, 25°C). Inactivation of HBCK is a two-stage process with a fast stage (k(1)=0.050 ± 0.002 min(-1)) and a slow (k(2)=0.022 ± 0.003 min(-1)) stage. HBCK inactivation by H(2)O(2) was affected by pH and therefore we determined the pH profile of HBCK inactivation by H(2)O(2). H(2)O(2)-induced inactivation could not be recovered by reducing agents such as dl-dithiothreitol, N-acetyl-L-cysteine, and l-glutathione reduced. When HBCK was treated with DTNB, an enzyme substrate that reacts specifically with active site cysteines, the enzyme became resistant to H(2)O(2). HBCK binding to Mg(2+)ATP and creatine can also prevent H(2)O(2) inactivation. Intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence data showed no tertiary structure changes after H(2)O(2) treatment. The thiol group content of H(2)O(2)-treated HBCK was reduced by 13% (approximately 1 thiol group per HBCK dimer, theoretically). For further insight, we performed a simulation of HBCK and H(2)O(2) docking that suggested the CYS283 residue could interact with H(2)O(2). Considering these results and the asymmetrical structure of HBCK, we propose that H(2)O(2) specifically targets the active site cysteine of HBCK to inactivate HBCK, but that substrate-bound HBCK is resistant to H(2)O(2). Our findings suggest the existence of a previously unknown negative form of regulation of HBCK via reactive oxygen species.
Collapse
Affiliation(s)
- Chang Li
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Maksimchik YZ, Dremza IK, Lapshina EA, Cheshchevik VT, Sudnikovich EJ, Zabrodskaya SV, Zavodnik IB. Rat liver mitochondria impairments under acute carbon tetrachloride-induced intoxication. Effects of melatonin. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810020091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Lafoux A, Divet A, Gervier P, Huchet-Cadiou C. Diaphragm tension reduced in dystrophic mice by an oxidant, hypochlorous acid. Can J Physiol Pharmacol 2010; 88:130-40. [PMID: 20237587 DOI: 10.1139/y09-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In dystrophin-deficient skeletal muscle cells, in which Ca2+ homeostasis is disrupted and reactive oxygen species production is increased, we hypothesized that hypochlorous acid (HOCl), a strong H2O2-related free radical, damages contractile proteins and the sarcoplasmic reticulum. The aim of the present study was to investigate the effects of exposure to oxidative stress, generated by applying HOCl (100 micromol/L and 1 mmol/L), on the contractile function and sarcoplasmic reticulum properties of dystrophic mice. Experiments were performed on diaphragm muscle, which is severely affected in the mdx mouse, and the results were compared with those obtained in healthy (non-dystrophic) mice. In Triton-skinned fibres from C57BL/10 and mdx mice, 1 mmol/L HOCl increased myofibrillar Ca2+ sensitivity, but decreased maximal Ca2+-activated tension. In the presence of HOCl, higher concentrations of MgATP were required to produce rigor tensions. The interaction between HOCl and the Ca2+ uptake mechanisms was demonstrated using saponin-skinned fibres and sarcoplasmic reticulum vesicles. The results showed that HOCl, at micromolar or millimolar concentrations, can modify sarcoplasmic reticulum Ca2+ uptake and that this effect was more pronounced in diaphragm muscle from mdx mice. We conclude that in dystrophic diaphragm skeletal muscle cells, HOCl activates a cellular pathway that leads to an increase in the intracellular concentration of Ca2+.
Collapse
Affiliation(s)
- Aude Lafoux
- Université de Nantes, CNRS, UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, F-44322 Nantes, CEDEX 03, France
| | | | | | | |
Collapse
|
33
|
Adachi T. Modulation of vascular sarco/endoplasmic reticulum calcium ATPase in cardiovascular pathophysiology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:165-95. [PMID: 20933202 DOI: 10.1016/s1054-3589(10)59006-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Endothelial dysfunction associated with decreased nitric oxide (NO) bioactivity is a major feature of vascular diseases such as atherosclerosis or diabetes. Sodium nitroprusside (SNP)-induced relaxation is entirely dependent on cyclic guanosine monophosphate (cGMP) and preserved in atherosclerosis, suggesting that smooth muscle response to NO donor is intact. However, NO gas activates both cGMP-dependent and -independent signal pathways in vascular smooth muscle cells, and oxidative stress associated with vascular diseases selectively impairs cGMP-independent relaxation to NO. Sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA), which regulates intracellular Ca(2+) levels by pumping Ca(2+) into store, is a major cGMP-independent target for NO. Physiological levels of reactive nitrogen species (RNS) S-glutathiolate SERCA at Cys674 to increase its activity, and the augmentation of RNS in vascular diseases irreversibly oxidizes Cys674 or nitrates tyrosine residues at Tyr296-Tyr297, which are associated with loss of function. S-glutathiolation of various proteins by NO can explain redox-sensitive cGMP-independent actions, and oxidative inactivation of target proteins for NO can be associated with the pathogenesis of cardiovascular diseases. Oxidative inactivation of SERCA is also implicated with dysregulation of smooth muscle migration, promotion of platelet aggregation, and impairment of cardiac function, which can be implicated with restenosis, pathological angiogenesis, thrombosis, as well as heart failure. Analysis of posttranslational oxidative modifications of SERCA and the preservation of SERCA function can be novel strategies against cardiovascular diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Takeshi Adachi
- First Department of Internal Medicine, Division of Cardiology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
34
|
Mishima T, Kuratani M, Kanzaki K, Yamada T, Matsunaga S, Wada M. No relationship between enzyme activity and structure of nucleotide binding site in sarcoplasmic reticulum Ca(2+)-ATPase from short-term stimulated rat muscle. Acta Physiol (Oxf) 2009; 196:401-9. [PMID: 19302261 DOI: 10.1111/j.1748-1716.2009.01986.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We examined whether structural alterations to the adenine nucleotide binding site (ANBS) within sarcoplasmic (endo) reticulum Ca(2+)-ATPase (SERCA) would account for contraction-induced changes in the catalytic activity of the enzyme as assessed in vitro. METHODS Repetitive contractions were induced in rat gastrocnemius by electrical nerve stimulation. Measurements of sarcoplasmic reticulum properties were performed on control and stimulated muscles immediately after or at 30 min after the cessation of 5-min stimulation. In order to examine the properties at the ANBS, the binding capacity of SERCA to fluorescence isothiocyanate (FITC), a competitive inhibitor at the ANBS, was analysed in microsomes. RESULTS Short-term electrical stimulation evoked a 23.9% and 32.6% decrease (P < 0.05) in SERCA activity and in the FITC binding capacity, respectively, in the superficial region of the muscle. Whereas SERCA activity reverted to normal levels during 30-min recovery, a restoration of the FITC binding capacity did not occur. CONCLUSION The discordant changes between the enzyme activity and the FITC binding suggest that, at least during recovery after exercise, changes in SERCA activity may not correlate closely with structural alterations to the ANBS within the enzyme.
Collapse
Affiliation(s)
- T Mishima
- Department of Pre-School Education, Hachinohe Junior College, Aomori, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Strosova M, Karlovska J, Spickett CM, Orszagova Z, Ponist S, Bauerova K, Mihalova D, Horakova L. Modulation of SERCA in the chronic phase of adjuvant arthritis as a possible adaptation mechanism of redox imbalance. Free Radic Res 2009; 43:852-64. [PMID: 19591012 DOI: 10.1080/10715760903089708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca(2 +)-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.
Collapse
Affiliation(s)
- Miriam Strosova
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fu MH, Tupling AR. Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am J Physiol Heart Circ Physiol 2009; 296:H1175-83. [PMID: 19252085 DOI: 10.1152/ajpheart.01276.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein 70 (Hsp70) can physically interact with and prevent thermal inactivation of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1a, the SERCA isoform expressed in adult fast-twitch skeletal muscle. This study examined whether Hsp70 could physically interact with and prevent thermal inactivation of SERCA2a, the SERCA isoform expressed in heart. HEK-293 cells were cotransfected with cDNAs encoding human Hsp70 and rabbit SERCA2a (S2a/Hsp70). Cells cotransfected with SERCA2a cDNA and pMT2 (S2a/pMT2) were used as control. One-half of the cells was heat shocked at 40 degrees C for 1 h (HS), and one-half was maintained at 37 degrees C before harvesting the cells and isolating microsomes. Western blot analysis showed that Hsp70 and SERCA2a were colocalized in the microsomal fraction. The levels of Hsp70 were approximately fivefold higher (P < 0.05) in S2a/Hsp70 compared with S2a/pMT2 and approximately twofold higher (P < 0.05) following HS in all cells. Coimmunoprecipitation demonstrated that Hsp70 directly binds to SERCA2a. Following HS, maximal SERCA2a activity was reduced ( approximately 52%, P < 0.05) in S2a/pMT2 but was increased ( approximately 33%, P < 0.05) in S2a/Hsp70. Thermal inactivation of SERCA2a in S2a/pMT2 was associated with decreased ( approximately 49%, P < 0.05) binding capacity for fluorescein isothiocyanate (FITC) and increased carbonyl ( approximately 42%, P < 0.05) and nitrotyrosine ( approximately 40%, P < 0.05) levels in SERCA2a. By contrast, the HS-induced increase in maximal SERCA2a activity observed in S2a/Hsp70 corresponded with no change (P > 0.05) in FITC-binding capacity and reductions in carbonyl ( approximately 40%, P < 0.05) and nitrotyrosine ( approximately 23%, P < 0.05) levels in SERCA2a compared with S2a/pMT2. These results show that Hsp70 forms a protective interaction with SERCA2a during HS actually reducing oxidation and nitrosylation of SERCA2a thus increasing its maximal activity.
Collapse
Affiliation(s)
- M H Fu
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
37
|
Park SY, Youm JH, Jung KC, Sohn UD. Inhibitory effect of hypochlorous acid on lower esophageal sphincter tone relaxation by vasoactive intestinal peptide. Arch Pharm Res 2008; 31:1552-8. [PMID: 19099223 DOI: 10.1007/s12272-001-2150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/27/2008] [Accepted: 11/27/2008] [Indexed: 11/30/2022]
Abstract
Under physiological conditions, hypochlorous acid (HOCl) is the major product of myeloperoxidase, a ferric heme enzyme released in inflammatory diseases. In the present study, we investigated the effect of HOCl compared to hydrogen peroxide (H2O2) on the vasoactive intestinal polypeptide (VIP)-induced relaxation of feline lower esophageal sphincter (LES) strips. Isometric tension on LES strips was measured using a force transducer. VIP induced the relaxation of basal LES tone in a concentration-dependent manner. Pretreatment with HOCl (10(-4) M) significantly reduced the VIP-induced relaxation at smaller concentrations than H2O2 (10(-3) M). VIP-induced relaxation is mediated via the Gi/o protein, since pretreatment with Pertussis Toxin (PTX) showed an inhibitory effect on the relaxation. HOCl showed an additional inhibitory effect on the reduced relaxation by PTX, indicating that HOCl might affect another G protein as well as Gi/o. However, HOCl did not affect SNP-, SIN-1-, and 8-br-cGMP-induced relaxation. Nor did HOCl modify the relaxation induced by either forskolin or db-cAMP in LES muscle strips. These results suggest that during short-term treatment, HOCl may damage the upstream events including G protein level, and result in alteration of LES tone in the feline esophagus, similar to the inhibitory effects of H2O2.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Pharmacology, College of Pharmacy, University of Chung-Ang, Seoul, 156-756, Korea
| | | | | | | |
Collapse
|
38
|
Tupling AR, Bombardier E, Vigna C, Quadrilatero J, Fu M. Interaction between Hsp70 and the SR Ca2+pump: a potential mechanism for cytoprotection in heart and skeletal muscle. Appl Physiol Nutr Metab 2008; 33:1023-32. [DOI: 10.1139/h08-067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The overexpression of heat shock protein 70 (Hsp70) provides cytoprotection to cells, making them resistant to otherwise lethal levels of stress. In this review, the role Hsp70 plays in protecting both cardiac and skeletal muscle against the pathophysiological effects of oxidative stress are examined, with a focus on the molecular basis for the cytoprotective effects of Hsp70. The ability of Hsp70 to maintain cell survival undoubtedly involves the regulation of multiple steps within apoptotic pathways, but could also involve the regulation of key upstream mediators of apoptosis (i.e., oxidative stress, Ca2+overload). Hsp70 can stabilize the structure and function of both the skeletal muscle and cardiac Ca2+pump under heat stress conditions. Given that Ca2+overload has long been implicated in cell death, Hsp70 might protect muscle cells by maintaining cellular Ca2+homeostasis, thereby preventing the initiation of apoptosis. The functional interaction between Hsp70 and Ca2+pumps might also promote improvements in muscle contractility after exposure to oxidative stress.
Collapse
Affiliation(s)
- A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Minghua Fu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
39
|
Voss P, Engels M, Strosova M, Grune T, Horakova L. Protective effect of antioxidants against sarcoplasmic reticulum (SR) oxidation by Fenton reaction, however without prevention of Ca-pump activity. Toxicol In Vitro 2008; 22:1726-33. [PMID: 18692562 DOI: 10.1016/j.tiv.2008.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/18/2008] [Accepted: 07/16/2008] [Indexed: 01/09/2023]
Abstract
The Ca(2+)-ATPase of the sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle was oxidized by Fe2+/H2O2/ascorbic acid (AA), a system which generates HO(.) radicals according to the Fenton reaction: (Fe2(+)+H2O2-->HO(.)+OH(-)+Fe(3+)) under conditions similar to the pathological state of inflammation. Under these conditions, when hydroxyl-radicals and/or ferryl-radicals are generated, a 50% decrease of the SERCA activity was observed, a significant decrease of SH groups and an increase of protein carbonyl groups and lipid peroxidation were identified. Two new bands, time dependent in density, appeared in the SERCA protein electrophoresis after incubation with the Fenton system (at approximately 50 and 75kDa), probably due to structural changes as supported also by trypsin digestion. Immunoblotting of DNPH derivatized protein bound carbonyls detected a time dependent increase after incubation of SERCA with the Fenton system. Trolox and the pyridoindole stobadine (50microM) protected SR against oxidation induced via the Fenton system by preventing SH group oxidation and lipid peroxidation. Pycnogenol((R)) and EGb761 (40microg/ml) protected SERCA in addition against protein bound carbonyl formation. In spite of the antioxidant effects, trolox and stobadine were not able to prevent a decrease in the SERCA Ca(2+)-ATPase activity. Pycnogenol and EGb761 even enhanced the decrease of the Ca(2+)-ATPase activity induced by the Fenton system, probably by secondary oxidative reactions.
Collapse
Affiliation(s)
- Peter Voss
- Research Institute for Environmental Medicine gGmbH at the Heinrich-Heine-University, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
40
|
Durlu-Kandilci NT, Sahin-Erdemli I. The effects of reactive oxygen species on calcium- and carbachol- induced contractile responses in β-escin permeabilized rat bladder. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:645-53. [DOI: 10.1007/s00210-008-0326-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
41
|
Matsunaga S, Mishima T, Yamada T, Inashima S, Wada M. Alterations in in vitro function and protein oxidation of rat sarcoplasmic reticulum Ca2+-ATPase during recovery from high-intensity exercise. Exp Physiol 2007; 93:426-33. [PMID: 18156168 DOI: 10.1113/expphysiol.2007.040477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis tested in this study was that the extent to which sarcoplasmic reticulum (SR) Ca(2+)-ATPase is oxidized would correlate with a decline in its activity. For this purpose, changes in the SR Ca(2+)-sequestering ability and the contents of carbonyl and sulfhydryl groups during recovery after exercise were examined in the superficial portions of vastus lateralis muscles from rats subjected to 5 min running at an intensity corresponding to maximal oxygen uptake (50 m min(-1), 10% gradient). A single bout of exercise elicited a 22.4% reduction (P < 0.05) in SR Ca(2+)-ATPase activity. The decreased activity progressively reverted to normal levels during recovery after exercise, reaching normal levels after 60 min of recovery. This change was paralleled by a depressed SR Ca(2+)-uptake rate, and the proportional alteration in these two variables resulted in no change in the ratio of Ca(2+)-uptake rate to Ca(2+)-ATPase activity. The contents of SR Ca(2+)-ATPase protein and sulfhydryl groups in microsomes were unchanged after exercise and during recovery periods. In contrast, the content of carbonyl groups in SR Ca(2+)-ATPase behaved in an opposite manner to that of SR Ca(2+)-ATPase activity. An approximately 80% augmentation (P < 0.05) in the carbonyl group content occurred immediately after exercise. The elevated carbonyl content decreased towards normal levels during 60 min of recovery. These results are strongly suggestive that oxidation of SR Ca(2+)-ATPase is responsible, at least in part, for a decay in the SR Ca(2+)-pumping function produced by high-intensity exercise and imply that oxidized proteins may be repaired during recovery from exercise.
Collapse
Affiliation(s)
- Satoshi Matsunaga
- Research Center for Urban Health and Sports, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
42
|
Tupling AR, Vigna C, Ford RJ, Tsuchiya SC, Graham DA, Denniss SG, Rush JWE. Effects of buthionine sulfoximine treatment on diaphragm contractility and SR Ca2+ pump function in rats. J Appl Physiol (1985) 2007; 103:1921-8. [PMID: 17717121 DOI: 10.1152/japplphysiol.00529.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the effects of glutathione (GSH) depletion and cellular oxidation on rat diaphragm contractility and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) function in vitro under basal conditions and following fatiguing stimulation. Buthionine sulfoximine (BSO) treatment (n = 10) for 10 days (20 mM in drinking water) reduced (P < 0.05) diaphragm GSH content (nmol/mg protein) and the ratio of GSH to glutathione disulfide (GSH/GSSG) by 91% and 71%, respectively, compared with controls (CTL) (n = 10). Western blotting showed that Hsp70 expression in diaphragm was not increased (P > 0.05) with BSO treatment. As hypothesized, basal peak twitch force (g/mm(2)) was increased (P < 0.05), and fatigability in response to repetitive stimulation (350-ms trains at 100 Hz once every 1 s for 5 min) was also increased (P < 0.05) in BSO compared with CTL. Both Ca(2+) uptake and maximal SERCA activity (mumol.g protein(-1).min(-1)) measured in diaphragm homogenates that were prepared at rest were increased (P < 0.05) with BSO treatment, an effect that could be partly explained by a twofold increase (P < 0.05) in SERCA2a expression with BSO. In response to the 5-min stimulation protocol, both Ca(2+) uptake and maximal SERCA activity were increased (P < 0.05) in CTL but not (P > 0.05) in BSO diaphragm. We conclude that 1) cellular redox state is more optimal for contractile function and fatigability is increased in rat diaphragm following BSO treatment, 2) SERCA2a expression is modulated by redox signaling, and 3) regulation of SERCA function in working diaphragm is altered following BSO treatment.
Collapse
Affiliation(s)
- A R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Matsunaga S, Yamada T, Mishima T, Sakamoto M, Sugiyama M, Wada M. Effects of high-intensity training and acute exercise on in vitro function of rat sarcoplasmic reticulum. Eur J Appl Physiol 2007; 99:641-9. [PMID: 17226062 DOI: 10.1007/s00421-006-0381-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2006] [Indexed: 11/29/2022]
Abstract
To evaluate the effects of high-intensity training and/or a single bout of exercise on in vitro function of the sarcoplasmic reticulum (SR), the rats were subjected to 8 weeks of interval running program (final training: 2.5-min running x 4 sets per day, 50 m/min at 10% incline). Following training, SR function, i.e., Ca2+-ATPase activity and Ca2+-uptake and release rates, was examined in homogenates of the superficial region of the vastus lateralis muscle from rats subjected to a single bout of treadmill running (50 m/min at 10% incline) for 2.5 min or to exhaustion. Training brought about a 12.4% increase (P < 0.05) in SR Ca2+-uptake rate in rested muscles. This change was not accompanied by alterations in Ca2+-ATPase activity, Ca2+-release rate, Ca2+ dependence of enzyme and protein contents of Ca2+-ATPase and ryanodine receptor. A single bout of high-intensity exercise to exhaustion evoked significant reductions (P < 0.05) in SR function, irrespective of whether or not the animals were trained. For 2.5-min run and exhausted rats, no differences existed between SR functions of untrained and trained muscles. These data suggest that high-intensity training may be capable of enhancing SR Ca2+-sequestering ability, and may not protect against decreasing SR function with high-intensity exercise.
Collapse
Affiliation(s)
- Satoshi Matsunaga
- Research Center for Urban Health and Sports, Osaka City University, Sugimoto, Osaka-shi, Osaka, 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Yap YW, Whiteman M, Bay BH, Li Y, Sheu FS, Qi RZ, Tan CH, Cheung NS. Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. J Neurochem 2006; 98:1597-609. [PMID: 16923169 DOI: 10.1111/j.1471-4159.2006.03996.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
3-Chlorotyrosine, a bio-marker of hypochlorous acid (HOCl) in vivo, was reported to be substantially elevated in the Alzheimer's disease (AD) brains. Thus, HOCl might be implicated in the development of AD. However, its effect and mechanism on neuronal cell death have not been investigated. Here, we report for the first time that HOCl treatment induces an apoptotic-necrotic continuum of concentration-dependent cell death in cultured cortical neurons. Neurotoxicity caused by an intermediate concentration of HOCl (250 microm) exhibited several biochemical markers of apoptosis in the absence of caspase activation. However, the involvement of calpains was demonstrated by data showing that calpain inhibitors protect cortical neurons from apoptosis and the formation of 145/150 kDa alpha-fodrin fragments. Moreover, an increase in cytosolic Ca2+ concentration was associated with HOCl neurotoxicity and Ca2+ channel antagonists, and Ca2+ chelators prevented cleavage of alpha-fodrin and the induction of apoptosis. Finally, we found that calpain activation ruptured lysosomes. Stabilization of lysosomes by calpain inhibitors or imidazoline drugs, as well as inhibition of cathepsin protease activities, rescued cells from HOCl-induced neurotoxicity. Our results showed for the first time that HOCl induces apoptosis in cortical neurons, and that the cell death process involves calpain activation and rupture of lysosomes.
Collapse
Affiliation(s)
- Yann Wan Yap
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 2006; 19:219-28. [PMID: 16959471 DOI: 10.1016/j.cellsig.2006.06.013] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/29/2006] [Indexed: 01/23/2023]
Abstract
Oxidative stress has been implicated as playing a role in neurodegenerative disorders, such as ischemic stroke, Alzheimer's, Huntington's, and Parkinson's disease. Persuasive evidences have shown that microglial-mediated oxidative stress contributes significantly to cell loss and accompanying cognitive decline characteristic of the diseases. Based on the facts that (i) levels of catalytically active myeloperoxidase are elevated in diseased brains and (ii) myeloperoxidase polymorphism is associated with the risk of developing neurodegenerative disorders, HOCl as a major oxidant produced by activated phagocytes in the presence of myeloperoxidase is therefore suggested to be involved in neurodegeneration. Its association with neurodegeneration is further showed by elevated level of 3-chlorotyrosine (bio-marker of HOCl in vivo) in affected brain regions as well as HOCl scavenging ability of neuroprotectants, desferrioxamine and uric acid. In this review, we will summary the current understanding concerning the association of HOCl and neuronal cell death where production of HOCl will lead to further formation of reactive nitrogen and oxygen species. In addition, HOCl also causes tissue destruction and cellular damage leading cell death.
Collapse
Affiliation(s)
- Yann Wan Yap
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
46
|
Effects of Carnosine and Anserine Supplementation on Relatively High Intensity Endurance Performance. ACTA ACUST UNITED AC 2006. [DOI: 10.5432/ijshs.4.86] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Mishima T, Yamada T, Matsunaga S, Wada M. N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue. ACTA ACUST UNITED AC 2005; 184:195-202. [PMID: 15954987 DOI: 10.1111/j.1365-201x.2005.01443.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR). METHODS In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were stimulated with tetanic trains (350 ms, 30-40 Hz) at 1 train every 2 s for 300 s. SR functions, as assessed by SR Ca2+-uptake and release rates and SR Ca2+-ATPase activity, were measured in vitro on muscle homogenates. RESULTS Following the 300-s stimulation, the force developed by NAC-treated muscles is approximately 1.8-fold higher (P < 0.05) than that of muscles without NAC treatment. Stimulation elicited an 18-30% depression in SR function (P < 0.05). Despite the differing degrees of fatigue between NAC-treated and non-treated muscles, SR functions in these muscles were reduced to similar extents. CONCLUSIONS These results suggest that modulation of SR function measured in vitro may not be a major contributor to inhibition of diaphragmic fatigue with antioxidant, at least, in the final phase of fatigue where force output is remarkably reduced.
Collapse
Affiliation(s)
- T Mishima
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima-shi, Hiroshima, Japan
| | | | | | | |
Collapse
|
48
|
Horáková L, Strosová M, Skuciová M. Antioxidants prevented oxidative injury of SR induced by Fe2+/H2O2/ascorbate system but failed to prevent Ca2+-ATPase activity decrease. Biofactors 2005; 24:105-9. [PMID: 16403969 DOI: 10.1002/biof.5520240112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysfunction of sarcoplasmic reticulum (SR) Ca2+-ATPase induced by oxidative stress may be a contributing factor to the development of serious age related diseases. Incubation of sarcoplasmic reticulum (SR) vesicles of rabbit skeletal muscles with Fe2+/H2O2/ascorbate decreased the SH group content of SR approximately to 35% and Ca2+-ATPase activity to 50% of control not oxidized sample. Protein carbonyls increased twofold, lipid peroxidation was also significantly elevated. The antioxidant effects of trolox, the pyridoindole derivative stobadine and of the standardized extracts from bark of Pinus Pinaster PycnogenolR (Pyc) and from leaves of Ginkgo biloba (EGb 761) were studied on oxidatively injured SR. All antioxidants exerted preventive effects against the oxidized lipids and protein SH groups of SR vesicles. Trolox and stobadine did not influence protein carbonyl formation, while flavonoid extracts prevented carbonyl generation, probably by binding to protein. The preventive effects of the antioxidants studied on lipids and protein SH groups were however not associated with protection of Ca2+-ATPase activity. Stobadine and trolox exerted no effect on enzyme activity, Pyc and EGb 761 enhanced the inhibitory effect of Ca2+-ATPase activity in oxidatively injured SR. Concluding, under the conditions of oxidative stress induced by Fe2+/H2O2/ascorbate against SR of rabbit skeletal muscle, the agents studied demonstrated antioxidant effects yet failed to protect Ca2+-ATPase activity.
Collapse
Affiliation(s)
- Lubica Horáková
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia.
| | | | | |
Collapse
|
49
|
Strosová M, Skuciová M, Horáková L. Oxidative damage to Ca2+-ATPase sarcoplasmic reticulum by HOCl and protective effect of some antioxidants. Biofactors 2005; 24:111-6. [PMID: 16403970 DOI: 10.1002/biof.5520240113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Injury of rabbit skeletal sarcoplasmic reticulum (SR) induced by hypochlorous acid (HOCl) was studied. HOCl inhibited Ca2+-ATPase activity in a concentration-dependent manner (IC50=100 micromol/l). The concentration of 13.5 micromol/l HOCl reduced the level of sulfhydryl (SH) groups by 50%, yet it did not influence the enzyme activity. In comparison with SH group oxidation and enzyme activity inhibition, a significantly longer time was necessary for the generation of protein carbonyls in SR injured by HOCl. Protective effects of some antioxidants (stobadine, trolox, EGb 761, Pycnogenol) were studied in SR oxidatively injured by HOCl. Trolox and EGb 761 exerted a protective effect on ATPase activity and on SH groups of SR oxidatively modified by HOCl. Stobadine and Pycnogenol inhibited markedly protein carbonyl formation. Stobadine was the only antioxidant able to scavenge HOCl. In conclusion, the protective effects of antioxidants against decrease of Ca2+-ATPase activity induced by HOCl might be caused by protection of SH groups. The compounds with both antioxidant and Ca2+-ATPase protecting effect offer dual defense against tissue damage occurring, e.g. in aging process.
Collapse
Affiliation(s)
- Miriam Strosová
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
50
|
Tupling AR, Gramolini AO, Duhamel TA, Kondo H, Asahi M, Tsuchiya SC, Borrelli MJ, Lepock JR, Otsu K, Hori M, MacLennan DH, Green HJ. HSP70 Binds to the Fast-twitch Skeletal Muscle Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1a) and Prevents Thermal Inactivation. J Biol Chem 2004; 279:52382-9. [PMID: 15371420 DOI: 10.1074/jbc.m409336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study examined whether HSP70 could bind to and protect against thermal inactivation of SERCA1a, the SERCA isoform expressed in adult fast-twitch skeletal muscle. Sarcoplasmic reticulum vesicles prepared from rat gastrocnemius muscle were incubated with purified HSP70 at both 37 and 41 degrees C for either 30, 60, or 120 min. Maximal SERCA1a activity (micromol/g protein/min) in the absence of HSP70 was reduced progressively with time, with greater reductions occurring at 41 degrees C compared with 37 degrees C. HSP70 protected against thermal inactivation of SERCA1a activity at 37 degrees C but not at 41 degrees C and only at 30 and 60 min but not at 120 min. HSP70 also protected against reductions in binding capacity for fluorescein isothiocyanate, a fluorescent probe that binds to Lys515 in the nucleotide binding domain of SERCA, at 30 and 60 min but not at 120 min, an effect that was independent of temperature. HEK-293 cells were co-transfected with cDNAs encoding rabbit SERCA1a and human HSP-EYFP and subjected to 40 degrees C for 1 h. Immunohistochemistry revealed nearly complete co-localization of SERCA1a with HSP70 under these conditions. Co-immunoprecipitation showed physical interaction between HSP70 and SERCA1a under all thermal conditions both in vitro and in HEK-293 cells. Modeling showed that the fluorescein isothiocyanate-binding site of intact SERCA1a in the E2 form lies in its close proximity to a potential interaction site between SERCA1a and HSP70. These results indicate that HSP70 can bind to SERCA1a and, depending on the severity of heat stress, protect SERCA1a function by stabilizing the nucleotide binding domain.
Collapse
Affiliation(s)
- A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|