1
|
Ruiz-Pick YI, Cope HL, Richey RE, Moore AM, Garfield TC, Olivencia-Yurvati AH, Romero SA. Home-based heat therapy lowers blood pressure and improves endothelial function in older adults. J Appl Physiol (1985) 2025; 138:979-987. [PMID: 40062687 DOI: 10.1152/japplphysiol.00977.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Advancing age is associated with vascular dysfunction and hypertension, both of which increase cardiovascular event risk. Heat therapy has emerged as a novel intervention to improve cardiovascular health in various populations. Therefore, we tested the hypothesis that home-based lower body heat therapy would reduce blood pressure and improve endothelium-dependent vasodilation in older adults. Ambulatory blood pressure monitoring was performed in 19 older adults (67 ± 7 yr) before and after 8 wk of a sham intervention or heat therapy. Endothelium-dependent vasodilation of the superficial femoral artery was assessed via flow-mediated dilation. Participants were provided with a pair of tube-lined pants connected to a portable water circulator to perform the home-based sessions. Water temperature was set to 31°C for sham and 51°C for heat therapy, resulting in target skin temperatures of ∼33°C and ∼40°C, respectively. Participants were instructed to wear the pants 4 days/wk for 60 min each session. Adherence was 100% for both groups. Heat therapy reduced ambulatory daytime systolic blood pressure by Δ -5 ± 8 mmHg, but was unchanged for the sham group (Δ 1 ± 6 mmHg; P = 0.04). Likewise, heat therapy increased flow-mediated dilation (P = 0.02), whereas there was no change across time for the sham group (P = 0.5). These results combined with a strong adherence rate suggest that home-based lower body heat therapy could be an alternative nonpharmacological intervention to reduce blood pressure and improve vascular function, ultimately reducing long-term cardiovascular event risk in older adults.NEW & NOTEWORTHY Advancing age is associated with vascular dysfunction and hypertension, both of which increase cardiovascular event risk. This study determined that 8 wk of home-based lower body heat therapy reduced ambulatory daytime systolic blood pressure and increased flow-mediated dilation of the superficial femoral artery, outcomes not observed in the sham group. These improvements, coupled with 100% adherence among participants, suggest that home-based heat therapy is a pragmatic and effective strategy for improving cardiovascular health in older adults.
Collapse
Affiliation(s)
- Ysabella I Ruiz-Pick
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Heidi L Cope
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Rauchelle E Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Tyson C Garfield
- Department of Internal Medicine and Geriatrics, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Surgery, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, The University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
2
|
Sastriques-Dunlop S, Elizondo-Benedetto S, Zayed MA. Sauna use as a novel management approach for cardiovascular health and peripheral arterial disease. Front Cardiovasc Med 2025; 12:1537194. [PMID: 40134984 PMCID: PMC11933885 DOI: 10.3389/fcvm.2025.1537194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Heat therapy (HT), particularly in the form of whole-body sauna bathing, has emerged as a promising intervention for the management of cardiovascular disease (CVD). Passive HT can induce both local and systemic physiological responses, primarily through repeated thermal stress consisting of short-term passive exposure to high temperatures. Such responses closely parallel the physiological adaptations observed during aerobic exercise. Peripheral arterial disease (PAD) poses significant health challenges, impacting millions of individuals worldwide. Supervised exercise is considered a cornerstone therapy for PAD, yet many patients face significant health-related barriers that complicate its broad implementation. Methods We conducted a comprehensive review of the literature to explore the therapeutic implications of various HT practices beyond sauna. The review aimed to evaluate the potential use of these practices as adjunctive management strategies for cardiovascular diseases, particularly in patients with PAD. Results Recent studies have demonstrated the potential role of HT in alleviating PAD symptoms, improving functional capacity, and reducing cardiovascular and limb events. HT practices might be beneficial as adjunctive management strategies, in addition to or as alternatives to exercise, for management of cardiovascular diseases. Discussion This review highlights the potential benefits, underlying mechanisms of action, challenges, and safety considerations associated with HT. We emphasize the importance of exploring HT as a viable option for patients with cardiovascular conditions, particularly those with PAD, who face barriers to traditional exercise regimens.
Collapse
Affiliation(s)
- Sergio Sastriques-Dunlop
- Section of Vascular Surgery, Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University School of Medicine, St. Louis, MO, United States
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
3
|
Blankenship AE, Kemna R, Kueck PJ, John C, Vitztum M, Yoksh L, Mahnken JD, Vidoni ED, Morris JK, Geiger PC. Improving glycemic control via heat therapy in older adults at risk for Alzheimer's disease (FIGHT-AD): a pilot study. J Appl Physiol (1985) 2025; 138:720-730. [PMID: 39829076 DOI: 10.1152/japplphysiol.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Impaired glycemic control increases the risk of type 2 diabetes (T2D) and Alzheimer's disease (AD). Heat therapy (HT), via hot water immersion (HWI), has shown promise in improving shared mechanisms implicated in both T2D and AD, like blood glucose regulation, insulin sensitivity, and inflammation. The potential for HT to improve brain health in individuals at risk for AD has not been examined. This pilot study aimed to assess the feasibility and adherence of using HT in cognitively healthy older individuals at risk for AD due to existing metabolic risk factors. Participants underwent 4 wk of HT (three sessions/week) via HWI, alongside cognitive screening, self-reported sleep characterization, glucose tolerance tests, and MRI scans pre- and postintervention. A total of 18 participants (9 males, 9 females; mean age: 71.1 ± 3.9 yr), demonstrating metabolic risk, completed the intervention. Participant adherence for the study was 96% (8 missed sessions out of 216 total sessions), with one study-related mild adverse event (mild dizziness/nausea). Overall, the research participants responded to a postintervention survey saying they enjoyed participating in the study and it was not a burden on their schedules. Secondary outcomes of the HT intervention demonstrated significant changes in mean arterial pressure, diastolic blood pressure, and cerebral blood flow (P < 0.05), with a trend toward improved body mass index (P = 0.06). Future studies, including longer durations and a thermoneutral control group, are needed to fully understand heat therapy's impact on glucose homeostasis and the potential to improve brain health.NEW & NOTEWORTHY Our pilot study demonstrated promising results for heat therapy (HT) via hot water immersion in older adults at risk for Alzheimer's disease due to metabolic factors. Despite a relatively short intervention, significant improvements in mean arterial pressure, diastolic blood pressure, and cerebral blood flow postintervention were observed. High participant adherence, overall satisfaction, and minimal adverse events suggest HT's feasibility. These findings highlight HT's potential as an effective alternative intervention for cardiometabolic dysfunction in at-risk populations.
Collapse
Affiliation(s)
- Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Riley Kemna
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Casey John
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle Vitztum
- KU Diabetes Institute, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Lauren Yoksh
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
- Frontiers Clinical and Translational Science Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paige C Geiger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
4
|
Rubio-Zarapuz A, Parraca JA, Tornero-Aguilera JF, Clemente-Suárez VJ. Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies. Med Gas Res 2025; 15:58-72. [PMID: 39436169 PMCID: PMC11515064 DOI: 10.4103/mgr.medgasres-d-24-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 10/23/2024] Open
Abstract
Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.
Collapse
Affiliation(s)
| | - Jose A. Parraca
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | | | - Vicente J. Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla, Colombia
| |
Collapse
|
5
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Gibson OR, Laitano O, Watanabe K, González-Alonso J. Differential intestinal injury and unchanged systemic inflammatory responses to leg and whole-body passive hyperthermia in healthy humans. Exp Physiol 2025. [PMID: 39937620 DOI: 10.1113/ep092389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Hyperthermia can cause intestinal injury, facilitating endotoxin translocation and an inflammatory response that has been associated with heat illness. However, the potential occurrence of these responses has been incompletely reported during passive hyperthermia, and the independent effect of hyperthermia is equivocal. Furthermore, passive hyperthermia is a feature of heat therapy interventions, with mechanistic understanding developing. This experiment quantified the changes in intestinal fatty acid binding protein (iFABP), a marker of intestinal injury, and cytokine, chemokine and growth factor responses during three different prolonged passive hyperthermia protocols. Eight healthy males visited the laboratory on four counterbalanced occasions to undertake 2.5 h of rest (CON), one-leg heating (OLH), two-leg heating (TLH) and whole-body heating (WBH) via a garment circulating water at 50°C. Plasma concentrations of iFABP and 38 cytokines, chemokines and growth factors were quantified periodically, and core temperature (Tcore) was measured continuously. The Tcore increased from baseline in OLH, TLH and WBH (+0.4°C ± 0.2°C, +0.7°C ± 0.2°C and +2.3°C ± 0.4°C, respectively; P < 0.05) but remained unchanged in CON. iFABP increased from baseline in WBH only (∆587 ± 651 pg ml-1) and was different from CON and OLH in WBH after 2 h (P < 0.05). Increased iFABP (∆1085 ± 572 pg ml-1) was observed in 50% of participants at the end of WBH, with the other 50% demonstrating no change (∆89 ± 19 pg ml-1). All chemokines, cytokines and growth factors were unchanged in all protocols. These data indicate that passive whole-body hyperthermia, but not lower-limb hyperthermia, can cause intestinal injury in some individuals without a systemic inflammatory response.
Collapse
Affiliation(s)
- Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University of London, Uxbridge, UK
- Centre for Physical Activity in Health and Disease (CPAHD), Brunel University of London, Uxbridge, UK
| | - Orlando Laitano
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kazuhito Watanabe
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University of London, Uxbridge, UK
- Faculty of Education and Human Studies, Department of School Education, Akita University, Akita, Japan
| | - José González-Alonso
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University of London, Uxbridge, UK
| |
Collapse
|
7
|
Rodrigues S, O'Connor FK, Morris NR, Chaseling GK, Sabapathy S, Bach AJE. Passive heat therapy for cardiovascular disease: current evidence and future directions. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39819110 DOI: 10.1139/apnm-2024-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Passive heat therapy is gaining popularity as an intervention to promote cardiovascular, physiological, and, to a lesser degree, thermoregulatory adaptations in patients with cardiovascular disease. Despite this, the efficacy of heat therapy to elicit these adaptations remains unknown. We searched five databases for original research, screening 2913 studies and identifying 18 eligible studies. Heat therapies included Waon therapy, balneotherapy, water perfused trousers, Finnish sauna, and foot immersion. Interventions were administered across various time frames (20-90 min) and performed 3-7 times per week, for durations of 2-8 weeks. The studies collectively involved a diverse population (mean age: 67 (10) years) with cardiovascular diseases. Heat therapy was consistently shown to improve ejection fraction, flow-mediated dilation, brain natriuretic peptide levels, New York Heart Association classification, and 6 min walk distance. However, positive effects on resting heart rate and blood pressure were infrequently observed, and thermoregulatory responses scarcely reported. Heat therapy may increase sweat rate during heat exposure and reduce resting core temperature, but adaptive skin blood flow responses were not observed. Passive heat therapy shows promising utility in patients with cardiovascular disease, while secondary benefits such as markers of thermoregulatory adaptation may also be observed, these require further investigation.
Collapse
Affiliation(s)
- Saniya Rodrigues
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Fergus K O'Connor
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Norman R Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Allied Health Research Collaborative, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia
| | - Georgia K Chaseling
- SOLVE-CHD NHMRC Synergy Grant, Sydney Nursing School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Heat and Health Research Centre, School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Surendran Sabapathy
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Aaron J E Bach
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Menzies C, Clarke ND, Pugh CJA, Steward CJ, Thake CD, Cullen T. Passive heating in sport: context-specific benefits, detriments, and considerations. Appl Physiol Nutr Metab 2025; 50:1-15. [PMID: 39805100 DOI: 10.1139/apnm-2024-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.g., temperature, duration, body coverage) and are beneficial to athletes in specific scenarios. These scenarios include being applied to increase muscle or force production, induce rapid weight loss, stimulate thermoregulatory or cardiovascular adaptation, or to accelerate recovery. The rationale being to tailor the specific passive heating protocol to target the desired physiological response. However, some acute responses to passive heating may also be detrimental to sporting outcomes, such as exercising in the heat, having unintended residual negative effects on performance or perceptions of fatigue, or even resulting in hospitalisation if implemented inappropriately. Accordingly, the effects of passive heating should be carefully considered prior to implementation by athletes, coaches, and support staff. Therefore, the purpose of this review is to evaluate the physiological responses to different modes and doses of passive heating and explore the various sport contexts where these effects may either benefit or hinder athletes. Understanding these responses can aid the implementation of passive heating in sport and identify potential recommended heating protocols in each given scenario.
Collapse
Affiliation(s)
- Campbell Menzies
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Neil D Clarke
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Charles J Steward
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| | - Tom Cullen
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
9
|
Gowda KC, Kj S, Shetty P. The Combined Effects of Cold Foot Bath and Lavender Oil Inhalation on Autonomic Variables in Healthy Volunteers: A Randomized Controlled Trial. Cureus 2025; 17:e77055. [PMID: 39917122 PMCID: PMC11800019 DOI: 10.7759/cureus.77055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND AND AIM An essential function of the autonomic nerve system is to regulate physiological processes and stress responses in the body. Cold foot baths and aromatherapy with lavender oil each influence autonomic functions, but their combined effect in healthy individuals is unknown. The purpose of this study is to look into how autonomic variability in healthy volunteers is affected by both inhaling lavender oil and taking cold foot baths. METHODS A total of 60 healthy individuals were randomized to be placed in either the control group (n=30) or the experimental group (n=30) and were instructed to attend a single designated session. The control group underwent a 20-minute cold foot bath, while the experimental group received a 20-minute cold foot bath combined with lavender oil inhalation. Assessments were carried out before, during, and after the interventions. OUTCOME MEASURES To evaluate autonomic variables, we monitored galvanic skin response (GSR) and Heart Rate Variability (HRV) using an equivital belt. Furthermore, we measured blood pressure (BP) and mean arterial pressure (MAP) before, during (20 minutes) the intervention, and after a 10-minute resting period; post-intervention measurements were taken. RESULTS Repeated measures analysis revealed a significant difference in standard deviation of normal-to-normal intervals (SDNN), pNN50, and heart rate (HR) for time-domain variables (p<0.05), whereas the frequency-domain analysis showed a significant difference over time in LF/HF, LF, and HF (p<0.05). When these were compared between the groups, a significant difference was observed only in LF and HF (p<0.04). Additionally, a statistically significant difference (p<0.001) in diastolic and systolic blood pressure between the groups was noted. CONCLUSION The combination of a cold foot bath and lavender oil inhalation may modulate autonomic activity, promoting relaxation by vagal balance in healthy individuals.
Collapse
Affiliation(s)
- Kavya C Gowda
- Natural Therapeutics, Sri Dharmasthala Manjunatheshwara (SDM) College of Naturopathy and Yogic Sciences, Ujire, IND
| | - Sujatha Kj
- Natural Therapeutics, Sri Dharmasthala Manjunatheshwara (SDM) College of Naturopathy and Yogic Sciences, Ujire, IND
| | - Prashanth Shetty
- Nutrition and Dietetics, Sri Dharmasthala Manjunatheshwara (SDM) College of Naturopathy and Yogic Sciences, Ujire, IND
| |
Collapse
|
10
|
Fuchs CJ, Betz MW, Petrick HL, Weber J, Senden JM, Hendriks FK, Bels JLM, van Loon LJC, Snijders T. Repeated passive heat treatment increases muscle tissue capillarization, but does not affect postprandial muscle protein synthesis rates in healthy older adults. J Physiol 2025; 603:167-186. [PMID: 39373667 DOI: 10.1113/jp286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Prolonged passive heat treatment (PHT) has been suggested to trigger skeletal muscle adaptations that may improve muscle maintenance in older individuals. To assess the effects of PHT on skeletal muscle tissue capillarization, perfusion capacity, protein synthesis rates, hypertrophy and leg strength, 14 older adults (9 males, 5 females; 73 ± 6 years) underwent 8 weeks of PHT (infrared sauna: 3× per week, 45 min at ∼60°C). Before and after PHT we collected muscle biopsies to assess skeletal muscle capillarization and fibre cross-sectional area (CSA). Basal and postprandial muscle tissue perfusion kinetics and protein synthesis rates were assessed using contrast-enhanced ultrasound and primed continuous l-[ring-13C6]phenylalanine infusions, respectively. One-repetition maximum (1RM) leg strength and vastus lateralis muscle CSA were assessed. Type I and type II muscle fibre capillarization strongly increased following PHT (capillary-to-fibre perimeter exchange index: +31 ± 18 and +33 ± 30%, respectively; P < 0.001). No changes were observed in basal (0.24 ± 0.27 vs. 0.18 ± 0.11 AU; P = 0.266) or postprandial (0.20 ± 0.12 vs. 0.18 ± 0.14 AU; P = 0.717) microvascular blood flow following PHT. Basal (0.048 ± 0.014 vs. 0.051 ± 0.019%/h; P = 0.630) and postprandial (0.041 ± 0.012 vs. 0.051 ± 0.024%/h; P = 0.199) muscle protein synthesis rates did not change in response to prolonged PHT. Furthermore, no changes in vastus lateralis muscle CSA (15.3 ± 4.6 vs. 15.2 ± 4.6 cm2; P = 0.768) or 1RM leg strength (46 ± 12 vs. 47 ± 12 kg; P = 0.087) were observed over time. In conclusion, prolonged PHT increases muscle tissue capillarization but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates in healthy, older adults. Prolonged PHT does not induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults. KEY POINTS: Repeated exposure to heat has been suggested to trigger skeletal muscle adaptive responses. We investigated the effect of 8 weeks of whole-body passive heat treatment (PHT; infrared sauna: 3× per week for 45 min at ∼60°C) on skeletal muscle tissue capillarization, perfusion capacity, basal, and postprandial muscle protein synthesis rates, muscle (fibre) hypertrophy, and leg strength in healthy, older adults. Prolonged PHT increases muscle tissue capillarization, but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates. Despite increases in muscle tissue capillarization, prolonged PHT does not suffice to induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Heather L Petrick
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jil Weber
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Julia L M Bels
- Department of Intensive Care, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
11
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
12
|
Engström Å, Hägglund H, Lee E, Wennberg M, Söderberg S, Andersson M. Sauna bathing in northern Sweden: results from the MONICA study 2022. Int J Circumpolar Health 2024; 83:2419698. [PMID: 39446139 PMCID: PMC11524357 DOI: 10.1080/22423982.2024.2419698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Frequent sauna bathing has been associated with a reduced risk of cardiovascular disease and proposed as a mediator for improved health. Therefore, the aim was to describe and compare sauna bathers with non-sauna bathers in northern Sweden based on their demographics, health and life attitudes, and to describe sauna bathers' sauna habits. Questions on sauna bathing habits were included in the questionnaire for the participants in the Northern Sweden MONICA (multinational monitoring of trends and determinants in cardiovascular disease) study, conducted during spring of 2022, inviting adults 25-74 years living in the two northernmost counties of Sweden (Norr- and Västerbotten), randomly selected from the population register. Of the 1180 participants in MONICA 2022, 971 (82%) answered the question about sauna bathing. Of these, 641 (66%) were defined as sauna bathers. Sauna bathers reported less hypertension diagnosis and self-reported pain. They also reported higher levels of happiness and energy, more satisfying sleep patterns, as well as better general and mental health. Sauna bathers were younger, more often men and found to have a healthier life-profile compared to non-sauna bathers. Additionally, the results suggest that the positive effects associated with sauna bathing plateaued from 1-4 times per month.
Collapse
Affiliation(s)
- Åsa Engström
- Department of Health, Education and Technology, Division of Nursing and Medical Technology, Lulea University of Technology, Luleå, Sweden
| | - Hans Hägglund
- Hematology Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Earric Lee
- Centre ÉPIC de l’Institut de Cardiologie de Montréal, Montréal, QC, Canada
- School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Maria Andersson
- Department of Health Science, Faculty of Health, Science, and Technology, Karlstad University, Karlstad, Sweden
| |
Collapse
|
13
|
James TJ, Corbett J, Cummings M, Allard S, Bailey SJ, Eglin C, Belcher H, Piccolo DD, Tipton M, Perissiou M, Saynor ZL, Shepherd AI. The effect of repeated hot water immersion on vascular function, blood pressure and central haemodynamics in individuals with type 2 diabetes mellitus. J Therm Biol 2024; 126:104017. [PMID: 39642665 DOI: 10.1016/j.jtherbio.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by endothelial dysfunction, leading to increased risk of cardiovascular disease. Emerging evidence suggest that HWI may favourably improve vascular function but data are limited in individual with T2DM. The aim was to investigate whether repeated hot water immersion (HWI) improved macrovascular, microvascular and central haemodynamic function in individuals with T2DM. Fourteen individuals completed a pre-post experimental study where participants were assessed pre- and post-8-10 × 1 h HWI sessions (40 °C water) undertaken within a 14-day period. During HWIs, body position was adjusted to clamp rectal temperature at 38.5-39.0 °C for the duration of the immersion. Stroke volume index (SVi), cardiac index (Q˙ i), resting heart rate (HR), systolic blood pressure (SBP), diastolic BP (DBP), brachial flow-mediated dilation (FMD) and cutaneous microvascular endothelial function (via transdermal iontophoresis) and plasma [nitrate] and [nitrite] (NOX; via ozone chemiluminescence) were assessed pre- and post HWI. Neither brachial FMD measures of macrovascular endothelial function (p = 0.43) or forearm microvascular function (ACh max, p = 0.63; ACh area under curve (AUC), p = 0.63; insulin max, p = 0.51; insulin AUC, p = 0.86) or NOX (p = 0.38) were changed. Q˙ i (p < 0.01), SVi (p < 0.02) and resting HR (p < 0.01) were all significantly reduced following the 10-days HWI intervention. SBP was reduced (p = 0.03), whereas DBP was unchanged (p = 0.56). HWI may represent an appropriate intervention to improve Q˙ I, SVi and BP in individuals with T2DM, but not macrovascular endothelial or cutaneous microvascular function.
Collapse
Affiliation(s)
- Thomas J James
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Jo Corbett
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Sharon Allard
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Clare Eglin
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Harvey Belcher
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Daniel D Piccolo
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Michael Tipton
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Maria Perissiou
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK
| | - Zoe L Saynor
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK
| | - Anthony I Shepherd
- School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK.
| |
Collapse
|
14
|
Wu Y, Li Y, Liu Y, Zhu D, Xing S, Lambert N, Weisbecker H, Liu S, Davis B, Zhang L, Wang M, Yuan G, You CZ, Zhang A, Duncan C, Xie W, Wang Y, Wang Y, Kanamurlapudi S, Evert GG, Putcha A, Dickey MD, Huang K, Bai W. Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants. SCIENCE ADVANCES 2024; 10:eadp8866. [PMID: 39356763 PMCID: PMC11446273 DOI: 10.1126/sciadv.adp8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
Collapse
Affiliation(s)
- Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yuan Li
- Department of Biomedical Engineering, Columbia University, NY, New York 10032, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, NY, New York 10032, USA
| | - Sicheng Xing
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Noah Lambert
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hannah Weisbecker
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Siyuan Liu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Brayden Davis
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Gongkai Yuan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | - Anran Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Cate Duncan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yong Wang
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
| | - Sreya Kanamurlapudi
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27607, USA
| | - Garcia-Guzman Evert
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Arjun Putcha
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Huang
- Department of Biomedical Engineering, Columbia University, NY, New York 10032, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
15
|
Trybulski R, Kużdżał A, Stanula A, Muracki J, Kawczyński A, Kuczmik W, Wang HK. Acute effects of cold, heat and contrast pressure therapy on forearm muscles regeneration in combat sports athletes: a randomized clinical trial. Sci Rep 2024; 14:22410. [PMID: 39333728 PMCID: PMC11437117 DOI: 10.1038/s41598-024-72412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Due to the specific loads that occur in combat sports athletes' forearm muscles, we decided to compare the immediate effect of monotherapy with the use of compressive heat (HT), cold (CT), and alternating therapy (HCT) in terms of eliminating muscle tension, improving muscle elasticity and tissue perfusion and forearm muscle strength. This is a single-blind, randomized, experimental clinical trial. Group allocation was performed using simple 1:1 sequence randomization using the website randomizer.org. The study involved 40 40 combat sports athletes divided into four groups and four therapeutic sessions lasting 20 min. (1) Heat compression therapy session (HT, n = 10) (2) (CT, n = 10), (3) alternating (HCT, n = 10), and sham, control (ShT, n = 10). All participants had measurements of tissue perfusion (PU, [non-reference units]), muscle tension (T-[Hz]), elasticity (E-[arb- relative arbitrary unit]), and maximum isometric force (Fmax [kgf]) of the dominant hand at rest (Rest) after the muscle fatigue protocol (PostFat.5 min), after therapy (PostTh.5 min) and 24 h after therapy (PostTh.24 h). A two-way ANOVA with repeated measures: Group (ColdT, HeatT, ContrstT, ControlT) × Time (Rest, PostFat.5 min, PostTh.5 min, Post.24 h) was used to examine the changes in examined variables. Post-hoc tests with Bonferroni correction and ± 95% confidence intervals (CI) for absolute differences (△) were used to analyze the pairwise comparisons when a significant main effect or interaction was found. The ANOVA for PU, T, E, and Fmax revealed statistically significant interactions of Group by Time factors (p < 0.0001), as well as main effects for the Group factors (p < 0.0001; except for Fmax). In the PostTh.5 min. Period, significantly (p < 0.001) higher PU values were recorded in the HT (19.45 ± 0.91) and HCT (18.71 ± 0.67) groups compared to the ShT (9.79 ± 0.35) group (△ = 9.66 [8.75; 10.57 CI] > MDC(0.73), and △ = 8.92 [8.01; 9.83 CI] > MDC(0.73), respectively). Also, significantly (p < 0.001) lower values were recorded in the CT (3.69 ± 0.93) compared to the ShT (9.79 ± 0.35) group △ = 6.1 [5.19; 7.01 CI] > MDC(0.73). For muscle tone in the PostTh.5 m period significantly (p < 0.001) higher values were observed in the CT (20.08 ± 0.19 Hz) group compared to the HT (18.61 ± 0.21 Hz), HCT (18.95 ± 0.41 Hz) and ShT (19.28 ± 0.33 Hz) groups (respectively: △ = 1.47 [1.11; 1.83 CI] > MDC(0.845); △ = 1.13 [0.77; 1.49 CI] > MDC(0.845), and △ = 0.8 [0.44; 1.16 CI], < MDC(0.845)). The highest elasticity value in the PostTh.5 m period were observed in the CT (1.14 ± 0.07) group, and it was significantly higher than the values observed in the HT (0.97 ± 0.03, △ = 0.18 [0.11; 0.24 CI] > MDC(0.094), p < 0.001), HCT (0.90 ± 0.04, △ = 0.24 [0.17; 0.31 CI] > MDC(0.094), p < 0.001) and ShT (1.05 ± 0.07, △ = 0.094 [0.03; 0.16 CI] = MDC(0.094), p = 0.003) groups. For Fmax, there were no statistically significant differences between groups at any level of measurement. The results of the influence of the forearm of all three therapy forms on the muscles' biomechanical parameters confirmed their effectiveness. However, the effect size of alternating contrast therapy cannot be confirmed, especially in the PostTh24h period. Statistically significant changes were observed in favor of this therapy in PU and E measurements immediately after therapy (PostTh.5 min). Further research on contrast therapy is necessary.
Collapse
Affiliation(s)
- Robert Trybulski
- Provita Żory Medical Center, Żory, Poland.
- Department of Medical Sciences, The Wojciech Korfanty Upper Silesian Academy, Katowice, Poland.
| | - Adrian Kużdżał
- College of Medical Sciences, Institute of Health Sciences, University of Rzeszów, Rzeszów, Poland
| | - Arkadiusz Stanula
- Laboratory of Sport Performance Analysis, Institute of Sport Sciences, Academy of Physical Education in Katowice, Katowice, Poland
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Adam Kawczyński
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Wacław Kuczmik
- Department and Clinic of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei, Taiwan
- Center of Physical Therapy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Su Y, O’Donnell E, Hoekstra SP, Leicht CA. Facial cooling improves thermal perceptions and maintains the interleukin-6 response during passive heating: A sex comparison. Temperature (Austin) 2024; 12:40-54. [PMID: 40041158 PMCID: PMC11875509 DOI: 10.1080/23328940.2024.2406730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 03/06/2025] Open
Abstract
Passively elevating body temperature can trigger a potentially beneficial acute inflammatory response. However, heat therapy often causes discomfort and negative thermal perceptions, particularly in females who generally have lower heat tolerance than males. This study aimed to evaluate the impact of facial cooling on thermal comfort and interleukin-6 concentration in response to 60 minutes of dry heat exposure, and to investigate sex differences in physiological responses and perceptions. 22 healthy young adults (10 females, 12 males; age: 24.4 ± 3.3 years) completed three trials in randomized order using a dry sauna device: 1) Hyperthermia (71.1 ± 1.9°C; HEAT), 2) Hyperthermia with facial cooling via fans (71.1 ± 3.0°C; FAN), and 3) Normothermia (27.0 ± 0.9°C; CON). Blood samples to determine interleukin-6 (IL-6) plasma concentration were collected before and after exposure; basic affect and thermal comfort, rectal and skin temperature were assessed throughout the intervention. Rectal temperature following HEAT (38.0 ± 0.3°C) and FAN (37.8 ± 0.3°C) did not differ between males and females (p = 0.57). Females had higher forehead skin temperatures than males (p ≤ 0.019). Thermal comfort remained more positive in FAN compared to HEAT (p ≤ 0.002). Females felt more thermal discomfort than males in HEAT (p ≤ 0.03), but not in FAN (p = 0.28). The increase in IL-6 plasma concentration was similar between HEAT and FAN (p = 1.00), and higher than CON (p ≤ 0.02); there was no difference between males and females (p = 0.69). This study showed that facial cooling alleviated the thermal discomfort during heat exposure, particularly benefitted females, and did not impede the acute IL-6 response.
Collapse
Affiliation(s)
- Yunuo Su
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma O’Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sven. P. Hoekstra
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Christof A. Leicht
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
17
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Meade RD, Notley SR, Kirby NV, Kenny GP. A critical review of the effectiveness of electric fans as a personal cooling intervention in hot weather and heatwaves. Lancet Planet Health 2024; 8:e256-e269. [PMID: 38580427 DOI: 10.1016/s2542-5196(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Health agencies worldwide have historically cautioned that electric fans accelerate body-heat gain during hot weather and heatwaves (typically in air temperatures ≥35°C). However, guidance published since 2021 has suggested that fans can still cool the body in air temperatures up to 40°C by facilitating sweat evaporation, and therefore are an inexpensive yet sustainable alternative to air conditioning. In a critical analysis of the reports cited to support this claim, we found that although fan use improves sweat evaporation, these benefits are of insufficient magnitude to exert meaningful reductions in body core temperature in air temperatures exceeding 35°C. Health agencies should continue to advise against fan use in air temperatures higher than 35°C, especially for people with compromised sweating capacity (eg, adults aged 65 years or older). Improving access to ambient cooling strategies (eg, air conditioning or evaporative coolers) and minimising their economic and environmental costs through policy initiatives, efficient cooling technology, and combined use of low-cost personal interventions (eg, skin wetting or fan use) are crucial for climate adaptation.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Cullen T, Steward CJ, Menzies C, Pugh CJA, Douglas Thake C. The effect of underwater massage during hot water immersion on acute cardiovascular and mood responses. J Therm Biol 2024; 121:103858. [PMID: 38692130 DOI: 10.1016/j.jtherbio.2024.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE There is emerging evidence that demonstrates the health benefits of hot water immersion including improvements to cardiovascular health and reductions in stress and anxiety. Many commercially available hot tubs offer underwater massage systems which purport to enhance many benefits of hot water immersion, however, these claims have yet to be studied. METHODS Twenty participants (4 females) completed three, 30-min sessions of hot-water immersion (beginning at 39 °C) in a crossover randomized design: with air massage (Air Jet), water massage (Hydro Jet) or no massage (Control). Cardiovascular responses comprising; heart rate, blood pressure and superficial femoral artery blood flow and shear rate were measured. State trait anxiety, basic affect, and salivary cortisol were recorded before and after each trial. Data were analysed using a mixed effects model. RESULTS Post immersion, heart rate increased (Δ31bpm, P < 0.001, d = 1.38), mean arterial blood pressure decreased (Δ16 mmHg, P < 0.001, d = -0.66), with no difference between conditions. Blood flow and mean shear rate increased following immersion (P < 0.001, Δ362 ml/min, d = 1.20 and Δ108 s-1, d = 1.00), but these increases were blunted in the Air Jet condition (P < 0.001,Δ171 ml/min, d = 0.43 and Δ52 s-1, d = 0.52). Anxiety and salivary cortisol were reduced (P = 0.003, d = -0.20, P = 0.014, d = -0.11), but did not vary between conditions. Enjoyment did not vary between conditions. CONCLUSION These data demonstrate positive acute responses to hot water immersion on markers of cardiovascular function, anxiety, and stress. There was no additional benefit of water-based massage, while air-based massage blunted some positive vascular responses due to lower heat conservation of the water.
Collapse
Affiliation(s)
- Tom Cullen
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK.
| | - Charles J Steward
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| | - Campbell Menzies
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University. Priory St, Coventry CV1 5FB, UK
| |
Collapse
|
20
|
Pallubinsky H, Blondin DP, Jay O. A double-edged sword: risks and benefits of heat for human health. Trends Endocrinol Metab 2024; 35:277-279. [PMID: 38593784 DOI: 10.1016/j.tem.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Extreme heat events will become more frequent and intense across the globe. In this science and society article we summarize how heat affects our body and discuss the associated health threats, but also the potential health benefits of heat exposure. Moreover, we provide practical suggestions for sustainable and health-oriented strategies to cope with heat.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211KL Maastricht, The Netherlands; Healthy Living Spaces Laboratory, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Medicine, Division of Neurology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Su Y, Hoekstra SP, Leicht CA. Hot water immersion is associated with higher thermal comfort than dry passive heating for a similar rise in rectal temperature and plasma interleukin-6 concentration. Eur J Appl Physiol 2024; 124:1109-1119. [PMID: 37870668 PMCID: PMC10954860 DOI: 10.1007/s00421-023-05336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To compare the perceptual responses and interleukin-6 (IL-6) concentration following rectal temperature-matched dry heat exposure (DH) and hot water immersion (HWI). METHODS Twelve healthy young adults (BMI 23.5 ± 3.6 kg/m2; age: 25.8 ± 5.7 years) underwent 3 trials in randomised order: DH (air temperature 68.9 °C), HWI (water temperature 37.5 °C), and thermoneutral dry exposure (CON, air temperature 27.3 °C). Blood samples to determine IL-6 plasma concentration were collected; basic affect and thermal comfort, rectal and skin temperature (Tskin) were assessed throughout the intervention. RESULTS Rectal temperature (Trec) did not differ between DH (end temperature 38.0 ± 0.4 °C) and HWI (37.9 ± 0.2 °C, P = 0.16), but was higher compared with CON (37.0 ± 0.3 °C; P ≤ 0.004). Plasma IL-6 concentration was similar after DH (pre to post: 0.8 ± 0.5 to 1.4 ± 1.5 pg·ml-1) and HWI (0.5 ± 0.2 to 0.9 ± 0.6 pg·ml-1; P = 0.46), but higher compared with CON (0.6 ± 0.5 to 0.6 ± 0.4 pg·ml-1; P = 0.01). At the end of the intervention, basic affect and thermal comfort were most unfavourable during DH (Basic affect; DH: - 0.7 ± 2.9, HWI: 0.8 ± 1.9, CON 1.9 ± 1.9, P ≤ 0.004; Thermal comfort; 2.6 ± 0.8, HWI: 1.4 ± 0.9 and CON: 0.2 ± 0.4; P ≤ 0.004). Mean Tskin was highest for DH, followed by HWI, and lowest for CON (DH: 38.5 ± 1.3 °C, HWI: 36.2 ± 0.5 °C, CON: 31.6 ± 0.7 °C, P < 0.001). CONCLUSION The IL-6 response did not differ between DH and HWI when matched for the elevation in Trec. However, thermal comfort was lower during DH compared to HWI, which may be related to the higher Tskin during DH.
Collapse
Affiliation(s)
- Yunuo Su
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sven P Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Christof A Leicht
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
22
|
Chidambaram Y, Vijayakumar V, Ravi P, Boopalan D, Anandhan A, Kuppusamy M. Does hydrotherapy influence plasma glucose levels in type 2 diabetes? - A scoping review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:14-18. [PMID: 37183593 DOI: 10.1515/jcim-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Hydrotherapy is a commonly used treatment modality to manage various conditions including diabetes in the Naturopathy system of medicine. The objective of the current scoping review is to find the effectiveness of hydrotherapy on plasma blood glucose levels in type 2 diabetes. CONTENT Arksey and O'Malley's five-stage framework was adopted for this scoping review. The studies which used hydrotherapy intervention for the management of diabetes or the effect of hydrotherapy on plasma glucose levels were considered eligible. PubMed/MEDLINE, EMBASE, Cochrane library, and Google scholar were searched for English- language published articles till December 20, 2022. The following Medical Subject Headings (MeSH) and keyword search terms were used ("diabetes" OR "type 2 diabetes" OR "diabetes mellitus" OR "plasma glucose level") AND ("hydrotherapy" OR "water therapy" OR "balneotherapy"). Two investigators independently assessed the studies for inclusion. Review articles, abstracts, and articles including the aquatic exercises as interventions were excluded. SUMMARY In total, six studies met the inclusion criteria. Out of six, two studies used hot therapies, two studies cold therapy, and the remaining two used both hot and cold as interventions. The study results showed that hydrotherapy can be used as an effective intervention tool for blood glucose levels in patients with type 2 diabetes. OUTLOOK Integrating hydrotherapy treatments alongside conventional management can reduce blood glucose levels and thus reduce diabetes-related complications.
Collapse
Affiliation(s)
- Yogapriya Chidambaram
- Department of Naturopathy, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Venugopal Vijayakumar
- Department of Yoga, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Poornima Ravi
- Department of Yoga and Naturopathy, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Deenadayalan Boopalan
- Department of Naturopathy, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Akila Anandhan
- Department of Acupuncture and Energy Medicine, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| | - Maheshkumar Kuppusamy
- Department of Physiology, Govt. Yoga and Naturopathy Medical College and Hospital, The Tamilnadu Dr. MGR Medical University, Chennai, India
| |
Collapse
|
23
|
Steward CJ, Hill M, Menzies C, Bailey SJ, Rahman M, Thake CD, Pugh CJA, Cullen T. Post exercise hot water immersion and hot water immersion in isolation enhance vascular, blood marker, and perceptual responses when compared to exercise alone. Scand J Med Sci Sports 2024; 34:e14600. [PMID: 38470997 DOI: 10.1111/sms.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Exercise and passive heating induce some similar vascular hemodynamic, circulating blood marker, and perceptual responses. However, it remains unknown whether post exercise hot water immersion can synergise exercise derived responses and if they differ from hot water immersion alone. This study investigated the acute responses to post moderate-intensity exercise hot water immersion (EX+HWI) when compared to exercise (EX+REST) and hot water immersion (HWI+HWI) alone. Sixteen physically inactive middle-aged adults (nine males and seven females) completed a randomized cross-over counterbalanced design. Each condition consisted of two 30-min bouts separated by 10 min of rest. Cycling was set at a power output equivalent to 50% V̇o2 peak . Water temperature was controlled at 40°C up to the mid sternum with arms not submerged. Venous blood samples and artery ultrasound scans were assessed at 0 (baseline), 30 (immediately post stressor one), 70 (immediately post stressor two), and 100 min (recovery). Additional physiological and perceptual measures were assessed at 10-min intervals. Brachial and superficial femoral artery shear rates were higher after EX+HWI and HWI+HWI when compared with EX+REST (p < 0.001). Plasma nitrite was higher immediately following EX+HWI and HWI+HWI than EX+REST (p < 0.01). Serum interleukin-6 was higher immediately after EX+HWI compared to EX+REST (p = 0.046). Serum cortisol was lower at 30 min in the HWI+HWI condition in contrast to EX+REST (p = 0.026). EX+HWI and HWI+HWI were more enjoyable than EX+REST (p < 0.05). Irrespective of whether hot water immersion proceeded exercise or heating, hot water immersion enhanced vascular and blood marker responses, while also being more enjoyable than exercise alone.
Collapse
Affiliation(s)
- Charles J Steward
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Mathew Hill
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Campbell Menzies
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mushidur Rahman
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Centre for Health, Activity and Wellbeing Research, Cardiff Metropolitan University, Cardiff, UK
| | - Tom Cullen
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
24
|
Hohenauer E, Rogan S, Clijsen R. Editorial: Cold, heat and hypoxia as a medical tool: the use in a healthy and diseased population. Front Physiol 2024; 15:1380395. [PMID: 38420622 PMCID: PMC10901168 DOI: 10.3389/fphys.2024.1380395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Erich Hohenauer
- Department of Business Economics, Health, and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Slavko Rogan
- Department of Health, Bern University of Applied Sciences, Bern, Switzerland
| | - Ron Clijsen
- Department of Business Economics, Health, and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Health, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
25
|
Dahiya R, Asif M, Santhi SE, Hashmi A, Ahadi A, Arshad Z, Nawaz F, Kashyap R. Unveiling Lethal Risks Lurking in Hot Tub Baths: A Review of Tragic Consequences. Cureus 2024; 16:e54198. [PMID: 38496149 PMCID: PMC10940967 DOI: 10.7759/cureus.54198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Heat therapy, including saunas, jacuzzi, and hot tub bathing, has gained global popularity. However, the escalating incidents of injuries and fatalities associated with hot tub activities are a significant public health concern. This study aims to comprehensively review and analyze the pathophysiological factors contributing to hot tub-related deaths, addressing the need for awareness and mitigation strategies. A comprehensive search of electronic databases, PubMed and Science Direct, was conducted to identify articles relevant to bath-related deaths. Eligible studies were exported to the Rayyan (Qatar Computing Research Institute, Qatar) software for data analysis. The data extracted from the 18 studies were compiled to elucidate the mechanisms underlying hot tub bath-related deaths and to advocate for the adoption of potential mitigation strategies and future directions to prevent such incidents in the future. The review revealed insights into the current trend of fatalities linked to hot tub bathing. A detailed analysis of pathophysiological aspects, encompassing hemodynamics, electrolyte disturbances, serum glucagon alterations, and the impact of alcohol and substance abuse during hot tub use, was conducted. Furthermore, we explored the effects of temperature and conducted a thorough discussion of postmortem evidence analysis concerning deaths related to bathtub usage. Finally, the paper discusses mitigation strategies to prevent fatalities attributed to hot tub bathing. In conclusion, our review highlights growing public health concerns surrounding injuries and fatalities related to hot tub activities. Through an examination of the incidence rates, pathophysiological factors, and proposed mitigation strategies, we provide crucial insights for enhancing safety and addressing the escalating risks associated with hot tub bathing.
Collapse
Affiliation(s)
- Roopali Dahiya
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi, IND
| | - Maryam Asif
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, College of Medicine, Alfaisal University, Riyadh, SAU
| | - Sharanya E Santhi
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, Trinity Health Oakland Hospital/Wayne State University, Pontiac, USA
| | - Amna Hashmi
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Awranoos Ahadi
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, Bolan Medical College, Quetta, PAK
| | - Zara Arshad
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Internal Medicine, Shifa International Hospital Islamabad, Islamabad, PAK
| | - Faisal Nawaz
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Psychiatry, Al Amal Psychiatric Hospital, Dubai, ARE
| | - Rahul Kashyap
- Research, Global Remote Research Scholars Program, St. Paul, USA
- Critical Care Medicine, Mayo Clinic, Rochester, USA
- Research, WellSpan Health, York, USA
| |
Collapse
|
26
|
Reed EL, Chapman CL, Whittman EK, Park TE, Larson EA, Kaiser BW, Comrada LN, Wiedenfeld Needham K, Halliwill JR, Minson CT. Cardiovascular and mood responses to an acute bout of cold water immersion. J Therm Biol 2023; 118:103727. [PMID: 37866096 PMCID: PMC10842018 DOI: 10.1016/j.jtherbio.2023.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Cold water immersion (CWI) may provide benefits for physical and mental health. Our purpose was to investigate the effects of an acute bout of CWI on vascular shear stress and affect (positive and negative). Sixteen healthy adults (age: 23 ± 4 y; (9 self-reported men and 7 self-reported women) completed one 15-min bout of CWI (10 °C). Self-reported affect (positive and negative) was assessed at pre-CWI (Pre), 30-min post-immersion, and 180-min post-immersion in all participants. Brachial artery diameter and blood velocity were measured (Doppler ultrasound) at Pre, after 1-min and 15-min of CWI, and 30-min post-immersion (n = 8). Total, antegrade, and retrograde shear stress, oscillatory shear index (OSI), and forearm vascular conductance (FVC) were calculated. Venous blood samples were collected at Pre, after 1-min and 15-min of CWI, 30-min post-immersion, and 180-min post-immersion (n = 8) to quantify serum β-endorphins and cortisol. Data were analyzed using a one-way ANOVA with Fisher's least significance difference and compared to Pre. Positive affect did not change (ANOVA p = 0.450) but negative affect was lower at 180-min post-immersion (p < 0.001). FVC was reduced at 15-min of CWI and 30-min post-immersion (p < 0.020). Total and antegrade shear and OSI were reduced at 30-min post-immersion (p < 0.040) but there were no differences in retrograde shear (ANOVA p = 0.134). β-endorphins did not change throughout the trial (ANOVA p = 0.321). Cortisol was lower at 180-min post-immersion (p = 0.014). An acute bout of CWI minimally affects shear stress patterns but may benefit mental health by reducing negative feelings and cortisol levels.
Collapse
Affiliation(s)
- Emma L Reed
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Christopher L Chapman
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Emma K Whittman
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Talia E Park
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Emily A Larson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Brendan W Kaiser
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Lindan N Comrada
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Karen Wiedenfeld Needham
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - John R Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| | - Christopher T Minson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
27
|
Willmott AGB, James CA, Hayes M, Maxwell NS, Roberts J, Gibson OR. The reliability of a portable steam sauna pod for the whole-body passive heating of humans. J Therm Biol 2023; 118:103743. [PMID: 37979477 DOI: 10.1016/j.jtherbio.2023.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION Passive heating is receiving increasing attention within human performance and health contexts. A low-cost, portable steam sauna pod may offer an additional tool for those seeking to manipulate physiological (cardiovascular, thermoregulatory and sudomotor) and perceptual responses for improving sporting or health profiles. This study aimed to 1) report the different levels of heat stress and determine the pods' inter-unit reliability, and 2) quantify the reliability of physiological and perceptual responses to passive heating. METHOD In part 1, five pods were assessed for temperature and relative humidity (RH) every 5 min across 70 min of heating for each of the 9 settings. In part 2, twelve males (age: 24 ± 4 years) completed two 60 min trials of passive heating (3 × 20 min at 44 °C/99% RH, separated by 1 week). Heart rate (HR), rectal (Trectal) and tympanic temperature (Ttympanic) were recorded every 5 min, thermal comfort (Tcomfort) and sensation (Tsensation) every 10 min, mean arterial pressure (MAP) at each break period and sweat rate (SR) after exiting the pod. RESULTS In part 1, setting 9 provided the highest temperature (44.3 ± 0.2 °C) and longest time RH remained stable at 99% (51±7 min). Inter-unit reliability data demonstrated agreement between pods for settings 5-9 (intra-class correlation [ICC] >0.9), but not for settings 1-4 (ICC <0.9). In part 2, between-visits, high correlations, and low typical error of measurement (TEM) and coefficient of variation (CV) were found for Trectal, HR, MAP, SR, and Tcomfort, but not for Ttympanic or Tsensation. A peak Trectal of 38.09 ± 0.30 °C, HR of 124 ± 15 b min-1 and a sweat loss of 0.73 ± 0.33 L were reported. No between-visit differences (p > 0.05) were observed for Trectal, Ttympanic, Tsensation or Tcomfort, however HR (+3 b.min-1) and MAP (+4 mmHg) were greater in visit 1 vs. 2 (p < 0.05). CONCLUSION Portable steam sauna pods generate reliable heat stress between-units. The highest setting (44 °C/99% RH) also provides reliable but modest adjustments in physiological and perceptual responses.
Collapse
Affiliation(s)
- A G B Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK; Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.
| | - C A James
- Hong Kong Sports Institute (HKSI), Hong Kong; Department of Sport, Physical Education and Health, Hong Kong Baptist University. Kowloon Tong, Hong Kong
| | - M Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - N S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - J Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK
| | - O R Gibson
- Centre for Physical Activity in Health and Disease (CHPAD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
28
|
Matias AA, D'Agata MN. Exercise training in muscular dystrophies: is there room for hot, new and complimentary therapies? J Physiol 2023; 601:4479-4481. [PMID: 37681750 DOI: 10.1113/jp285258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Affiliation(s)
- Alexs A Matias
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Michele N D'Agata
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
29
|
Debray A, Gravel H, Garceau L, Bartlett AA, Chaseling GK, Barry H, Behzadi P, Ravanelli N, Iglesies-Grau J, Nigam A, Juneau M, Gagnon D. Finnish sauna bathing and vascular health of adults with coronary artery disease: a randomized controlled trial. J Appl Physiol (1985) 2023; 135:795-804. [PMID: 37650138 DOI: 10.1152/japplphysiol.00322.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Regular Finnish sauna use is associated with a reduced risk of cardiovascular mortality. However, physiological mechanisms underlying this association remain unknown. This study determined if an 8-wk Finnish sauna intervention improves peripheral endothelial function, microvascular function, central arterial stiffness, and blood pressure in adults with coronary artery disease (CAD). Forty-one adults (62 ± 6 yr, 33 men/8 women) with stable CAD were randomized to 8 wk of Finnish sauna use (n = 21, 4 sessions/wk, 20-30 min/session, 79°C, 13% relative humidity) or a control intervention (n = 20, lifestyle maintenance). Brachial artery flow-mediated dilation (FMD), carotid-femoral pulse wave velocity (cf-PWV), total (area under the curve) and peak postocclusion forearm reactive hyperemia, and blood pressure (automated auscultation) were measured before and after the intervention. After the sauna intervention, resting core temperature was lower (-0.27°C [-0.54, -0.01], P = 0.046) and sweat rate during sauna exposure was greater (0.3 L/h [0.1, 0.5], P = 0.003). The change in brachial artery FMD did not differ between interventions (control: 0.07% [-0.99, +1.14] vs. sauna: 0.15% [-0.89, +1.19], interaction P = 0.909). The change in total (P = 0.031) and peak (P = 0.024) reactive hyperemia differed between interventions due to a nonsignificant decrease in response to the sauna intervention and an increase in response to control. The change in cf-PWV (P = 0.816), systolic (P = 0.951), and diastolic (P = 0.292) blood pressure did not differ between interventions. These results demonstrate that four sessions of Finnish sauna bathing per week for 8 wk does not improve markers of vascular health in adults with stable CAD.NEW & NOTEWORTHY This study determined if unsupervised Finnish sauna bathing for 8 wk improves markers of vascular health in adults with coronary artery disease. Finnish sauna bathing reduced resting core temperature and improved sweating capacity, indicative of heat acclimation. Despite evidence of heat acclimation, Finnish sauna bathing did not improve markers of endothelial function, microvascular function, arterial stiffness, or blood pressure.
Collapse
Affiliation(s)
- Amélie Debray
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Gravel
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Audrey-Ann Bartlett
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Georgia K Chaseling
- Engagement and Co-design Research Hub, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Nicholas Ravanelli
- School of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Anil Nigam
- Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Flynn B, Vitztum M, Miller J, Houchin A, Kim J, He J, Geiger P. Feasibility and pilot study of passive heat therapy on cardiovascular performance and laboratory values in older adults. Pilot Feasibility Stud 2023; 9:86. [PMID: 37221607 DOI: 10.1186/s40814-023-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Chronic heat therapy may have beneficial effects on cardiovascular function. These effects may be more pronounced in older adults. We performed a pilot feasibility study of repeated heat therapy sessions in a hot tub (40.5 °C) in older adults while wearing a noninvasive hemodynamic monitor. As part of the protocol, the volunteers underwent cardiovascular performance testing pre- and post-intervention. METHODS Fifteen volunteers > 50 years old underwent 8-10 separate 45-min hot tub session over 14 days in this exploratory and mixed methods trial. The participants had maximal oxygen consumption (VO2 max) and other cardiovascular data measured via exercise treadmill testing prior to and after all hot tub sessions. The participants also wore noninvasive fingertip volume clamp monitors while immerged in hot water that calculated systemic vascular resistance, heart rate, blood pressure, and cardiac output in order to ascertain the feasibility and utility of this data. Other laboratory studies were obtained pre- and post-intervention. The protocol was determined feasible if the heat therapy and cardiovascular testing was completed by at least 90% (14/15 subjects). Feasibility of the noninvasive monitor was determined by the fidelity of the results. Secondary exploratory outcomes were analyzed for differences to identify if they are acceptable to include in an efficacy trial. RESULTS All participants completed the study protocol identifying the feasibility of the protocol. The noninvasive hemodynamic monitors successfully recorded cardiac output, systemic vascular resistance, heart rate, and blood pressure with fidelity based on the analysis of recordings. In the secondary analyses, we found no difference in the pre- to post-intervention measurement of VO2 max but did find increased exercise duration following hot tub therapy compared with prior to the therapy (571 s versus 551 s). CONCLUSIONS The current pilot study protocol is feasible for the purpose of analyzing the effects of heat therapy and cardiovascular performance in older adults while wearing a noninvasive hemodynamic monitor and undergoing treadmill stress testing. Secondary analyses found increased exercise tolerance but no differences in VO2 max following heat sessions.
Collapse
Affiliation(s)
- Brigid Flynn
- Department of Anesthesiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| | - Michelle Vitztum
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Joshua Miller
- University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Abigail Houchin
- University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Jaromme Kim
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Jianghua He
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Paige Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
32
|
Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol 2023; 173:112105. [PMID: 36731386 PMCID: PMC10068966 DOI: 10.1016/j.exger.2023.112105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
33
|
Chaseling GK, Debray A, Gravel H, Ravanelli N, Bartlett A, Gagnon D. The acute effect of heat exposure on forearm macro- and microvascular function: Impact of measurement timing, heating modality and biological sex. Exp Physiol 2023; 108:221-239. [PMID: 36533971 PMCID: PMC10103856 DOI: 10.1113/ep090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do measurement timing, heating modality and biological sex modulate the acute effect of heat exposure on brachial artery flow-mediated dilatation and postocclusion reactive hyperaemia? What is the main finding and its importance? The acute effect of heat exposure on brachial artery flow-mediated dilatation and postocclusion reactive hyperaemia is: (1) transient and short lasting; (2) different between forearm and whole-body heating; (3) unaffected by forearm heating during whole-body heating; and (4) not different but not always equivalent between males and females. These findings provide a useful basis for future studies to investigate the acute effect of heat exposure on vascular function. ABSTRACT The aim of this study was to gain a better understanding of the acute effect of heat exposure on brachial artery flow-mediated dilatation (FMD) and postocclusion reactive hyperaemia (PORH) by: characterizing the time course of changes post-heating; comparing forearm and whole-body heating; determining the impact of forearm heating during whole-body heating; and comparing males and females. Twenty adults (11 males and nine females; 28 ± 6 years of age) underwent two forearm [10 min electric blanket (EB) or 30 min hot water immersion (WI)] and two whole-body [60 min water-perfused suit with forearm covered (WBH-C) or uncovered (WBH-U)] heating modalities. The FMD and PORH were measured before and after (≤5, 30, 60, 90 and 120 min) heating. The FMD increased from baseline 30 min after EB, and 30 and 90 min after WI. In contrast, FMD decreased from baseline immediately after both WBH modalities. Peak PORH increased immediately after WI and both WBH modalities. Total PORH did not differ after WI, whereas it decreased immediately after both WBH modalities. Covering the forearm during WBH did not alter acute changes in FMD or PORH. Changes in FMD and PORH did not differ statistically between males and females during each heating modality, although the observed differences could not always be considered equivalent. These results demonstrate that the acute effect of heat exposure on brachial artery FMD and PORH is: (1) transient and short lasting; (2) different between forearm heating and WBH; (3) unaffected by direct forearm heating during WBH; and (4) not different but not always equivalent between males and females.
Collapse
Affiliation(s)
- Georgia K. Chaseling
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Amélie Debray
- Montreal Heart InstituteMontréalQuébecCanada
- Department of MedicineFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Hugo Gravel
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | | | - Audrey‐Ann Bartlett
- Montreal Heart InstituteMontréalQuébecCanada
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- School of Kinesiology and Exercise ScienceFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
34
|
Maley MJ, Hunt AP, Stewart IB, Weier S, Holland J, Leicht CA, Minett GM. Hot water immersion acutely reduces peripheral glucose uptake in young healthy males: An exploratory crossover randomized controlled trial. Temperature (Austin) 2023; 10:434-443. [PMID: 38130658 PMCID: PMC10732630 DOI: 10.1080/23328940.2022.2161242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
Whether glucose concentration increases during heat exposure because of reduced peripheral tissue uptake or enhanced appearance is currently unknown. This study aimed to report glucose concentrations in both capillary and venous blood in response to a glucose challenge during passive heating (PH) to assess whether heat exposure affects glucose uptake in healthy males. Twelve healthy male participants completed two experimental sessions, where they were asked to undertake an oral glucose tolerance test (OGTT) whilst immersed in thermoneutral (CON, 35.9 (0.6) °C) and hot water (HWI, 40.3 (0.5) °C) for 120 min. Venous and capillary blood [glucose], rectal temperature, and heart rate were recorded. [Glucose] area under the curve for HWI venous (907 (104) AU) differed from CON venous (719 (88) AU, all P < 0.001). No other differences were noted (P > 0.05). Compared with CON, HWI resulted in greater rectal temperature (37.1 (0.3) °C versus 38.6 (0.4) °C, respectively) and heart rate (69 (12) bpm versus 108 (11) bpm, respectively) on cessation (P < 0.001). An OGTT results in similar capillary [glucose] during hot and thermoneutral water immersion, whereas venous [glucose] was greater during HWI when compared with CON. This indicates that peripheral tissue glucose uptake is acutely reduced in response to HWI. Abbreviations: AUC: Area under the curve; CON: Thermoneutral immersion trial; HWI: Hot water immersion trial; OGTT: Oral glucose tolerance test; PH: Passive heating; T - m s k : Mean skin temperature; Trec: Rectal temperature.
Collapse
Affiliation(s)
- Matthew J. Maley
- Environmental Ergonomics Research Centre, Loughborough School of Design and Creative Arts, Loughborough University, Loughborough, UK
- Queensland University of Technology, Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, QLD, Australia
| | - Andrew P. Hunt
- Queensland University of Technology, Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Ian B. Stewart
- Queensland University of Technology, Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, QLD, Australia
| | - Steven Weier
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Justin Holland
- Queensland University of Technology, Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, QLD, Australia
| | - Christof A. Leicht
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Geoffrey M. Minett
- Queensland University of Technology, Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, QLD, Australia
| |
Collapse
|
35
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
36
|
SenthilKumar G, Gutierrez-Huerta CA, Freed JK, Beyer AM, Fancher IS, LeBlanc AJ. New developments in translational microcirculatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1167-H1175. [PMID: 36306213 PMCID: PMC9678417 DOI: 10.1152/ajpheart.00566.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
37
|
Abstract
In this review, we highlight recent studies from our group and others that have characterized the cardiovascular adjustments that occur after acute heat exposure. Special emphasis will be placed on underlying mechanisms and clinical implications. Finally, we postulate that these acute cardiovascular adjustments may predict the long-term adaptive response to chronic heat therapy.
Collapse
Affiliation(s)
- Steven A. Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| | - Rauchelle E. Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| | - Holden W. Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| |
Collapse
|
38
|
Monroe JC, Pae BJ, Kargl C, Gavin TP, Parker J, Perkins SM, Han Y, Klein J, Motaganahalli RL, Roseguini BT. Effects of home-based leg heat therapy on walking performance in patients with symptomatic peripheral artery disease: a pilot randomized trial. J Appl Physiol (1985) 2022; 133:546-560. [PMID: 35771219 PMCID: PMC9448284 DOI: 10.1152/japplphysiol.00143.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Few noninvasive therapies currently exist to improve functional capacity in people with lower extremity peripheral artery disease (PAD). The goal of the present study was to test the hypothesis that unsupervised, home-based leg heat therapy (HT) using water-circulating trousers perfused with warm water would improve walking performance in patients with PAD. Patients with symptomatic PAD were randomized into either leg HT (n = 18) or a sham treatment (n = 16). Patients were provided with water-circulating trousers and a portable pump and were asked to apply the therapy daily (7 days/wk, 90 min/session) for 8 wk. The primary study outcome was the change from baseline in 6-min walk distance at 8-wk follow-up. Secondary outcomes included the claudication onset-time, peak walking time, peak pulmonary oxygen consumption and peak blood pressure during a graded treadmill test, resting blood pressure, the ankle-brachial index, postocclusive reactive hyperemia in the calf, cutaneous microvascular reactivity, and perceived quality of life. Of the 34 participants randomized, 29 completed the 8-wk follow-up. The change in 6-min walk distance at the 8-wk follow-up was significantly higher (P = 0.029) in the group exposed to HT than in the sham-treated group (Sham: median: -0.9; 25%, 75% percentiles: -5.8, 14.3; HT: median: 21.3; 25%, 75% percentiles: 10.1, 42.4, P = 0.029). There were no significant differences in secondary outcomes between the HT and sham group at 8-wk follow-up. The results of this pilot study indicate that unsupervised, home-based leg HT is safe, well-tolerated, and elicits a clinically meaningful improvement in walking tolerance in patients with symptomatic PAD.NEW & NOTEWORTHY This is the first sham-controlled trial to examine the effects of home-based leg heat therapy (HT) on walking performance in patients with peripheral artery disease (PAD). We demonstrate that unsupervised HT using water-circulating trousers is safe, well-tolerated, and elicits meaningful changes in walking ability in patients with symptomatic PAD. This home-based treatment option is practical, painless, and may be a feasible adjunctive therapy to counteract the decline in lower extremity physical function in patients with PAD.
Collapse
Affiliation(s)
- Jacob C Monroe
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Byung Joon Pae
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Christopher Kargl
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Jason Parker
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan M Perkins
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yan Han
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janet Klein
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
39
|
Effect of Local Warm Compression on Restless Leg Syndrome and Fatigue among Critical Care Nurses: A Parallel Randomized Clinical Trial. Crit Care Res Pract 2022; 2022:7330308. [PMID: 36065427 PMCID: PMC9440832 DOI: 10.1155/2022/7330308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Methods and Materials This parallel randomized clinical trial was conducted on 120 CCNs in Shahroud by the census sampling method. Inclusion criteria included suffering from restless leg syndrome and having no wound or inflammation over the organ. The participants were assigned into two groups by the use of quadruple blocks. The intervention group received the warm compress for 12 sessions lasting 4 weeks and the control group did not receive an intervention. Data were collected using multidimensional fatigue inventory (MFI) and the Restless Legs Syndrome Scale and then analyzed using descriptive and inferential statistics (chi-squared test, independent sample t-test, and pair sample t-test). Results The two groups were homogeneous in terms of demographic characteristics. Prior to the intervention, the two groups of warm compression and control did not have a significant difference in terms of mean fatigue and restless leg syndrome scores; however, after the intervention, a significant reduction was observed in the intervention group (p < 0.001). Conclusion According to the results of the current study, the use of warm compression is an effective intervention in alleviating fatigue and restless leg syndrome, so it is recommended to implement this intervention as a nonpharmacological strategy among CCNs. Clinical Trial Registration Number. IRCT20190723044316N1.
Collapse
|
40
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
41
|
Lee E, Kolunsarka IA, Kostensalo J, Ahtiainen JP, Haapala EA, Willeit P, Kunutsor SK, Laukkanen JA. The effects of regular sauna bathing in conjunction with exercise on cardiovascular function: A multi-arm randomized controlled trial. Am J Physiol Regul Integr Comp Physiol 2022; 323:R289-R299. [PMID: 35785965 PMCID: PMC9394774 DOI: 10.1152/ajpregu.00076.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regular exercise and sauna bathing have each been shown to improve cardiovascular function in clinical populations. However, experimental data on the cardiovascular adaptations to regular exercise in conjunction with sauna bathing in the general population is lacking. Therefore, we compared the effects of exercise and sauna bathing, to regular exercise using a multi-arm randomized controlled trial. Participants (n = 47) aged 49 ± 9 years with low physical activity levels, and at least one traditional CVD risk factor were randomly assigned (1:1:1) to guideline-based regular exercise and 15-minute post-exercise sauna (EXS), guideline-based regular exercise (EXE), or control (CON), for eight weeks. The primary outcomes were blood pressure (BP) and cardiorespiratory fitness (CRF). Secondary outcomes included fat mass, total cholesterol levels, and arterial stiffness. EXE had a greater change in CRF (+6.2 ml/kg/min; 95% CI, +4.2. to +8.3 ml/kg/min) and fat mass, but no differences in BP when compared to CON. EXS displayed greater change in CRF (+2.7 ml/kg/min; 95% CI, +0.2. to +5.3 ml/kg/min), lower systolic BP (-8.0 mmHg; 95% CI, -14.6 to -1.4 mmHg) and lower total cholesterol levels compared to EXE. Regular exercise improved CRF and body composition in sedentary adults with CVD risk factors. However, when combined with exercise, sauna bathing demonstrated a substantially supplementary effect on CRF, systolic BP, and total cholesterol levels. Sauna bathing is a valuable lifestyle tool that complements exercise for improving CRF, and decreasing systolic BP. Future research should focus on the duration, and frequency of exposure to ascertain the dose-response relationship.
Collapse
Affiliation(s)
- Earric Lee
- Faculty of Sports and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Iiris A Kolunsarka
- Faculty of Sports and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Joel Kostensalo
- grid.22642.30Natural Resources Institute Finland, Joensuu, Finland
| | - Juha P Ahtiainen
- Department of Biology of Physical Activity, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Eero A Haapala
- Faculty of Sport and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Setor K Kunutsor
- Translational Health Sciences, grid.5337.2University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
42
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
43
|
Behzadi P, Ravanelli N, Gravel H, Barry H, Debray A, Chaseling GK, Jacquemet V, Neagoe PE, Nigam A, Carpentier AC, Sirois MG, Gagnon D. Acute effect of passive heat exposure on markers of cardiometabolic function in adults with type 2 diabetes mellitus. J Appl Physiol (1985) 2022; 132:1154-1166. [PMID: 35323077 DOI: 10.1152/japplphysiol.00800.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIM Heat therapy is a promising strategy to improve cardiometabolic health. This study evaluated the acute physiological responses to hot water immersion in adults with type 2 diabetes mellitus (T2DM). METHODS On separate days in randomized order, 13 adults with T2DM (8 males/5 females, 62 ± 12 yrs, BMI: 30.1 ± 4.6 kg/m2) were immersed in thermoneutral (34°C, 90 minutes) or hot (41°C, core temperature ≥38.5°C for 60 minutes) water. Insulin sensitivity was quantified via the minimal oral model during an oral glucose tolerance test (OGTT) performed 60 minutes after immersion. Brachial artery flow-mediated dilation (FMD) and reactive hyperemia were evaluated before and 40 minutes after immersion. Blood samples were drawn to quantify protein concentrations and mRNA levels of HSP70 and 90, and circulating concentrations of cytokines. RESULTS Relative to thermoneutral water immersion, hot water immersion increased core temperature (+1.66°C [+1.47, +1.87], P<0.01), heart rate (+34 bpm [+24, +44], P<0.01), antegrade shear rate (+96 s-1 [+57, +134], P<0.01), and IL-6 (+1.38 pg/mL [+0.31, +2.45], P=0.01). Hot water immersion did not exert an acute change in insulin sensitivity (-0.3 dl/kg/min/μU/ml [-0.9, +0.2], P=0.18), FMD (-1.0% [-3.6, +1.6], P=0.56), peak (+0.36 mL/min/mmHg [-0.71, +1.43], P=0.64) and total (+0.11 mL/min/mmHg x min [-0.46, +0.68], P=0.87) reactive hyperemia. There was also no change in eHSP70 (P=0.64), iHSP70 (P=0.06), eHSP90 (P=0.80), iHSP90 (P=0.51), IL1-RA (P=0.11), GLP-1 (P=0.59) and NFkB (P=0.56) after hot water immersion. CONCLUSION The physiological responses elicited by hot water immersion do not acutely improve markers of cardiometabolic function in adults with T2DM.
Collapse
Affiliation(s)
- Parya Behzadi
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Hugo Gravel
- Montreal Heart Institute, Montreal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Amelie Debray
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - Georgia K Chaseling
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | | | - Anil Nigam
- Montreal Heart Institute, Montreal, Canada.,Department of Medicine, Université de Montréal, Montréal, Canada
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Martin G Sirois
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Canada.,Department of pharmacology and physiology, Université de Montréal, Montréal, Canada.,School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Canada
| |
Collapse
|
44
|
Mangum JE, Needham KW, Sieck DC, Ely MR, Larson EA, Peck MC, Minson CT, Halliwill JR. The effect of local passive heating on skeletal muscle histamine concentration: implications for exercise-induced histamine release. J Appl Physiol (1985) 2022; 132:367-374. [PMID: 34941436 PMCID: PMC8799384 DOI: 10.1152/japplphysiol.00740.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic exercise induces mast cell degranulation and increases histamine formation by histidine decarboxylase, resulting in an ∼150% increase in intramuscular histamine. The purpose of this study was to determine if the increase in skeletal muscle temperature associated with exercise is sufficient to explain this histamine response. Specifically, we hypothesized that local passive heating that mimics the magnitude and time course of changes in skeletal muscle temperature observed during exercise would result in increased intramuscular histamine concentrations comparable to exercising values. Seven subjects participated in the main study in which pulsed short-wave diathermy was used to passively raise the temperature of the vastus lateralis over 60 min. Heating increased intramuscular temperature from 32.6°C [95% confidence interval (CI) 32.0°C to 33.2°C] to 38.9°C (38.7°C to 39.2°C) (P < 0.05) and increased intramuscular histamine concentration from 2.14 ng/mL (1.92 to 2.36 ng/mL) to 2.97 ng/mL (2.57 to 3.36 ng/mL) (P < 0.05), an increase of 41%. In a follow-up in vitro experiment using human-derived cultured mast cells, heating to comparable temperatures did not activate mast cell degranulation. Therefore, it appears that exercise-associated changes in skeletal muscle temperature are sufficient to generate elevations in intramuscular histamine concentration. However, this thermal effect is most likely due to changes in de novo histamine formation via histidine decarboxylase and not due to degranulation of mast cells. In conclusion, physiologically relevant increases in skeletal muscle temperature explain part, but not all, of the histamine response to aerobic exercise. This thermal effect may be important in generating positive adaptations to exercise training.NEW & NOTEWORTHY The "exercise signal" that triggers histamine release within active skeletal muscle during aerobic exercise is unknown. By mimicking the magnitude and time course of increasing skeletal muscle temperature observed during aerobic exercise, we demonstrate that part of the exercise-induced rise in histamine is explained by a thermal effect, with in vitro experiments suggesting this is most likely via de novo histamine formation. This thermal effect may be important in generating positive adaptations to exercise training.
Collapse
Affiliation(s)
- Joshua E. Mangum
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen Wiedenfeld Needham
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C. Sieck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R. Ely
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emily A. Larson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Mairin C. Peck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Christopher T. Minson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R. Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
45
|
Odabasi E, Turan M. The importance of body core temperature evaluation in balneotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:25-33. [PMID: 34623501 DOI: 10.1007/s00484-021-02201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.
Collapse
Affiliation(s)
- Ersin Odabasi
- Department of Medical Ecology and Hydroclimatology, Gulhane Faculty of Medicine, University of Health Science, Gulhane EAH, 06018, Etlik, Ankara, Turkey.
| | - Mustafa Turan
- Department of Medical Education and Informatics, TOBB Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
46
|
Larson EA, Ely BR, Brunt VE, Francisco MA, Harris SM, Halliwill JR, Minson CT. Brachial and carotid hemodynamic response to hot water immersion in men and women. Am J Physiol Regul Integr Comp Physiol 2021; 321:R823-R832. [PMID: 34643115 DOI: 10.1152/ajpregu.00110.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.
Collapse
Affiliation(s)
- Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brett R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Sarianne M Harris
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
47
|
Marciniak RA, Wahl CA, Ebersole KT. Autonomic Nervous System Response to Far-Infrared Sauna Exposure in Firefighters. Ann Work Expo Health 2021; 66:356-367. [PMID: 34632485 DOI: 10.1093/annweh/wxab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Fire departments have employed far-infrared sauna (FIRS) use as part of post-fire call protocols to address concerns related to carcinogens. The inability of the autonomic nervous system (ANS) to fully recover following an emergency call, as demonstrated by heightened sympathetic nervous system activity and delayed parasympathetic nervous system reactivation, has been implicated as a potential factor related to sudden cardiac death. The use of a sauna post-fire call, which has been demonstrated to elevate body temperature, may interfere with the ability of the ANS to fully recover. The purpose of this study was to examine ANS responses to FIRS exposure in firefighters (FFs) with (EX) and without (NONEX) prior maximal exercise. METHODS Sixteen career FFs participated in this study. Body temperature (TEMP), heart rate (HR), heart rate variability (HRV), blood pressure (BP), and blood lactate (La─) were measured at the start of each testing session, following a maximal exercise test (EX only), and immediately after a 15-min FIRS exposure for NONEX and EX. RESULTS In NONEX, TEMP increased (P < 0.001); however, there was no change in HR, HRV, BP, or La─. In EX, BP remained unchanged while TEMP, HR, and La─ were significantly (P < 0.001) greater than baseline following FIRS exposure and HRV was significantly (P = 0.018) lower than baseline. CONCLUSIONS These findings indicate that FIRS following maximal exercise did support some ANS recovery, but may interfere with restoration of body temperature and parasympathetic nervous system reactivation, potentially influencing post-call cardiovascular risk in FFs.
Collapse
Affiliation(s)
- Rudi A Marciniak
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Suite 350, 3409 N. Downer Ave, Milwaukee, WI, USA
| | - Carly A Wahl
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Suite 350, 3409 N. Downer Ave, Milwaukee, WI, USA
| | - Kyle T Ebersole
- Department of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Suite 350, 3409 N. Downer Ave, Milwaukee, WI, USA
| |
Collapse
|
48
|
Patrick RP, Johnson TL. Sauna use as a lifestyle practice to extend healthspan. Exp Gerontol 2021; 154:111509. [PMID: 34363927 DOI: 10.1016/j.exger.2021.111509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Sauna use, sometimes referred to as "sauna bathing," is characterized by short-term passive exposure to high temperatures, typically ranging from 45 °C to 100 °C (113 °F to 212 °F), depending on modality. This exposure elicits mild hyperthermia, inducing a thermoregulatory response involving neuroendocrine, cardiovascular, and cytoprotective mechanisms that work in a synergistic fashion in an attempt to maintain homeostasis. Repeated sauna use acclimates the body to heat and optimizes the body's response to future exposures, likely due to the biological phenomenon known as hormesis. In recent decades, sauna bathing has emerged as a probable means to extend healthspan, based on compelling data from observational, interventional, and mechanistic studies. Of particular interest are the findings from large, prospective, population-based cohort studies of health outcomes among sauna users that identified strong dose-dependent links between sauna use and reduced morbidity and mortality. This review presents an overview of sauna practices; elucidates the body's physiological response to heat stress and the molecular mechanisms that drive the response; enumerates the myriad health benefits associated with sauna use; and describes sauna use concerns.
Collapse
Affiliation(s)
| | - Teresa L Johnson
- TLJ Communications, LLC, 36 Creek Harbour Blvd., Freeport, FL 32439, USA.
| |
Collapse
|
49
|
Waldock KA, Gibson OR, Relf RL, Eichhorn G, Hayes M, Watt PW, Maxwell NS. Exercise heat acclimation and post-exercise hot water immersion improve resting and exercise responses to heat stress in the elderly. J Sci Med Sport 2021; 24:774-780. [DOI: 10.1016/j.jsams.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 01/23/2023]
|