1
|
Simpson CWC, Walter J, Gieseg SP, Lackner S, Holasek S, Hamlin MJ. Central and peripheral nervous system activity and muscle oxygenation in athletes during repeated-sprint exercise in normoxia and normobaric hypoxia. J Sports Sci 2025:1-13. [PMID: 39912708 DOI: 10.1080/02640414.2025.2461947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
AIM To investigate central and peripheral nervous system activity and muscle oxygenation in athletes during repeated-sprint exercise in normoxia and normobaric hypoxia. METHODS The effects on vastus lateralis muscle strength in a cross-over study were examined in 18 athletes (13 males, 5 females) completing 10 × 6-s cycle sprints. Immediately after and again 5 minutes post-exercise, electromyography (EMG), heart rate variability, maximal voluntary contraction (MVC), muscle oxygenation, peak power output, and arterial oxygen saturation were compared to 2 baseline sets named ("Baseline" and "Pre"). RESULTS Post-exercise MVC was significantly lower (6.7 ± 10.0%) than Baseline, but root-mean-square amplitude during hypoxia (all-times) was significantly lower than normoxia (0.38 ± 0.19 vs 0.41 ± 0.17 mV). Comparative frequency analysis of the percentage change in pre- to post-exercise EMG area, at low 1-29 hz (type-1 fibre) and high 75-100 hz (type-2 fibre) areas, revealed a significant reduction in type-1 fibre activity relative to type-2, by 20-30% across time and by 10% in type-1 activity between conditions. CONCLUSION Exercise in hypoxia appeared to cause a temporary increase in central sympathetic nervous system activity and greater recruitment of type-2 muscle fibres, with accompanying reduction in type-1. Acute hypoxia may stimulate type-2 fibre conditioning.
Collapse
Affiliation(s)
- Charles W C Simpson
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
- Department of Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Julia Walter
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Graz, Austria
| | - Steven P Gieseg
- Department of Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Pathology, School of Medicine, University of Otago, Christchurch, New Zealand
| | - Sonja Lackner
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Graz, Austria
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
2
|
Hamzaid NA, Hamdan PNF, Teoh MXH, Abd Razak NA, Hasnan N, Davis GM. Mechanomyography reflects the changes in oxygenated hemoglobin during electrically evoked cycling in individuals with spinal cord injury. Artif Organs 2024; 48:1264-1274. [PMID: 38884389 DOI: 10.1111/aor.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Functional electrical stimulation (FES) cycling has been reported to enhance muscle strength and improve muscle fatigue resistance after spinal cord injury (SCI). Despite its proposed benefits, the quantification of muscle fatigue during FES cycling remains poorly documented. This study sought to quantify the relationship between the vibrational performance of electrically-evoked muscles measured through mechanomyography (MMG) and its oxidative metabolism through near-infrared spectroscopy (NIRS) characteristics during FES cycling in fatiguing paralyzed muscles in individuals with SCI. METHODS Six individuals with SCI participated in the study. They performed 30 min of FES cycling with MMG and NIRS sensors on their quadriceps throughout the cycling, and the signals were analyzed. RESULTS A moderate negative correlation was found between MMG root mean square (RMS) and oxyhaemoglobin (O2Hb) [r = -0.38, p = 0.003], and between MMG RMS and total hemoglobin (tHb) saturation [r = -0.31, p = 0.017]. Statistically significant differences in MMG RMS, O2Hb, and tHb saturation occurred during pre- and post-fatigue of FES cycling (p < 0.05). CONCLUSIONS MMG RMS was negatively associated with O2Hb and muscle oxygen derived from NIRS. MMG and NIRS sensors showed good inter-correlations, suggesting a promising use of MMG for characterizing metabolic fatigue at the muscle oxygenation level during FES cycling in individuals with SCI.
Collapse
Affiliation(s)
- Nur Azah Hamzaid
- Biomechatronics and Neuroprosthetics Lab, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Puteri Nur Farhana Hamdan
- Biomechatronics and Neuroprosthetics Lab, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nasrul Anuar Abd Razak
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Beever AT, Zhuang AY, Murias JM, Aboodarda SJ, MacInnis MJ. Effects of acute simulated altitude on the maximal lactate steady state in humans. Am J Physiol Regul Integr Comp Physiol 2024; 327:R195-R207. [PMID: 38842515 DOI: 10.1152/ajpregu.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
We sought to determine the effects of acute simulated altitude on the maximal lactate steady state (MLSS) and physiological responses to cycling at and 10 W above the MLSS-associated power output (PO) (MLSSp and MLSSp+10, respectively). Eleven (4 females) participants (means [SD]; 28 [4] yr; V̇o2max: 54.3 [6.9] mL·kg-1·min-1) acclimatized to ∼1,100 m performed 30-min constant PO trials in simulated altitudes of 0 m sea level (SL), 1,111 m mild altitude (MILD), and 2,222 m moderate altitude (MOD). MLSSp, defined as the highest PO with stable (<1 mM change) blood lactate concentration ([BLa]) between 10 and 30 min, was significantly lower in MOD (209 [54] W) compared with SL (230 [56] W; P < 0.001) and MILD (225 [58] W; P = 0.001), but MILD and SL were not different (P = 0.12). V̇o2 and V̇co2 decreased at higher simulated altitudes due to lower POs (P < 0.05), but other end-exercise physiological responses (e.g., [BLa], ventilation [V̇e], heart rate [HR]) were not different between conditions at MLSSp or MLSSp + 10 (P > 0.05). At the same absolute intensity (MLSSp for MILD), [BLa], HR, and V̇E and all perceptual variables were exacerbated in MOD compared with SL and MILD (P < 0.05). Maximum voluntary contraction, voluntary activation, and potentiated twitch forces were exacerbated at MLSSp + 10 relative to MLSSp within conditions (P < 0.05); however, condition did not affect performance fatiguability at the same relative or absolute intensity (P > 0.05). As MLSSp decreased in hypoxia, adjustments in PO are needed to ensure the same relative intensity across altitudes, but common indices of exercise intensity may facilitate exercise prescription and monitoring in hypoxia.NEW & NOTEWORTHY This study demonstrates the power output and metabolic rate associated with the maximal lactate steady-state (MLSS) decline in response to simulated altitude; however, common indices of exercise intensity remained unchanged when cycling was performed at the work rate associated with MLSS at each simulated altitude. These results support previous studies that investigated the effects of hypoxia on alternative measures of the critical intensity of exercise and will inform exercise prescription/monitoring across altitudes.
Collapse
Affiliation(s)
- Austin T Beever
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Y Zhuang
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Farra SD, Jacobs I. Arterial desaturation rate does not influence self-selected knee extension force but alters ventilatory response to progressive hypoxia: A pilot study. Physiol Rep 2024; 12:e15892. [PMID: 38172088 PMCID: PMC10764295 DOI: 10.14814/phy2.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The absolute magnitude and rate of arterial desaturation each independently impair whole-body aerobic exercise. This study examined potential mechanisms underlying the rate-dependent relationship. Utilizing an exercise protocol involving unilateral, intermittent, isometric knee extensions (UIIKE), we provided sufficient reperfusion time between contractions to reduce the accumulation of intramuscular metabolic by-products that typically stimulate muscle afferents. The objective was to create a milieu conducive to accentuating any influence of arterial desaturation rate on muscular fatigue. Eight participants completed four UIIKE sessions, performing one 3 s contraction every 30s at a perceived intensity of 50% MVC for 25 min. Participants voluntarily adjusted their force generation to maintain perceptual effort at 50% MVC without feedback. Reductions in inspired oxygen fraction (FI O2 ) decreased arterial saturation from >98% to 70% with varying rates in three trials: FAST (5.3 ± 1.3 min), MED (11.8 ± 2.7 min), and SLOW (19.9 ± 3.7 min). FI O2 remained at 0.21 during the control trial. Force generation and muscle activation remained at baseline levels throughout UIIKE trials, unaffected by the magnitude or rate of desaturation. Minute ventilation increased with hypoxia (p < 0.05), and faster desaturation rates magnified this response. These findings demonstrate that arterial desaturation magnitude and rate independently affect ventilation, but do not influence fatigue development during UIIKE.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
- Tanenbaum Institute for Science in Sport, University of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: a brief narrative review of its importance, opportunities, and risks. ERGONOMICS 2023; 66:2242-2254. [PMID: 36946542 DOI: 10.1080/00140139.2023.2194592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Military pilots risk their lives during training and operations. Advancements in aerospace engineering, flight profiles, and mission demands may require the pilot to test the safe limits of their physiology. Monitoring pilot physiology (e.g. heart rate, oximetry, and respiration) inflight is in consideration by several nations to inform pilots of reduced performance capacity and guide future developments in aircraft and life-support system design. Numerous challenges, however, prevent the immediate operationalisation of physiological monitoring sensors, particularly their unreliability in the aerospace environment and incompatibility with pilot clothing and protective equipment. Human performance and behaviour are also highly variable and measuring these in controlled laboratory settings do not mirror the real-world conditions pilots must endure. Misleading or erroneous predictive models are unacceptable as these could compromise mission success and lose operator trust. This narrative review provides an overview of considerations for integrating physiological monitoring systems within the military aviation environment.Practitioner summary: Advancements in military technology can conflictingly enhance and compromise pilot safety and performance. We summarise some of the opportunities, limitations, and risks of integrating physiological monitoring systems within military aviation. Our intent is to catalyse further research and technological development.Abbreviations: AGS: anti-gravity suit; AGSM: anti-gravity straining manoeuvre; A-LOC: almost loss of consciousness; CBF: cerebral blood flow; ECG: electrocardiogram; EEG: electroencephalogram; fNIRS: functional near-infrared spectroscopy; G-forces: gravitational forces; G-LOC: gravity-induced loss of consciousness; HR: heart rate; HRV: heart rate variability; LSS: life-support system; NATO: North Atlantic Treaty Organisation; PE: Physiological Episode; PCO2: partial pressure of carbon dioxide; PO2: partial pressure of oxygen; OBOGS: on board oxygen generating systems; SpO2: peripheral blood haemoglobin-oxygen saturation; STANAG: North Atlantic Treaty Organisation Standardisation Agreement; UPE: Unexplained Physiological Episode; WBV: whole body vibration.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| |
Collapse
|
6
|
Marillier M, Gruet M, Bernard AC, Champigneulle B, Verges S, Moran-Mendoza O, Neder JA. Beyond the Lungs: O 2 Supplementation Improves Cerebral Oxygenation and Fatigue during Exercise in Interstitial Lung Disease. Med Sci Sports Exerc 2023; 55:1735-1744. [PMID: 37170955 DOI: 10.1249/mss.0000000000003208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE Cerebral hypoxia may exacerbate the perception of fatigue. We previously demonstrated that exercise-related hypoxemia, a hallmark of fibrotic interstitial lung disease ( f -ILD), dose dependently impairs cerebral oxygenation in these patients. It is unknown whether normalizing cerebral oxygenation with O 2 supplementation would be associated with positive changes in a relevant patient-centered outcome during exercise in f -ILD, such as improved perceived fatigue. METHODS Fourteen patients (12 males, 72 ± 8 yr, 8 with idiopathic pulmonary fibrosis, lung diffusing capacity for carbon monoxide = 44% ± 13% predicted) performed a constant-load (60% peak work rate) cycle test to symptom limitation (Tlim) breathing medical air. Fourteen controls cycled up to Tlim of an age- and sex-matched patient. Patients repeated the test on supplemental O 2 (fraction of inspired O 2 = 0.41 ± 0.08) for the same duration. Near-infrared spectroscopy and the rating-of-fatigue (ROF) scale assessed prefrontal cortex oxygenation and perceived fatigue, respectively. RESULTS Patients showed severe exertional hypoxemia (Tlim O 2 saturation by pulse oximetry = 80% ± 8%); they had poorer cerebral oxygenation (e.g., oxy-deoxyhemoglobin difference [HbDiff] = -3.5 ± 4.7 [range = -17.6 to +1.9] vs +1.9 ± 1.7 μmol from rest) and greater fatigue (ROF = 6.2 ± 2.0 vs 2.6 ± 2.3) versus controls under air ( P < 0.001). Reversal of exertional hypoxemia with supplemental O 2 led to improved HbDiff (+1.7 ± 2.4 μmol from rest; no longer differing from controls) and lower ROF scores (3.7 ± 1.2, P < 0.001 vs air) in patients. There was a significant correlation between O 2 -induced changes in HbDiff and ROF scores throughout exercise in f -ILD ( rrepeated-measures correlation = -0.51, P < 0.001). CONCLUSIONS Supplemental O 2 improved cerebral oxygenation during exercise in f -ILD, which was moderately associated with lower ratings of perceived fatigue. Reversing cerebral hypoxia with O 2 supplementation may thus have positive effects on patients' disablement beyond those expected from lower ventilation and dyspnea in this patient population.
Collapse
Affiliation(s)
| | - Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, FRANCE
| | | | | | - Samuel Verges
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, FRANCE
| | - Onofre Moran-Mendoza
- Interstitial Lung Diseases Program, Queen's University and Hotel Dieu Hospital, Kingston, ON, CANADA
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital, Kingston, ON, CANADA
| |
Collapse
|
7
|
Márquez G, Colomer D, Benavente C, Morenilla L, Alix-Fages C, Padial P, Feriche B. Altitude-induced effects on neuromuscular, metabolic and perceptual responses before, during and after a high-intensity resistance training session. Eur J Appl Physiol 2023; 123:2119-2129. [PMID: 37209140 PMCID: PMC10492878 DOI: 10.1007/s00421-023-05195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE We tested if an acute ascending to 2320 m above sea level (asl) affects corticospinal excitability (CSE) and intracortical inhibition (SICI) measured with transcranial magnetic stimulation (TMS) at rest, before, during and after a traditional hypertrophy-oriented resistance training (RT) session. We also explored whether blood lactate concentration (BLa), ratings of perceived exertion (RPE), perceived muscular pain and total training volume differed when the RT session was performed at hypoxia (H) or normoxia (N). METHODS Twelve resistance-trained men performed eight sets of 10 repetitions at 70% of one repetition maximum of a bar biceps curl at N (SpO2 = 98.0 ± 0.9%) and H (at 2320 asl, SpO2 = 94.0 ± 1.9%) in random order. Before each session, a subjective well-being questionnaire, the resting motor threshold (rMT) and a single pulse recruitment curve were measured. Before, during and after the RT session, BLa, RPE, muscle pain, CSE and SICI were measured. RESULTS Before the RT session only the rMT differed between H (- 5.3%) and N (ES = 0.38). RPE, muscle pain and BLa increased through the RT session and were greater at H than N (12%, 54% and 15%, respectively) despite a similar training volume (1618 ± 468 kg vs. 1638 ± 509 kg). CSE was reduced during the RT session (~ 27%) but recovered ten minutes after, regardless of the environmental condition. SICI did not change after any RT session. CONCLUSIONS The data suggest that acute exposure to moderate hypoxia slightly increased the excitability of the most excitable structures of the corticospinal tract but did not influence intracortical or corticospinal responses to a single RT session.
Collapse
Affiliation(s)
- Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain.
| | - David Colomer
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Luis Morenilla
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Carlos Alix-Fages
- Applied Biomechanics and Sports Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Faulhaber M, Schneider S, Rausch LK, Dünnwald T, Menz V, Gatterer H, Kennedy MD, Schobersberger W. Repeated Short-Term Bouts of Hyperoxia Improve Aerobic Performance in Acute Hypoxia. J Strength Cond Res 2023; 37:2016-2022. [PMID: 37729514 DOI: 10.1519/jsc.0000000000004502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
ABSTRACT Faulhaber, M, Schneider, S, Rausch, LK, Dünnwald, T, Menz, V, Gatterer, H, Kennedy, MD, and Schobersberger, W. Repeated short-term bouts of hyperoxia improve aerobic performance in acute hypoxia. J Strength Cond Res 37(10): 2016-2022, 2023-This study aimed to test the effects of repeated short-term bouts of hyperoxia on maximal 5-minute cycling performance under acute hypoxic conditions (3,200 m). Seventeen healthy and recreationally trained individuals (7 women and 10 men) participated in this randomized placebo-controlled cross-over trial. The procedures included a maximal cycle ergometer test and 3 maximal 5-minute cycling time trials (TTs). TT1 took place in normoxia and served for habituation and reference. TT2 and TT3 were conducted in normobaric hypoxia (15.0% inspiratory fraction of oxygen). During TT2 and TT3, the subjects were breathing through a face mask during five 15-second periods. The face mask was connected through a nonrebreathing T valve to a 300-L bag filled with 100% oxygen (intermittent hyperoxia) or ambient hypoxic air (placebo). The main outcome was the mean power output during the TT. Statistical significance level was set at p < 0.05. The mean power output was higher in the intermittent hyperoxia compared with the placebo condition (255.5 ± 49.6 W vs. 247.4 ± 48.2 W, p = 0.001). Blood lactate concentration and ratings of perceived exertion were significantly lower by about 9.7 and 7.3%, respectively, in the intermittent hyperoxia compared with the placebo condition, whereas heart rate values were unchanged. IH application increased arterial oxygen saturation (82.9 ± 2.6% to 92.4 ± 3.3%, p < 0.001). Repeated 15-second bouts of hyperoxia, applied during high-intensity exercise in hypoxia, are sufficient to increase power output. Future studies should focus on potential dose-response effects and the involved mechanisms.
Collapse
Affiliation(s)
- Martin Faulhaber
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
- Austrian Society of Alpine and High-Altitude Medicine, Mieming, Austria
| | - Sina Schneider
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Linda K Rausch
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sport Medicine, Alpine Medicine and Health Tourism (ISAG), Private University for Health Sciences, Medical Informatics and Technology (UMIT Tirol), Tirol, Austria
| | - Verena Menz
- Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Michael D Kennedy
- Faculty of Kinesiology, Sport and Recreation, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; and
| | - Wolfgang Schobersberger
- Institute for Sport Medicine, Alpine Medicine and Health Tourism (ISAG), Private University for Health Sciences, Medical Informatics and Technology (UMIT Tirol), Tirol, Austria
- Institute for Sport Medicine, Alpine Medicine anad Health Tourism (ISAG), Tirol Kliniken GmbH, Innsbruck, Austria
| |
Collapse
|
9
|
Rua R, Bondi D, Santangelo C, Pignatelli P, Pietrangelo T, Fulle S, Fanelli V, Verratti V. Electromyographic signature of isometric squat in the highest refuge in Europe. Eur J Transl Myol 2023; 33:11637. [PMID: 37700736 PMCID: PMC10583152 DOI: 10.4081/ejtm.2023.11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Reports of electromyography during hypoxic exercise are contrasting, due to protocol and muscle diversity. This work aimed to investigate alterations in muscle activation and myoelectrical fatigue during exercise at high-altitude in those muscles primarily involved in trekking. Twelve young adults balanced by gender and age were tested at low (1,667 m) and high (4,554 m, "Capanna Margherita", Italy) altitude, during an isometric squat lasting 60 seconds. High-density surface electromyography was performed from the quadriceps of right limb. The root mean square (RMS), median frequency with its slope, and muscle fiber conduction velocity (MFCV) were computed. Neither males nor females showed changes in median frequency (Med: 36.13 vs 35.63 Hz) and its slope (Med: -9 vs -12 degree) in response to high-altitude trekking, despite a great inter-individual heterogeneity, nor differences were found for MFCV. RMS was not significantly equivalent, with greater values at low altitude (0.385 ± 0.104 mV) than high altitude (0.346 ± 0.090 mV). Unexpected results can be due either to a postural compensation of the whole body compensating for a relatively greater effort or to the inability to support muscle activation after repeated physical efforts. Interesting results may emerge by measuring simultaneously electromyography, muscle oxygenation and kinematics comparing trekking at normoxia vs hypoxia.
Collapse
Affiliation(s)
- Riccardo Rua
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Vito Fanelli
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| |
Collapse
|
10
|
McKeown DJ, Stewart GM, Kavanagh JJ. The severity of acute hypoxaemia determines distinct changes in intracortical and spinal neural circuits. Exp Physiol 2023; 108:1203-1214. [PMID: 37548581 PMCID: PMC10988465 DOI: 10.1113/ep091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The purpose of this study was to examine how two common methods of continuous hypoxaemia impact the activity of intracortical circuits responsible for inhibition and facilitation of motor output, and spinal excitability. Ten participants were exposed to 2 h of hypoxaemia at 0.13 fraction of inspired oxygen (F I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol) and 80% of peripheral capillary oxygen saturation (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol) using a simulating altitude device on two visits separated by a week. Using transcranial magnetic and peripheral nerve stimulation, unconditioned motor evoked potential (MEP) area, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), and F-wave persistence and area were assessed in the first dorsal interosseous (FDI) muscle before titration, after 1 and 2 h of hypoxic exposure, and at reoxygenation. The clamping protocols resulted in differing reductions inS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ by 2 h (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol: 81.9 ± 1.3%,F I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol: 90.6 ± 2.5%). Although unconditioned MEP peak to peak amplitude and area did not differ between the protocols, SICI duringF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping was significantly lower at 2 h compared toS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping (P = 0.011) and baseline (P < 0.001), whereas ICF was higher throughout theF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping compared toS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping (P = 0.005). Furthermore, a negative correlation between SICI andS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (rrm = -0.56, P = 0.002) and a positive correlation between ICF andS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (rrm = 0.69, P = 0.001) were determined, where greater reductions inS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ correlated with less inhibition and less facilitation of MEP responses. Although F-wave area progressively increased similarly throughout the protocols (P = 0.037), persistence of responses was reduced at 2 h and reoxygenation (P < 0.01) during theS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol compared to theF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol. After 2 h of hypoxic exposure, there is a reduction in the activity of intracortical circuits responsible for inhibiting motor output, as well as excitability of spinal motoneurones. However, these effects can be influenced by other physiological responses to hypoxia (i.e., hyperventilation and hypocapnia). NEW FINDINGS: What is the central question of this study? How do two common methods of acute hypoxic exposure influence the excitability of intracortical networks and spinal circuits responsible for motor output? What is the main finding and its importance? The excitability of spinal circuits and intracortical networks responsible for inhibition of motor output was reduced during severe acute exposure to hypoxia at 2 h, but this was not seen during less severe exposure. This provides insight into the potential cause of variance seen in motor evoked potential responses to transcranial magnetic stimulation (corticospinal excitability measures) when exposed to hypoxia.
Collapse
Affiliation(s)
- Daniel J. McKeown
- Neural Control of Movement LaboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Department of PsychologyFaculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
| | - Glenn M. Stewart
- Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Allied Health Research CollaborativeThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Justin J. Kavanagh
- Neural Control of Movement LaboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
11
|
Jenkins JR, Salmon OF, Smith CM. Moderate and Severe Acute Normobaric Hypoxia and the 3-Repetition Deadlift, Hand-Release Push-Up, and Leg Tuck Events From the Army Combat Fitness Test. Mil Med 2023; 188:e753-e760. [PMID: 35072728 DOI: 10.1093/milmed/usab399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The newly implemented Army Combat Fitness Test (ACFT) of the U.S. Army seeks to revolutionize the Army's fitness culture and reduce the rate of preventable injuries among soldiers. The initial rollout of the ACFT has been met with several challenges, including a gender-neutral scoring system. The ACFT has undergone several revisions to adapt to the present state of U.S. Army physical fitness; however, the test faces several more obstacles as more data become available. The ACFT was designed to measure combat readiness, a useful tool for units facing deployment or a change in duty station to a high-altitude environment. Reduced oxygen availability (hypoxia) at high altitude influences many physiological functions associated with physical fitness, such that there is an increased demand for oxygen in exercising muscle. Therefore, the purpose was to investigate the effects of normoxic and two levels of hypoxia exposure (moderate and severe; fraction of inspired oxygen [FiO2]: 16.0% and 14.3%) during the 3-repetition deadlift (MDL), hand-release push-up (HRP), and leg tuck (LTK) events of the ACFT. MATERIALS AND METHODS Fourteen recreationally active men (n = 10) and women (n = 4) soldier analogs (27.36 ± 1.12 years, height 1.71 ± 2.79 m, weight 80.60 ± 4.24 kg) completed the MDL, HRP, and LTK at normoxia and acute normobaric moderate (MH; FiO2 16%) and severe (SH; FiO2 14.3%) hypoxic exposure. Scores and performance were recorded for each event, and heart rate (HR) and total body oxygen saturation (SpO2) were monitored throughout. Repeated-measures analysis of variance (ANOVA) was used to assess differences in modified ACFT scores, performance, HR, and SpO2 among hypoxic conditions, with follow-up one-way ANOVA and paired t-test when appropriate. RESULTS Total body oxygen saturation was decreased at MH and SH conditions compared to normoxia but did not vary between ACFT events. Heart rate was not influenced by altitude but did increase in response to exercise. Scores of the modified total and individual ACFT events were not different between normoxia, MH, and SH. There was also no difference in performance based on the amount of weight lifted during the MDL and number of repetitions of the HRP and LTK events in response to hypoxic exposure. CONCLUSIONS Performance and scores of the modified ACFT were not influenced by acute normobaric MH and SH exposure compared to normoxia. Further investigations should examine the full testing battery of the ACFT to provide a comprehensive analysis and potential evidence for such differences.
Collapse
Affiliation(s)
- Jasmin R Jenkins
- Interdisciplinary Health Sciences PhD Program, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Human and Environmental Physiology Laboratory, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Owen F Salmon
- Interdisciplinary Health Sciences PhD Program, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Human and Environmental Physiology Laboratory, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cory M Smith
- Interdisciplinary Health Sciences PhD Program, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Human and Environmental Physiology Laboratory, College of Health Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
McKeown DJ, McNeil CJ, Simmonds MJ, Kavanagh JJ. Post-fatigue ability to activate muscle is compromised across a wide range of torques during acute hypoxic exposure. Eur J Neurosci 2022; 56:4653-4668. [PMID: 35841186 PMCID: PMC9546238 DOI: 10.1111/ejn.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to assess how severe acute hypoxia alters the neural mechanisms of muscle activation across a wide range of torque output in a fatigued muscle. Torque and electromyography responses to transcranial and motor nerve stimulation were collected from 10 participants (27 years ± 5 years, 1 female) following repeated performance of a sustained maximal voluntary contraction that reduced torque to 60% of the pre‐fatigue peak torque. Contractions were performed after 2 h of hypoxic exposure and during a sham intervention. For hypoxia, peripheral blood oxygen saturation was titrated to 80% over a 15‐min period and remained at 80% for 2 h. Maximal voluntary torque, electromyography root mean square, voluntary activation and corticospinal excitability (motor evoked potential area) and inhibition (silent period duration) were then assessed at 100%, 90%, 80%, 70%, 50% and 25% of the target force corresponding to the fatigued maximal voluntary contraction. No hypoxia‐related effects were identified for voluntary activation elicited during motor nerve stimulation. However, during measurements elicited at the level of the motor cortex, voluntary activation was reduced at each torque output considered (P = .002, ηp2 = .829). Hypoxia did not impact the correlative linear relationship between cortical voluntary activation and contraction intensity or the correlative curvilinear relationship between motor nerve voluntary activation and contraction intensity. No other hypoxia‐related effects were identified for other neuromuscular variables. Acute severe hypoxia significantly impairs the ability of the motor cortex to voluntarily activate fatigued muscle across a wide range of torque output.
Collapse
Affiliation(s)
- Daniel J McKeown
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Štirn I, Garcia-Ramos A, Feriche B, Strojnik V, Tomažin K. Influence of an Acute Exposure to a Moderate Real Altitude on Motoneuron Pool Excitability and Jumping Performance. Front Physiol 2022; 13:861927. [PMID: 35547581 PMCID: PMC9081365 DOI: 10.3389/fphys.2022.861927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to test whether ascending to a moderate real altitude affects motoneuron pool excitability at rest, as expressed by a change in the H-reflex amplitude, and also to elucidate whether a possible alteration in the motoneuron pool excitability could be reflected in the execution of lower-body concentric explosive (squat jump; SJ) and fast eccentric-concentric (drop jump; DJ) muscle actions. Fifteen participants performed four experimental sessions that consisted of the combination of two real altitude conditions [low altitude (low altitude, 690 m), high altitude (higher altitude, 2,320 m)] and two testing procedures (H-reflex and vertical jumps). Participants were tested on each testing day at 8, 11, 14 and 17 h. The only significant difference (p < 0.05) detected for the H-reflex was the higher H-reflex response (25.6%) obtained 15 min after arrival at altitude compared to baseline measurement. In terms of motor behavior, DJ height was the only variable that showed a significant interaction between altitude conditions (LA and HA) and time of measurement (8, 11, 14 and 17 h) as DJ height increased more during successive measurements at HA compared to LA. The only significant difference between the LA and HA conditions was observed for DJ height at 17 h which was higher for the HA condition (p = 0.04, ES = 0.41). Although an increased H-reflex response was detected after a brief (15–20 min) exposure to real altitude, the effect on motorneuron pool excitability could not be confirmed since no significant changes in the H-reflex were detected when comparing LA and HA. On the other hand, the positive effect of altitude on DJ performance was accentuated after 6 h of exposure.
Collapse
Affiliation(s)
- Igor Štirn
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Amador Garcia-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
| | - Belen Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Vojko Strojnik
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Tomažin
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
15
|
Feng Y, Yin Y, Zhao X, Zhang Y, Zhou Y, Wu Z. A bibliometric analysis study of blood flow restriction using CiteSpace. J Phys Ther Sci 2022; 34:657-667. [PMID: 36213193 PMCID: PMC9535246 DOI: 10.1589/jpts.34.657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To assess the current state-of-the-art and the prevailing trends regarding the
global use of blood flow restriction (BFR) in the past 20 years. [Participants and
Methods] We retrieved literature relating to BFR from 1999 to 2020 using Web of Science.
We conducted a bibliometric analysis of countries/institutions, cited journals,
authors/cited authors, cited references, and keywords using CiteSpace. An analysis of
counts and centrality was used to examine publication output, countries/institutions, core
journals, active authors, foundation references, hot topics, and frontiers. [Results]
Seven hundred seventy five references were included and the total number of publications
has been continually increasing over the investigated period. Representatives of important
academic groups are the Japanese scholars from the University of Tokyo as represented by
Takashi Abe. Jeremy Paul Loenneke’s article (centrality: 0.15) was the most representative
and symbolic reference with the highest centrality. The three topics identified were
intervention (intensity resistance exercise, IRE), physiology (ischemia and muscular
function) and behavior (adaptation and increase). The four frontier topics were
phosphorylation, reduction, low intensity and arterial occlusion. [Conclusion] This study
provides an insight into BFR and offers valuable information for BFR researchers to
identify new perspectives for potential cooperation with collaborators and their related
cooperative institutions.
Collapse
Affiliation(s)
- Yali Feng
- Hospital of Southwest University, Southwest University: Tiansheng Road 2, Chongqing 400715, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Xuemei Zhao
- Department of Rehabilitation Therapy, Chongqing Medical University, China
| | - Yue Zhang
- Department of Rehabilitation Therapy, Chongqing Medical University, China
| | - Yi Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Zonghui Wu
- Hospital of Southwest University, Southwest University: Tiansheng Road 2, Chongqing 400715, China
| |
Collapse
|
16
|
O'Keeffe K, Dean J, Hodder S, Lloyd A. Self-Selected Motivational Music Enhances Physical Performance in Normoxia and Hypoxia in Young Healthy Males. Front Psychol 2021; 12:787496. [PMID: 34956012 PMCID: PMC8702523 DOI: 10.3389/fpsyg.2021.787496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Humans exposed to hypoxia are susceptible to physiological and psychological impairment. Music has ergogenic effects through enhancing psychological factors such as mood, emotion, and cognition. This study aimed to investigate music as a tool for mitigating the performance decrements observed in hypoxia. Thirteen males (mean ± SD; 24 ± 4 years) completed one familiarization session and four experimental trials; (1) normoxia (sea level, 0.209 FiO2) and no music; (2) normoxia (0.209 FiO2) with music; (3) normobaric hypoxia (∼3800 m, 0.13 FiO2) and no music; and (4) normobaric hypoxia (0.13 FiO2) with music. Experimental trials were completed at 21°C with 50% relative humidity. Music was self-selected prior to the familiarization session. Each experimental trial included a 15-min time trial on an arm bike, followed by a 60-s isometric maximal voluntary contraction (MVC) of the biceps brachii. Supramaximal nerve stimulation quantified central and peripheral fatigue with voluntary activation (VA%) calculated using the doublet interpolation method. Average power output (W) was reduced with a main effect of hypoxia (p = 0.02) and significantly increased with a main effect of music (p = 0.001). When combined the interaction was additive (p = 0.87). Average MVC force (N) was reduced in hypoxia (p = 0.03) but VA% of the biceps brachii was increased with music (p = 0.02). Music reduced subjective scores of mental effort, breathing discomfort, and arm discomfort in hypoxia (p < 0.001). Music increased maximal physical exertion through enhancing neural drive and diminishing detrimental mental processes, enhancing performance in normoxia (6.3%) and hypoxia (6.4%).
Collapse
Affiliation(s)
- Kate O'Keeffe
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Jacob Dean
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
17
|
McKeown DJ, McNeil CJ, Brotherton EJ, Simmonds MJ, Kavanagh JJ. Severe acute hypoxia impairs recovery of voluntary muscle activation after sustained submaximal elbow flexion. J Physiol 2021; 599:5379-5395. [PMID: 34761807 DOI: 10.1113/jp281897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to determine how severe acute hypoxia alters neural mechanisms during, and following, a sustained fatiguing contraction. Fifteen participants (25 ± 3.2 years, six female) were exposed to a sham condition and a hypoxia condition where they performed a 10 min elbow flexor contraction at 20% of maximal torque. For hypoxia, peripheral blood oxygen saturation ( S p O 2 ) was titrated to 80% over a 15 min period and maintained for 2 h. Maximal voluntary contraction torque, EMG root mean square, voluntary activation, rating of perceived muscle fatigue, and corticospinal excitability (motor-evoked potential) and inhibition (silent period duration) were then assessed before, during and for 6 min after the fatiguing contraction. No hypoxia-related effects were identified for neuromuscular variables during the fatigue task. However, for recovery, voluntary activation assessed by motor point stimulation of biceps brachii was lower for hypoxia than sham at 4 min (sham: 89% ± 7%; hypoxia: 80% ± 12%; P = 0.023) and 6 min (sham: 90% ± 7%; hypoxia: 78% ± 11%; P = 0.040). Similarly, voluntary activation (P = 0.01) and motor-evoked potential area (P = 0.002) in response to transcranial magnetic stimulation of the motor cortex were 10% and 11% lower during recovery for hypoxia compared to sham, respectively. Although an S p O 2 of 80% did not affect neural activity during the fatiguing task, motor cortical output and corticospinal excitability were reduced during recovery in the hypoxic environment. This was probably due to hypoxia-related mechanisms involving supraspinal motor circuits. KEY POINTS: Acute hypoxia has been shown to impair voluntary activation of muscle and alter the excitability of the corticospinal motor pathway during exercise. However, little is known about how hypoxia alters the recovery of the motor system after performing fatiguing exercise. Here we assessed hypoxia-related responses of motor pathways both during active contractions and during recovery from active contractions, with transcranial magnetic stimulation and motor point stimulation of the biceps brachii. Fatiguing exercise caused reductions in voluntary activation, which was exacerbated during recovery from a 10 min sustained elbow flexion in a hypoxic environment. These results suggest that reductions in blood oxygen concentration impair the ability of motor pathways in the CNS to recover from fatiguing exercise, which is probably due to hypoxia-induced mechanisms that reduce output from the motor cortex.
Collapse
Affiliation(s)
- Daniel J McKeown
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Emily J Brotherton
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
18
|
Smith CM, Salmon OF, Jenkins JR. Effect of moderate and Severe Hypoxic exposure coupled with fatigue on psychomotor vigilance testing, muscle tissue oxygenation, and muscular performance. Curr Res Physiol 2021; 4:243-251. [PMID: 34806034 PMCID: PMC8581267 DOI: 10.1016/j.crphys.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study is to examine the effects of fatigue on muscular performance, oxygenation saturation, and cognition following acute hypoxic exposure at Normoxia, Moderate Hypoxia (MH), and Severe Hypoxia (SH). METHODS Twelve males performed 3 sets of leg extensions to failure under Normoxia (FiO2: 21%), MH (Fi02: 15.4%), and SH (Fi02: 12.9%). Heart rate, peripheral oxygenation saturation, total saturation index, psychomotor vigilance testing reaction time, psychomotor vigilance error rate, maximum strength, and repetitions to failure were measured throughout each visit. RESULTS The primary findings indicated that MH and SH resulted in significant decreases in psychomotor vigilance test performance (MH: 388.25-427.17 ms, 0.41-0.33 error rate; SH: 398.17-445.42 ms reaction time, 0.25-1.00 error rate), absolute muscle tissue oxygen saturation (Abs-StO2) (MH:67.22% compared to SH:57.56%), but similar muscular strength, heart rate, and patterns of muscle tissue oxygen saturation responses (StO2%) during fatigue when compared to Normoxia. There was an acute decrease in the ability to remain vigilant and/or respond correctly to visual stimuli as indicated by the worsened reaction time (PVTRT) during MH (FiO2: 15.4%) and increased PVTRT and error rate (PVTE) during SH (FiO2: 12.9%) conditions. CONCLUSIONS Acute hypoxic exposure in the current study was not a sufficient stimuli to elicit hypoxic-related changes in HR, muscular strength (1-RM), or repetitions to failure. The SpO2 responses were hypoxic-level dependent with increasing levels of hypoxia resulting in greater and more sustained reductions in SpO2. The combined SpO2 and StO2 responses at MH and SH suggested a balance between the muscles metabolic demand remaining lower than the muscle oxygen diffusion capacity. During the SH condition, Abs-StO2 suggested greater metabolic stress than Normoxia and MH conditions during the fatiguing leg extensions. The patterns of responses for StO2% during the three sets of leg press to failure indicated that exercise is a more potent influencer to muscle oxygenation status than hypoxic conditions (FiO2: 15.4 and 12.9%).
Collapse
Affiliation(s)
- Cory M. Smith
- Human & Environmental Physiology Laboratory, The University of Texas at El Paso, El Paso, TX, USA
| | - Owen F. Salmon
- Human & Environmental Physiology Laboratory, The University of Texas at El Paso, El Paso, TX, USA
| | - Jasmin R. Jenkins
- Interdisciplinary Health Sciences PhD Program, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
19
|
Paris HL, Sinai EC, Shei RJ, Keller AM, Mickleborough TD. The influence of carbohydrate ingestion on peripheral and central fatigue during exercise in hypoxia: A narrative review. Eur J Sport Sci 2021; 21:1423-1435. [PMID: 33106121 PMCID: PMC8140067 DOI: 10.1080/17461391.2020.1842512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypoxia impairs aerobic performance by accelerating fatiguing processes. These processes may originate from sites either distal (peripheral) or proximal (central) to the neuromuscular junction, though these are not mutually exclusive. Peripheral mechanisms include decrements in muscle glycogen or fluctuations in intramuscular metabolites, whereas central responses commonly refer to reductions in central motor drive elicited by alterations in blood glucose and neurotransmitter concentrations as well as arterial hypoxemia. Hypoxia may accelerate both peripheral and central pathways of fatigue, with the level of hypoxia strongly dictating the degree and primary locus of impairment. As more people journey to hypoxic settings for work and recreation, developing strategies to improve work capacity in these environments becomes increasingly relevant. Given that sea level performance improves with nutritional interventions such as carbohydrate (CHO) ingestion, a similar strategy may prove effective in delaying fatigue in hypoxia, particularly considering how the metabolic pathways enhanced with CHO supplementation overlap the fatiguing pathways upregulated in hypoxia. Many questions regarding the relationship between CHO, hypoxia, and fatigue remain unanswered, including specifics on when to ingest, what to ingest, and how varying altitudes influence supplementation effectiveness. Therefore, the purpose of this narrative review is to examine the peripheral and central mechanisms contributing to fatigue during aerobic exercise at varying degrees of hypoxia and to assess the role of CHO ingestion in attenuating fatigue onset.
Collapse
Affiliation(s)
- Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, USA
| | - Erin C Sinai
- Department of Sports Medicine, Pepperdine University, Malibu, CA, USA
| | - Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| |
Collapse
|
20
|
Effects of graded hypoxia during exhaustive intermittent cycling on subsequent exercise performance and neuromuscular responses. Eur J Appl Physiol 2021; 121:3539-3549. [PMID: 34536112 DOI: 10.1007/s00421-021-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study examined the effect of graded hypoxia during exhaustive intermittent cycling on subsequent exercise performance and neuromuscular fatigue characteristics in normoxia. METHODS Fifteen well-trained cyclists performed an exhaustive intermittent cycling exercise (EICE 1; 15 s at 30% of anaerobic power reserve interspersed with 45 s of passive recovery) at sea level (SL; FiO2 ~ 0.21), moderate (MH; FiO2 ~ 0.16) and severe hypoxia (SH; FiO2 ~ 0.12). This was followed, after 30 min of passive recovery in normoxia, by an identical exercise bout in normoxia (EICE 2). Neuromuscular function of the knee extensors was assessed at baseline, after EICE 1 (post-EICE 1), and EICE 2 (post-EICE 2). RESULTS The number of efforts completed decreased with increasing hypoxic severity during EICE 1 (SL: 39 ± 30, MH: 22 ± 13, SH: 13 ± 6; p ≤ 0.02), whereas there was no difference between conditions during EICE 2 (SL: 16 ± 9, MH: 20 ± 14, SH: 24 ± 17; p ≥ 0.09). Maximal torque (p = 0.007), peripheral (p = 0.02) and cortical voluntary activation (p < 0.001), and twitch torque (p < 0.001) decreased from baseline to post-EICE 1. Overall, there were no significant difference in any neuromuscular parameters from post-EICE 1 to post-EICE 2 (p ≥ 0.08). CONCLUSION Increasing hypoxia severity during exhaustive intermittent cycling hampered exercise capacity, but did not influence performance and associated neuromuscular responses during a subsequent bout of exercise in normoxia performed after 30 min of rest.
Collapse
|
21
|
Fan JL, Wu TY, Lovering AT, Nan L, Bang WL, Kayser B. Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese. Front Physiol 2021; 12:617954. [PMID: 33716766 PMCID: PMC7943468 DOI: 10.3389/fphys.2021.617954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The Tibetans’ better aerobic exercise capacity at altitude remains ill-understood. We tested the hypothesis that Tibetans display better muscle and brain tissue oxygenation during exercise in hypoxia. Using near-infrared spectrometry (NIRS) to provide indices of tissue oxygenation, we measured oxy- and deoxy-hemoglobin ([O2Hb] and [HHb], respectively) responses of the vastus lateralis muscle and the right prefrontal cortex in ten Han Chinese and ten Tibetans during incremental cycling to exhaustion in a pressure-regulated chamber at simulated sea-level (air at 1 atm: normobaric normoxia) and 5,000 m (air at 0.5 atm: hypobaric hypoxia). Hypoxia reduced aerobic capacity by ∼22% in both groups (d = 0.8, p < 0.001 vs. normoxia), while Tibetans consistently outperformed their Han Chinese counterpart by ∼32% in normoxia and hypoxia (d = 1.0, p = 0.008). We found cerebral [O2Hb] was higher in Tibetans at normoxic maximal effort compared Han (p = 0.001), while muscle [O2Hb] was not different (p = 0.240). Hypoxic exercise lowered muscle [O2Hb] in Tibetans by a greater extent than in Han (interaction effect: p < 0.001 vs. normoxic exercise). Muscle [O2Hb] was lower in Tibetans when compared to Han during hypoxic exercise (d = 0.9, p = 0.003), but not during normoxic exercise (d = 0.4, p = 0.240). Muscle [HHb] was not different between the two groups during normoxic and hypoxic exercise (p = 0.778). Compared to Han, our findings revealed a higher brain tissue oxygenation in Tibetans during maximal exercise in normoxia, but lower muscle tissue oxygenation during exercise in hypoxia. This would suggest that the Tibetans privileged oxygenation of the brain at the expense of that of the muscle.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tian Yi Wu
- Research Center for High Altitude Medicine, Tibet University Medical College, Lhasa, China.,National Key Laboratory of High Altitude Medicine, Xining, China
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Liya Nan
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Wang Liang Bang
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Marillier M, Bernard AC, Verges S, Moran-Mendoza O, O’Donnell DE, Neder JA. Influence of exertional hypoxemia on cerebral oxygenation in fibrotic interstitial lung disease. Respir Physiol Neurobiol 2021; 285:103601. [DOI: 10.1016/j.resp.2020.103601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022]
|
23
|
Chen S, Xu K, Zheng X, Li J, Fan B, Yao X, Li Z. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105667. [PMID: 32712570 DOI: 10.1016/j.cmpb.2020.105667] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Fatigue is an important cause of operational errors, and human errors are the main cause of accidents. This study is an exploratory study in China. Field tests were conducted on heart rate variability (HRV) parameters and physiological indicators of fatigue among miners in high-altitude, cold and low-oxygen areas. This paper studies heart activity patterns during work fatigue in miners. METHODS Fatigue affects both the sympathetic and parasympathetic nervous systems, and it is expressed as an abnormal pattern of HRV parameters. Thirty miners were selected as subjects for a field test, and HRV was extracted from 60 groups of electrocardiography (ECG) datasets as basic signals for fatigue analysis. Then, we analyzed the HRV signals of the miners using linear (time domain and frequency domain) and nonlinear dynamics (Poincaré plot and sample entropy (SampEn)), and a Pearson's correlation coefficient analysis and t-tests were performed on the measured indices. RESULTS The results showed that the time-domain indices (SDNN, RMSSD, SDSD, pNN50, RRn, heart rate (HR), R-wave humps (RH)) and the coefficient of variation (CV)) and the frequency-domain indices (low frequency/high frequency (LF/HF), LFnorm and HFnorm) clearly changed after fatigue. These features were selected using a Poincaré plot, sample entropy, Pearson's correlation coefficient and a t-test for further analysis. The fatigue characteristics and sensitivity parameters of miners in a high-altitude, cold and hypoxic environment were obtained. CONCLUSIONS This study provides deep insight into the use of linear and nonlinear fatigue characteristics to effectively and reliably identify miner fatigue. Furthermore, the study provides a reference for clinical studies of acute mountain sickness in high-altitude, cold and hypoxic environments.
Collapse
Affiliation(s)
- Shoukun Chen
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Jishuo Li
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Bingjie Fan
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiwen Yao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Zhengrong Li
- Yunnan Diqing Non-ferrous Metals Co., Ltd, Yunnan, 674400, China.
| |
Collapse
|
24
|
Townsend N, Brocherie F, Millet GP, Girard O. Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia. Exp Physiol 2020; 106:126-138. [DOI: 10.1113/ep088485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nathan Townsend
- Athlete Health and Performance Research Centre Aspetar Orthopaedic and Sports Medicine Hospital Doha Qatar
- College of Health and Life Sciences Hamad Bin Khalifa University Doha Qatar
| | - Franck Brocherie
- Laboratory Sport Expertise and Performance French Institute of Sport Paris France
| | | | - Olivier Girard
- Athlete Health and Performance Research Centre Aspetar Orthopaedic and Sports Medicine Hospital Doha Qatar
- School of Human Sciences (Exercise and Sport Science) The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
25
|
MIRA JOSÉ, FLOREANI MIRCO, SAVOLDELLI ALDO, AMERY KHALED, KORAL JEROME, ORANCHUK DUSTINJ, MESSONNIER LAURENTA, RUPP THOMAS, MILLET GUILLAUMEY. Neuromuscular Fatigue of Cycling Exercise in Hypoxia. Med Sci Sports Exerc 2020; 52:1888-1899. [DOI: 10.1249/mss.0000000000002331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Soo J, Billaut F, Bishop DJ, Christian RJ, Girard O. Neuromuscular and perceptual responses during repeated cycling sprints-usefulness of a "hypoxic to normoxic" recovery approach. Eur J Appl Physiol 2020; 120:883-896. [PMID: 32086600 DOI: 10.1007/s00421-020-04327-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE We investigated the consequence of varying hypoxia severity during an initial set of repeated cycling sprints on performance, neuromuscular fatigability, and exercise-related sensations during a subsequent set of repeated sprints in normoxia. METHODS Nine active males performed ten 4-s sprints (recovery = 30 s) at sea level (SL; FiO2 ~ 0.21), moderate (MH; FiO2 ~ 0.17) or severe normobaric hypoxia (SH; FiO2 ~ 0.13). This was followed, after 8 min of passive recovery, by five 4-s sprints (recovery = 30 s) in normoxia. RESULTS Mean power decrement during Sprint 10 was exacerbated in SH compared to SL and MH (- 34 ± 12%, - 22 ± 13%, - 25 ± 14%, respectively, p < 0.05). Sprint performance during Sprint 11 recovered to that of Sprint 1 in all conditions (p = 0.267). All exercise-related sensations at Sprint 11 recovered significantly compared to Sprint 1, with no difference for Set 2 (p > 0.05). Ratings of overall perceived discomfort, difficulty breathing, and limb discomfort were exacerbated during Set 1 in SH versus SL (p < 0.05). Compared to SL, the averaged MPO value for Set 2 was 5.5 ± 3.0% (p = 0.003) lower in SH. Maximal voluntary force and twitch torque decreased similarly in all conditions immediately after Set 1 (p < 0.05), without further alterations after Set 2. Peripheral and cortical voluntary activation values did not change (p > 0.05). CONCLUSION Exercise-related sensations, rather than neuromuscular function integrity, may play a pivotal role in influencing performance of repeated sprints and its recovery.
Collapse
Affiliation(s)
- Jacky Soo
- Murdoch Applied Sports Science (MASS) Laboratory, Murdoch University, Perth, WA, Australia
| | | | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia
| | - Ryan J Christian
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia.,Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Olivier Girard
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar. .,School of Human Sciences (Exercise and Sport Science), The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
27
|
Shan F, Yang T, Li J, Huang QY. Assessment of fatigue-related biochemical alterations in a rat swimming model under hypoxia. ACTA ACUST UNITED AC 2019; 222:jeb.199711. [PMID: 31253714 DOI: 10.1242/jeb.199711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
Abstract
It is well known that exercise-induced fatigue is exacerbated following hypoxia exposure and may arise from central and/or peripheral mechanisms. To assess the relative contribution of peripheral and central factors to exercise-induced fatigue under hypoxia, a rat model of fatigue by a bout of exhaustive swimming was established and fatigue-related biochemical changes in normoxic and severe hypoxic conditions were compared. Rats were randomly divided into four groups: normoxia resting (NR), exhaustive swimming (NE), hypoxia resting (HR) and exhaustive swimming (HE). The swimming time to exhaustion with a weight equal to 2.5% of their body weight reduced under hypoxia. There were lower blood lactate levels, lower gastrocnemius pAMPK/AMPK ratios and higher gastrocnemius glycogen contents in the HE than in the NE groups, which all suggested a lower degree of peripheral fatigue in the HE group than in the NE group. Meanwhile, there was a significant increase in striatal 3,4-dihydroxyphenylacetic acid (DOPAC) caused by exhaustive swimming under normoxia, whereas this increase was almost blunted under severe hypoxia, indicating that hypoxia might exacerbate exercise-induced central fatigue. These biochemical changes suggest that from normoxia to severe hypoxia, the relative contribution of peripheral and central factors to exercise-induced fatigue alters, and central fatigue may play a predominant role in the decline in exercise performance under hypoxia.
Collapse
Affiliation(s)
- Fabo Shan
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.,Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Tao Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qing-Yuan Huang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| |
Collapse
|
28
|
Yang F, Zhou L, Song J, WangJinMei A, Yang Y, Tang ZW, Huang QY. Liver CEBPβ Modulates the Kynurenine Metabolism and Mediates the Motility for Hypoxia-Induced Central Fatigue in Mice. Front Physiol 2019; 10:243. [PMID: 30930794 PMCID: PMC6428026 DOI: 10.3389/fphys.2019.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Central fatigue is defined as a failure of the central nervous system to adequately drive the muscle, manifesting limited development, and maintenance of locomotor activity. A plateau in hypoxia leads to central fatigue and followed by maximal motility recession. However, the underlying mechanism is still unclear. The present study describes a mechanism by which liver CEBPβ (CCAAT/enhancer-binding protein beta) induced by hypoxic environment alters the kynurenine (KYN) metabolism and causes the suppression of motility function recession. The activation of CEBPβ under hypoxia increases the liver expression of tryptophan dioxygenase, thereby enhancing the conversion of tryptophan into KYN; the KYN metabolite can traverse the blood-brain barrier and result in the suppression of motility function. However, the knockdown of CEBPβ by injecting pAAV-shRNA-CEBPβ via the hepatic portal vein reduces the KYN production and improves the motility function. KYN is a neurochemical that which restricts the exercise capacity after injection in the basal ganglia in mice. Reducing the plasma KYN protects the brain from hypoxia-induced changes associated with fatigue, and the knockdown liver of CEBPβ in mice renders resistance to fatigue post-acute hypoxia or tryptophan treatment. This study reveals resistance to central fatigue as a strategy for acclimatization to hypoxia mediated by transcription factor CEBPβ in the liver.
Collapse
Affiliation(s)
- Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China.,Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Li Zhou
- Department of Pharmacy, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Jun Song
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - A WangJinMei
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Yuan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Zhong-Wei Tang
- Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Qing-Yuan Huang
- Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
29
|
The effect of severe and moderate hypoxia on exercise at a fixed level of perceived exertion. Eur J Appl Physiol 2019; 119:1213-1224. [PMID: 30820661 PMCID: PMC6469630 DOI: 10.1007/s00421-019-04111-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023]
Abstract
Purpose The purpose of this study was to determine the primary cues regulating perceived effort and exercise performance using a fixed-RPE protocol in severe and moderate hypoxia. Methods Eight male participants (26 ± 6 years, 76.3 ± 8.6 kg, 178.5 ± 3.6 cm, 51.4 ± 8.0 mL kg− 1 min− 1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot {V}$$\end{document}V˙O2max) completed three exercise trials in environmental conditions of severe hypoxia (FIO2 0.114), moderate hypoxia (FIO2 0.152), and normoxia (FIO2 0.202). They were instructed to continually adjust their power output to maintain a perceived effort (RPE) of 16, exercising until power output declined to 80% of the peak 30-s power output achieved. Results Exercise time was reduced (severe hypoxia 428 ± 210 s; moderate hypoxia 1044 ± 384 s; normoxia 1550 ± 590 s) according to a reduction in FIO2 (P < 0.05). The rate of oxygen desaturation during the first 3 min of exercise was accelerated in severe hypoxia (− 5.3 ± 2.8% min− 1) relative to moderate hypoxia (− 2.5 ± 1.0% min− 1) and normoxia (− 0.7 ± 0.3% min− 1). Muscle tissue oxygenation did not differ between conditions (P > 0.05). Minute ventilation increased at a faster rate according to a decrease in FIO2 (severe hypoxia 27.6 ± 6.6; moderate hypoxia 21.8 ± 3.9; normoxia 17.3 ± 3.9 L min− 1). Moderate-to-strong correlations were identified between breathing frequency (r = − 0.718, P < 0.001), blood oxygen saturation (r = 0.611, P = 0.002), and exercise performance. Conclusions The primary cues for determining perceived effort relate to progressive arterial hypoxemia and increases in ventilation.
Collapse
|
30
|
Curtin A, Tong S, Sun J, Wang J, Onaral B, Ayaz H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front Neurosci 2019; 13:84. [PMID: 30872985 PMCID: PMC6403189 DOI: 10.3389/fnins.2019.00084] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The capacity for TMS to elicit neural activity and manipulate cortical excitability has created significant expectation regarding its use in both cognitive and clinical neuroscience. However, the absence of an ability to quantify stimulation effects, particularly outside of the motor cortex, has led clinicians and researchers to pair noninvasive brain stimulation with noninvasive neuroimaging techniques. fNIRS, as an optical and wearable neuroimaging technique, is an ideal candidate for integrated use with TMS. Together, TMS+fNIRS may offer a hybrid alternative to "blind" stimulation to assess NIBS in therapy and research. Objective: In this systematic review, the current body of research into the transient and prolonged effects of TMS on fNIRS-based cortical hemodynamic measures while at rest and during tasks are discussed. Additionally, studies investigating the relation of fNIRS to measures of cortical excitability as produced by TMS-evoked Motor-Evoked-Potential (MEP) are evaluated. The aim of this review is to outline the integrated use of TMS+fNIRS and consolidate findings related to use of fNIRS to monitor changes attributed to TMS and the relationship of fNIRS to cortical excitability itself. Methods: Key terms were searched in PubMed and Web-of-Science to identify studies investigating the use of both fNIRS and TMS. Works from Google-Scholar and referenced works in identified papers were also assessed for relevance. All published experimental studies using both fNIRS and TMS techniques in the study methodology were included. Results: A combined literature search of neuroimaging and neurostimulation studies identified 53 papers detailing the joint use of fNIRS and TMS. 22/53 investigated the immediate effects of TMS at rest in the DLPFC and M1 as measured by fNIRS. 21/22 studies reported a significant effect in [HbO] for 40/54 stimulation conditions with 14 resulting an increase and 26 in a decrease. While 15/22 studies also reported [HbR], only 5/37 conditions were significant. Task effects of fNIRS+TMS were detailed in 16 studies, including 10 with clinical populations. Most studies only reported significant changes in [HbO] related measures. Studies comparing fNIRS to changes in MEP-measured cortical excitability suggest that fNIRS measures may be spatially more diffuse but share similar traits. Conclusion: This review summarizes the progress in the development of this emerging hybrid neuroimaging & neurostimulation methodology and its applications. Despite encouraging progress and novel applications, a lack of replicated works, along with highly disparate methodological approaches, highlight the need for further controlled studies. Interpretation of current research directions, technical challenges of TMS+fNIRS, and recommendations regarding future works are discussed.
Collapse
Affiliation(s)
- Adrian Curtin
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Banu Onaral
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
31
|
Ruggiero L, McNeil CJ. Supraspinal Fatigue and Neural-evoked Responses in Lowlanders and Sherpa at 5050 m. Med Sci Sports Exerc 2019; 51:183-192. [PMID: 30095744 DOI: 10.1249/mss.0000000000001748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE At high altitude, Lowlanders exhibit exacerbated fatigue and impaired performance. Conversely, Sherpa (native Highlanders) are known for their outstanding performance at altitude. Presently, there are no reports comparing neuromuscular fatigue and its etiology between Lowlanders and Sherpa at altitude. METHODS At 5050 m, nine age-matched Lowlanders and Sherpa (31 ± 10 vs 30 ± 12 yr, respectively) completed a 4-min sustained isometric elbow flexion at 25% maximal voluntary contraction (MVC) torque. Mid-minute, stimuli were applied to the motor cortex and brachial plexus to elicit a motor-evoked potential and maximal compound muscle action potential (Mmax), respectively. Supraspinal fatigue was assessed as the reduction in cortical voluntary activation (cVA) from prefatigue to postfatigue. Cerebral hemoglobin concentrations and tissue oxygenation index (TOI) were measured over the prefrontal cortex by near-infrared spectroscopy. RESULTS Prefatigue, MVC torque, and cVA were significantly greater for Lowlanders than Sherpa (79.5 ± 3.6 vs 50.1 ± 11.3 N·m, and 95.4% ± 2.7% vs 88.2% ± 6.6%, respectively). With fatigue, MVC torque and cVA declined similarly for both groups (~24%-26% and ~5%-7%, respectively). During the task, motor-evoked potential area increased more and sooner for Lowlanders (1.5 min) than Sherpa (3.5 min). The Mmax area was lower than baseline throughout fatigue for Lowlanders but unchanged for Sherpa. TOI increased earlier for Lowlanders (2 min) than Sherpa (4 min). Total hemoglobin increased only for Lowlanders (2 min). Mmax was lower, whereas TOI and total hemoglobin were higher for Lowlanders than Sherpa during the second half of the protocol. CONCLUSIONS Although neither MVC torque loss nor development of supraspinal fatigue was different between groups, neural-evoked responses and cerebral oxygenation indices were less perturbed in Sherpa. This represents an advantage for maintenance of homeostasis, presumably due to bequeathed genotype and long-term altitude adaptations.
Collapse
Affiliation(s)
- Luca Ruggiero
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| | | |
Collapse
|
32
|
Paris HL, Fulton TJ, Chapman RF, Fly AD, Koceja DM, Mickleborough TD. Effect of carbohydrate ingestion on central fatigue during prolonged running exercise in moderate hypoxia. J Appl Physiol (1985) 2018; 126:141-151. [PMID: 30412032 DOI: 10.1152/japplphysiol.00684.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether acute exposure to moderate hypoxia alters central and peripheral fatigue and to test whether carbohydrate ingestion impacts fatigue characteristics, 12 trained runners completed three running trials lasting 1 h each at 65% of normoxic maximum oxygen uptake. The first trial was performed in normoxia [inspired O2 fraction ( FiO2 ) = 0.21], and the last two trials were completed in hypoxia ( FiO2 = 0.15). Participants ingested a placebo drink in normoxia (NORM-PLA), a placebo drink in hypoxia (HYP-PLA), or a carbohydrate solution in hypoxia (HYP-CHO). HYP conditions were randomized. Peripheral [change in potentiated quadriceps twitch force (ΔQtw,pot)] and central [change in voluntary activation (ΔVA)] fatigue were assessed via preexercise-to-postexercise changes in magnetically evoked quadriceps twitch. In HYP, blood was drawn to determine the ratio of free-tryptophan (f-TRP) to branched-chain amino acids (BCAA). After exercise, peripheral fatigue was reduced to a similar degree in normoxia and hypoxia (ΔQtw,pot = -4.5 ± 1.3% and -4.0 ± 1.5% in NORM-PLA and HYP-PLA, respectively; P = 0.61). Central fatigue was present after normoxic and hypoxic exercise but to a greater degree in HYP-PLA compared with NORM-PLA (ΔVA: -4.7 ± 0.9% vs. -1.9 ± 0.7%; P < 0.01). Carbohydrate ingestion did not influence central fatigue (ΔVA in HYP-CHO: -5.7 ± 1.2%; P = 0.51 vs. HYP-PLA). After exercise, no differences were observed in the ratio of f-TRP to BCAA between HYP-PLA and HYP-CHO ( P = 0.67). Central fatigue increased during prolonged running exercise in moderate hypoxia although the ratio of f-TRP to BCAA remained unchanged. Ingesting carbohydrates while running in hypoxia did not influence fatigue development. NEW & NOTEWORTHY Hypoxic exposure influences the origin of exercise-induced fatigue and the rate of fatigue development depending on the severity of hypoxia. Our data suggest that moderate hypoxia increases central, but not peripheral, fatigue in trained runners exercising at 65% of normoxic maximum oxygen uptake. The increase in central fatigue was unaffected by carbohydrate intake and occurred although the ratio of free tryptophan to branched-chain amino acids remained unchanged.
Collapse
Affiliation(s)
- Hunter L Paris
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| | - Timothy J Fulton
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| | - Alyce D Fly
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| | - David M Koceja
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University , Bloomington, Indiana
| |
Collapse
|
33
|
Ruggiero L, Hoiland RL, Hansen AB, Ainslie PN, McNeil CJ. UBC-Nepal expedition: peripheral fatigue recovers faster in Sherpa than lowlanders at high altitude. J Physiol 2018; 596:5365-5377. [PMID: 30239002 DOI: 10.1113/jp276599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The reduced oxygen tension of high altitude compromises performance in lowlanders. In this environment, Sherpa display superior performance, but little is known on this issue. Sherpa present unique genotypic and phenotypic characteristics at the muscular level, which may enhance resistance to peripheral fatigue at high altitude compared to lowlanders. We studied the impact of gradual ascent and exposure to high altitude (5050 m) on peripheral fatigue in age-matched lowlanders and Sherpa, using intermittent electrically-evoked contractions of the knee extensors. Peripheral fatigue (force loss) was lower in Sherpa during the first part of the protocol. Post-protocol, the rate of force development and contractile impulse recovered faster in Sherpa than in lowlanders. At any time, indices of muscle oxygenation were not different between groups. Muscle contractile properties in Sherpa, independent of muscle oxygenation, were less perturbed by non-volitional fatigue. Hence, elements within the contractile machinery contribute to the superior physical performance of Sherpa at high altitude. ABSTRACT Altitude-related acclimatisation is characterised by marked muscular adaptations. Lowlanders and Sherpa differ in their muscular genotypic and phenotypic characteristics, which may influence peripheral fatigability at altitude. After gradual ascent to 5050 m, 12 lowlanders and 10 age-matched Sherpa (32 ± 10 vs. 31 ± 11 years, respectively) underwent three bouts (separated by 15 s rest) of 75 intermittent electrically-evoked contractions (12 pulses at 15 Hz, 1.6 s between train onsets) of the dominant leg quadriceps, at the intensity which initially evoked 30% of maximal voluntary force. Trains were also delivered at minutes 1, 2 and 3 after the protocol to measure recovery. Tissue oxygenation index (TOI) and total haemoglobin (tHb) were quantified by a near-infrared spectroscopy probe secured over rectus femoris. Superficial femoral artery blood flow was recorded using ultrasonography, and delivery of oxygen was estimated (eDO2 ). At the end of bout 1, peak force was greater in Sherpa than in lowlanders (91.5% vs. 84.5% baseline, respectively; P < 0.05). Peak rate of force development (pRFD), the first 200 ms of the contractile impulse (CI200 ), and half-relaxation time (HRT) recovered faster in Sherpa than in lowlanders (percentage of baseline at 1 min: pRFD: 89% vs. 74%; CI200 : 91% vs. 80%; HRT: 113% vs. 123%, respectively; P < 0.05). Vascular measures were pooled for lowlanders and Sherpa as they did not differ during fatigue or recovery (P < 0.05). Mid bout 3, TOI was decreased (90% baseline) whereas tHb was increased (109% baseline). After bout 3, eDO2 was markedly increased (1266% baseline). The skeletal muscle of Sherpa seemingly favours repeated force production at altitude for similar oxygen delivery compared to lowlanders.
Collapse
Affiliation(s)
- Luca Ruggiero
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Alexander B Hansen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Chris J McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
34
|
Willis SJ, Alvarez L, Borrani F, Millet GP. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction. Physiol Rep 2018; 6:e13872. [PMID: 30295004 PMCID: PMC6174122 DOI: 10.14814/phy2.13872] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
The aim was to evaluate changes in peripheral and cerebral oxygenation, cardiorespiratory, and performance differences, as well as neuromuscular fatigue across multiple levels of blood flow restriction (BFR) during a repeated cycling sprint test to exhaustion (RST). Participants performed three RST (10-sec maximal sprints with 20-sec recovery until exhaustion) with measurements of power output and V̇O2peak as well as oxygenation (near-infrared spectroscopy) of the vastus lateralis and prefrontal cortex. Neuromuscular fatigue was assessed by femoral nerve stimulation to evoke the vastus lateralis. Tests were conducted with proximal lower limb bilateral vascular occlusion at 0%, 45%, and 60% of resting pulse elimination pressure. Total work decreased with BFR (52.5 ± 22.9% at 45%, 68.6 ± 32.6% at 60%, P < 0.01 compared with 0%) as V̇O2peak (12.6 ± 9.3% at 45%, 18.2 ± 7.2% at 60%, compared with 0%, P < 0.01). Decreased changes in muscle deoxyhemoglobin (∆[HHb]) during sprints were demonstrated at 60% compared to 0% (P < 0.001). Changes in total hemoglobin concentrations (∆[tHb]) increased at both 45% and 60% compared with 0% (P < 0.001). Cerebral ∆[tHb] increased toward exhaustion (P < 0.05). Maximal voluntary contraction (MVC), voluntary activation level (VAL), and root mean square (RMS)/M-wave ratio decreased at 60% compared with 0% (P < 0.001, all). MVC and VAL decreased between 45% and 60% (P < 0.05, both). The application of BFR during RST induced greater changes in tissue perfusion (via blood volume, ∆[tHb]) suggesting a possible stimulus for vascular blood flow regulation. Additionally, high-intensity sprint exercise with partial ischemia may challenge cerebral blood flow regulation and influence local fatigue development due to protection of cerebral function.
Collapse
Affiliation(s)
- Sarah J. Willis
- Institute of Sport SciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Laurent Alvarez
- Institute of Sport SciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Fabio Borrani
- Institute of Sport SciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Grégoire P. Millet
- Institute of Sport SciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
35
|
DOYLE-BAKER DOUGLAS, TEMESI JOHN, MEDYSKY MARYE, HOLASH ROBERTJ, MILLET GUILLAUMEY. An Innovative Ergometer to Measure Neuromuscular Fatigue Immediately after Cycling. Med Sci Sports Exerc 2018; 50:375-387. [DOI: 10.1249/mss.0000000000001427] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Ruggiero L, Yacyshyn AF, Nettleton J, McNeil CJ. UBC-Nepal expedition: acclimatization to high-altitude increases spinal motoneurone excitability during fatigue in humans. J Physiol 2017; 596:3327-3339. [PMID: 29130497 DOI: 10.1113/jp274872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/09/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Acute exposure and acclimatization to hypoxia are associated with an impairment and partial recovery, respectively, of the capability of the central nervous system to drive muscles during prolonged efforts. Motoneurones play a vital role in muscle contraction and in fatigue, although the effect of hypoxia on motoneurone excitability during exercise has not been assessed in humans. We studied the impact of fatigue on motoneurone excitability in normoxia, acute and chronic exposure (5050 m) to hypoxia. Performance was worse in acute hypoxia but recovered to the normoxic standard in chronic hypoxia, in parallel with an increased excitability of the motoneurones compared to acute exposure to hypoxia. These findings reveal that prolonged hypoxia causes a heightened motoneurone responsiveness during fatiguing exercise; such an adaptation might favour the restoration of performance where low pressures of oxygen are chronically present. ABSTRACT The fatigue-induced failure of the motor cortex to drive muscles maximally increases in acute hypoxia (AH) compared to normoxia (N) but improves with acclimatization (chronic hypoxia; CH). Despite their importance to muscle output, it is unknown how locomotor motoneurones in humans are affected by hypoxia and acclimatization. Eleven participants performed 16 min of submaximal [25% maximal torque (maximal voluntary contraction, MVC)] intermittent isometric elbow flexions in N, AH (environmental chamber) and CH (7-14 days at 5050 m) (PI O2 = 140, 74 and 76 mmHg, respectively). For each minute of the fatigue protocol, motoneurone responsiveness was measured with cervicomedullary stimulation delivered 100 ms after transcranial magnetic stimulation (TMS) used to transiently silence voluntary drive. Every 2 min, cortical voluntary activation (cVA) was measured with TMS. After the task, MVC torque declined more in AH (∼20%) than N and CH (∼11% and 14%, respectively, P < 0.05), with no differences between N and CH. cVA was lower in AH than N and CH at baseline (∼92%, 95% and 95%, respectively) and at the end of the protocol (∼82%, 90% and 90%, P < 0.05). During the fatiguing task, motoneurone excitability in N and AH declined to ∼65% and 40% of the baseline value (P < 0.05). In CH, motoneurone excitability did not decline and, late in the protocol, was ∼40% higher compared to AH (P < 0.05). These novel data reveal that acclimatization to hypoxia leads to a heightened motoneurone responsiveness during fatiguing exercise. Positive spinal and supraspinal adaptations during extended periods at altitude might therefore play a vital role for the restoration of performance after acclimatization to hypoxia.
Collapse
Affiliation(s)
- Luca Ruggiero
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Alexandra F Yacyshyn
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jane Nettleton
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
37
|
Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia. Med Sci Sports Exerc 2017; 49:430-439. [PMID: 27753741 DOI: 10.1249/mss.0000000000001118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. METHODS Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. RESULTS A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. CONCLUSION These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Collapse
Affiliation(s)
- Marc Jubeau
- 1Laboratory HP2, Grenoble Alpes University, Grenoble, FRANCE; 2INSERM U1042, Grenoble, FRANCE; 3Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, FRANCE; 4Inter-university Laboratory of Human Movement Biology, University Savoie Mont Blanc, Chambéry, FRANCE; 5Inter-university Laboratory of Human Movement Biology, University of Lyon, UJM-Saint-Etienne, Saint-Etienne, FRANCE; 6Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, CANADA; and 7EuroMov, University of Montpellier, FRANCE
| | | | | | | | | | | | | |
Collapse
|
38
|
Effects of high-altitude exposure on supraspinal fatigue and corticospinal excitability and inhibition. Eur J Appl Physiol 2017. [PMID: 28647868 DOI: 10.1007/s00421-017-3669-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE While acute hypoxic exposure enhances exercise-induced central fatigue and can alter corticospinal excitability and inhibition, the effect of prolonged hypoxic exposure on these parameters remains to be clarified. We hypothesized that 5 days of altitude exposure would (i) normalize exercise-induced supraspinal fatigue during isolated muscle exercise to sea level (SL) values and (ii) increase corticospinal excitability and inhibition. METHODS Eleven male subjects performed intermittent isometric elbow flexions at 50% of maximal voluntary contraction to task failure at SL and after 1 (D1) and 5 (D5) days at 4350 m. Transcranial magnetic stimulation and peripheral electrical stimulation were used to assess supraspinal and peripheral fatigues. Pre-frontal cortex and biceps brachii oxygenation was monitored by near-infrared spectroscopy. RESULTS Exercise duration was not statistically different between SL (1095 ± 562 s), D1 (1132 ± 516 s), and D5 (1440 ± 689 s). No significant differences were found between the three experimental conditions in maximal voluntary activation declines at task failure (SL -16.8 ± 9.5%; D1 -25.5 ± 11.2%; D5 -21.8 ± 7.0%; p > 0.05). Exercise-induced peripheral fatigue was larger at D5 versus SL (100 Hz doublet at task failure: -58.8 ± 16.6 versus -41.8 ± 20.1%; p < 0.05). Corticospinal excitability at 50% maximal voluntary contraction was lower at D5 versus SL (brachioradialis p < 0.05, biceps brachii p = 0.055). Cortical silent periods were shorter at SL versus D1 and D5 (p < 0.05). CONCLUSIONS The present results show similar patterns of supraspinal fatigue development during isometric elbow flexions at SL and after 1 and 5 days at high altitude, despite larger amount of peripheral fatigue at D5, lowered corticospinal excitability and enhanced corticospinal inhibition at altitude.
Collapse
|
39
|
Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985) 2017; 122:1068-1076. [DOI: 10.1152/japplphysiol.00775.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Sustained physical exercise leads to a reduced capacity to produce voluntary force that typically outlasts the exercise bout. This “fatigue” can be due both to impaired muscle function, termed “peripheral fatigue,” and a reduction in the capacity of the central nervous system to activate muscles, termed “central fatigue.” In this review we consider the factors that determine the recovery of voluntary force generating capacity after various types of exercise. After brief, high-intensity exercise there is typically a rapid restitution of force that is due to recovery of central fatigue (typically within 2 min) and aspects of peripheral fatigue associated with excitation-contraction coupling and reperfusion of muscles (typically within 3–5 min). Complete recovery of muscle function may be incomplete for some hours, however, due to prolonged impairment in intracellular Ca2+ release or sensitivity. After low-intensity exercise of long duration, voluntary force typically shows rapid, partial, recovery within the first few minutes, due largely to recovery of the central, neural component. However, the ability to voluntarily activate muscles may not recover completely within 30 min after exercise. Recovery of peripheral fatigue contributes comparatively little to the fast initial force restitution and is typically incomplete for at least 20–30 min. Work remains to identify what factors underlie the prolonged central fatigue that usually accompanies long-duration single joint and locomotor exercise and to document how the time course of neuromuscular recovery is affected by exercise intensity and duration in locomotor exercise. Such information could be useful to enhance rehabilitation and sports performance.
Collapse
Affiliation(s)
- T. J. Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland; and
| | - J. L. Taylor
- Neuroscience Research Australia and University of New South Wales
| | - S. C. Gandevia
- Neuroscience Research Australia and University of New South Wales
| |
Collapse
|
40
|
Townsend NE, Nichols DS, Skiba PF, Racinais S, Périard JD. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling. Front Physiol 2017; 8:180. [PMID: 28386237 PMCID: PMC5362642 DOI: 10.3389/fphys.2017.00180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose: Develop a prediction equation for critical power (CP) and work above CP (W′) in hypoxia for use in the work-balance (WBAL′) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W′ at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W′ at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W′ were used to compute W′ during HIIT using differential (WBALdiff′) and integral (WBALint′) forms of the WBAL′ model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W′ decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W′ (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W′) on modelled WBAL′ at 2,250 m (P = 0.24). WBALdiff′ returned higher values than WBALint′ throughout HIIT (P < 0.001). During HIIT, WBALdiff′ was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (−1.3 ± 3.5 kJ; P = 0.30). However, WBALint′ was lower than 0 kJ at 250 m (−0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (−2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W′ developed in this study are suitable for use with the WBAL′ model in acute hypoxia. This enables the application of WBAL′ modelling to training prescription and competition analysis at altitude.
Collapse
Affiliation(s)
- Nathan E Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - David S Nichols
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Philip F Skiba
- Department of Sports Medicine, Advocate Lutheran General Hospital Park Ridge, IL, USA
| | - Sebastien Racinais
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
41
|
Farra SD, Cheung SS, Thomas SG, Jacobs I. Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS One 2017; 12:e0171119. [PMID: 28257415 PMCID: PMC5336231 DOI: 10.1371/journal.pone.0171119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to clarify if Ratings of Perceived Exertion (RPE) and self-selected exercise intensity are sensitive not only to alterations in the absolute level of arterial saturation (SPO2) but also the rate of change in SPO2. Twelve healthy participants (31.6 ± 3.9 y, 175.5 ± 7.7 cm, 73.3 ± 10.3 kg, 51 ± 7 mL·kg-1·min-1 [Formula: see text]) exercised four times on a cycle ergometer, freely adjusting power output (PO) to maintain RPE at 5 on Borg's 10-point scale with no external feedback to indicate their exercise intensity. The fraction of inspired oxygen (FIO2) was reduced during three of those trials such that SPO2 decreased during exercise from starting values (>98%) to 70%. These trials were differentiated by the time over which the desaturation occurred: 3.9 ± 1.4 min, -8.7 ± 4.2%•min-1 (FAST), 11.0 ± 3.7 min, -2.8 ± 1.3%•min-1 (MED), and 19.5 ± 5.8 min, -1.5 ± 0.8%•min-1 (SLOW) (P < 0.001). Compared to stable PO throughout the control condition (no SPO2 manipulation), PO significantly decreased across the experimental conditions (FAST = 2.8 ± 2.1 W•% SPO2-1; MED = 2.5 ± 1.8 W•% SPO2-1; SLOW = 1.8 ± 1.6 W•% SPO2-1; P < 0.001). The rates of decline in PO during FAST and MED were similar, with both greater than SLOW. Our results confirm that decreases in absolute SPO2 impair exercise performance and that a faster rate of oxygen desaturation magnifies that impairment.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Cheung
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, Brock University, St. Catherines, Ontario, Canada
| | - Scott G. Thomas
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Pires FO, Dos Anjos CAS, Covolan RJM, Pinheiro FA, St Clair Gibson A, Noakes TD, Magalhães FH, Ugrinowitsch C. Cerebral Regulation in Different Maximal Aerobic Exercise Modes. Front Physiol 2016; 7:253. [PMID: 27458381 PMCID: PMC4932816 DOI: 10.3389/fphys.2016.00253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022] Open
Abstract
We investigated cerebral responses, simultaneously with peripheral and ratings of perceived exertion (RPE) responses, during different VO2MAX-matched aerobic exercise modes. Nine cyclists (VO2MAX of 57.5 ± 6.2 ml·kg−1·min−1) performed a maximal, controlled-pace incremental test (MIT) and a self-paced 4 km time trial (TT4km). Measures of cerebral (COX) and muscular (MOX) oxygenation were assessed throughout the exercises by changes in oxy- (O2Hb) and deoxy-hemoglobin (HHb) concentrations over the prefrontal cortex (PFC) and vastus lateralis (VL) muscle, respectively. Primary motor cortex (PMC) electroencephalography (EEG), VL, and rectus femoris EMG were also assessed throughout the trials, together with power output and cardiopulmonary responses. The RPE was obtained at regular intervals. Similar motor output (EMG and power output) occurred from 70% of the duration in MIT and TT4km, despite the greater motor output, muscle deoxygenation (↓ MOX) and cardiopulmonary responses in TT4km before that point. Regarding cerebral responses, there was a lower COX (↓ O2Hb concentrations in PFC) at 20, 30, 40, 50 and 60%, but greater at 100% of the TT4km duration when compared to MIT. The alpha wave EEG in PMC remained constant throughout the exercise modes, with greater values in TT4km. The RPE was maximal at the endpoint in both exercises, but it increased slower in TT4km than in MIT. Results showed that similar motor output and effort tolerance were attained at the closing stages of different VO2MAX-matched aerobic exercises, although the different disturbance until that point. Regardless of different COX responses during most of the exercises duration, activation in PMC was preserved throughout the exercises, suggesting that these responses may be part of a centrally-coordinated exercise regulation.
Collapse
Affiliation(s)
- Flávio O Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences, and Humanities, University of São PauloSão Paulo, Brazil; Department of Sport, School of Physical Education and Sport, University of São PauloSão Paulo, Brazil
| | - Carlos A S Dos Anjos
- Neurophysics Group, Gleb Wataghin Physics Institute, University of Campinas Campinas, Brazil
| | - Roberto J M Covolan
- Neurophysics Group, Gleb Wataghin Physics Institute, University of Campinas Campinas, Brazil
| | - Fabiano A Pinheiro
- Exercise Psychophysiology Research Group, School of Arts, Sciences, and Humanities, University of São PauloSão Paulo, Brazil; Department of Sport, School of Physical Education and Sport, University of São PauloSão Paulo, Brazil
| | | | - Timothy D Noakes
- Department of Human Biology, Sports Science Institute of South Africa, University of Cape Town Cape Town, South Africa
| | - Fernando H Magalhães
- Exercise Psychophysiology Research Group, School of Arts, Sciences, and Humanities, University of São Paulo São Paulo, Brazil
| | - Carlos Ugrinowitsch
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| |
Collapse
|
43
|
Girard O, Bula S, Faiss R, Brocherie F, Millet GY, Millet GP. Does altitude level of a prior time-trial modify subsequent exercise performance in hypoxia and associated neuromuscular responses? Physiol Rep 2016. [PMCID: PMC4962066 DOI: 10.14814/phy2.12804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the influence of prior time‐trials performed at different altitudes on subsequent exercise in moderate hypoxia and associated cardiometabolic and neuromuscular responses. In normobaric hypoxia (simulated altitude 2000 m; FiO2: 0.163), 10 healthy males performed (1) an incremental test to exhaustion (VO2max_2000) and (2) a test to exhaustion at 80% of the power output associated to VO2max_2000 for a reference time (947 ± 336 sec). Thereafter, two sessions were conducted in a randomized order: a cycle time‐trial corresponding to the reference time (TT1) followed 22 min later (passive rest at 2000 m) by a 6‐min cycle time‐trial (TT2). TT1 was either performed at 2000 or 3500 m (FiO2: 0.135), while TT2 was always performed at 2000 m. As expected, during TT1, the mean power output (247 ± 42 vs. 227 ± 37 W; P < 0.001) was higher at 2000 than 3500 m. During TT2, the mean power output (256 ± 42 vs. 252 ± 36 W) did not differ between conditions. Before and after TT1, maximal isometric voluntary contraction torque in knee extensors (pooled conditions: −7.9 ± 8.4%; P < 0.01), voluntary activation (−4.1 ± 3.1%; P < 0.05), and indices of muscle contractility (peak twitch torque: −39.1 ± 11.9%; doublet torques at 100 Hz: −15.4 ± 8.9%; 10/100 Hz ratio: −25.8 ± 7.7%; all P < 0.001) were equally reduced at 2000 m or 3500 m. Irrespective of the altitude of TT1, neuromuscular function remained similarly depressed after TT1 both before and after TT2 at 2000 m. A prior time‐trial performed at different altitude influenced to the same extent performance and associated cardiometabolic and neuromuscular responses during a subsequent exercise in moderate hypoxia.
Collapse
Affiliation(s)
- Olivier Girard
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Simone Bula
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Raphaël Faiss
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Franck Brocherie
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Guillaume Y. Millet
- Human Performance Laboratory; Faculty of Kinesiology; University of Calgary; Calgary AB Canada
| | - Grégoire P. Millet
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
44
|
Fan JL, Kayser B. Fatigue and Exhaustion in Hypoxia: The Role of Cerebral Oxygenation. High Alt Med Biol 2016; 17:72-84. [DOI: 10.1089/ham.2016.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Farra SD, Kessler C, Duffin J, Wells GD, Jacobs I. Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respir Physiol Neurobiol 2016; 231:28-36. [PMID: 27236039 DOI: 10.1016/j.resp.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Exercise- and hypoxia-induced hyperventilation decreases the partial pressure of end-tidal carbon dioxide (PETCO2), which in turn exerts many physiological effects. Several breathing circuits that control PETCO2 have been previously described, but their designs are not satisfactory for exercise studies where changes in inspired oxygen (FIO2) may be desired. This study is the first report of a breathing system that can maintain PETCO2 constant within a single session of graded submaximal exercise and graded hypoxia. Thirteen fit and healthy subjects completed two bouts of exercise consisting of three 3min stages on a cycle ergometer with increasing exercise intensity in normoxia (Part A; 142±14, 167±14, 192±14W) or with decreasing FIO2 at a constant exercise intensity (Part B; 21, 18, and 14%). One bout was a control (CON) where PETCO2 was not manipulated, while during the other bout the investigator clamped PETCO2 within 2mmHg (CO2Clamp) using sequential gas delivery (SGD). During the final 30s of each exercise stage during CO2Clamp, PETCO2 was successfully maintained in Part A (43±4, 44±4, 44±3mmHg; P=0.44) and Part B (45±3, 46±3, 45±3mmHg; P=0.68) despite the increases in ventilation due to exercise. These findings demonstrate that this SGD circuit can be used to maintain isocapania in exercising humans during progressively increasing exercise intensities and changing FIO2.
Collapse
Affiliation(s)
- Saro D Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Cathie Kessler
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Greg D Wells
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Siebenmann C, Rasmussen P. Does cerebral hypoxia facilitate central fatigue? Exp Physiol 2016; 101:1173-1177. [DOI: 10.1113/ep085640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Christoph Siebenmann
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Solna Sweden
| | - Peter Rasmussen
- H. Lundbeck A/S; Valby; Denmark
- Department of Neuroscience and Pharmacology; University of Copenhagen; Denmark
| |
Collapse
|
47
|
Hartley GL, Watson CL, Ainslie PN, Tokuno CD, Greenway MJ, Gabriel DA, O'Leary DD, Cheung SS. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow. J Physiol 2016; 594:3423-37. [PMID: 26836470 DOI: 10.1113/jp271914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic-induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated. We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation-induced hypocapnia to reduce both CBF and P ETC O2. Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2. These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. ABSTRACT Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor-evoked potentials (MEPs), maximal M-wave (Mmax ) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg(-1) ) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end-tidal PCO2 (P ETC O2); (2) controlled iso-oxic hyperventilation-induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation-mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%Mmax ) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability - as reflected by larger MEP amplitude - appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2.
Collapse
Affiliation(s)
- Geoffrey L Hartley
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Physical and Health Education, Schulich School of Education, Nipissing University, North Bay, Ontario, Canada
| | - Cody L Watson
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Craig D Tokuno
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Matthew J Greenway
- Michael G. DeGroote School of Medicine, Niagara Regional Campus, McMaster University, Hamilton, Ontario, Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
48
|
Lloyd A, Raccuglia M, Hodder S, Havenith G. Interaction between environmental temperature and hypoxia on central and peripheral fatigue during high-intensity dynamic knee extension. J Appl Physiol (1985) 2016; 120:567-79. [PMID: 26769955 DOI: 10.1152/japplphysiol.00876.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
This study investigated causative factors behind the expression of different interaction types during exposure to multistressor environments. Neuromuscular fatigue rates and time to exhaustion (TTE) were investigated in active men (n = 9) exposed to three climates [5 °C, 50% relative humidity (rh); 23 °C, 50% rh; and 42 °C, 70% rh] at two inspired oxygen fractions (0.209 and 0.125 FiO2; equivalent attitude = 4,100 m). After a 40-min rest in the three climatic conditions, participants performed constant-workload (high intensity) knee extension exercise until exhaustion, with brief assessments of neuromuscular function every 110 s. Independent exposure to cold, heat, and hypoxia significantly (P < 0.01) reduced TTE from thermoneutral normoxia (reductions of 190, 405, and 505 s from 915 s, respectively). The TTE decrease was consistent with a faster rate of peripheral fatigue development (P < 0.01) compared with thermoneutral normoxia (increase of 1.6, 3.1, and 4.9%/min from 4.1%/min, respectively). Combined exposure to hypoxic-cold resulted in an even greater TTE reduction (-589 s), likely due to an increase in the rate of peripheral fatigue development (increased by 7.6%/min), but this was without significant interaction between stressors (P > 0.198). In contrast, combined exposure to hypoxic heat reduced TTE by 609 s, showing a significant antagonistic interaction (P = 0.003) similarly supported by an increased rate of peripheral fatigue development (which increased by 8.3%/min). A small decline (<0.4%/min) in voluntary muscle activation was observed only in thermoneutral normoxia. In conclusion, interaction type is influenced by the impact magnitude of the effect of the individual stressors' effect on exercise capacity, whereby the greater the effect of stressors, the greater the probability that one stressor will be abolished by the other. This indicates that humans respond to severe and simultaneous physiological strains on the basis of a worst-strain-takes-precedence principle.
Collapse
Affiliation(s)
- Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Margherita Raccuglia
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
49
|
Torres-Peralta R, Morales-Alamo D, González-Izal M, Losa-Reyna J, Pérez-Suárez I, Izquierdo M, Calbet JAL. Task Failure during Exercise to Exhaustion in Normoxia and Hypoxia Is Due to Reduced Muscle Activation Caused by Central Mechanisms While Muscle Metaboreflex Does Not Limit Performance. Front Physiol 2016; 6:414. [PMID: 26793117 PMCID: PMC4707284 DOI: 10.3389/fphys.2015.00414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022] Open
Abstract
To determine whether task failure during incremental exercise to exhaustion (IE) is principally due to reduced neural drive and increased metaboreflex activation eleven men (22 ± 2 years) performed a 10 s control isokinetic sprint (IS; 80 rpm) after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg) and hypoxia (Hyp, PIO2:73 mmHg) in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg) during 10 or 60 s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10 s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak) was reduced to a greater extent after the IE-Nx (11% lower P < 0.05) than IE-Hyp. The root mean square (EMGRMS) was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P < 0.05). Post-ischemia IS-EMGRMS values were higher than during the last 10 s of IE. Sprint exercise mean (IS-MPF) and median (IS-MdPF) power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P < 0.05). Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60 s of ischemia, IS-Wmean (+23%) and burst duration (+10%) increased, while IS-EMGRMS decreased (−24%, P < 0.05), with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within 1 min even when the legs remain ischemic. There is dissociation between the recovery of EMGRMS and performance. The reduction of surface electromyogram MPF, MdPF and burst duration due to fatigue is associated but not caused by muscle acidification and lactate accumulation. Despite metaboreflex stimulation, muscle activation and power output recovers partly in ischemia indicating that metaboreflex activation has a minor impact on sprint performance.
Collapse
Affiliation(s)
- Rafael Torres-Peralta
- Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain
| | | | - José Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain
| | - Ismael Pérez-Suárez
- Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarra Tudela, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS)Las Palmas de Gran Canaria, Spain
| |
Collapse
|
50
|
Garvican-Lewis LA, Clark B, Martin DT, Schumacher YO, McDonald W, Stephens B, Ma F, Thompson KG, Gore CJ, Menaspà P. Impact of Altitude on Power Output during Cycling Stage Racing. PLoS One 2015; 10:e0143028. [PMID: 26629912 PMCID: PMC4668098 DOI: 10.1371/journal.pone.0143028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. METHODS Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (<1000 m, 1000-2000, 2000-3000 and >3000 m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. RESULTS Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. CONCLUSION A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.
Collapse
Affiliation(s)
- Laura A Garvican-Lewis
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Physiology, Australian Institute of Sport, Canberra, Australia
- * E-mail:
| | - Bradley Clark
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Physiology, Australian Institute of Sport, Canberra, Australia
| | - David T. Martin
- Physiology, Australian Institute of Sport, Canberra, Australia
| | | | | | | | - Fuhai Ma
- Qinghai Institute of Sport Science, Duoba, China
| | - Kevin G. Thompson
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Christopher J. Gore
- Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| | - Paolo Menaspà
- Physiology, Australian Institute of Sport, Canberra, Australia
- Edith Cowan University, Perth, Australia
| |
Collapse
|