1
|
McFaline-Figueroa J, Raymond-Pope CJ, Pearson JJ, Schifino AG, Heo J, Lillquist TJ, Pritchard EE, Winders EA, Hunda ET, Temenoff JS, Greising SM, Call JA. Advancing β-adrenoreceptor agonism for recovery after volumetric muscle loss through regenerative rehabilitation and biomaterial delivery approaches. Regen Biomater 2025; 12:rbaf015. [PMID: 40256211 PMCID: PMC12007732 DOI: 10.1093/rb/rbaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025] Open
Abstract
Volumetric muscle loss (VML) injury results in the unrecoverable loss of muscle mass and contractility. Oral delivery of formoterol, a β2-adrenergic receptor agonist, produces a modest recovery of muscle mass and contractility in VML-injured mice. The objective of this study was to determine if a regenerative rehabilitation paradigm or a regenerative medicine paradigm could enhance the recovery of VML-injured muscle. Regenerative rehabilitation involved oral formoterol delivery combined with voluntary wheel running. Regenerative medicine involved direct delivery of formoterol to VML-injured muscle using a non-biodegradable poly(ethylene glycol) biomaterial. To determine if the regenerative rehabilitation or regenerative medicine approaches were effective at 8 weeks post-injury, muscle mass, contractile function, metabolic function, and histological evaluations were used. One model of regenerative rehabilitation, in which rehabilitation was delayed until 1 month post-injury, resulted in greater muscle mass, muscle contractility, and permeabilized muscle fiber mitochondrial respiration compared to untreated VML-injured mice. Histologically, these mice had evidence of greater total muscle fiber number and oxidative fibers; however, they also had a greater percentage of densely packed collagen. The regenerative medicine model produced greater permeabilized muscle fiber mitochondrial respiration compared to untreated VML-injured mice; however, the non-biodegradable biomaterial was associated with fewer total muscle fibers and lower muscle quality (i.e. lower muscle mass-normalized contractility). The conclusions reached from this study are: (i) regenerative rehabilitation and regenerative medicine strategies utilizing formoterol require further optimization but showed promising outcomes; and (ii) in general, β-adrenergic receptor agonism continues to be a physiologically supportive intervention to improve muscle contractile and metabolic function after VML injury.
Collapse
Affiliation(s)
| | | | - Joseph J Pearson
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30032, USA
| | - Albino G Schifino
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Junwon Heo
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma E Pritchard
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth A Winders
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Edward T Hunda
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30032, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Mazza O, Nielsen J, Mathiesen J, Højme D, Lundby C, Hostrup M, Thomassen M, Plomgaard P, Gejl KD, Ørtenblad N. Effects of 8 Weeks of Moderate- or High-Volume Strength Training on Sarcoplasmic Reticulum Ca 2+ Handling in Elite Female and Male Rowers. Scand J Med Sci Sports 2025; 35:e70017. [PMID: 39831408 PMCID: PMC11744491 DOI: 10.1111/sms.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca2+ handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period. Skeletal muscle biopsies were collected before and after the intervention period and analyzed for SR vesicle Ca2+ handling, SR related proteins, and myosin heavy chain (MHC) composition. Muscle strength was determined by isometric midthigh pull (IMTP). Training increased both the overall SR Ca2+ release (19%) and uptake rates (34%), with no differences between groups. SR protein analysis revealed a high variability but suggests an increase of RYR1 and SERCA1, while SERCA2 decreased, corroborating changes in SR function, with no differences between groups. Regardless of training volume, a 9% higher relative MHCIIa proportion and a 7% decrease in the MHCI isoform was observed. There was an overall 8% increase of IMTP. Males exhibited higher SR Ca2+ uptake and release rates compared to females, likely explained by a higher proportion of MHCII. These findings suggest that 8 weeks of moderate- or high-volume strength training enhances SR vesicle Ca2+ uptake and release rates in elite male and female rowers, accompanied by a shift toward a larger proportion of MHCIIa fiber type.
Collapse
Affiliation(s)
- Oscar Mazza
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Jonas Mathiesen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Daniel Højme
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Carsten Lundby
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
- Inland Norway University of Applied SciencesLillehammerNorway
| | - Morten Hostrup
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Peter Plomgaard
- Centre for Physical Activity ResearchCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Kasper Degn Gejl
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
3
|
Jessen S, Quesada JP, Di Credico A, Moreno-Justicia R, Wilson R, Jacobson G, Bangsbo J, Deshmukh AS, Hostrup M. Beta 2-Adrenergic Stimulation Induces Resistance Training-Like Adaptations in Human Skeletal Muscle: Potential Role of KLHL41. Scand J Med Sci Sports 2024; 34:e14736. [PMID: 39366923 DOI: 10.1111/sms.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Skeletal muscle mass plays a pivotal role in metabolic function, but conditions such as bed rest or injury often render resistance training impractical. The beta2-adrenergic receptor has been highlighted as a potential target to promote muscle hypertrophy and treat atrophic conditions. Here, we investigate the proteomic changes associated with beta2-adrenergic-mediated muscle hypertrophy, using resistance training as a hypertrophic comparator. We utilize MS-based proteomics to map skeletal muscle proteome remodeling in response to beta2-adrenergic stimulation or resistance training as well as cell model validation. We report that beta2-adrenergic stimulation mimics multiple features of resistance training in proteome-wide remodeling, comprising systematic upregulation of ribosomal subunits and concomitant downregulation of mitochondrial proteins. Approximately 20% of proteins were regulated in both conditions, comprising proteins involved in steroid metabolism (AKR1C1, AKR1C2, AKRC1C3), protein-folding (SERPINB1), and extracellular matrix organization (COL1A1, COL1A2). Among overall most significantly upregulated proteins were kelch-like family members (KLHL) 40 and 41. In follow-up experiments, we identify KLHL41 as having novel implications for beta2-adrenergic-mediated muscle hypertrophy. Treating C2C12 cells with beta2-agonist for 96 h increased myotube diameter by 48% (p < 0.001). This anabolic effect was abolished by prior knockdown of KLHL41. Using siRNA, KLHL41 abundance was decreased by 60%, and the anabolic response to beta2-agonist was diminished (+ 15%, i.e., greater in the presence of KLHL41, knock-down × treatment: p = 0.004). In conclusion, protein-wide remodeling induced by beta2-adrenergic stimulation mimics multiple features of resistance training, and thus the beta2-adrenergic receptor may be a target with therapeutic potential in the treatment of muscle wasting conditions without imposing mechanical load.
Collapse
Affiliation(s)
- Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Roger Moreno-Justicia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Wilson
- Central Science Laboratory, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn Jacobson
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Gafurova CR, Tsentsevitsky AN, Fedorov NS, Khaziev AN, Malomouzh AI, Petrov AM. β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch. Mol Neurobiol 2024; 61:6805-6821. [PMID: 38353924 DOI: 10.1007/s12035-024-03991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 08/22/2024]
Abstract
β2-Adrenoceptors (β2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of β2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that β2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. β2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of β2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the β2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on β2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, β2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of β2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the β2-AR signaling on lipid raft integrity in the neuromuscular junctions.
Collapse
Affiliation(s)
- Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Arthur N Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
- Kazan National Research Technical University, 10, K. Marx St., Kazan, Russia, 420111
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111.
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012.
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russia, 420008.
| |
Collapse
|
5
|
Benarroch E. What Is the Role of the Sympathetic System in Skeletal Muscle? Neurology 2024; 102:e209488. [PMID: 38710007 DOI: 10.1212/wnl.0000000000209488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
|
6
|
Hostrup M, Jessen S. Beyond bronchodilation: Illuminating the performance benefits of inhaled beta 2 -agonists in sports. Scand J Med Sci Sports 2024; 34:e14567. [PMID: 38268072 DOI: 10.1111/sms.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Given the prevalent use of inhaled beta2 -agonists in sports, there is an ongoing debate as to whether they enhance athletic performance. Over the last decades, inhaled beta2 -agonists have been claimed not to enhance performance with little consideration of dose or exercise modality. In contrast, orally administered beta2 -agonists are perceived as being performance enhancing, predominantly on muscle strength and sprint ability, but can also induce muscle hypertrophy and slow-to-fast fiber phenotypic switching. But because inhaled beta2 -agonists are more efficient to achieve high systemic concentrations than oral delivery relative to dose, it follows that the inhaled route has the potential to enhance performance too. The question is at which inhaled doses such effects occur. While supratherapeutic doses of inhaled beta2 -agonists enhance muscle strength and short intense exercise performance, effects at low therapeutic doses are less apparent. However, even high therapeutic inhaled doses of commonly used beta2 -agonists have been shown to induce muscle hypertrophy and to enhance sprint performance. This is concerning from an anti-doping perspective. In this paper, we raise awareness of the circumstances under which inhaled beta2 -agonists can constitute a performance-enhancing benefit.
Collapse
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Hostrup M, Hansen ESH, Rasmussen SM, Jessen S, Backer V. Asthma and exercise-induced bronchoconstriction in athletes: Diagnosis, treatment, and anti-doping challenges. Scand J Med Sci Sports 2024; 34:e14358. [PMID: 36965010 DOI: 10.1111/sms.14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.
Collapse
Affiliation(s)
- Morten Hostrup
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik S H Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Søren M Rasmussen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark
| | - Søren Jessen
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
8
|
Hostrup M, Weinreich C, Bjerre M, Kohlbrenner D, Bangsbo J, Jessen S. Inhaled salbutamol induces leanness in well-trained healthy females but not males during a period of endurance training: a randomised controlled trial. ERJ Open Res 2023; 9:00657-2023. [PMID: 38152086 PMCID: PMC10752270 DOI: 10.1183/23120541.00657-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Many athletes use short-acting inhaled β2-agonists multiple times weekly during training sessions to prevent exercise-induced bronchoconstriction, but it is unclear if treatment impairs training outcomes. Herein, we investigated performance adaptations in well-trained females and males training with prior inhalation of salbutamol. Methods 19 females and 21 males with maximal oxygen uptake (V'O2max) of 50.5±3.3 and 57.9±4.9 mL·min-1·kg-1, respectively, participated in this double-blinded, placebo-controlled, parallel-group study. We randomised participants to placebo or salbutamol inhalation (800-1600 µg·training day-1) for 6 weeks of combined endurance (1× per week) and high-intensity interval training (2× per week). We assessed participants' body composition, V'O2max and muscle contractile function, and collected vastus lateralis muscle biopsies. Results Salbutamol induced a sex-specific loss of whole-body fat mass (sex×treatment: p=0.048) where only salbutamol-treated females had a fat mass reduction compared to placebo (-0.8 kg at 6 weeks; 95% CI: -0.5 to -1.6; p=0.039). Furthermore, salbutamol-treated females exhibited a repartitioning effect, lowering fat mass while gaining lean mass (p=0.011), which was not apparent for males (p=0.303). Salbutamol negatively impacted V'O2max in both sexes (treatment main effect: p=0.014) due to a blunted increase in V'O2max during the initial 4 weeks of the intervention. Quadriceps contractile strength was impaired in salbutamol-treated females (-39 N·m; 95% CI: -61 to -17; p=0.002) compared to placebo at 6 weeks. Muscle electron transport chain complex I-V abundance increased with salbutamol (treatment main effect: p=0.035), while content of SERCAI, β2-adrenoceptor and desmin remained unchanged. Conclusion Inhaled salbutamol appears to be an effective repartitioning agent in females but may impair aerobic and strength-related training outcomes.
Collapse
Affiliation(s)
- Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Weinreich
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Bjerre
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Dario Kohlbrenner
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Kumar A, Prajapati P, Raj V, Kim SC, Mishra V, Raorane CJ, Raj R, Kumar D, Kushwaha S. Salbutamol ameliorates skeletal muscle wasting and inflammatory markers in streptozotocin (STZ)-induced diabetic rats. Int Immunopharmacol 2023; 124:110883. [PMID: 37666067 DOI: 10.1016/j.intimp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes accelerates muscle atrophy, leading to the deterioration of skeletal muscles. This study aimed to assess the potential of the β2-adrenoceptor agonist, salbutamol (SLB), to alleviate muscle atrophy in streptozotocin (STZ)-induced diabetic rats. Male Sprague Dawley rats were randomized into four groups (n=6): control, SLB, STZ (55 mg/kg, single i.p.), and STZ + SLB (6 mg/kg, orally for 4 weeks). After the final SLB dose, animals underwent tests to evaluate muscle strength and coordination, including forelimb grip strength, wire-hanging, actophotometer, rotarod, and footprint assessments. Rats were then sacrificed, and serum and gastrocnemius (GN) muscles were collected for further analysis. Serum evaluations included proinflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6), muscle markers (creatine kinase, myostatin), testosterone, and lipidemic markers. Muscle oxidative stress (malonaldehyde, protein carbonyl), antioxidants (glutathione, catalase, superoxide dismutase), and histology were also performed. Additionally, 1H nuclear magnetic resonance serum profiling was conducted. SLB notably enhanced muscle grip strength, coordination, and antioxidant levels, while reduced proinflammatory markers and oxidative stress in STZ-induced diabetic rats. Reduced serum muscle biomarkers, increased testosterone, restored lipidemic levels, and improved muscle cellular architecture indicated SLB's positive effect on muscle condition in diabetic rats. Metabolomics profiling revealed that the STZ group significantly increased the phenylalanine-to-tyrosine ratio (PTR), lactate-to-pyruvate ratio (LPR), acetate, succinate, isobutyrate, and histidine. SLB administration restored these perturbed serum metabolites in the STZ-induced diabetic group. In conclusion, salbutamol significantly protected against skeletal muscle wasting in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| | | | - Ritu Raj
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Sapana Kushwaha
- National Institutes of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
10
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Buisson C, Brooker L, Goebel C, Morrow R, Chakrabarty R, Speers N, Molina A, Ericsson M, Collomp K. Summer Olympic sports and female athletes: comparison of anti-doping collections and prohibited substances detected in Australia and New Zealand vs. France. Front Sports Act Living 2023; 5:1213735. [PMID: 37745202 PMCID: PMC10515209 DOI: 10.3389/fspor.2023.1213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
Like any athlete, female athletes may be tempted to use prohibited substances during competition or training to enhance their performance. Anti-doping tests performed on female athletes in summer Olympic sports from two geographical areas: Australia/ New Zealand, and France were compared. First, the distribution of sample collections across different sports disciplines, as well as the distribution of substances was investigated. Then the distribution of collections and substances detected in the five sports categories (Strength/Speed, Endurance, Mixed, Motor Skills with High Energy Expenditure, and Motor Skills with Low Energy Expenditure) were studied with consideration of therapeutic use exemptions obtained by the athlete. Australia/New Zealand and France were similar in their overall number of anti-doping collections performed. Likewise, both regions had the same sports disciplines (athletics, aquatics, cycling) and sport categories (Mixed and Endurance) as having the highest number of sample collections. The Motor Skills with High Energy Expenditure, and Motor Skills with Low Energy Expenditure categories had the lowest number of sample collections. However, the number of substances detected was significantly different (p < 0.05) with a greater number of substances found in the French data. There were a few substances in common between the two geographical areas, namely prednisone/prednisolone, carboxy-THC, terbutaline, vilanterol and methylphenidate, but most were different. In-competition tests were the category where most of the AAFs were found.
Collapse
Affiliation(s)
- Corinne Buisson
- LADF, French Anti-Doping Laboratory, Université Paris-Saclay, Orsay, France
| | - Lance Brooker
- ASDTL, Australian Sports Drug Testing Laboratory, National Measurement Institute, Sydney, NSW, Australia
| | - Catrin Goebel
- ASDTL, Australian Sports Drug Testing Laboratory, National Measurement Institute, Sydney, NSW, Australia
| | - Ryan Morrow
- DFSNZ, Drug Free Sport New Zealand, Auckland, New Zealand
| | | | - Naomi Speers
- SIA, Sport Integrity Australia, Fyshwick, ACT, Australia
| | | | - Magnus Ericsson
- LADF, French Anti-Doping Laboratory, Université Paris-Saclay, Orsay, France
| | - Katia Collomp
- LADF, French Anti-Doping Laboratory, Université Paris-Saclay, Orsay, France
- CIAMS, Université D'Orléans, Orléans, France
- CIAMS, Université Paris-Saclay, Orsay, France
- SAPRéM, Université d'Orleans, Orléans, France
| |
Collapse
|
12
|
Kumar A, Prajapati P, Singh G, Kumar D, Mishra V, Kim SC, Raorane CJ, Raj V, Kushwaha S. Salbutamol Attenuates Diabetic Skeletal Muscle Atrophy by Reducing Oxidative Stress, Myostatin/GDF-8, and Pro-Inflammatory Cytokines in Rats. Pharmaceutics 2023; 15:2101. [PMID: 37631314 PMCID: PMC10458056 DOI: 10.3390/pharmaceutics15082101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes is a metabolic disorder that leads to accelerated skeletal muscle atrophy. In this study, we aimed to evaluate the effect of salbutamol (SLB) on skeletal muscle atrophy in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats. Male Sprague Dawley rats were divided into four groups (n = 6): control, SLB, HFD/STZ, and HFD/STZ + SLB (6 mg/kg orally for four weeks). After the last dose of SLB, rats were assessed for muscle grip strength and muscle coordination (wire-hanging, rotarod, footprint, and actophotometer tests). Body composition was analyzed in live rats. After that, animals were sacrificed, and serum and gastrocnemius (GN) muscles were collected. Endpoints include myofibrillar protein content, muscle oxidative stress and antioxidants, serum pro-inflammatory cytokines (interleukin-1β, interleukin-2, and interleukin-6), serum muscle markers (myostatin, creatine kinase, and testosterone), histopathology, and muscle 1H NMR metabolomics. Findings showed that SLB treatment significantly improved muscle strength and muscle coordination, as well as increased lean muscle mass in diabetic rats. Increased pro-inflammatory cytokines and muscle markers (myostatin, creatine kinase) indicate muscle deterioration in diabetic rats, while SLB intervention restored the same. Also, Feret's diameter and cross-sectional area of GN muscle were increased by SLB treatment, indicating the amelioration in diabetic rat muscle. Results of muscle metabolomics exhibit that SLB treatment resulted in the restoration of perturbed metabolites, including histidine-to-tyrosine, phenylalanine-to-tyrosine, and glutamate-to-glutamine ratios and succinate, sarcosine, and 3-hydroxybutyrate (3HB) in diabetic rats. These metabolites showed a pertinent role in muscle inflammation and oxidative stress in diabetic rats. In conclusion, findings showed that salbutamol could be explored as an intervention in diabetic-associated skeletal muscle atrophy.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; (A.K.); (P.P.); (V.M.)
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; (A.K.); (P.P.); (V.M.)
| | - Gurvinder Singh
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India; (G.S.); (D.K.)
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India; (G.S.); (D.K.)
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; (A.K.); (P.P.); (V.M.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Bijnor-Sisendi Road, Lucknow 226002, India
| |
Collapse
|
13
|
Di Credico A, Gaggi G, Izzicupo P, Vitucci D, Buono P, Di Baldassarre A, Ghinassi B. Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes. J Histochem Cytochem 2023; 71:199-209. [PMID: 37013268 PMCID: PMC10149894 DOI: 10.1369/00221554231165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 04/05/2023] Open
Abstract
Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| |
Collapse
|
14
|
Effect of sample fractionation and normalization when immunoblotting for human muscle Na +/K +-ATPase subunits and glycogen synthase. Anal Biochem 2023; 666:115071. [PMID: 36736987 DOI: 10.1016/j.ab.2023.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Immunoblotting is widely used in muscle physiology to determine protein regulation and abundance. However, research groups use different protocols, which may result in differential outcomes. Herein, we investigated the effect of various homogenization procedures on determination of protein abundance in human m. vastus lateralis biopsies. Furthermore, we investigated differences in abundance between young healthy males (n = 12) and type-2 diabetics (n = 4), and the effect of data normalization. Fractionated lysates had the lowest variation in total protein determination as compared to non-fractionated homogenates. Abundance of NKAα2, NKAβ1, FXYD1, and glycogen synthase was higher (P < 0.05) in young healthy than in type-2 diabetics determined in both fractionated and non-fractionated samples for which normalization to the stain-free signal and/or standard curve did not affect outcomes. Precision and reliability of protein abundance determination between sample types showed a moderate to good reliability for these proteins, whereas the commonly used house-keeping protein, actin, showed poor reliability. In conclusion, fractionated and non-fractionated immunoblotting samples yield similar data for several sarcolemmal and cytosolic proteins, except for actin, which, therefore appears inappropriate for data normalization in immunoblotting of human skeletal muscle. Thus, fractionation does not seem to be a major source of bias when immunoblotting for NKA subunits and GS.
Collapse
|
15
|
O’Connor TN, van den Bersselaar LR, Chen YS, Nicolau S, Simon B, Huseth A, Todd JJ, Van Petegem F, Sarkozy A, Goldberg MF, Voermans NC, Dirksena RT. RYR-1-Related Diseases International Research Workshop: From Mechanisms to Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023; 10:135-154. [PMID: 36404556 PMCID: PMC10023165 DOI: 10.3233/jnd-221609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thomas N. O’Connor
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Luuk R. van den Bersselaar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Malignant Hyperthermia Investigation Unit, Department of Anaesthesia, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Joshua J. Todd
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | | | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert T. Dirksena
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
16
|
Panchal T, Baldwin S, Østergaard M, Hansen ESH, Backer V, Hostrup M, Daley-Yates P. Assay validation for vilanterol and its metabolites in human urine with application for doping control analysis. Drug Test Anal 2022; 15:495-505. [PMID: 36581315 DOI: 10.1002/dta.3433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
A bioanalytical method for detecting the ultra-long-acting beta2 -agonist (U-LABA) inhaled vilanterol and its metabolites, GSK932009 and GW630200, in urine was developed to potentially monitor permitted therapeutic versus prohibited supratherapeutic use in sport. The World Anti-Doping Agency (WADA) has established urinary concentration thresholds for the beta2 -agonists salbutamol and formoterol. Therapeutic use of vilanterol (25 μg once daily) was recently permitted by WADA; however, there is no established decision limit for adverse analytical findings due to insufficient urine concentration data. In this study, we validated an assay to detect vilanterol in urine collected from four healthy male and female athletes 0-72 h who received inhaled corticosteroid fluticasone furoate/U-LABA vilanterol (800/100 μg) combination, four times the normal therapeutic dose. After administration, subjects performed 1 h of bike ergometer exercise. The experiment was conducted again after repeat dosing for 1 week. Our method utilised liquid chromatography with tandem mass spectrometry and was validated over urine concentrations of 5-5000 (vilanterol) and 50-50,000 pg/ml (GSK932009 and GW630200). Plasma samples were analysed for vilanterol, using a previously validated assay. The peak concentration values for urine vilanterol, GSK932009 and GW630200 were 9.5, 10.4 and 0.17 ng/ml, for single dosing, and 18.6, 19.5 and 0.20 ng/ml, for repeat dosing. Urine samples from four volunteers using the final validated method are reported, demonstrating this assay has sensitivity to detect vilanterol or GSK932009 in urine for ≥72 h post single or repeat dosing with 800/100 μg fluticasone furoate/vilanterol, whereas GW630200 was quantifiable ≤4 h post dose.
Collapse
Affiliation(s)
- Tina Panchal
- Bioanalysis, Immunogenicity and Biomarkers, GSK, Research and Development, Stevenage, UK
| | - Sandra Baldwin
- Drug Metabolism & Pharmacokinetics, GSK, Research and Development, Ware, UK
| | - Martin Østergaard
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Erik Soeren Halvard Hansen
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.,Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
| | - Vibeke Backer
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.,Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Daley-Yates
- Clinical Pharmacology & Experimental Medicine, GSK, Research and Development, Stockley Park, UK
| |
Collapse
|
17
|
Hostrup M, Knudsen JG, Kristensen CM, Jessen S, Pilegaard H, Bangsbo J. Beta 2 -agonist increases skeletal muscle interleukin 6 production and release in response to resistance exercise in men. Scand J Med Sci Sports 2022; 32:1099-1108. [PMID: 35460295 PMCID: PMC9545867 DOI: 10.1111/sms.14171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several tissues produce and release interleukin-6 (IL-6) in response to beta2 -adrenergic stimulation with selective agonists (beta2 -agonists). Moreover, exercise stimulates muscle IL-6 production, but whether beta2 -agonists regulate skeletal muscle production and release of IL-6 in humans in association with exercise remains to be clarified. Thus, we investigated leg IL-6 release in response to beta2 -agonist salbutamol in lean young men at rest and in recovery from resistance exercise. DESIGN The study employed a randomized controlled crossover design, where 12 men ingested either salbutamol (16 mg) or placebo for 4 days, followed by the last dose (24 mg) administered 1½ h before exercise. Arterial and femoral venous plasma IL-6 as well as femoral artery blood flow was measured before and ½-5 h in recovery from quadriceps muscle resistance exercise. Furthermore, vastus lateralis muscle biopsies were collected ½ and 5 h after exercise for determination of mRNA levels of IL-6 and Tumor Necrosis Factor (TNF)-α. RESULTS Average leg IL-6 release was 1.7-fold higher (p = 0.01) for salbutamol than placebo, being 138 ± 76 and 79 ± 66 pg min-1 (mean ± SD) for salbutamol and placebo, respectively, but IL-6 release was not significantly different between treatments within specific sampling points at rest and after exercise. Muscle IL-6 mRNA was 1.5- and 1.7-fold higher (p = 0.001) for salbutamol than placebo ½ and 5 h after exercise, respectively, whereas no significant treatment differences were observed for TNF-α mRNA. CONCLUSIONS Beta2 -adrenergic stimulation with high doses of the selective beta2 -agonist salbutamol, preceeded by 4 consecutive daily doses, induces transcription of IL-6 in skeletal muscle in response to resistance exercise, and increases muscle IL-6 release in lean individuals.
Collapse
Affiliation(s)
- Morten Hostrup
- August Krogh Section of Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Grunnet Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Maag Kristensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- August Krogh Section of Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- August Krogh Section of Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Collomp K, Ericsson M, Bernier N, Buisson C. Prevalence of Prohibited Substance Use and Methods by Female Athletes: Evidence of Gender-Related Differences. Front Sports Act Living 2022; 4:839976. [PMID: 35685685 PMCID: PMC9172204 DOI: 10.3389/fspor.2022.839976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
To achieve optimal sports performances, women and men may show specific doping practices because of the physiological and psychological gender differences, but there are few data on this topic. Here, we report the apparent use of prohibited substances and methods by female athletes based on analyses of the doping tests collected by the French Anti-Doping Agency from 2013 to 2019. We compared the frequency of use and the ergogenic and side effects to those of their male counterparts. The results revealed lower use of prohibited substances in female vs. male athletes, with significantly fewer anabolic agents, hormone and metabolic modulators, and cannabinoids. Gender specificity in utilization of substance classes was also shown. Relatively lower use of hormone modulators and cannabinoids and higher use of beta-2 agonists, diuretics and glucocorticoids were found in the woman cohort compared with men cohort, combined with the different choice of substances, possibly because of the altered ergogenic and/or side effects. However, no impact due to gender regarding the sports disciplines was observed, with both women and men showing similar use of anabolic agents, mainly in the anaerobic sports, and EPO and corticoids, mainly in endurance or mixed sports. Further studies are needed to put these French data into a global perspective, comparing uses across countries and exploring possible new developments in the fight against doping in women.
Collapse
Affiliation(s)
- Katia Collomp
- CIAMS, Université d'Orléans, Pôle STAPS, Orléans, France
- CIAMS, Université Paris-Saclay, Faculté des Sciences du Sport, Orsay, France
- Laboratoire AntiDopage Français, LADF, Université Paris-Saclay, Chatenay-Malabry, France
- *Correspondence: Katia Collomp
| | - Magnus Ericsson
- Laboratoire AntiDopage Français, LADF, Université Paris-Saclay, Chatenay-Malabry, France
| | - Nathan Bernier
- CIAMS, Université d'Orléans, Pôle STAPS, Orléans, France
- CIAMS, Université Paris-Saclay, Faculté des Sciences du Sport, Orsay, France
| | - Corinne Buisson
- Laboratoire AntiDopage Français, LADF, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
19
|
Hostrup M, Onslev J. The beta 2 -adrenergic receptor - a re-emerging target to combat obesity and induce leanness? J Physiol 2021; 600:1209-1227. [PMID: 34676534 DOI: 10.1113/jp281819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Treatment of obesity with repurposed or novel drugs is an expanding research field. One approach is to target beta2 -adrenergic receptors because they regulate the metabolism and phenotype of adipose and skeletal muscle tissue. Several observations support a role for the beta2 -adrenergic receptor in obesity. Specific human beta2 -adrenergic receptor polymorphisms are associated with body composition and obesity, for which the Gln27Glu polymorphism is associated with obesity, while the Arg16Gly polymorphism is associated with lean mass in men and the development of obesity in specific populations. Individuals with obesity also have lower abundance of beta2 -adrenergic receptors in adipose tissue and are less sensitive to catecholamines. In addition, studies in livestock and rodents demonstrate that selective beta2 -agonists induce a so-called 'repartitioning effect' characterized by muscle accretion and reduced fat deposition. In humans, beta2 -agonists dose-dependently increase resting metabolic rate by 10-50%. And like that observed in other mammals, only a few weeks of treatment with beta2 -agonists increases muscle mass and reduces fat mass in young healthy individuals. Beta2 -agonists also exert beneficial effects on body composition when used concomitantly with training and act additively to increase muscle strength and mass during periods with resistance training. Thus, the beta2 -adrenergic receptor seems like an attractive target in the development of anti-obesity drugs. However, future studies need to verify the long-term efficacy and safety of beta2 -agonists in individuals with obesity, particularly in those with comorbidities.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
An Abductive Inference Approach to Assess the Performance-Enhancing Effects of Drugs Included on the World Anti-Doping Agency Prohibited List. Sports Med 2021; 51:1353-1376. [PMID: 33811295 DOI: 10.1007/s40279-021-01450-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Some have questioned the evidence for performance-enhancing effects of several substances included on the World Anti-Doping Agency's Prohibited List due to the divergent or inconclusive findings in randomized controlled trials (RCTs). However, inductive statistical inference based on RCTs-only may result in biased conclusions because of the scarcity of studies, inter-study heterogeneity, too few outcome events, or insufficient power. An abductive inference approach, where the body of evidence is evaluated beyond considerations of statistical significance, may serve as a tool to assess the plausibility of performance-enhancing effects of substances by also considering observations and facts not solely obtained from RCTs. Herein, we explored the applicability of an abductive inference approach as a tool to assess the performance-enhancing effects of substances included on the Prohibited List. We applied an abductive inference approach to make inferences on debated issues pertaining to the ergogenic effects of recombinant human erythropoietin (rHuEPO), beta2-agonists and anabolic androgenic steroids (AAS), and extended the approach to more controversial drug classes where RCTs are limited. We report that an abductive inference approach is a useful tool to assess the ergogenic effect of substances included on the Prohibited List-particularly for substances where inductive inference is inconclusive. Specifically, a systematic abductive inference approach can aid researchers in assessing the effects of doping substances, either by leading to suggestions of causal relationships or identifying the need for additional research.
Collapse
|