1
|
Hoseini R, Hoseini Z, Kamangar A. Myogenic differentiation markers in muscle tissue after aerobic training. Heliyon 2025; 11:e41888. [PMID: 39897925 PMCID: PMC11787638 DOI: 10.1016/j.heliyon.2025.e41888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Aerobic training induces a myriad of adaptations in muscle tissue, encompassing alterations in muscle fiber type composition, hypertrophy, and metabolic capacity. Understanding the potential role of myogenic differentiation markers (MDFs), such as Pax7, MyoD, Myogenin, and myosin heavy chain (MHC) isoforms, in mediating these adaptations is of paramount importance. The review delves into the intricate molecular mechanisms underlying the regulation of MDFs following aerobic training, elucidating the role of key signaling pathways including the MAPK/ERK, PI3K/Akt, and AMPK pathways, among others. These pathways play pivotal roles in orchestrating the expression and activity of MDFs, ultimately influencing muscle adaptation and regeneration. The comprehension of MDFs in the context of aerobic training is far-reaching, offering the potential for targeted interventions to optimize muscle adaptation and regeneration. This review identifies the need for further research to unveil the precise molecular mechanisms of the activation and interaction of myogenic differentiation markers with other signaling pathways, as well as to explore their potential as therapeutic targets for muscle-related conditions. This review article also provides a thorough analysis of MDFs in muscle tissue after aerobic training, highlighting their potential clinical implications and outlining future research directions in this area.
Collapse
Affiliation(s)
- Rastegar Hoseini
- Assistant Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Zahra Hoseini
- PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ayob Kamangar
- PhD Student of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Dietary Alaska Pollack Protein Induces Acute and Sustainable Skeletal Muscle Hypertrophy in Rats. Nutrients 2022; 14:nu14030547. [PMID: 35276908 PMCID: PMC8837972 DOI: 10.3390/nu14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Our previous studies suggested that Alaska pollack protein (APP) intake increases skeletal muscle mass and that it may cause a slow-to-fast shift in muscle fiber type in rats fed a high-fat diet after 56 days of feeding. In this study, we explored whether dietary APP induces acute and sustainable skeletal muscle hypertrophy in rats fed a normal-fat diet. Male 5-week-old Sprague–Dawley rats were divided into four groups and fed a purified ingredient-based high-fat diet or a purified ingredient-based normal-fat diet with casein or APP, containing the same amount of crude protein. Dietary APP significantly increased gastrocnemius muscle mass (105~110%) after 2, 7 days of feeding, regardless of dietary fat content. Rats were separated into two groups and fed a normal-fat diet with casein or APP. Dietary APP significantly increased gastrocnemius muscle mass (110%) after 56 days of feeding. Dietary APP significantly increased the cross-sectional area of the gastrocnemius skeletal muscle and collagen-rich connective tissue after 7 days of feeding. It decreased the gene expression of Mstn /Myostatin, Trim63/MuRF1, and Fbxo32/atrogin-1, but not other gene expression, such as serum IGF-1 after 7 days of feeding. No differences were observed between casein and APP groups with respect to the percentage of Type I, Type IIA, and Type IIX or IIB fibers, as determined by myosin ATPase staining after 7 days of feeding. In the similar experiment, the puromycin-labeled peptides were not different between dietary casein and APP after 2 days of feeding. These results demonstrate that APP induces acute and sustainable skeletal muscle hypertrophy in rats, regardless of dietary fat content. Dietary APP, as a daily protein source, may be an approach for maintaining or increasing muscle mass.
Collapse
|
3
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
4
|
Travis SK, Zwetsloot KA, Mujika I, Stone MH, Bazyler CD. Skeletal Muscle Adaptations and Performance Outcomes Following a Step and Exponential Taper in Strength Athletes. Front Physiol 2021; 12:735932. [PMID: 34777004 PMCID: PMC8582352 DOI: 10.3389/fphys.2021.735932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Before major athletic events, a taper is often prescribed to facilitate recovery and enhance performance. However, it is unknown which taper model is most effective for peaking maximal strength and positively augmenting skeletal muscle. Thus, the purpose of this study was to compare performance outcomes and skeletal muscle adaptations following a step vs. an exponential taper in strength athletes. Sixteen powerlifters (24.0 ± 4.0 years, 174.4 ± 8.2 cm, 89.8 ± 21.4 kg) participated in a 6-week training program aimed at peaking maximal strength on back squat [initial 1-repetition-maximum (1RM): 174.7 ± 33.4 kg], bench press (118.5 ± 29.9 kg), and deadlift (189.9 ± 41.2 kg). Powerlifters were matched based on relative maximal strength, and randomly assigned to either (a) 1-week overreach and 1-week step taper or (b) 1-week overreach and 3-week exponential taper. Athletes were tested pre- and post-training on measures of body composition, jumping performance, isometric squat, and 1RM. Whole muscle size was assessed at the proximal, middle, and distal vastus lateralis using ultrasonography and microbiopsies at the middle vastus lateralis site. Muscle samples (n = 15) were analyzed for fiber size, fiber type [myosin-heavy chain (MHC)-I, -IIA, -IIX, hybrid-I/IIA] using whole muscle immunohistochemistry and single fiber dot blots, gene expression, and microRNA abundance. There were significant main time effects for 1RM squat (p < 0.001), bench press (p < 0.001), and deadlift, (p = 0.024), powerlifting total (p < 0.001), Wilks Score (p < 0.001), squat jump peak-power scaled to body mass (p = 0.001), body mass (p = 0.005), fat mass (p = 0.002), and fat mass index (p = 0.002). There were significant main time effects for medial whole muscle cross-sectional area (mCSA) (p = 0.006) and averaged sites (p < 0.001). There was also a significant interaction for MHC-IIA fiber cross-sectional area (fCSA) (p = 0.014) with post hoc comparisons revealing increases following the step-taper only (p = 0.002). There were significant main time effects for single-fiber MHC-I% (p = 0.015) and MHC-IIA% (p = 0.033), as well as for MyoD (p = 0.002), MyoG (p = 0.037), and miR-499a (p = 0.033). Overall, increases in whole mCSA, fCSA, MHC-IIA fCSA, and MHC transitions appeared to favor the step taper group. An overreach followed by a step taper appears to produce a myocellular environment that enhances skeletal muscle adaptations, whereas an exponential taper may favor neuromuscular performance.
Collapse
Affiliation(s)
- S. Kyle Travis
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
- Department of Rehabilitative Sciences, East Tennessee State University, Johnson City, TN, United States
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
| | - Kevin A. Zwetsloot
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Michael H. Stone
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| | - Caleb D. Bazyler
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics 2021; 11:48-63. [PMID: 33391460 PMCID: PMC7681100 DOI: 10.7150/thno.50794] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022] Open
Abstract
The most important requirements of biomedical substitutes used in muscle tissue regeneration are appropriate topographical cues and bioactive components for the induction of myogenic differentiation/maturation. Here, we developed an electric field-assisted 3D cell-printing process to fabricate cell-laden fibers with a cell-alignment cue. Methods: We used gelatin methacryloyl (GelMA) laden with C2C12 cells. The cells in the GelMA fiber were exposed to electrical stimulation, which induced cell alignment. Various cellular activities, such as cell viability, cell guidance, and proliferation/myogenic differentiation of the microfibrous cells in GelMA, were investigated in response to parameters (applied electric fields, viscosity of the bioink, and encapsulated cell density). In addition, a cell-laden fibrous bundle mimicking the structure of the perimysium was designed using gelatin hydrogel in conjunction with a 4D bioprinting technique. Results: Cell-laden microfibers were fabricated using optimized process parameters (electric field intensity = 0.8 kV cm-1, applying time = 12 s, and cell number = 15 × 106 cells mL-1). The cell alignment induced by the electric field promoted significantly greater myotube formation, formation of highly ordered myotubes, and enhanced maturation, compared to the normally printed cell-laden structure. The shape change mechanism that involved the swelling properties and folding abilities of gelatin was successfully evaluated, and we bundled the GelMA microfibers using a 4D-conceptualized gelatin film. Conclusion: The C2C12-laden GelMA structure demonstrated effective myotube formation/maturation in response to stimulation with an electric field. Based on these results, we propose that our cell-laden fibrous bundles can be employed as in vitro drug testing models for obtaining insights into the various myogenic responses.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeon Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Fritzen AM, Thøgersen FD, Qadri KAN, Krag T, Sveen ML, Vissing J, Jeppesen TD. Preserved Capacity for Adaptations in Strength and Muscle Regulatory Factors in Elderly in Response to Resistance Exercise Training and Deconditioning. J Clin Med 2020; 9:jcm9072188. [PMID: 32664402 PMCID: PMC7408999 DOI: 10.3390/jcm9072188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is related to an inevitable loss of muscle mass and strength. The mechanisms behind age-related loss of muscle tissue are not fully understood but may, among other things, be induced by age-related differences in myogenic regulatory factors. Resistance exercise training and deconditioning offers a model to investigate differences in myogenic regulatory factors that may be important for age-related loss of muscle mass and strength. Nine elderly (82 ± 7 years old) and nine young, healthy persons (22 ± 2 years old) participated in the study. Exercise consisted of six weeks of resistance training of the quadriceps muscle followed by eight weeks of deconditioning. Muscle biopsy samples before and after training and during the deconditioning period were analyzed for MyoD, myogenin, insulin-like growth-factor I receptor, activin receptor IIB, smad2, porin, and citrate synthase. Muscle strength improved with resistance training by 78% (95.0 ± 22.0 kg) in the elderly to a similar extent as in the young participants (83.5%; 178.2 ± 44.2 kg) and returned to baseline in both groups after eight weeks of deconditioning. No difference was seen in expression of muscle regulatory factors between elderly and young in response to exercise training and deconditioning. In conclusion, the capacity to gain muscle strength with resistance exercise training in elderly was not impaired, highlighting this as a potent tool to combat age-related loss of muscle function, possibly due to preserved regulation of myogenic factors in elderly compared with young muscle.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-42633359
| | - Frank D. Thøgersen
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
| | - Khaled Abdul Nasser Qadri
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
| | - Thomas Krag
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
| | - Marie-Louise Sveen
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
- Novo Nordisk A/S, DK-2860 Søborg, Denmark
| | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
| | - Tina D. Jeppesen
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, DK-2100 Copenhagen, Denmark; (F.D.T.); (K.A.N.Q.); (T.K.); (M.-L.S.); (J.V.); (T.D.J.)
| |
Collapse
|
7
|
Fujitani M, Mizushige T, Kawabata F, Uozumi K, Yasui M, Hayamizu K, Uchida K, Okada S, Keshab B, Kishida T. Dietary Alaska pollack protein improves skeletal muscle weight recovery after immobilization-induced atrophy in rats. PLoS One 2019; 14:e0217917. [PMID: 31199814 PMCID: PMC6570023 DOI: 10.1371/journal.pone.0217917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
The promotion of muscle recovery after immobilization is important to preserve an optimum health status. Here, we examined the effect of dietary Alaska pollack protein (APP) on skeletal muscle weight after atrophy induced by hind limb immobilization using plaster immobilization technique. Rat left limb was casted with a wetted plaster cast under anesthesia. After 2 weeks of feeding, the cast was removed and the rats were divided into three groups, namely, a baseline group, high-fat casein diet group, and high-fat APP diet group. After 3 weeks of feeding, the skeletal muscles (soleus, extensor digitorum longus [EDL], and gastrocnemius) were sampled. The estimated weight gains of soleus, gastrocnemius, and EDL muscle in the immobilized limbs were significantly larger in the rats fed with APP diet as compared with those fed with casein diet. In soleus muscle, dietary APP increased the expression of Igf1 and Myog genes in the immobilized limbs after the recovery period.
Collapse
Affiliation(s)
- Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takafumi Mizushige
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Minemachi, Utsunomiya, Tochigi, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, Aomori, Japan
| | - Keisuke Uozumi
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Machi Yasui
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Kohsuke Hayamizu
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Kenji Uchida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food Function R&D Center, Nippon Suisan Kaisha, Ltd., Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Bhattarai Keshab
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- * E-mail:
| |
Collapse
|
8
|
Auh QSC, Park KR, Lee MO, Hwang MJ, Kang SK, Hong JP, Yun HM, Kim EC. N-methyl-D-aspartate (NMDA) impairs myogenesis in C2C12 cells. Muscle Nerve 2016; 56:510-518. [PMID: 27977864 DOI: 10.1002/mus.25511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION N-methyl-d-aspartate (NMDA) is expressed in sensory neurons and plays important roles in peripheral pain mechanisms. The aim of this study was to examine the effects and molecular mechanisms of NMDA on C2C12 myoblast proliferation and differentiation. METHODS Cytotoxicity and differentiation were examined by the MTT assay, reverse transcription-polymerase chain reaction, and immunofluorescence. RESULTS NMDA had no cytotoxicity (10-500 μM) and inhibited myoblastic differentiation of C2C12 cells, as assessed by F-actin immunofluorescence and levels of mRNAs encoding myogenic markers such as myogenin and myosin heavy-chain 2. It inhibited phosphorylation of mammalian target of rapamycin (mTOR) by inactivating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. It induced reactive oxygen species production. Furthermore, NMDA-suppressed expression of F-actin was reversed by adding the antioxidant N-acetylcysteine. CONCLUSIONS Collectively, these results indicate that NMDA impairs myogenesis or myogenic differentiation in C2C12 cells through the mTOR/MAPK signaling pathways and may lead to skeletal muscle degeneration. Muscle Nerve 56: 510-518, 2017.
Collapse
Affiliation(s)
- Q-SChick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myeong-Ok Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Mi-Jin Hwang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung-Pyo Hong
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, MRC, School of Dentistry, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
9
|
Murphy RJL, Dupont-Versteegden EE, Peterson CA, Houle JD. Two Experimental Strategies to Restore Muscle Mass in Adult Rats Following Spinal Cord Injury. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spinal cord injury decreases muscle mass and is associated with myofiber type trans formations in skeletal muscles. The present study evaluated the potential of motor- assisted cycling exercise or transplantation of fetal spinal cord tissue into the lesion cavity to inhibit or minimize these changes in skeletal muscles of 27 adult female Sprague-Dawley rats. Soleus (SO) and tibialis anterior (TA) muscles were studied 30 to 32 days after injury/intervention in the following groups: uninjured control ani mals (Con); spinal cord injured only (Tx); Tx with a 4-week exercise program con sisting of five weekly 60-minute sessions of cycling exercise initiated 5 days after in jury (TxEx); and Tx with fetal spinal cord tissue transplanted into the lesion cavity at the time of injury (TxTp). SO and TA muscle to body weight ratios were reduced significantly in the Tx group (24-30% decrease vs Con, p < 0.05) but were maintained with regular cycling exercise (6-8% decrease vs Con, no significant difference). The transplant had a beneficial effect on TA muscle mass (16% decrease vs Con, no sig nificant difference) but was not effective in limiting the effects of Tx on SO muscle mass. Immunohistochemistry and Northern analysis of TA and SO muscles revealed a Tx-induced reduction in myofiber cross sectional area (22% and 33% vs Con re spectively, p < 0.05) as well as a conversion in myosin heavy chain (MyHC) expres sion toward faster MyHC isoforms. Moreover, one month after injury, there was an increase in myofibers expressing more than one MyHC. mRNA encoding MyoD, a muscle-specific transcription factor, was increased in SO muscles suggesting that it may be involved in the long-term adaptations following spinal cord transection. Although cycling exercise was effective in preventing the decrease in myofiber area in both TA and SO, it did not inhibit the transformations of myofiber type. TA myofiber area was maintained in transplant recipients, however, this treatment was without conse quence on the size of SO myofibers. These results suggest that some of the normally observed spinal cord injury-induced skeletal muscle adaptations are minimized after one month of cycling exercise or fetal spinal cord tissue transplants. Key Words: Myosin heavy chain—Exercise—MyoD—Fetal tissue transplantation—Fiber types.
Collapse
|
10
|
Yin H, Li D, Zhang L, Yang M, Zhao X, Wang Y, Liu Y, Zhu Q. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. Poult Sci 2014; 93:1337-43. [DOI: 10.3382/ps.2013-03555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Gene 2013; 532:246-52. [PMID: 24055422 DOI: 10.1016/j.gene.2013.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023]
Abstract
Skeletal muscle fiber type composition is one of the important factors influencing muscle growth and meat quality. As a member of the myogenic transcription factors, myogenin (MyoG) is required for embryonic myoblast differentiation, but the expression of MyoG continues in mature muscle tissue of adult animals, especially in oxidative metabolic muscle, which suggests that MyoG may play a more extended role. Therefore, using MyoG gene transfer mice and C2C12 myoblasts as in vivo and in vitro models, respectively, we elected to study the role of MyoG in muscle fiber types and oxidative metabolism by using overexpression and siRNA suppression strategies. The overexpression of MyoG by DNA electroporation in mouse gastrocnemius muscle had no significant effect on fiber type composition but upregulated the mRNA expression (P<0.01) and enzyme activity (P<0.05) of oxidative succinic dehydrogenase (SDH). In addition, downregulation of the activity of the glycolytic enzymes lactate dehydrogenase (LDH, P<0.05) and pyruvate kinase (PK, P<0.05) was observed in MyoG gene transfer mice. In vitro experiments verified the results obtained in mice. Stable MyoG-transfected differentiating C2C12 cells showed higher mRNA expression levels of myosin heavy chain (MyHC) isoform IIX (P<0.01) and SDH (P<0.05), while the LDH mRNA was attenuated. The enzyme activities of SDH (P<0.01) and LDH (P<0.05) were similarly altered at the mRNA level. When MyoG was knocked down in C2C12 cells, MyHC IIX expression (P<0.05) was decreased, but the mRNA level (P<0.05) and the enzyme activity (P<0.05) of SDH were increased. Downregulating MyoG also increased the activity of the glycolytic enzymes PK (P<0.05) and hexokinase (HK, P<0.05). Based on those results, we concluded that MyoG barely changes the MyHC isoforms, except MyHC IIX, in differentiating myoblasts but probably influences the shift from glycolytic metabolism towards oxidative metabolism both in vivo and in vitro. These results contribute to further understand the role of MyoG in skeletal muscle energy metabolism and also help to explore the key genes that regulate meat quality.
Collapse
|
12
|
Fuxjager MJ, Barske J, Du S, Day LB, Schlinger BA. Androgens regulate gene expression in avian skeletal muscles. PLoS One 2012; 7:e51482. [PMID: 23284699 PMCID: PMC3524251 DOI: 10.1371/journal.pone.0051482] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/06/2012] [Indexed: 12/28/2022] Open
Abstract
Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird’s body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | |
Collapse
|
13
|
Simar D, Chen H, Lambert K, Mercier J, Morris MJ. Interaction between maternal obesity and post-natal over-nutrition on skeletal muscle metabolism. Nutr Metab Cardiovasc Dis 2012; 22:269-276. [PMID: 21208789 DOI: 10.1016/j.numecd.2010.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 11/12/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Maternal obesity and post-natal over-nutrition play an important role in programming glucose and lipid metabolism later in life. The aim of this study was to decipher the contributions of maternal obesity and post-natal over-nutrition on glucose and lipid metabolism in skeletal muscle. METHOD AND RESULTS Male offspring of Sprague Dawley rat mothers fed either chow or high fat diet (HFD) for 5 weeks prior to mating were subsequently fed either chow or HFD until 18 weeks of age. Collection of plasma and skeletal muscle was performed at weaning (20 days) and 18 weeks. At weaning, offspring from obese mothers showed increased body weight, plasma insulin and lactate concentrations associated with reduced skeletal muscle glucose transporter 4 (GLUT4) and increased monocarboxylate transporter 1 (MCT1) protein. In 18-week old offspring, post-weaning HFD further exacerbated the elevated body weight caused by maternal obesity. Surprisingly this additive effect on body weight was not reflected in plasma glucose, insulin, lactate and MCT1; these markers were only increased by post-weaning HFD consumption. However, an additive effect of maternal obesity and post-weaning HFD led to decreased muscle GLUT4 levels, as well as mRNA levels of carnitine palmitoyl transferase-1, myogenic differentiation protein and myogenin. CONCLUSION Post-weaning HFD exerted an additive effect to that of maternal obesity on body weight and skeletal muscle markers of glucose and lipid metabolism but not on plasma glucose and insulin levels, suggesting that maternal obesity and post-natal over-nutrition impair skeletal muscle function via different mechanisms.
Collapse
Affiliation(s)
- D Simar
- School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
14
|
Vatansever F, Rodrigues NC, Assis LL, Peviani SS, Durigan JL, Moreira FMA, Hamblin MR, Parizotto NA. Low intensity laser therapy accelerates muscle regeneration in aged rats. ACTA ACUST UNITED AC 2012; 1:287-297. [PMID: 23750328 DOI: 10.1515/plm-2012-0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. OBJECTIVE This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. SUBJECTS AND METHODS The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. RESULTS The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels. Moreover, capillary blood count was more prominent in elderly rats in laser irradiated groups when compared to young animals. CONCLUSION In conclusion, LILT increased the maturation of satellite cells into myoblasts and myotubes, enhancing the regenerative process of aged rats irradiated with laser.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shibata M, Matsumoto K, Hikino Y, Oe M, Ojima K, Nakajima I, Muroya S, Chikuni K. Influence of different feeding systems on the growth performance and muscle development of Japanese Black steers. Meat Sci 2011; 89:451-6. [DOI: 10.1016/j.meatsci.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 11/24/2022]
|
16
|
Nierobisz LS, Sporer KRB, Strasburg GM, Reed KM, Velleman SG, Ashwell CM, Felts JV, Mozdziak PE. Differential expression of genes characterizing myofibre phenotype. Anim Genet 2011; 43:298-308. [DOI: 10.1111/j.1365-2052.2011.02249.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Nierobisz LS, McFarland DC, Mozdziak PE. MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:125-31. [DOI: 10.1016/j.cbpb.2010.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 12/25/2022]
|
18
|
Katta A, Kundla S, Kakarla SK, Wu M, Fannin J, Paturi S, Liu H, Addagarla HS, Blough ER. Impaired overload-induced hypertrophy is associated with diminished mTOR signaling in insulin-resistant skeletal muscle of the obese Zucker rat. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1666-75. [PMID: 20926758 DOI: 10.1152/ajpregu.00229.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent data have suggested that insulin resistance may be associated with a diminished ability of skeletal muscle to undergo hypertrophy (Paturi S, Gutta AK, Kakarla SK, Katta A, Arnold EC, Wu M, Rice KM, Blough ER. J Appl Physiol 108: 7-13, 2010). Here we examine the effects of insulin resistance using the obese Zucker (OZ) rat with increased muscle loading on the regulation of the mammalian target of rapamycin (mTOR) and its downstream signaling intermediates 70-kDa ribosomal protein S6 kinase (p70S6k), ribosomal protein S6 (rpS6), eukaryotic elongation factor 2 (eEF2), and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Compared with that observed in lean Zucker (LZ) rats, the degree of soleus muscle hypertrophy as assessed by changes in muscle wet weight (LZ: 35% vs. OZ: 16%) was significantly less in the OZ rats after 3 wk of muscle overload (P < 0.05). This diminished growth in the OZ rats was accompanied by significant impairments in the ability of the soleus to undergo phosphorylation of mTOR (Ser(2448)), p70S6k (Thr(389)), rpS6 (Ser(235/236)), and protein kinase B (Akt) (Ser(473) and Thr(308)) (P < 0.05). Taken together, these data suggest that impaired overload-induced hypertrophy in insulin-resistant skeletal muscle may be related to decreases in the ability of the muscle to undergo mTOR-related signaling.
Collapse
Affiliation(s)
- Anjaiah Katta
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot O. Angio-adaptation in unloaded skeletal muscle: new insights into an early and muscle type-specific dynamic process. J Physiol 2010; 588:4579-91. [PMID: 20876198 DOI: 10.1113/jphysiol.2010.193243] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With a remarkable plasticity, skeletal muscle adapts to an altered functional demand. Muscle angio-adaptation can either involve the growth or the regression of capillaries as respectively observed in response to endurance training or muscle unloading. Whereas the molecular mechanisms that regulate exercise-induced muscle angiogenesis have been extensively studied, understanding how muscle unloading can in contrast lead to capillary regression has received very little attention. Here we have investigated the consequences of a 9 day time course hindlimb unloading on both capillarization and expression of angio-adaptive molecules in two different rat skeletal muscles. Both soleus and plantaris muscles were atrophied similarly. In contrast, our results have shown different angio-adaptive patterns between these two muscles. Capillary regression occurred only in the soleus, a slow-twitch and oxidative postural muscle. Conversely, the level of capillarization was preserved in the plantaris, a fast-twitch and glycolytic muscle. We have also measured the time course protein expression of key pro- and anti-angiogenic signals (VEGF-A, VEGF-B, VEGF-R2, TSP-1). Our results have revealed that the angio-adaptive response to unloading was muscle-type specific, and that an integrated balance between pro- and anti-angiogenic signals plays a determinant role in regulating this process. In conclusion, we have brought new evidence that measuring the ratio between pro- and anti-angiogenic signals in order to evaluate muscle angio-adaptation was a more accurate approach than analysing the expression of molecular factors taken individually.
Collapse
Affiliation(s)
- Emilie Roudier
- York University, Faculty of Health, Muscle Health Research Center, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Parvaresh KC, Huber AM, Brochin RL, Bacon PL, McCall GE, Huey KA, Hyatt JPK. Acute vascular endothelial growth factor expression during hypertrophy is muscle phenotype specific and localizes as a striated pattern within fibres. Exp Physiol 2010; 95:1098-106. [PMID: 20696782 DOI: 10.1113/expphysiol.2010.053959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle hypertrophy requires the co-ordinated expression of locally acting growth factors that promote myofibre growth and concurrent adaptive changes in the microvasculature. These studies tested the hypothesis that vascular endothelial growth factor (VEGF) and heparin-binding epidermal growth factor (HB-EGF) expression are upregulated during the early stages of compensatory muscle growth induced by chronic functional overload (FO). Bilateral FO of the plantaris and soleus muscles was induced for 3 or 7 days in the hindlimbs of adult female Sprague-Dawley rats (n = 5 per group) and compared with control (non-FO) rats. Relative muscle mass (in mg (kg body weight)(-1)) increased by 18 and 24% after 3 days and by 20 and 33% after 7 days in the plantaris and soleus muscles, respectively. No differences in HB-EGF mRNA or protein were observed in either muscle of FO rats relative to control muscles. The VEGF mRNA was similar in the soleus muscles of FO and control rats, whereas a significant elevation occurred at 3 and 7 days of FO in the plantaris muscle. However, VEGF protein expression after 3 days of FO exhibited a differential response; expression in the soleus muscle decreased 1.6-fold, whereas that in the plantaris muscle increased 1.8-fold compared with the control muscle. After 7 days of FO, VEGF protein remained elevated within the plantaris muscle, but returned to basal levels in the soleus. Robust basal HB-EGF and VEGF protein expression was consistently seen in control muscles. In all groups, immunohistochemistry for VEGF protein displayed a distinct striated expression pattern within myofibres, with considerably less labelling in extracellular spaces. Constitutive expression of HB-EGF and VEGF in control myofibres is consistent with housekeeping roles for these growth factors in skeletal muscle tissue. However, the specific patterns of VEGF expression in these muscles during FO may reflect the chronic changes in neural recruitment between muscles and the co-ordination of angiogenic and/or other hypertrophic responses.
Collapse
Affiliation(s)
- Kevin C Parvaresh
- Department of Biology, Georgetown University, 3700 Reservoir Road, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Nierobisz LS, Hentz NG, Felts JV, Mozdziak PE. Fiber phenotype and coenzyme Q₁₀ content in Turkey skeletal muscles. Cells Tissues Organs 2010; 192:382-94. [PMID: 20664252 DOI: 10.1159/000319550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Phenotypical differences between muscle fibers are associated with a source of cellular energy. Coenzyme Q(10) (CoQ(10)) is a major component of the mitochondrial oxidative phosphorylation process, and it significantly contributes to the production of cellular energy in the form of ATP. The objective of this study was to determine the relationship between whole-tissue CoQ(10) content, mitochondrial CoQ(10) content, mitochondrial protein, and muscle phenotype in turkeys. Four specialized muscles (anterior latissimus dorsi, ALD; posterior latissimus dorsi, PLD; pectoralis major, PM, and biceps femoris, BF) were evaluated in 9- and 20-week-old turkey toms. The amount of muscle mitochondrial protein was determined using the Bradford assay and CoQ(10) content was measured using HPLC-UV. The amount of mitochondrial protein relative to total protein was significantly lower (p < 0.05) at 9 compared to 20 weeks of age. All ALD fibers stained positive for anti-slow (S35) MyHC antibody. The PLD and PM muscle fibers revealed no staining for slow myosin heavy chain (S35 MyHC), whereas half of BF muscle fibers exhibited staining for S35 MyHC at 9 weeks and 70% at 20 weeks of age. The succinate dehydrogenase (SDH) staining data revealed that SDH significantly increases (p < 0.05) in ALD and BF muscles and significantly decreases (p < 0.05) in PLD and PM muscles with age. The study reveals age-related decreases in mitochondrial CoQ(10) content in muscles with fast/glycolytic profile, and demonstrates that muscles with a slow/oxidative phenotypic profile contain a higher proportion of CoQ(10) than muscles with a fast/glycolytic phenotypic profile.
Collapse
Affiliation(s)
- L S Nierobisz
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
22
|
Iwanowska A, Grześ B, Mikołajczak B, Iwańska E, Juszczuk-Kubiak E, Rosochacki SJ, Pospiech E. Impact of polymorphism of the regulatory subunit of the μ-calpain (CAPN1S) on the proteolysis process and meat tenderness of young cattle. Mol Biol Rep 2010; 38:1295-300. [PMID: 20563650 PMCID: PMC3024519 DOI: 10.1007/s11033-010-0229-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/11/2010] [Indexed: 10/25/2022]
Abstract
The objective of this study was to estimate the impact of the polymorphism of μ-calpain (CAPN1S) gene on protein changes of the cattle muscle tissue and its tenderness during 10-day cold storage. The analysis was performed on the longest dorsal and lumbar muscles collected from 76 bulls 6 to 12 months of age. Polymorphism identification of the above-mentioned gene was conducted using the PCR-RFLP technique. Its effect on the course of the proteolysis process was assessed by monitoring changes in proportions of tissue proteins during 10-day process of meat ageing. Special attention was focused on changes in native titin (T1) share and products of its degradation (proteins of molecular weight (m.w.) of 2400 and 200 kDa), α-actinin and protein of 37 kDa as well as myosin heavy chains (MHC). In the case of the last proteins, their polymorphism was evaluated as well. Meat tenderness was estimated measuring the value of shear force and sensorially. The highest tenderness was ascertained for the heterozygote. Its improvement was associated with a significant decrease in proportions of proteins of molecular weight of approximately 37 kDa accompanied by an increase of those with 200 kDa molecular weight. Muscles derived from cattle of CT genotype were characterised by the highest proportions of type 2a MHC isoform. Value differences between proportions determined for the heterozygote and CC and TT homozygotes of the CAPN1S gene were statistically significant. Therefore, it can be presumed that the process of meat tenderisation was especially connected with MHC polymorphism.
Collapse
Affiliation(s)
- Agnieszka Iwanowska
- Institute of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Tsivitse S. Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 2010; 6:268-81. [PMID: 20567496 PMCID: PMC2878172 DOI: 10.7150/ijbs.6.268] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/13/2010] [Indexed: 12/18/2022] Open
Abstract
Adult skeletal muscle stem cells, termed satellite cells are imperative to muscle regeneration. Much work has been performed on satellite cell identification and the subsequent activation of the myogenic response but the regulation of satellite cells including its activation is not well elucidated. The purpose of this review article is to synthesize what the literature reveals in regards to the current understanding of satellite cells including their contribution to muscle repair and growth following physiological stimuli. In addition, this review article will describe the recent findings on the roles of the classic developmental signaling pathways, Notch and Wnt, to the myogenic response in various muscle injury models. This purpose of this summary is to bring awareness of the impact that muscle contraction models have on the local and systemic environment of adult muscle stem cells which will be beneficial for comprehending and treatment development for muscle -associated ailments and other organ diseases.
Collapse
Affiliation(s)
- Susan Tsivitse
- Department of Kinesiology, Exercise Physiology Laboratory, University North Carolina-Charlotte, NC 28223, USA.
| |
Collapse
|
24
|
Wilborn CD, Taylor LW, Greenwood M, Kreider RB, Willoughby DS. Effects of different intensities of resistance exercise on regulators of myogenesis. J Strength Cond Res 2010; 23:2179-87. [PMID: 19826309 DOI: 10.1519/jsc.0b013e3181bab493] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A single bout of high-intensity resistance exercise is capable of activating the expression of various genes in skeletal muscle involved in hypertrophy such as myosin heavy chain (MHC) isoforms, myogenic regulatory factors (MRFs), and growth factors. However, the specific role exercise intensity plays on the expression of these genes is not well defined. The purpose of this study was to investigate the effects of exercise intensity on MHC (type I, IIA, IIX), MRF (Myo-D, myogenin, MRF-4, myf5), and growth factor (insulin-like growth factor [IGF]-1, IGF-1 receptor [IGF-R1], mechano-growth factor [MGF]) mRNA expression. Thirteen male participants (21.5 +/- 2.9 years, 86.1 +/- 19.5 kg, 69.7 +/- 2.7 in.) completed bouts of resistance exercise involving 4 sets of 18-20 repetitions with 60-65% 1 repetition maximum (1RM) and 4 sets of 8-10 repetitions with 80-85% 1RM. Vastus lateralis biopsies were obtained immediately before exercise, and at 30 minutes, 2 hours, and 6 hours after each bout. The levels of mRNA expression were determined using real-time polymerase chain reaction. Data were analyzed using 2 x 4 multivariate analysis of variance (p
Collapse
Affiliation(s)
- Colin D Wilborn
- Department of Exercise Sport Science, University of Mary Hardin Baylor, Belton, Texas, USA
| | | | | | | | | |
Collapse
|
25
|
Legerlotz K, Smith HK. Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve 2008; 38:1087-100. [PMID: 18642380 DOI: 10.1002/mus.21087] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The myogenic regulatory factor MyoD plays an important role in embryonic and adult skeletal muscle growth. Even though it is best known as a marker for activated satellite cells, it is also expressed in myonuclei, and its expression can be induced by a variety of different conditions. Several model systems have been used to study the mechanisms behind MyoD regulation, such as exercise, stretch, disuse, and denervation. Since MyoD reacts in a highly muscle-specific manner, and its expression varies over time and between species, universally valid predictions and explanations for changes in MyoD expression are not possible. This review explores the complex role of MyoD in muscle plasticity by evaluating the induction of MyoD expression in the context of muscle composition and electrical and mechanical stimulation.
Collapse
Affiliation(s)
- Kirsten Legerlotz
- Department of Sport and Exercise Science, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
26
|
Hyatt JPK, McCall GE, Kander EM, Zhong H, Roy RR, Huey KA. PAX3/7 expression coincides with MyoD during chronic skeletal muscle overload. Muscle Nerve 2008; 38:861-6. [PMID: 18508329 DOI: 10.1002/mus.21006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Paired box (Pax) proteins 3 and 7 are key determinants for embryonic skeletal muscle development by initiating myogenic regulatory factor (MRF) gene expression. We show that Pax3 and 7 participate in adult skeletal muscle plasticity during the initial responses to chronic overload (< or =7 days) and appear to coordinate MyoD expression, a member of the MRF family of genes. Pax3 and 7 mRNA were higher than control within 12 h after initiation of overload, preceded the increase in MyoD mRNA on day 1, and peaked on day 2. On days 3 and 7, Pax7 mRNA remained higher than control, suggesting that satellite cell self-renewal was occurring. Pax3 and 7 and MyoD protein levels were higher than control on days 2 and 3. These data indicate that Pax3 and 7 coordinate the recapitulation of developmental-like regulatory mechanisms in response to growth-inducing stimuli in adult skeletal muscle, presumably through activation of satellite cells.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, 3700 Reservoir Rd., Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Lopes FDS, Carvalho RF, Campos GER, Sugizaki MM, Padovani CR, Nogueira CR, Cicogna AC, Pai-Silva MD. Down-regulation of MyoD gene expression in rat diaphragm muscle with heart failure. Int J Exp Pathol 2008; 89:216-22. [PMID: 18460074 DOI: 10.1111/j.1365-2613.2008.00587.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diaphragm myopathy has been described in patients with heart failure (HF), with alterations in myosin heavy chains (MHC) expression. The pathways that regulate MHC expression during HF have not been described, and myogenic regulatory factors (MRFs) may be involved. The purpose of this investigation was to determine MRF mRNA expression levels in the diaphragm. Diaphragm muscle from both HF and control Wistar rats was studied when overt HF had developed, 22 days after monocrotaline administration. MyoD, myogenin and MRF4 gene expression were determined by RT-PCR and MHC isoforms by polyacrylamide gel electrophoresis. Heart failure animals presented decreased MHC IIa/IIx protein isoform and MyoD gene expression, without altering MHC I, IIb, myogenin and MRF4. Our results show that in HF, MyoD is selectively down-regulated, which might be associated with alterations in MHC IIa/IIx content. These changes are likely to contribute to the diaphragm myopathy caused by HF.
Collapse
|
28
|
Harcourt LJ, Schertzer JD, Ryall JG, Lynch GS. Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue. Neuromuscul Disord 2007; 17:47-55. [PMID: 17134898 DOI: 10.1016/j.nmd.2006.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/08/2006] [Accepted: 08/31/2006] [Indexed: 11/25/2022]
Abstract
The beta(2)-adrenoceptor agonist (beta(2)-agonist), formoterol, has been shown to cause muscle hypertrophy in rats even when administered at the micromolar dose of 25 micro g/kg/day. We investigated whether a similar low dose of formoterol could improve muscle function in the dystrophic mdx mouse. Ten-week-old male mdx and wild-type (C57BL/10) mice were administered formoterol (25 micro g/kg/day, i.p.) for 4 weeks. Formoterol treatment increased extensor digitorum longus (EDL) and soleus muscle mass, increased median muscle fibre size in diaphragm, EDL, and soleus muscles, and increased maximum force producing capacity in skeletal muscles of both wild-type and mdx mice. In contrast to other studies where beta(2)-agonists have been administered to mice and rats, generally at higher doses, low dose formoterol treatment did not increase the fatiguability of EDL, soleus or diaphragm muscles. Although others have found formoterol can decrease ubiquitin mRNA and proteasome activity when administered to tumour bearing rats at high doses (2mg/kg/day), in the present study low dose formoterol treatment did not alter ubiquitin or the E1 and E3 ubiquitin ligases in diaphragm muscles of wild-type or mdx mice, but it did reduce the level of ubiquitinated proteins in diaphragm of wild-type mice. The findings indicate that formoterol has considerably more powerful anabolic effects on skeletal muscle than older generation beta(2)-agonists (like clenbuterol and albuterol), and has considerable therapeutic potential for muscular dystrophies and other neuromuscular disorders where muscle wasting is indicated.
Collapse
Affiliation(s)
- Leah J Harcourt
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Kvorning T, Andersen M, Brixen K, Schjerling P, Suetta C, Madsen K. Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. J Physiol 2006; 578:579-93. [PMID: 17095559 PMCID: PMC2075150 DOI: 10.1113/jphysiol.2006.122671] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We hypothesized that suppression of endogenous testosterone blunts mRNA expression post strength training (ST). Twenty-two young men were randomized for treatment with the GnRH analogue goserelin (3.6 mg every 4 weeks) or placebo for a period of 12 weeks. The ST period of 8 weeks started at week 4. Strength test, blood sampling, muscle biopsies, and whole-body dual-energy X-ray absorptiometry (DXA) scan were performed at weeks 4 and 12. Muscle biopsies were taken during the final ST session (pre, post 4 h, and post 24 h). Resting serum testosterone decreased significantly (P < 0.01) in the goserelin group from 22.6 +/- 1.6 (mean +/- s.e.m.) to 2.0 +/- 0.1 nmol l(-1) (week 4), whereas it remained unchanged in the placebo group. An acute increase of serum testosterone was observed during the final ST session in the placebo group (P < 0.05), whereas a decreased response was observed in the goserelin group (P < 0.05). mRNA expression of IGF-IE(bc) and myogenin increased, while expression of myostatin decreased (P < 0.01); however, no differences were observed between the groups. Muscle strength and muscle mass showed a tendency to increase more in the placebo group than in the goserelin group (P = 0.05). In conclusion, despite blocked acute responses of testosterone and 10- to 20-fold lower resting levels in the goserelin group, ST resulted in a similar mRNA expression of myoD, myogenin, IGF-IE(abc), myostatin and androgen receptor as observed in the placebo group. Therefore, in the present study, the molecular events were the same, despite divergent muscle hypertrophy and strength gains.
Collapse
Affiliation(s)
- Thue Kvorning
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | | | | | |
Collapse
|
30
|
Carvalho RF, Cicogna AC, Campos GER, da Silva Lopes F, Sugizaki MM, Nogueira CR, Pai-Silva MD. Heart failure alters MyoD and MRF4 expressions in rat skeletal muscle. Int J Exp Pathol 2006; 87:219-25. [PMID: 16709230 PMCID: PMC2517363 DOI: 10.1111/j.1365-2613.2006.00475.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Heart failure (HF) is characterized by a skeletal muscle myopathy with increased expression of fast myosin heavy chains (MHCs). The skeletal muscle-specific molecular regulatory mechanisms controlling MHC expression during HF have not been described. Myogenic regulatory factors (MRFs), a family of transcriptional factors that control the expression of several skeletal muscle-specific genes, may be related to these alterations. This investigation was undertaken in order to examine potential relationships between MRF mRNA expression and MHC protein isoforms in Wistar rat skeletal muscle with monocrotaline-induced HF. We studied soleus (Sol) and extensor digitorum longus (EDL) muscles from both HF and control Wistar rats. MyoD, myogenin and MRF4 contents were determined using reverse transcription-polymerase chain reaction while MHC isoforms were separated using polyacrylamide gel electrophoresis. Despite no change in MHC composition of Wistar rat skeletal muscles with HF, the mRNA relative expression of MyoD in Sol and EDL muscles and that of MRF4 in Sol muscle were significantly reduced, whereas myogenin was not changed in both muscles. This down-regulation in the mRNA relative expression of MRF4 in Sol was associated with atrophy in response to HF while these alterations were not present in EDL muscle. Taken together, our results show a potential role for MRFs in skeletal muscle myopathy during HF.
Collapse
Affiliation(s)
- Robson Francisco Carvalho
- Departamento de Morfologia, UNESP, BotucatuSão Paulo, Brazil
- Departamentos de Biologia Celular e Anatomia, UNICAMP, CampinasSão Paulo, Brazil
| | | | | | - Francis da Silva Lopes
- Departamentos de Biologia Celular e Anatomia, UNICAMP, CampinasSão Paulo, Brazil
- Departamento de Fisioterapia, UNOESTE, Presidente PrudenteBrazil
| | | | | | | |
Collapse
|
31
|
McDaneld TG, Hannon K, Moody DE. Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1672-82. [PMID: 16424087 DOI: 10.1152/ajpregu.00239.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ankyrin repeat and SOCS box protein 15 (ASB15) is an Asb family member expressed predominantly in skeletal muscle. We have previously reported that ASB15 mRNA abundance decreases after administration of β-adrenergic receptor agonists. Because β-adrenergic receptor agonists are known to stimulate muscle hypertrophy, the objective of this study was to determine whether ASB15 regulates cellular processes that contribute to muscle growth. Stable myoblast C2C12 cells expressing full-length ASB15 (ASB15-FL) and ASB15 lacking the ankyrin repeat (ASB15-Ank) or SOCS box (ASB15-SOCS) motifs were evaluated for changes in proliferation, differentiation, protein synthesis, and protein degradation. Expression of ASB15-FL caused a delay in differentiation, followed by an increase in protein synthesis of ∼34% ( P < 0.05). A consistent effect of ASB15 overexpression was observed in vivo, where ectopic expression of ASB15 increased skeletal muscle fiber area ( P < 0.0001) after 9 days. Expression of ASB15-SOCS altered differentiation of myoblasts, resulting in detachment of cells from culture plates. Expression of ASB15-Ank increased protein degradation by 84 h of differentiation ( P < 0.05), and in vivo ectopic expression of an ASB15 construct lacking both the ankyrin repeat and SOCS box motifs decreased skeletal muscle fiber area ( P < 0.0001). Together, these results suggest ASB15 participates in the regulation of protein turnover and muscle cell development by stimulating protein synthesis and regulating differentiation of muscle cells. This is the first study to demonstrate a role for an Asb family member in skeletal muscle growth.
Collapse
Affiliation(s)
- T G McDaneld
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
32
|
Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol (1985) 2006; 101:531-44. [PMID: 16614355 DOI: 10.1152/japplphysiol.01474.2005] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
Collapse
Affiliation(s)
- David J Kosek
- UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001, USA
| | | | | | | | | |
Collapse
|
33
|
Alway SE, Siu PM, Murlasits Z, Butler DC. Muscle hypertrophy models: applications for research on aging. ACTA ACUST UNITED AC 2005; 30:591-624. [PMID: 16293906 DOI: 10.1139/h05-143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle hypertrophy is an adaptive response to overload that requires increasing gene transcription and synthesis of muscle-specific proteins resulting in increased protein accumulation. Progressive resistance training (P(RT)) is thought to be among the best means for achieving hypertrophy in humans. However, hypertrophy and functional adaptations to P(RT) in the muscles of humans are often difficult to evaluate because adaptations can take weeks, months, or even years before they become evident, and there is a large variability in response to P(RT) among humans. In contrast, various animal models have been developed which quickly result in extensive muscle hypertrophy. Several such models allow precise control of the loading parameters and records of muscle activation and performance throughout overload. Scientists using animal models of muscle hypertrophy should be familiar with the advantages and disadvantages of each and thereby choose the model that best addresses their research question. The purposes of this paper are to review animal models currently being used in basic research laboratories, discuss the hypertrophic and functional outcomes as well as applications of these models to aging, and highlight a few mechanisms involved in regulating hypertrophy as a result of applying these animal models to questions in research on aging.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Robert C Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
34
|
Kim JS, Kosek DJ, Petrella JK, Cross JM, Bamman MM. Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. J Appl Physiol (1985) 2005; 99:2149-58. [PMID: 16051712 DOI: 10.1152/japplphysiol.00513.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regenerative capacity appears to be impaired in sarcopenic muscle. As local growth factors and myogenic regulatory factors (MRFs) modulate repair/regeneration responses after overload, we hypothesized that resistance loading (RL)-induced expression of MRFs and muscle IGF-I-related genes would be blunted in older (O) males (M) and females (F) with demonstrable sarcopenia vs. young (Y) adults. Y (20-35 yr, 10 YF, 10 YM) and O (60-75 yr, 9 OF, 9 OM) underwent vastus lateralis biopsy before and 24 h after knee extensor RL. Sarcopenia was assessed by cross-sectional area of type I, IIa, and IIx myofibers. Transcript levels were assessed by relative RT-PCR and analyzed by age x gender x load repeated-measures ANOVA. O were sarcopenic based on type II atrophy with smaller type IIa (P < 0.05) and IIx (P < 0.001) myofibers. Within-gender cross-sectional area differences were more marked in F (OF < YF: IIa 21%, IIx 42%). Load effects (P < 0.05) were seen for four of seven mRNAs as IGF-IEa (34%), myogenin (53%), and MyoD (20%) increased, and myf-6 declined 10%. Increased IGF-IEa was driven by O (48%) and/or M (43%). An age x gender x load interaction was found for MyoD (P < 0.05). An age x load interaction for type 1 IGF receptor (P < 0.05) was driven by a small increase in O (16%, P < 0.05). A gender x load interaction (P < 0.05) was noted for IGF binding protein-4. Age effects (P < 0.05) resulted from higher MyoD (54%), myf-5 (21%), and IGF binding protein-4 (17%) in O and were primarily localized to F at baseline (OF > YF; MyoD 94%, myf-5 47%, P < 0.05). We conclude that RL acutely increases mRNA expression of IGF-IEa and myogenin, which may promote growth/regeneration in both Y and O. Higher resting levels of MRFs in OF vs. YF suggest elevated basal regenerative activity in sarcopenic muscle of OF.
Collapse
Affiliation(s)
- Jeong-su Kim
- Dept. of Physiology, Univeristy of Alabama, Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
35
|
Cross-Doersen D, Isfort RJ. A novel cell-based system for evaluating skeletal muscle cell hypertrophy-inducing agents. In Vitro Cell Dev Biol Anim 2005; 39:407-12. [PMID: 14741040 DOI: 10.1290/1543-706x(2003)039<0407:ancsfe>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal muscle is a tissue that adapts to increased use by increasing contractile protein gene expression and ultimately skeletal muscle mass (hypertrophy). To identify hypertrophy-inducing agents that may be potentially useful in the treatment of age-related muscle loss (sarcopenia) and to better understand hypertrophy signal transduction pathways, we have created a skeletal muscle cell-based hypertrophy-responsive system. This system was created by permanently modifying the relatively undifferentiated C2C12 cell line so that it contains the beta-myosin heavy chain (beta-MHC) gene promoter and enhancer regions fused to a luciferase reporter gene. This cell line responds, by increasing luciferase expression, to a variety of skeletal muscle hypertrophy-inducing agents, including insulin, insulin-like growth factor I, testosterone, and the beta-adrenergic receptor agonist isoproterenol, in both the undifferentiated and differentiated states. This cell-based system should be useful for identifying novel hypertrophy-inducing agents as well as understanding hypertrophy signal transduction.
Collapse
Affiliation(s)
- Doreen Cross-Doersen
- Research Division, Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Road, Mason, Ohio 45040-9317, USA
| | | |
Collapse
|
36
|
Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985) 2004; 98:482-8. [PMID: 15465884 DOI: 10.1152/japplphysiol.00895.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.
Collapse
Affiliation(s)
- C Scott Bickel
- Department of Physical Therapy, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
37
|
Siu PM, Donley DA, Bryner RW, Alway SE. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol (1985) 2004; 97:277-85. [PMID: 15033961 DOI: 10.1152/japplphysiol.00534.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intent of this study was to determine whether endurance exercise training regulates increases in metabolic enzymes, which parallel modulations of myogenin and MyoD in skeletal muscle of rats. Adult Sprague-Dawley rats were endurance trained (TR) 5 days weekly for 8 wk on a motorized treadmill. They were killed 48 h after their last bout of exercise. Sedentary control (Con) rats were killed at the same time as TR animals. Myogenin, MyoD, citrate synthase (CS), cytochrome- c oxidase (COX) subunits II and VI, lactate dehydrogenase (LDH), and myosin light chain mRNA contents were determined in soleus muscles by using RT-PCR. Myogenin mRNA content was also estimated by using dot-blot hybridization. Protein expression levels of myogenin and MyoD were measured by Western blots. CS enzymatic activity was also measured. RT-PCR measurements showed that the mRNA contents of myogenin, CS, COX II, COX VI, and LDH were 25, 20, 17, 16, and 18% greater, respectively, in TR animals compared with Con animals ( P < 0.05). The ratio of myogenin to MyoD mRNA content estimated by RT-PCR in TR animals was 28% higher than that in Con animals ( P < 0.05). Myosin light chain expression was similar in Con and TR muscles. Results from dot-blot hybridization to a riboprobe further confirmed the increase in myogenin mRNA level in TR group. Western blot analysis indicated a 24% greater level of myogenin protein in TR animals compared with Con animals ( P < 0.01). The soleus muscles from TR animals had a 25% greater CS enzymatic activity than the Con animals ( P < 0.01). Moreover, myogenin mRNA and protein contents were positively correlated to CS activity and mRNA contents of CS, COX II, and COX VI ( P < 0.05). These data are consistent with the hypothesis that myogenin is in the pathway for exercise-induced changes in mitochondrial enzymes.
Collapse
Affiliation(s)
- Parco M Siu
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown WV 26506-9227, USA
| | | | | | | |
Collapse
|
38
|
Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM. Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. J Appl Physiol (1985) 2004; 97:1329-37. [PMID: 15155718 DOI: 10.1152/japplphysiol.01387.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on the growing body of evidence implicating an important role for myogenic regulatory factors (MRFs) in the adaptive responses of skeletal muscle to mechanical load, we tested the hypothesis that protein concentrations of MRFs as well as cell cycle proteins (i.e., cyclins and cyclin-dependent kinase inhibitors) would be altered after heavy leg resistance exercise (RE). Because we and others, however, have shown a blunted adaptive response to long-term resistance training in older (O) women [females (F)] compared with men (M), we also tested the hypothesis that these myogenic responses to RE would be influenced by age and gender. Twenty-two younger (Y) adults (20-35 yr, 11 YF, 11 YM) and 20 O adults (60-75 yr, 9 OF, 11 OM) consented to vastus lateralis muscle biopsy before and 24 h after a bout of RE using a regimen known to induce myofiber hypertrophy when performed 2-3 days/wk for several weeks (3 sets of 80% one-repetition maximum for squat, leg press, and knee extension). Protein concentrations of MRFs (MyoD, myogenin, myf-6), cyclin D1, cyclin B1, alpha-actin, and the cyclin-dependent kinase inhibitor p27kip were determined by immunoblotting. Data were analyzed by using age x gender x load repeated-measures ANOVA. Myogenin expression was 44% higher (P <0.05) in O compared with Y, and myf-6 tended to be higher in OF compared with YF (95%, P=0.059). A significant gender x load interaction indicated that, in F, RE led to a reduction in p27kip (20%; P<0.05), which was driven mainly by a 27% drop in OF. Levels of cyclin D1, cyclin B1, MyoD, myf-6, and alpha-actin were not influenced by age, gender, or loading. We report a novel finding in humans of markedly higher myogenin protein content in older sedentary muscle. The results do not, however, support the hypothesis that myogenic protein expression is altered 24 h after RE, irrespective of age or gender. Although the time point of postexercise muscle biopsy could be viewed as too early to capture maximal effects for most of these proteins, the significant decline in p27kip concentration found in OF suggests that mechanical load may provide one means of overcoming the inhibitory influence of p27kip.
Collapse
Affiliation(s)
- Marcas M Bamman
- UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G, Veterans Affairs Medical Center, 1530 3rd Ave. South, Birmingham, AL 35294-0001, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bricout VA, Serrurier BD, Bigard AX. Clenbuterol treatment affects myosin heavy chain isoforms and MyoD content similarly in intact and regenerated soleus muscles. ACTA ACUST UNITED AC 2004; 180:271-80. [PMID: 14962009 DOI: 10.1046/j.0001-6772.2003.01246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Pharmacological treatment with the beta2-adrenoceptor agonist clenbuterol is known to induce a slow-to-fast fibre type and myosin heavy chain (MHC) isoform transition in intact muscle. This study examined the sensitivity of regenerated soleus muscle to 4 weeks of clenbuterol treatment (2 mg kg-1 day-1). METHODS Female Wistar rats were divided into two groups: vehicle treated (n = 8) and clenbuterol treated (n = 8). The clenbuterol effects on MHC and MyoD expression were examined in soleus muscles either intact, or previously degenerated by venom of the Notechis scutatus scutatus snake. RESULTS Post-treatment body weights and skeletal muscle weights were not affected by clenbuterol treatment. Muscle protein concentration was higher, and body fat lower in clenbuterol-treated rats than in vehicle-treated animals (P < 0.05). Polyacrylamide gel electrophoresis of soleus myofibrillar protein indicated a clenbuterol-induced decrease in the relative percentage of type I MHC with a concomitant increase in type IIa MHC (31%, P < 0.001). No degeneration effect was observed after 28 days of recovery on the MHC isoform content, and regenerated soleus muscles exhibited the same phenotypical profile as intact soleus muscles, whether or not they were treated with clenbuterol. In intact and in regenerated soleus muscles, MyoD protein levels were significantly increased by clenbuterol treatment (90 and 77%, respectively, P < 0.001). CONCLUSION These results show that regenerated soleus muscles, comprising a homogeneous population of fibres deriving from satellite cells, have a similar response to clenbuterol as intact muscle arising from at least two discrete populations of myotubes; it is suggested that the activity of signalling pathways involved in the effects of clenbuterol on MHC transitions is not related to the developmental history of myofibres.
Collapse
Affiliation(s)
- V-A Bricout
- Department of Human Factors, Centre de recherches du service de santé des armées, La Tronche Cedex, France
| | | | | |
Collapse
|
40
|
Abstract
Using an integrative approach, this review highlights the benefits of resistance training toward improvements in functional status, health and quality of life among older adults. Sarcopenia (i.e. muscle atrophy) and loss of strength are known to occur with age. While its aetiology is poorly understood, the multifactorial sequelae of sarcopenia are well documented and present a major public health concern to our aging population, as both the quality of life and the likelihood of age-associated declines in health status are influenced. These age-related declines in health include decreased energy expenditure at rest and during exercise, and increased body fat and its accompanying increased dyslipidaemia and reduced insulin sensitivity. Quality of life is affected by reduced strength and endurance and increased difficulty in being physically active. Strength and muscle mass are increased following resistance training in older adults through a poorly understood series of events that appears to involve the recruitment of satellite cells to support hypertrophy of mature myofibres. Muscle quality (strength relative to muscle mass) also increases with resistance training in older adults possibly for a number of reasons, including increased ability to neurally activate motor units and increased high-energy phosphate availability. Resistance training in older adults also increases power, reduces the difficulty of performing daily tasks, enhances energy expenditure and body composition, and promotes participation in spontaneous physical activity. Impairment in strength development may result when aerobic training is added to resistance training but can be avoided with training limited to 3 days/week.
Collapse
Affiliation(s)
- Gary R Hunter
- Department of Human Studies, University of Alabama, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
41
|
Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol (1985) 2003; 95:1038-44. [PMID: 12716875 DOI: 10.1152/japplphysiol.00903.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated (P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased (P < 0.005) by approximately 44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.
Collapse
Affiliation(s)
- Niklas Psilander
- August Krogh Institute, Copenhagen Muscle Research Centre, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
42
|
Stevens L, Bozzo C, Nemirovskaya T, Montel V, Falempin M, Mounier Y. Contractile properties of rat single muscle fibers and myosin and troponin isoform expression after hypergravity. J Appl Physiol (1985) 2003; 94:2398-405. [PMID: 12576410 DOI: 10.1152/japplphysiol.00808.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of 19 days of hypergravity (HG) were investigated on the biochemical and physiological properties of the slow soleus muscle and its fast agonist, the plantaris. HG was induced by rotational centrifugation that led to a 2-G gravity level. The HG rats were characterized by a slower body growth than control, whereas the soleus muscle mass was increased by 15%. Using electrophoretic techniques, we showed that the distribution of myosin heavy chain and troponin T isoforms was not modified after HG in both soleus and plantaris. In contrast, the isoform expression pattern of two troponin subunits, troponin I and troponin C, was changed in a slow-to-fast manner only in the soleus. From tension-pCa relationships, changes in Ca(2+) activation threshold by 0.18 pCa unit indicated a decrease in Ca(2+) sensitivity and an increase in the slope of the curve, attesting to a higher cooperativity along the thin filament after HG. Comparison of our HG data with previous results in microgravity conditions indicated that muscle characteristics, except muscle mass, did not evolve linearly from 0 to 2 G.
Collapse
Affiliation(s)
- Laurence Stevens
- Laboratory of Neuromuscular Plasticity, Institut Fédératif de Recherche en Protéomique 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France.
| | | | | | | | | | | |
Collapse
|
43
|
Pregelj P, Crne-Finderle N, Sketelj J. Effect of thyroid hormones on acetylcholinesterase mRNA levels in the slow soleus and fast extensor digitorum longus muscles of the rat. Neuroscience 2003; 116:657-67. [PMID: 12573709 DOI: 10.1016/s0306-4522(02)00693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the rat, the level of acetylcholinesterase messenger RNA in the typical slow soleus muscles is only about 20-30% of that in the fast extensor digitorum longus muscles. The expression of contractile proteins in muscles is influenced by thyroid hormones and hyperthyroidism makes the slow soleus muscle faster. The influence of thyroid hormones on the levels of acetylcholinesterase messenger RNA level in the slow soleus and fast extensor digitorum longus muscle of the rat was studied in order to examine the effect of thyroid hormones on muscle acetylcholinesterase expression. Hyperthyroidism was induced in rats by daily thyroid hormone injection or thyroid hormone releasing tablet implantation. Hind-limb suspension was applied to produce muscle unloading. Muscle denervation or reinnervation was achieved by sciatic nerve transection or crush. Acetylcholinesterase messenger RNA levels were analyzed by Northern blots and evaluated densitometrically. Hyperthyroidism increased the levels of acetylcholinesterase messenger RNA in the slow soleus muscles close to the levels in the fast extensor digitorum longus. The effect was the same in the unloaded soleus muscles. Acetylcholinesterase expression increased also in the absence of innervation (denervation), in the presence of changed nerve activation pattern (reinnervation), and under enhanced tonic neural activation of the soleus muscle (electrical stimulation). However, the changes were substantially smaller than those observed in the control soleus muscles. Enhancement of acetylcholinesterase expression in the soleus muscles by the thyroid hormones is, therefore, at last in part due to hormonal effect on the muscle itself. On the contrary, increased level of the thyroid hormones had no influence on acetylcholinesterase expression in the normal fast extensor digitorum longus muscles. However, some enhancing influence was apparent whenever the total number of nerve-induced muscle activations per day in the extensor digitorum longus muscle was increased. Thyroid hormones seem to be an independent extrinsic factor of acetylcholinesterase regulation in the slow soleus muscle.
Collapse
Affiliation(s)
- P Pregelj
- Institute of Pathophysiology, School of Medicine, University of Ljubljana, Slovenia.
| | | | | |
Collapse
|
44
|
Mozdziak PE, Dibner JJ, McCoy DW. Glyceraldehyde-3-phosphate dehydrogenase expression varies with age and nutrition status. Nutrition 2003; 19:438-40. [PMID: 12714097 DOI: 10.1016/s0899-9007(02)01006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in the glycolytic pathway, and it is a popular internal standard for northern blot analysis. We examined GAPDH expression early in life when feed is either provided or not provided to animals. METHODS Male broiler chickens were provided a standard starter diet plus Oasis nutritional supplement (fed group; Novus International, St. Louis, MO, USA) or no feed (starved group) for the first 3 d posthatch. Subsequently, the standard starter diet was provided to all chickens between 3 and 7 d posthatch. RNA was extracted from the pectoralis thoracicus, and GAPDH expression was evaluated with quantitative northern analysis. RESULTS GAPDH expression was significantly (P < 0.05) higher in the fed than in the starved group at 3 d posthatch, suggesting that nutritional manipulations can alter GAPDH transcription. Similarly, GAPDH mRNA levels were significantly (P < 0.05) higher at 7 d posthatch compared with all younger animals, suggesting that GAPDH is developmentally upregulated with advancing age. CONCLUSION GAPDH expression changes with age and nutrition status in the early posthatch chick, suggesting that GAPDH is not a proper internal standard for muscle studies using quantitative northern analysis.
Collapse
Affiliation(s)
- Paul E Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | |
Collapse
|
45
|
Bamman MM, Hill VJ, Adams GR, Haddad F, Wetzstein CJ, Gower BA, Ahmed A, Hunter GR. Gender differences in resistance-training-induced myofiber hypertrophy among older adults. J Gerontol A Biol Sci Med Sci 2003; 58:108-16. [PMID: 12586847 DOI: 10.1093/gerona/58.2.b108] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We tested the hypothesis that older men (n = 9, 69 +/- 2 years) would experience greater resistance-training-induced myofiber hypertrophy than older women (n = 5, 66 +/- 1 years) following knee extensor training 3 days per week at 65-80% of one-repetition maximum for 26 weeks. Vastus lateralis biopsies were analyzed for myofiber areas, myosin heavy chain isoform distribution, and levels of mRNA for insulin-like growth factor 1 (IGF-1), IGFR1, and myogenin. Gender x Training interactions (p <.05) indicate greater myofiber hypertrophy for all three primary fiber types (I, IIa, IIx) and enhanced one-repetition maximum strength gain in men compared with women (p <.05). Covarying for serum IGF-1, dehydroepiandrosterone sulfate, or each muscle mRNA did not negate these interactions. In both genders, type IIx myofiber area distribution and myosin heavy chain type IIx distribution decreased with a concomitant increase in type IIa myofiber area distribution (p <.05). In summary, gender differences in load-induced myofiber hypertrophy among older adults cannot be explained by levels of circulating IGF-1 or dehydroepiandrosterone sulfate, or by expression of the myogenic transcripts examined.
Collapse
Affiliation(s)
- Marcas M Bamman
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Purslow PP. The structure and functional significance of variations in the connective tissue within muscle. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:947-66. [PMID: 12485685 DOI: 10.1016/s1095-6433(02)00141-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The amount of intramuscular connective tissue (IMCT) and its morphological distribution is highly variable between muscles of differing function. The functional roles of this component of muscle have been poorly understood, but a picture is gradually emerging of the central role this component has in growth, transmission of mechanical signals to muscle cells and co-ordination of forces between fibres within a muscle. The aim of this review is to highlight recent advances that begin to show the functional significance of some of the variability in IMCT. IMCT has a number of clearly defined roles. It patterns muscle development and innervation, and mechanically integrates the tissue. In developing muscles, proliferation and growth of muscle cells is stimulated and guided by cell-matrix interactions. Recent work has shown that the topography of collagen fibres is an important signal. The timing and rates of expression of connective tissue proteins also show differences between muscles. Discussion of mechanical roles for IMCT has traditionally been limited to the passive elastic response of muscle. However, it is now clear that IMCT provides a matrix to integrate the contractile function of the whole tissue. Mechanical forces are co-ordinated and passed between adjacent muscle cells via cell-matrix interactions and the endomysial connective tissue that links the cells together. An emerging concept is that division of a muscle into fascicles by the perimysial connective tissue is related to the need to accommodate shear strains as muscles change shape during contraction and extension.
Collapse
Affiliation(s)
- Peter P Purslow
- Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
47
|
Oishi Y, Imoto K, Ogata T, Taniguchi K, Matsumoto H, Roy RR. Clenbuterol induces expression of multiple myosin heavy chain isoforms in rat soleus fibres. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:311-8. [PMID: 12444937 DOI: 10.1046/j.1365-201x.2002.01036.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clenbuterol, a beta2-agonist, administration results in hypertrophy of fast fibres and an increase in the fast myosin heavy chain (MHC) composition of both fast and slow muscles. The present study was designed to determine the phenotypic response at the single fibre level. Clenbuterol was added to the drinking water (30 mg L(-1)) of adult male Wistar rats for 4 weeks. Single fibres from the soleus muscle of control (10 rats; 555 fibres) and clenbuterol-treated (10 rats; 577 fibres) were dissected and their MHC isoform composition was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis. Body, heart, and soleus weights were 9, 24, and 27% higher in clenbuterol-treated than control rats. The mean cross-sectional areas of fast and slow/fast hybrid fibres were approximately 64 and approximately 74% larger in the clenbuterol-treated than control rats, whereas the size of the slow fibres were similar in the two groups. Fibres from control soleus showed three MHC patterns: pure type I (84%), pure type IIa (4%), and type I + IIa (12%) MHC. Some fibres from clenbuterol-treated soleus showed a de novo expression of type IIx MHC resulting in the following fibre type proportions: pure type I (62%), pure type IIa (2%), type I + IIa (26%), type I + IIa + IIx (6%), and type IIa + IIx (1%). In those fibres containing multiple MHCs, there was a shift towards the faster MHC isoforms after clenbuterol treatment. These data indicate that clenbuterol results in muscle fibre hypertrophy, stimulates a de novo expression of type IIx MHC and increases the percentage of fibres containing multiple MHC isoforms in the rat soleus muscle. These phenotypic changes at the single fibre level are consistent with a clenbuterol-related shift in the functional properties of the soleus towards those observed in a faster muscle.
Collapse
Affiliation(s)
- Y Oishi
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Staib JL, Swoap SJ, Powers SK. Diaphragm contractile dysfunction in MyoD gene-inactivated mice. Am J Physiol Regul Integr Comp Physiol 2002; 283:R583-90. [PMID: 12184991 DOI: 10.1152/ajpregu.00080.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD is one of four myogenic regulatory factors found exclusively in skeletal muscle. In an effort to better understand the role that MyoD plays in determining muscle contractile properties, we examined the effects of MyoD deletion on both diaphragmatic contractile properties and myosin heavy chain (MHC) phenotype. Regions of the costal diaphragm from wild-type and MyoD knockout [MyoD (-/-)] adult male BALB/c mice (n = 8/group) were removed, and in vitro diaphragmatic contractile properties were measured. Diaphragmatic contractile measurements revealed that MyoD (-/-) animals exhibited a significant (P < 0.05) downward shift in the force-frequency relationship, a decrement in maximal specific tension (P(o); -33%), a decline in maximal shortening velocity (V(max); -37%), and concomitant decrease in peak power output (-47%). Determination of MHC isoforms in the diaphragm via gel electrophoresis revealed that MyoD elimination resulted in a fast-to-slow shift (P < 0.05) in the MHC phenotype toward MHC types IIA and IIX in MyoD (-/-) animals. These data indicate that MyoD deletion results in a decrease in diaphragmatic submaximal force generation and P(o), along with decrements in both V(max) and peak power output. Hence, MyoD plays an important role in determining diaphragmatic contractile properties.
Collapse
Affiliation(s)
- Jessica L Staib
- Department of Exercise and Sport Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
49
|
Willoughby DS, Nelson MJ. Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Med Sci Sports Exerc 2002; 34:1262-9. [PMID: 12165680 DOI: 10.1097/00005768-200208000-00006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study determined the effects of a single session of heavy-resistance exercise on myosin heavy-chain (MHC) mRNA expression, along with the expression of the transcription factors Myo-D, myogenin, and Id-1. METHODS Four male subjects participated in a control group (CON) and seven in a resistance-exercise group (REX). REX performed one resistance-exercise session employing three sets of 8-10 repetitions at 75-80% one-repetition maximum on the squat, leg press, and leg extension. Vastus lateralis biopsies were obtained pre, post, and at 6 h postexercise. RESULTS In regard to CON, no significant differences were located for any criterion variable (P > 0.05). For REX, elevations of 38.19%, 45.61%, and 74.24% (P < 0.05), respectively, occurred at 6 h-post for Type I, IIa, and IIx MHC mRNA. Myo-D and myogenin mRNA were elevated 27.28% and 23.58% postexercise (P < 0.05), respectively, but no change was observed in Id-1 mRNA. Elevations at 6 h-post of 46.85% and 46.41% (P < 0.05), respectively, occurred for Myo-D and myogenin mRNA with no change in Id-1. Myo-D and myogenin protein increased 57.91% and 52.30%, respectively, postexercise and 317.56% and 254.08 at 6 h-post (P < 0.05), whereas no change was noted for Id-1. Myofibrillar protein was elevated 84.52% at 6 h-post (P < 0.05). Type I and IIa MHC mRNA at 6 h-post were correlated with myogenin mRNA and protein postexercise and 6 h-post, whereas Type IIx at 6 h-post was correlated with Myo-D mRNA and protein postexercise and 6 h-post (P < 0.05). CONCLUSIONS These results indicate that the mRNA expression of all three MHC isoforms is up-regulated after a single session of heavy-resistance exercise and that Myo-D and myogenin seem to play a role in MHC isoform gene expression.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Department of Kinesiology, Texas Christian University, TCU Box 297730, Fort Worth, TX 76129, USA.
| | | |
Collapse
|
50
|
Haddad F, Adams GR. Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol (1985) 2002; 93:394-403. [PMID: 12070230 DOI: 10.1152/japplphysiol.01153.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Training protocols apply sequential bouts of resistance exercise (RE) to induce the cellular and molecular responses necessary to produce compensatory hypertrophy. This study was designed to 1) define the time course of selected cellular and molecular responses to a single bout of RE and 2) examine the effects of interbout rest intervals on the summation of these responses. Rat muscles were exposed to RE via stimulation of the sciatic nerve in vivo. Stimulated and control muscles were obtained at various time points post-RE and analyzed via Western blot and RT-PCR. A single bout of RE increased intracellular signaling (i.e., phosphorylations) and expression of mRNAs for insulin-like growth factor-I system components and myogenic markers (e.g., cyclin D1, myogenin). A rest interval of 48 h between RE bouts resulted in much greater summation of myogenic responses than 24- or 8-h rest intervals. This experimental approach should be useful for studying the regulatory mechanisms that control the hypertrophy response. These methods could also be used to compare and contrast different exercise parameters (e.g., concentric vs. eccentric, etc.).
Collapse
Affiliation(s)
- Fadia Haddad
- Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | | |
Collapse
|